
Reading Course

Ulm University

Institute of Stochastics

Lecture Notes

Dr. Tim Brereton

Winter Term 2015 - 2016

Ulm, 2015

2

Contents

1 The Poisson Process 5
1.1 Point Processes on [0,∞) . 5
1.2 Poisson Process . 7

1.2.1 Order Statistics and the Distribution of Arrival Times 10
1.2.2 Distribution of Arrival Times 11

1.3 Simulating Poisson Processes 12
1.3.1 Using the Infinitesimal Definition to Simulate Approx-

imately . 12
1.3.2 Simulating the Arrival Times 13
1.3.3 Simulating the Inter-Arrival Times 14

1.4 Inhomogenous Poisson Processes 14
1.5 Simulating an Inhomogenous Poisson Process 15

1.5.1 Acceptance-Rejection 15
1.5.2 Infinitesimal Approach (Approximate) 16

1.6 Compound Poisson Processes 17

2 Gaussian Processes 19
2.1 The Multivariate Normal Distribution 19

2.1.1 Symmetric Positive Definite and Semi-Positive Definite
Matrices . 21

2.1.2 Densities of Multivariate Normals 22
2.1.3 Simulating Multivariate Normals 23

2.2 Simulating a Gaussian Processes Version 1 24
2.3 Stationary and Weak Stationary Gaussian Processes 27
2.4 Finite Dimensional Distributions 27
2.5 Marginal and Conditional Multivariate Normal Distributions . 28
2.6 Interpolating Gaussian Processes 29
2.7 Markovian Gaussian Processes 31
2.8 Brownian Motion . 33

3

4 CONTENTS

Chapter 1

The Poisson Process

The Poisson process is one of the fundamental stochastic processes in
probability. We can use it to build many complex and interesting stochastic
objects. It is a very simple model for processes such as the arrival of people in
a queue, the number of cars arriving at a red traffic light, and the occurrence
of insurance claims.

1.1 Point Processes on [0,∞)

A Poisson process is a point process on [0,∞). We will not consider
such point processes in their most general form, but rather a straightforward
and easy to work with subset of point processes. We can use a number of
equivalent definitions. The first of these is to see the point process in terms
of a counting process. A counting process, {Nt}t≥0 counts the number of
events that have happened by time t.

Definition 1.1.1 (Point Process on [0,∞): Counting Process Version). A
point process on [0,∞) is a process {Nt}t∈[0,∞) taking values in N that:

(i) Vanishes at 0. That is, N0− = N0 = 0, where Nt− = limu↑t Nu.

(ii) Is non-decreasing. That is, N0 ≤ Ns ≤ Nt for 0 ≤ s ≤ t.

(iii) Is right continuous. That is, Nt = Nt+ , where Nt+ = limu↓t Nu.

(iv) Has unit jumps. That is, Nt −Nt− ∈ 0, 1. Technically, a process where
only one jump can occur at a given time t is called a simple point

process.

(v) Has an infinite limit. That is, limt→∞ Nt = ∞.

5

6 CHAPTER 1. THE POISSON PROCESS

Note, again, that some of these requirements can be relaxed.

Definition 1.1.2 (Point Process on [0,∞): Jump Instances Version). A
point process on [0,∞) is defined by a sequence {Tn}n≥1 of random variables
that are positive and increasing to infinity. That is,

0 < T1 < T2 < · · · < ∞ and lim
n→∞

Tn = ∞.

This defines the counting process

Nt =
∑

n≥1

I(Tn ≤ t) = sup{n ≥ 1 : Tn ≤ t}.

Definition 1.1.3 (Point Process on [0,∞): Inter-arrivals Version). A point
process on [0,∞) is defined by a sequence {Sn}n≥1 of positive random vari-
ables such that

∑
n≥1 Sn = ∞. These define a sequence of jump instances by

S1 = T1 and Sn = Tn − Tn−1 for n ≥ 2.

These three definitions of point processes suggest three possible ways to
simulate them.

(i) We can simulate the counting process {Nt}t≥0 (or its increments).

(ii) We can simulate the jump times {Tn}n≥1.

(iii) We can simulate the inter-arrival times {Sn}n≥1.

The key properties of a Poisson process (aside from being a point process)
are that it has stationary increments and independent increments.

Definition 1.1.4 (Stationary Increments). A stochastic process {Xt}t≥0 has
stationary increments if the distribution of Xt+h −Xt depends only on h for
h ≥ 0.

Definition 1.1.5 (Independent Increments). A stochastic process {Xt}t≥0

has independent increments if the random variables {Xti+1
− Xti}ni=1 are

independent whenever 0 ≤ t1 < t2 < · · · < tn and n ≥ 1.

A process that has stationary and independent increments is attractive
from a simulation perspective because we can simulate it in ’parts’ (the in-
crements).

1.2. POISSON PROCESS 7

1.2 Poisson Process

Equipped with the necessary definitions, we can now define a Poisson
process.

Definition 1.2.1 (Poisson Process on [0,∞)). A (homogenous) Poisson pro-
cess on [0,∞) with parameter λ > 0 is a point process on [0,∞) with sta-
tionary and independent increments and Nt ∼ Poi(λt) for all t ≥ 0. That
is,

P(Nt = k) = e−λt (λt)
k

k!
.

Actually, we can define a Poisson process in a number of different ways.

Theorem 1.2.2 (Poisson process). The following definitions are equivalent
definitions.

(i) A Poisson process is a point process, {Nt}t≥0, with stationary and
independent increments with Nt ∼ Poi(λt) for all t ≥ 0.

(ii) A Poisson process is a point process, {Nt}t≥0, with independent incre-
ments and the property that, as h ↓ 0, uniformly in t

(a) P(Nt+h −Nt = 0) = 1− λh+ o(h).

(b) P(Nt+h −Nt = 1) = λh+ o(h).

(c) P(Nt+h −Nt > 1) = o(h).

(iii) A Poisson process is a point process defined by its inter-arrival times,
{Sn}n≥1, which are i.i.d. Exp(λ).

Before we prove anything, we need a few results.

Lemma 1.2.3 (Memoryless Property). We say that exponential random
variables have the memoryless property. That is, for t, s ≥ 0, if X ∼ Exp(λ),
then

P(X > t+ s |X > s) = P(X > t).

Proof. We can write P(X > t+ s |X > s) as

P(X > t+ s,X > s)

P(X > s)
.

As s < t then P(X > t+ s,X > s) = P(X > t), so

P(X > t+ s,X > s)

P(X > s)
=

P(X > t+ s)

P(X > s)
=

e−λ(t+s)

e−λs
= e−λ(t) = P(X > t).

8 CHAPTER 1. THE POISSON PROCESS

Theorem 1.2.4 (Markov Property). If {Nt}t≥0 is a Poisson process with
rate λ > 0, then, for any s > 0, {Nt+s−Ns}t≥0 is also a Poisson process with
rate λ. Furthermore, this process is independent of {Nr}r≤s.

Proof. First, note that the event {Ns = i} can be written as

{Ns = i} = {Ti ≤ s} ∩ {Si+1 > s− Ti}

and, given this, for r ≤ s,

Nr =
i∑

j=1

I(Sj ≤ r).

Define the process starting at time s by Ñt = Nt+s − Ns. Then, given
{Ns = i}, S̃1 = Si+1 − (s − Ti) and S̃n = Si+n for n ≥ 2. Now, by the

memoryless property, S̃1 is an Exp(λ) random variable. Thus the {S̃n}n≥1 are
i.i.d. Exp(λ) random variables independent of S1, . . . , Sn. Thus, conditional

of {Ns = i}, {Ñt}t≥0 is a Poisson process independent of {Xr}r≤s.

Now, we can prove Theorem 1.2.2.

Proof. I give a number of proofs of equivalences here. The rest will be left
for exercises or self-study.

Part 1. First, we will show that (i) implies (ii). Now, as the increments are
stationary, we know Nt+h −Nt has the same distribution as Nh −N0. So,

P(Nt+h −Nt = 0) = P(Nh −N0 = 0) = P(Nh = 0) = e−λh.

Taking a Taylor expansion of the exponential function, we get e−λh = 1 −
λh+ o(h). Likewise,

P(Nt+h −Nt = 1) = P(Nh = 1) = λhe−λh = λh+ o(h).

and P(Nt+h −Nt > 1) = o(h).

Part 2. We will show that (ii) implies (i). We do this by solving some
differential equations. First, let us define pj(t) = P(Nt = j). Then,

p0(t+h) = P(Nt+h = 0) = P(Nt+h−Nt = 0)P(Nt = 0) = (1−λh+o(h))p0(t).

Rearranging, we have

p0(t+ h)− p0(t)

h
= −λp0(t) +

o(h)

h
.

1.2. POISSON PROCESS 9

Because this holds for all t, we also get

p0(t)− p0(t− h)

h
= −λp0(t− h) +

o(h)

h
.

Letting h → 0 shows that p0(t) has a derivative (as the limit exists). This
gives us

p0(t)
′ = −λp0(t) ⇒ p0(t) = Ae−λt.

Now, because N0 = 0, we know that p0(0) = 1 so A = 1 (i.e., p0(t) = e−λt).
Doing the same for pj(t) we have

pj(t+ h) =

j∑

i=0

P(Nt+h −Nt = i)P(Nt = j − i)

= P(Nt+h −Nt = 0)P(Nt = j) + P(Nt+h −Nt = 1)P(Nt = j − 1)

+

j∑

i=2

P(Nt+h −Nt = i)P(Nt = j − i)

= (1− λh+ o(h))pj(t) + (λh+ o(h))pj−1(t) + o(h).

Rearranging, we have

pj(t+ h)− pj(t)

h
= −λpj(t) + λpj−1(t) +

o(h)

h
.

By a similar argument to the one above, we get

pj(t)
′ = −λpj(t) + λpj−1(t).

Now, remember that the product rule tells us that (fg)′ = f ′g + g′f . If we
use the integrating factor eλt, we get

pj(t)
′ = −λpj(t) + λpj−1(t) ⇒ eλtpj(t) = −λeλtpj(t) + λeλtpj−1(t)

⇒ eλtpj(t)
′ + λeλtpj(t) = λeλtpj−1(t) ⇒

(
eλtpj(t)

)′
= λeλtpj−1(t).

We can solve this by induction. We start with j = 1. This gives
(
eλtp1(t)

)′
= λeλtp0(t) = λeλte−λt = λ.

Integrating, we get

eλtp1(t) = λt+ A ⇒ p1(t) = tλeλt + Aeλt.

Now, pj(0) = 0 for j > 0, so A = 0 and p1(t) = tλeλt. Repeating in this way,
we get

pj(t) = P(Nt = j) = e−λt (λt)
j

j!
.

10 CHAPTER 1. THE POISSON PROCESS

Part 3. We show that (iii) implies (ii). This is just like the proof that (i)
implies (ii). Using the Markov property (which was based on the interarrivals
definition) we observe that Nt+h −Nt has the same distribution as Nh, so

P(Nt+h −Nt = 0) = P(Nh = 0) = P(S1 > h) = e−λh = 1− λh+ o(h),

and

P(Nt+h −Nt = 1) = P(Nh = 0) = P(S1 < h, S1 + S2 > h)

=

∫ h

0

e−λ(h−u)λe−λu du =

∫ h

0

λe−λh du = λhe−λh = λh+ o(h).

It is also straightforward to see that

P(Nt+h −Nt > 1) = P(S1 < h, S1 + S2 < h) ≤ P(S1 < h)P(S2 < h) = o(h).

1.2.1 Order Statistics and the Distribution of Arrival
Times

Order Statistics

Consider identically distributed random variables X1, . . . , Xn with distri-
bution F (x) (that is P(X < x) = F (x). The order statistics of these random
variables are simply the random variables ordered from smallest to largest.
We write these as X(1) ≤ X(2) ≤ . . . ≤ X(n). Two of the most important
order statistics are the minimum, X(1), and the maximum, X(n).

Lemma 1.2.5. The distribution of the minimum is given by

P
(
X(1) ≤ x

)
= 1− (1− F (x))n .

Proof. We have

P
(
X(1) ≤ x

)
= 1− P

(
X(1) > x

)
= 1− P(X1 > x, . . . , Xn > x)

= 1− P(X1 > x) · · ·P(Xn > x) = 1− (P(X > x))n = 1− (1− F (x))n .

Lemma 1.2.6. The distribution of the maximum is given by

P
(
X(n) ≤ x

)
= F (x)n

1.2. POISSON PROCESS 11

Proof. We have

P
(
X(n) ≤ x

)
= P(X1 ≤ x, . . . , Xn ≤ x) = P(X ≤ x)n = F (x)n.

Lemma 1.2.7. The density of the order statistics of n random variables
U1, . . . , Un, with distribution U(a, b), is given by

f(u1, . . . , un) =
n!

(b− a)n
I(a ≤ u1 ≤ · · · ≤ un ≤ b)

Proof. It is easiest to begin with the distribution and then take derivatives
to get the density. We wish to calculate P

(
U(1) ≤ u1, . . . , U(n) ≤ un

)
. Note

that there are n! orderings of the uniform random variables, each of which is
equally likely. So,

P
(
U(1) ≤ u1, . . . , U(n) ≤ un

)
= n!P(U < u1) · · ·P(U < un)

= n!
u1 − a

b− a
· · · un − a

b− a
.

Taking derivatives, we get

f(u1, . . . , un) =
∂

∂u1

· · · ∂

∂un

P
(
U(1) ≤ u1, . . . , U(n) ≤ un

)

=
n!

(b− a)n
I(a ≤ u1 ≤ · · · ≤ un ≤ b).

1.2.2 Distribution of Arrival Times

As it turns out, given that we know how many arrivals a Poisson process
has had in an interval [0, t] (that is, we know Nt), the arrival times will
be uniformly distributed in the interval. This implies that the points of a
Poisson process have very little structure to them (in some sense, it is a
process that puts points as arbitrarily as possible on a line).

Theorem 1.2.8. Let {Nt}t≥0 be a Poisson process. Then, conditional on
{Nt = n}, T1, . . . , Tn have the joint density function

f(t1, . . . , tn) =
n!

tn
I(0 ≤ t1 ≤ · · · ≤ tn ≤ t).

This is the density of the order statistics of i.i.d. uniform random variables
on the interval [0, t]. This means the arrival times are distributed uniformly
on this interval.

12 CHAPTER 1. THE POISSON PROCESS

Proof. Consider the event {T1 = t1, . . . , Tn = tn, Nt = n}. Because there is a
bijection between arrival times and inter-arrival times, this should have the
same probability density as the event

{S1 = t1, S2 = t2 − t1, . . . , Sn = tn − tn−1, Sn+1 > t− tn}.

Because this is the joint density of i.i.d. exponential random variables, we
can write this explicitly as

λe−λu1λe−λ(u2−u1) · · ·λe−λ(un−un−1)e−λ(t−un) = λne−λt.

We then get the conditional density we wish by dividing by the probability
of the event {Nt = n},

f(t1, . . . , tn) =
λne−λt

(λt)ne−λt/n!
I(0 ≤ t1 ≤ · · · ≤ tn ≤ t)

=
n!

tn
I(0 ≤ t1 ≤ · · · ≤ tn ≤ t).

1.3 Simulating Poisson Processes

As already mentioned, there are at least three ways of simulating a Pois-
son process. These follow directly from the different definitions we have used.

1.3.1 Using the Infinitesimal Definition to Simulate
Approximately

The infinitesimal definition gives us a way to simulate the counting pro-
cess {Nt}t≥0 directly. This simulation is approximate but becomes increas-
ingly good as h ↓ 0. The idea is to slice the interval [0, t] up into little pieces
of length (sometimes called mesh size) h. In each one of these slices, we
increase {Nt}t≥0 with probability λh.

Listing 1.1: Matlab code

1 lambda = 4; t = 1; h = 0.0001;

2 mesh = 0:h:t; N = zeros(1, length(mesh));

3 S = []; jump_indices = [];

4

5 N(1) = 0;

6

1.3. SIMULATING POISSON PROCESSES 13

7 for i = 2:length(mesh)

8 if rand < lambda * h

9 jump_indices = [jump_indices i];

10 N(i) = N(i-1) + 1;

11 else

12 N(i) = N(i-1);

13 end

14 end

15

16 if isempty(jump_indices)==0

17 Ts = (jump_indices - 1)*h;

18 S(1) = Ts(1);

19 if length(jump_indices) > 1

20 for i = 2:length(jump_indices)

21 S(i) = Ts(i) - Ts(i-1);

22 end

23 end

24 end

1.3.2 Simulating the Arrival Times

The idea of this approach is to simulate the arrival times directly. Given
an interval [0, t], we know that we have a Poi(λt) random number of arrivals.
These are then distributed uniformly in [0, t].

Listing 1.2: Matlab code

1 t = 5; lambda = 2;

2

3 T = [];

4 n = poissrnd(lambda * t);

5

6 if n~=0

7 T = sort(t * rand(n,1));

8 S = zeros(n,1);

9 S(1) = T(1);

10 if n > 1

11 for i = 2:n

12 S(i) = T(i) - T(i-1);

13 end

14 end

15 end

14 CHAPTER 1. THE POISSON PROCESS

1.3.3 Simulating the Inter-Arrival Times

The idea here is to simulate the inter-arrival times, which are i.i.d. Exp(λ)
random variables. Note that, if U ∼ U(0, 1), then − log(U)/λ is Exp(λ).

Listing 1.3: Matlab code

1 lambda = 4; h = 0.0001; t = 1;

2

3 s = 0;

4

5 S = []; Ts = [];

6

7 while s <= t

8 inter_time = - log(rand) / lambda;;

9 s = s + inter_time;

10 if s > t

11 break;

12 else

13 Ts = [Ts s];

14 S = [S inter_time];

15 end

16 end

1.4 Inhomogenous Poisson Processes

For many of the processes that Poisson processes are used to model, such
as queues and traffic, the assumption that events occur at a constant rate
(i.e., λ is constant) is very unrealistic. If you think about traffic (either on the
internet or on a road) it tends to be heavier in some time periods and lighter in
others. Inhomogenous Poisson processes modify the definition of a Poisson
process so that it can incorporate time-dependent arrivals. Inhomogenous
Poisson processes can be defined in a number of ways. Note, however, that it
is no longer straightforward to use a definition based on inter-arrival times.

Definition 1.4.1 (Inhomogenous Poisson Process). A point process {Nt}t≥0

is said to be an inhomogenous Poisson process with intensity function λ(t) ≥
0 ∀t ≥ 0.

(i) N0 = 0.

(ii) For each t ≥ 0, Nt has a Poisson distribution with paramater Λ =∫ t

0
λ(s) ds.

1.5. SIMULATING AN INHOMOGENOUS POISSON PROCESS 15

(iii) For each 0 ≤ t1 < t2 < · · · < tm, the random variables Nt1 , . . . , Ntm −
Ntm−1

are independent (that is, {Nt}t≥0 has independent increments).

Definition 1.4.2 (Inhomogenous Poisson Process (Infinitesimal Definition)).
A point process {Nt}t≥0 is said to be an inhomogenous Poisson process with
intensity function λ(t) ≥ 0∀t ≥ 0 if, as h ↓ 0,

(i) {Nt}t≥0 has independent increments.

(ii) P(Nt+h −Nt = 0) = 1− λ(t)h+ o(h).

(iii) P(Nt+h −Nt = 1) = λ(t)h+ o(h).

(iv) P(Nt+h −Nt > 1) = o(h).

1.5 Simulating an Inhomogenous Poisson Pro-

cess

There are at least two ways to simulate an inhomogenous Poisson process.

1.5.1 Acceptance-Rejection

One way to simulate an inhomogenous Poisson process on an interval [0, t]
is to simulate a homogenous Poisson process with parameter

λ∗ = max{λ(s) : 0 ≤ s ≤ t}

then ‘thin’ this process by only accepting arrivals with a certain probability.
If an arrival / jump occurs at time Ti it should only be accepted with prob-
ability λ(T1)/λ

∗. It is not hard to check that this method works using the
infinitesimal definition.

Listing 1.4: Matlab code

1 t = 10; lambda_star = 1;

2

3 T = [];

4 n = poissrnd(lambda_star * t);

5

6 if n~=0

7 point_count = 0;

8 for i = 1:n

9 T_temp = t * rand;

10 if rand < sin(T_temp)^2 / lambda_star

16 CHAPTER 1. THE POISSON PROCESS

11 point_count = point_count + 1;

12 T(point_count) = T_temp;

13 end

14 end

15 if point_count ~= 0

16 T = sort(T);

17 S = zeros(point_count,1);

18 S(1) = T(1);

19 if point_count > 1

20 for i = 2:point_count

21 S(i) = T(i) - T(i-1);

22 end

23 end

24 end

25 end

1.5.2 Infinitesimal Approach (Approximate)

As in the homogenous Poisson process case, we can simulate an inho-
mogenous Poisson process approximately using its infinitesimal definition.
This approximation becomes better as h ↓ 0.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Figure 1.5.1: A realization of a inhomogenous Poisson process with the in-
tensity function λ(t) = 3 sin2(t) plotted.

Listing 1.5: Matlab code

1 lambda = 1; t = 10; h = 0.0001;

1.6. COMPOUND POISSON PROCESSES 17

2 mesh = 0:h:t; N = zeros(1, length(mesh));

3 S = []; jump_indices = [];

4

5 N(1) = 0;

6

7 for i = 2:length(mesh)

8 if rand < 3*sin(h*(i-1))^2 * h

9 jump_indices = [jump_indices i];

10 N(i) = N(i-1) + 1;

11 else

12 N(i) = N(i-1);

13 end

14 end

15

16 if isempty(jump_indices)==0

17 Ts = (jump_indices - 1)*h;

18 S(1) = Ts(1);

19 if length(jump_indices) > 1

20 for i = 2:length(jump_indices)

21 S(i) = Ts(i) - Ts(i-1);

22 end

23 end

24 end

1.6 Compound Poisson Processes

A very useful extension of a Poisson process is what is called a compound

Poisson process. A compound Poisson process replaces the unit jumps of a
homogenous Poisson process with random jump sizes.

Definition 1.6.1 (Compound Poisson Process). Given a homogenous Pois-
son process, {Nt}t≥0 and a jump distribution G, we say

Xt =
Nt∑

i=1

Ji,

is a compound Poisson process, where the jumps {Jn}n≥0 are i.i.d. draws
from the distribution G.

Example 1.6.2. A street musician plays the accordion in the main street of
Ulm for three hours. He hopes to earn enough for a beer, which costs AC3.50.
Throughout the three hours, people give him coins at random. There does

18 CHAPTER 1. THE POISSON PROCESS

not seem to be any pattern to when people give him money, so a Poisson
process is a good model. The amount of money each person gives is random,
with distribution

P(AC0.05) = 2/5

P(AC0.10) = 2/5

P(AC0.20) = 1/5.

On average, 5 people per hour give the street musician money. This implies
that the Poisson process has intensity λ = 5. What is the probability the
musician gets his beer? That is, what is ℓ = P(X3 ≥ 3.50). We can estimate
this easily using Monte Carlo.

Listing 1.6: Matlab code

1 t = 3; lambda = 5; N = 10^6;

2 beer = zeros(N,1); beer_price = 350;

3

4 for i = 1:N

5

6 n = poissrnd(lambda * t);

7

8 if n~=0

9 coins = zeros(n,1);

10 for j = 1:n

11 U = rand;

12 coins(j) = (U <= 2/5)*5 + ...

13 (U > 2/5 && U <= 4/5)*10 + (U > 4/5)*20;

14 end

15 end

16

17 beer(i) = (sum(coins) >= beer_price);

18 end

19

20 ell_hat = mean(beer)

21 re_hat = std(beer) / (ell_hat * sqrt(N))

Chapter 2

Gaussian Processes

Gaussian processes are a reasonably large class of processes that have
many applications, including in finance, time-series analysis and machine
learning. Certain classes of Gaussian processes can also be thought of as
spatial processes. We will use these as a vehicle to start considering more
general spatial objects.

Definition 2.0.3 (Gaussian Process). A stochastic process {Xt}t≥0 is Gaus-
sian if, for any choice of times t1, . . . , tn, the random vector (Xt1 , . . . , Xtn)
has a multivariate normal distribution.

2.1 The Multivariate Normal Distribution

Because Gaussian processes are defined in terms of the multivariate nor-
mal distribution, we will need to have a pretty good understanding of this
distribution and its properties.

Definition 2.1.1 (Multivariate Normal Distribution). A vectorX = (X1, . . . , Xn)
is said to be multivariate normal (multivariate Gaussian) if all linear combi-
nations of X, i.e. all random variables of the form

n∑

k=1

αkXk

have univariate normal distributions.

This is quite a strong definition. Importantly, it implies that, even if all of
its components are normally distributed, a random vector is not necessarily
multivariate normal.

19

20 CHAPTER 2. GAUSSIAN PROCESSES

Example 2.1.2 (A random vector with normal marginals that is not multi-
variate normal). Let X1 ∼ N(0, 1) and

X2 =

{
X1 if |X1| ≤ 1

−X1 if |X1| > 1
.

Note that X2 ∼ N(0, 1). However, X1 + X2 is not normally distributed,
because |X1+X2| ≤ 2, which implies X1+X2 is bounded and, hence, cannot
be normally distributed.

Linear transformations of multivariate normal random vectors are, again,
multivariate normal.

Lemma 2.1.3. Suppose X = (X1, . . . , Xn) is multivariate normal and A is
an m× n real-valued matrix. Then, Y = AX is also multivariate normal.

Proof. Any linear combination of Y1, . . . , Ym is a linear combination of linear
combinations of X1, . . . , Xn and, thus, univariate normal.

Theorem 2.1.4. A multivariate normal random vector X = (X1, . . . , Xn)
is completely described by a mean vector µ = EX and a covariance matrix
Σ = Var(X).

Proof. The distribution of X is described by its characteristic function which
is

Eexp {iθ⊺X} = Eexp

{
i

n∑

i=1

θiXi

}
.

Now, we know
∑n

i=1 θiXi is a univariate normal random variable (because
X is multivariate normal). Let m = E

∑n
i=1 θiXi and σ2 = Var (

∑n
i=1 θiXi).

Then,

E

{
i

n∑

i=1

θiXi

}
= exp

{
im− 1

2
σ2

}
.

Now

m = E

n∑

i=1

θiXi =
n∑

i=1

θiµi

and

σ2 = Var

(
n∑

i=1

θiXi

)
=

n∑

i=1

n∑

j=1

θiθjCov(Xi, Xj) =
n∑

j=1

n∑

j=1

θiθjΣi,j .

So, everything is specified by µ and Σ.

2.1. THE MULTIVARIATE NORMAL DISTRIBUTION 21

There is nothing too difficult about dealing with the mean vector µ. How-
ever, the covariance matrix makes things pretty difficult, especially when we
wish to simulate a high dimensional random vector. In order to simulate
Gaussian processes effectively, we need to exploit as many properties of co-
variance matrices as possible.

2.1.1 Symmetric Positive Definite and Semi-Positive
Definite Matrices

Covariance matrices are members of a family of matrices called symmetric

positive definite matrices.

Definition 2.1.5 (Positive Definite Matrices (Real-Valued)). An n×n real-
valued matrix, A, is positive definite if and only if

x⊺Ax > 0 for all x 6= 0.

If A is also symmetric, then A is called symmetric positive definite (SPD).
Some important properties of SPD matrices are

(i) rank(A) = n.

(ii) |A| > 0.

(iii) Ai,i > 0.

(iv) A−1 is SPD.

Lemma 2.1.6 (Necessary and sufficient conditions for an SPD). The fol-
lowing are necessary and sufficient conditions for an n × n matrix A to be
SPD

(i) All the eigenvalues λ1, . . . , λn of A are strictly positive.

(ii) There exists a unique matrix C such that A = CC⊺, where C is a real-
valued lower-triangular matrix with positive diagonal entries. This is
called the Cholesky decomposition of A.

Definition 2.1.7 (Positive Semi-definite Matrices (Real-Valued)). An n×n
real-valued matrix, A, is positive semi-definite if and only if

x⊺Ax ≥ 0 for all x 6= 0.

22 CHAPTER 2. GAUSSIAN PROCESSES

If A is also symmetric, then A is called symmetric positive semi-definite
(SPSD). Note that if A is an SPSD then there is a real-valued decomposition

A = LL⊺,

though it is not necessarily unique and L may have zeroes on the diagonals.

Lemma 2.1.8. Covariance matrices are SPSD.

Proof. Given an n × 1 real-valued vector x and a random vector Y with
covariance matrix Σ, we have

Var (x⊺Y) = x⊺Var (Y)x.

Now this must be non-negative (as it is a variance). That is, it must be the
case that

x⊺Var (Y)x ≥ 0,

so Σ is positive semi-definite. Symmetry comes from the fact that Cov(X, Y) =
Cov(Y,X).

Lemma 2.1.9. SPSD matrices are covariance matrices.

Proof. Let A be an SPSD matrix and Z be a vector of random variables with
Var(Z) = I. Now, as A is SPSD, A = LL⊺. So,

Var(LZ) = LVar(Z)L⊺ = LIL⊺ = A,

so A is the covariance matrix of LZ.

COVARIANCE POS DEF ...

2.1.2 Densities of Multivariate Normals

If X = (X1, . . . , Xn) is N(µ,Σ) and Σ is positive definite, then X has the
density

f(x) = f(x1, . . . , xn) =
1√

(2π)n|Σ|
exp

{
−1

2
(x− µ)⊺Σ−1(x− µ)

}
.

2.1. THE MULTIVARIATE NORMAL DISTRIBUTION 23

2.1.3 Simulating Multivariate Normals

One possible way to simulate a multivariate normal random vector is
using the Cholesky decomposition.

Lemma 2.1.10. If Z ∼ N(0, I), Σ = AA⊺ is a covariance matrix, and
X = µ+ AZ, then X ∼ N(µ,Σ).

Proof. We know from lemma 2.1.3 that AZ is multivariate normal and so
is µ + AZ. Because a multivariate normal random vector is completely
described by its mean vector and covariance matrix, we simple need to find
EX and Var(X). Now,

EX = Eµ+ EAZ = µ+ A0 = µ

and

Var(X) = Var(µ+ AZ) = Var(AZ) = AVar(Z)A⊺ = AIA⊺ = AA⊺ = Σ.

Thus, we can simulate a random vector X ∼ N(µ,Σ) by

(i) Finding A such that Σ = AA⊺.

(ii) Generating Z ∼ N(0, I).

(iii) Returning X = µ+ AZ.

Matlab makes things a bit confusing because its function ‘chol’ produces
a decomposition of the form B⊺B. That is, A = B⊺. It is important to
be careful and think about whether you want to generate a row or column
vector when generating multivariate normals.

The following code produces column vectors.

Listing 2.1: Matlab code

1 mu = [1 2 3]’;

2 Sigma = [3 1 2; 1 2 1; 2 1 5];

3 A = chol(Sigma);

4 X = mu + A’ * randn(3,1);

The following code produces row vectors.

Listing 2.2: Matlab code

1 mu = [1 2 3];

2 Sigma = [3 1 2; 1 2 1; 2 1 5];

3 A = chol(Sigma);

4 X = mu + randn(1,3) * A;

24 CHAPTER 2. GAUSSIAN PROCESSES

The complexity of the Cholesky decomposition of an arbitrary real-valued
matrix is O(n3) floating point operations.

2.2 Simulating a Gaussian Processes Version

1

Because Gaussian processes are defined to be processes where, for any
choice of times t1, . . . , tn, the random vector (Xt1 , . . . , Xtn) has a multivariate
normal density and a multivariate normal density is completely describe by
a mean vector µ and a covariance matrix Σ, the probability distribution of
Gaussian process is completely described if we have a way to construct the
mean vector and covariance matrix for an arbitrary choice of t1, . . . , tn.

We can do this using an expectation function

µ(t) = EXt

and a covariance function

r(s, t) = Cov(Xs, Xt).

Using these, we can simulate the values of a Gaussian process at fixed times
t1, . . . , tn by calculating µ where µi = µ(t1) and Σ, where Σi,j = r(ti, tj) and
then simulating a multivariate normal vector.

In the following examples, we simulate the Gaussian processes at evenly
spaced times t1 = 1/h, t2 = 2/h, . . . , tn = 1.

Example 2.2.1 (Brownian Motion). Brownian motion is a very important
stochastic process which is, in some sense, the continuous time continuous
state space analogue of a simple random walk. It has an expectation function
µ(t) = 0 and a covariance function r(s, t) = min(s, t).

Listing 2.3: Matlab code

1 %use mesh size h

2 h = 1000; t = 1/h : 1/h : 1;

3 n = length(t);

4

5 %Make the mean vector

6 mu = zeros(1,n);

7 for i = 1:n

8 mu(i) = 0;

9 end

10

2.2. SIMULATING A GAUSSIAN PROCESSES VERSION 1 25

11 %Make the covariance matrix

12 Sigma = zeros(n,n);

13 for i = 1:n

14 for j = 1:n

15 Sigma(i,j) = min(t(i),t(j));

16 end

17 end

18

19 %Generate the multivariate normal vector

20 A = chol(Sigma);

21 X = mu + randn(1,n) * A;

22

23 %Plot

24 plot(t,X);

Example 2.2.2 (Ornstein-Uhlenbeck Process). Another very important Gaus-
sian process is the Ornstein-Uhlenbeck process. This has expectation func-
tion µ(t) = 0 and covariance function r(s, t) = e−α|s−t|/2.

Listing 2.4: Matlab code

1 %use mesh size h

2 h = 1000; t = 1/h : 1/h : 1;

3 n = length(t);

4

5 %paramter of OU process

6 alpha = 10;

7

8 %Make the mean vector

9 mu = zeros(1,n);

10 for i = 1:n

11 mu(i) = 0;

12 end

13

14 %Make the covariance matrix

15 Sigma = zeros(n,n);

16 for i = 1:n

17 for j = 1:n

18 Sigma(i,j) = exp(-alpha * abs(t(i) - t(j)) / 2);

19 end

20 end

21

22 %Generate the multivariate normal vector

23 A = chol(Sigma);

26 CHAPTER 2. GAUSSIAN PROCESSES

24 X = mu + randn(1,n) * A;

25

26 %Plot

27 plot(t,X);

Example 2.2.3 (Fractional Brownian Motion). Fractional Brownian motion
(fBm) is a generalisation of Brownian Motion. It has expectation function
µ(t) = 0 and covariance function Cov(s, t) = 1/2(t2H+s2H−|t−s|2H), where
H ∈ (0, 1) is called the Hurst parameter. When H = 1/2, fBm reduces to
standard Brownian motion. Brownian motion has independent increments.
In contrast, for H > 1/2 fBm has positively correlated increments and for
H < 1/2 fBm has negatively correlated increments.

Listing 2.5: Matlab code

1 %Hurst parameter

2 H = .9;

3

4 %use mesh size h

5 h = 1000; t = 1/h : 1/h : 1;

6 n = length(t);

7

8 %Make the mean vector

9 mu = zeros(1,n);

10 for i = 1:n

11 mu(i) = 0;

12 end

13

14 %Make the covariance matrix

15 Sigma = zeros(n,n);

16 for i = 1:n

17 for j = 1:n

18 Sigma(i,j) = 1/2 * (t(i)^(2*H) + t(j)^(2*H)...

19 - (abs(t(i) - t(j)))^(2 * H));

20 end

21 end

22

23 %Generate the multivariate normal vector

24 A = chol(Sigma);

25 X = mu + randn(1,n) * A;

26

27 %Plot

28 plot(t,X);

2.3. STATIONARYANDWEAK STATIONARYGAUSSIAN PROCESSES27

2.3 Stationary and Weak Stationary Gaus-

sian Processes

Gaussian processes (and stochastic processes in general) are easier to work
with if they are stationary stochastic processes.

Definition 2.3.1 (Stationary Stochastic Process). A stochastic process {Xt}t≥0

is said to be stationary if the random vectors (Xt1 , Xt2 , . . . , Xtn) and (Xt1+s, Xt2+s, . . . , Xtn+s)
have the same distribution for all choices of s, n and t1, t2, . . . , tn.

An example of such a process would be an irreducible positive recurrent
continuous time Markov chain started from its stationary distribution.

The conditions for a stochastic process to be stationary are quite strict.
Often, a slightly weaker version of stationarity, called weak stationarity is
required instead.

Definition 2.3.2 (Weak Stationary Stochastic Process). A stochastic pro-
cess {Xt}t≥0 is said to be weak stationary (sometimes wide sense stationary

or second order stationary) if EXt = c for all t ≥ 0 and Cov(Xt, Xt+s) does
not depends on t.

An example of a weak stationary process is the Ornstein-Uhlenbeck pro-
cess, as EXt = µ(t) = 0 and Cov(Xt, Xt+s) = r(t, t + s) = e−α|t−(t+s)|/2 =
e−αs/2 .

Lemma 2.3.3. Gaussian processes that are weak stationary are stationary.

Proof. We know from theorem 2.1.4 that Gaussian distributions are entirely
determined by their mean vector and covariance matrix. Since the mean and
covariance of a weakly stationary process do not change when the times are
all shifted by s, a weakly stationary Gaussian process is stationary.

An Ornstein-Uhlenbeck process is a weak stationary Gaussian process, so
it is a stationary stochastic process.

2.4 Finite Dimensional Distributions

A very nice property of Gaussian processes is that we know their finite

dimensional distributions.

Definition 2.4.1 (Finite Dimensional Distributions). The finite dimensional
distributions of a stochastic process {Xt}t≥0 are the distributions of all vec-
tors of the form (Xt1 , . . . , Xtn) with n > 0 and 0 ≤ t1 ≤ · · · ≤ tn.

28 CHAPTER 2. GAUSSIAN PROCESSES

The finite dimensional distributions tell us a lot about the behaviour of
a stochastic process. It is worth noting, however, that they do not fully
specify stochastic processes. For example, Brownian motion is almost surely
continuous but this property does not follow simply from specifying the finite
dimensional distributions.

We can simulate the finite dimensional skeletons of a Gaussian process ex-
actly. That is, we can generate Xt1 , . . . , Xtn for any choice of n and t1, . . . , tn.
This is not always true for other stochastic processes. However, we do en-
counter a new form of error, discretization error.

Definition 2.4.2 (Discretization Error). Discretization error is the error
that arises from replacing a continuous object with a discrete object.

For example, if we wish to calculate the variance of the proportion of time
that a Gaussian process spends above 0, or the expectation of the first time
a process hits a set, A, then we will encounter an error in considering the
process only at a fixed number of points.

Discretization error needs to be considered when we decide on a sam-
pling budget. Consider, for example, an evenly spaced mesh of points t1 =
1/m, t2 = 2/m, . . . tn = 1. As m gets bigger, the mesh gets finer and the
discretization error gets smaller. We still have statistical error, however, so
we need to make sure we generate a large enough sample of realizations of
the stochastic process (determined by the sample size N). The total work
done by our simulation is then given by

work = number of samples× work to make one sample = Nf(m).

Usually, f grows at least linearly in m. In the case of Cholesky decompo-
sition, for example, it is O(m3). For a fixed level of work, we need to decide
on how much effort to allocate to reducing discretization error (how large m
should be) and how much effort to allocate to reducing statistical error (how
large N should be). Finding the optimal tradeoff can be difficult. We will
consider such tradeoffs in a number of situations.

2.5 Marginal and Conditional Multivariate Nor-

mal Distributions

The multivariate normal distribution has many attractive properties. In
particular, its marginal distributions are also multivariate normal. In addi-
tion, if we condition on part of the a multivariate normal vector, the remain-
ing values are also multivariate normal.

2.6. INTERPOLATING GAUSSIAN PROCESSES 29

To see this, we need to write normal random vectors in the appropriate
form. LetX ∼ N(µ,Σ). We can decomposeX into two parts,X = (X1,X2)

⊺.
We can then write µ as (µ1,µ2)

⊺ and Σ as

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Theorem 2.5.1 (Multivariate Normal Marginal Distributions). Given X =
(X1,X2) ∼ N(µ,Σ),

X1 ∼ N(µ1,Σ11),

and
X2 ∼ N(µ2,Σ22).

Theorem 2.5.2 (Multivariate Normal Conditional Distributions). Given
X = (X1,X2) ∼ N(µ,Σ), X2 conditional on X1 is multivariate normal with

E[X2 |X1] = µ2 + Σ21Σ
−1
11 (X1 − µ1)

and
Var(X2 |X1) = Σ22 − Σ21Σ

−1
11 Σ12.

2.6 Interpolating Gaussian Processes

Because we know the finite dimensional distributions of Gaussian pro-
cesses and know a lot about working with the multivariate normal distri-
bution, we are able to interpolate between already simulated points of a
Gaussian process. We can do this by simply drawing the new points condi-
tional on the values that we have already generate. For example, if we have
generate values for the process at 0.5 and 1, then we can generate values at
the points 0.25 and 0.75 conditional on X0.5 and X1.

There are a number of reasons why interpolation might be useful. One
is that it might not make sense to simulate the whole stochastic process on
a fine mesh (which is expensive), but rather to simulate a coarse path of the
stochastic process first and then focus our efforts on a particular region of
this path. For example, if we are trying to estimate the first time a stochastic
process hits a particular value, then we might want to focus our simulation
efforts on the part of the stochastic process that is closest to this value. We
should be careful, however, as simulating in this way could introduce a bias.

Example 2.6.1 (Iteratively Updating Brownian Motion). Consider an ex-
ample where we update Brownian motion in an iterative fashion. Remem-
ber, Brownian motion has mean function µ(t) = 0 and covariance function

30 CHAPTER 2. GAUSSIAN PROCESSES

r(s, t) = min(s, t). We interpolate between points to simulate a process on
an increasingly fine mesh.

Listing 2.6: Matlab code

1 num_levels = 10;

2

3 %Make the first two points (at 0.5 and 1)

4 t = [.5 1]; n = length(t);

5 Sigma = zeros(n,n);

6 for i = 1:n

7 for j = 1:n

8 Sigma(i,j) = min(t(i),t(j));

9 end

10 end

11 X = chol(Sigma)’ * randn(2,1);

12

13 plot([0; t’],[0; X]);

14 axis([0 1 -2.5 2.5]);

15

16 %Interpolate

17 for level = 2:num_levels

18 %Make the additional mesh points

19 t_new = 1/2^level : 2/2^level : (2^level-1)/(2^level);

20 n_new = length(t_new);

21

22 %Record the time points for the whole process

23 t_temp = [t t_new];

24 n_temp = length(t_temp);

25

26 %Make a covariance matrix for the whole thing

27 Sigma_temp = zeros(n_temp,n_temp);

28 for i = 1:n_temp

29 for j = 1:n_temp

30 Sigma_temp(i,j) = min(t_temp(i),t_temp(j));

31 end

32 end

33

34 %Make the separate Sigma components

35 Sigma_11 = Sigma;

36 Sigma_21 = Sigma_temp(n+1:n_temp, 1:n);

37 Sigma_12 = Sigma_temp(1:n, n+1:n_temp);

38 Sigma_22 = Sigma_temp(n+1:n_temp, n+1:n_temp);

39

2.7. MARKOVIAN GAUSSIAN PROCESSES 31

40 temp_mean = Sigma_21 * inv(Sigma_11) * X;

41 Sigma_new = Sigma_22 - Sigma_21 * inv(Sigma_11) * Sigma_12;

42 X_new = temp_mean + chol(Sigma_new)’ * randn(n_new,1);

43 X = [X; X_new];

44 t = t_temp;

45 n = n_temp;

46 Sigma = Sigma_temp;

47 [dummy index] = sort(t);

48 another_dummy = waitforbuttonpress;

49

50 plot([0; t(index)’],[0; X(index)]);

51 axis([0 1 -2.5 2.5]);

52 end

2.7 Markovian Gaussian Processes

If a Gaussian process, {Xt}t≥0, is Markovian, we can exploit this structure
to simulate the process much more efficiently. Because {Xt}t≥0 is Markovian,
we can use we only need to know the value of Xti in order to generate Xti+1

.
Define

σi,i+1 = Cov(Xti , Xti+1
)

and
µi = EXti .

By theorem 2.5.1, we know that (Xti , Xti+1
)⊺ has a multivariate normal dis-

tribution. In particular,
(

Xti

Xti+1

)
∼ N

((
µi

µi+1

)
,

(
σi,i σi,i+1

σi,i+1 σi+1,i+1

))
.

Using theorem 2.5.2, we have

Xti+1
|Xti = xi ∼ N

(
µi +

σi,i+1

σi, i
(xi − µi) , σi+1,i+1 −

σ2
i,i+1

σi,i

)
.

Algorithm 2.7.1 (Generating a Markovian Gaussian Process).

(i) Draw Z ∼ N(0, 1). Set Xt1 = µ1 +
√
σi,iZ.

(ii) For i = 1, . . . ,m− 1 draw Z ∼ N(0, 1) and set

Xti+1
= µi +

σi,i+1

σi, i
(xi − µi) +

√

σi+1,i+1 −
σ2
i,i+1

σi,i

Z.

32 CHAPTER 2. GAUSSIAN PROCESSES

Example 2.7.1 (Brownian Motion). Consider Brownian motion, which is a
Markov process. Now,

µi = EXti = 0

and
σi,i+1 = min(ti, ti+1) = ti.

So, our updating formula is

Xti+1
= Xti +

(√
ti+1 − ti

)
Z.

Listing 2.7: Matlab code

1 m = 10^4; X = zeros(m,1);

2 h = 1/m;

3 X(1) = sqrt(h)*randn;

4

5 for i = 1:m-1

6 X(i+1) = X(i) + sqrt(h) * randn;

7 end

8

9 plot(h:h:1,X);

Example 2.7.2 (Ornstein-Uhlenbeck Process). The Ornstein-Uhlenbeck pro-
cess has

µi = EXti = 0

with
σi,i+1 = exp{α|ti − ti+1|/2}

and σi,i = 1. So, our updating formula is

Xti+1
= exp{−α|ti − ti+1|/2}Xti +

(√
1− exp{α|ti − ti+1|}

)
Z.

Listing 2.8: Matlab code

1 alpha = 50; m = 10^4;

2

3 X = zeros(m,1); h = 1/m;

4 X(1) = randn;

5

6 for i = 1:m-1

7 X(i+1) = exp(-alpha * h / 2)*X(i)...

8 + sqrt(1 - exp(-alpha * h))*randn;

9 end

10

11 plot(h:h:1,X);

2.8. BROWNIAN MOTION 33

2.8 Brownian Motion

One of the most fundamental stochastic processes. It is a Gaussian pro-
cess, a Markov process, a Lévy process, a Martingale and a process that is
closely linked to the study of harmonic functions (do not worry if you do not
know all these terms). It can be used as a building block when considering
many more complicated processes. For this reason, we will consider it in
much more depth than any other Gaussian process.

Definition 2.8.1 (Brownian Motion). A stochastic process {Wt}t≥0 is called
Brownian motion (a Wiener process) if:

(i) It has independent increments.

(ii) It has stationary increments.

(iii) Wt ∼ N(0, t) for all t ≥ 0.

(iv) It has almost surely continuous sample paths. That is,

P({ω : X(t, ω) is continuous in t}) = 1.

This definition implies that the increments of Brownian motion are nor-
mally distributed. Specifically, Wt+s−Wt ∼ N(0, s). This implies the follow-
ing simualtion scheme.

Listing 2.9: Matlab code

1 m = 10^3; h = 1/m;

2 X = cumsum(sqrt(h)*randn(m,1));

3 plot(h:h:1,X);

The first three parts of the definition of Brownian motion are equivalent to
saying Brownian motion is a Gaussian process with Cov(Xt, Xs) = min(t, s)
and EXt = 0. However, the almost sure continuity of the paths of Brownian
motion does not follow from this.

Theorem 2.8.2. The following two statements are equivalent for a stochastic
process {Xt}t≥0.

(i) {Xt}t≥0 has stationary independent increments and Xt ∼ N(0, t).

(ii) {Xt}t≥0 is a Gaussian process with µ(t) = EXt = 0 and r(s, t) =
Cov(Xt, Xs) = min(t, s).

Proof.

34 CHAPTER 2. GAUSSIAN PROCESSES

Part 1. First, we show (i) implies (ii). In order to show this, we need to show
that (Xt1 , . . . , Xtn) is multivariate normal for all choices of 0 ≤ t1 ≤ · · · ≤ tn
and n ≥ 1. In order to Xt1 , . . . , Xtn to be multivariate normal, we need∑n

k=1 αkXtk to be univariate normal (for all choices of n etc.). Now,

n∑

k=1

αkXtk = α1Xt1 +
n∑

k=2

αkXtk

= α1Xt1 +
n∑

k=2

αk

(
k∑

j=1

Xtj −
k−1∑

j=1

Xtj

)

= α1Xt1 +
n∑

k=2

αk

(
k∑

j=1

Xtj −
k∑

j=2

Xtj−1

)

=
n∑

k=1

αkXt1 +
n∑

k=2

k∑

j=2

αk

(
Xtj −Xtj−1

)

=

(
n∑

k=1

αk

)
Xt1 +

n∑

j=2

(
n∑

k=j

αk

)
(
Xtj −Xtj−1

)

= β1Xt1 +
n∑

j=2

βj

(
Xtj −Xtj−1

)
.

Because Xt1 and Xt2−Xt1 , Xt3−Xt2 , . . . are independent random variables, it
follows that the final equation results in a univariate normal random variable
(sums of independent normals are normal). Now, we just need to check the
expectation and covariance. It is easy to see that EXt = 0. In order to
calculate the covariance, assume that s < t. We have that,

Cov(Xs, Xt) = EXsXt − EXsEXt = EXsXt,

and
EXsXt = EXs(Xt −Xs +Xs) = EX2

s + EXs(Xt −Xs)

and, as the independent increments property implies EXs(Xt −Xs) = 0,

Cov(Xs, Xt) = EX2
s = s.

Repeating this with t ≥ s, we get Cov(Xs, Xt) = min(s, t).

Part 2. We show that (ii) implies (i). It follows immediately from the
definition in (ii) that Xt ∼ N(0, t). It is also immediate that Xt+s − Xt

is univariate normal (as this is a linear combination of multivariate normal

2.8. BROWNIAN MOTION 35

random variables). We can thus show this increment is stationary by showing
that mean is constant and the variance only depends on s. Now, EXt+s−Xt =
0 and

Var(Xt+s −Xs) = Var(Xt) + Var(Xs)− 2Cov(Xs, Xt) = t+ s− 2t = s.

Thus, the increments are stationary. Because the increments are multivariate
normal, we can show the increments of the process are independent if we can
show the covariance between increments is 0. So, take u < v ≤ s < t. Then,

Cov(Xv −Xu, Xt −Xs)

= Cov(Xv, Xt)− Cov(Xv, Xs)− Cov(Xu, Xt) + Cov(Xu, Xs)

= min(v, t)−min(v, s)−min(u, t) + min(u, s)

= v − v − u+ u = 0.

So, non-overlapping increments are independent.

