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1 General theory of random functions

1.1 Random functions
Let (Ω,A,P) be a probability space and (S,B) a measurable space, Ω,S 6= ∅.
Definition 1.1.1
A random element X : Ω→ S is a A|B-measurable mapping (Notation: X ∈ A|B), i.e.,

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A, B ∈ B.

If X is a random element, then X(ω) is a realization of X for arbitrary ω ∈ Ω.
We say that the σ-algebra B of subsets of S is induced by the set system M (Elements of M

are also subsets of S), if
B =

⋂
F⊃M

F-σ-algebra on S

F

(Notation: B = σ(M)).
If S is a toplological or metric space, then M is often chosen as a class of all open sets of S

and σ(M) is called the Borel σ-algebra (Notation: B = B(S)).
Example 1.1.1 1. If S = R, B = B(R), then a random element X is called a random

variable.

2. If S = Rm, B = B(Rm), m > 1, then X is called a random vector. Random variables and
random vectors are considered in the lectures „Elementare Wahrscheinlichkeitsrechnung
und Statistik“ and „Stochastik I“.

3. Let S be the class of all closed sets of Rm. Let

M = {{A ∈ S : A ∩B 6= ∅} , B – arbitrary compactum of Rm} .

Then X : Ω→ S is a random closed set.
As an example we consider n independent uniformly distributed points Y1, . . . , Yn ∈ [0, 1]m

and R1, . . . , Rn > 0 (almost surely) independent random variables, which are defined on the
same probability space (Ω,A,P) as Y1, . . . , Yn. Consider X = ∪ni=1BRi(Yi), where Br(x) =
{y ∈ Rm : ||y− x|| ≤ r}. Obviously, this is a random closed set. An example of a realization is
provided in Figure 1.1.
Exercise 1.1.1
Let (Ω,A) and (S,B) be measurable spaces, B = σ(M), where M is a class of subsets of S.
Prove that X : Ω→ S is A|B-measurable if and only if X−1(C) ∈ A, C ∈M.
Definition 1.1.2
Let T be an arbitrary index set and (St,Bt)t∈T a family of measurable spaces. A family
X = {X(t), t ∈ T} of random elementsX(t) : Ω→ St defined on (Ω,A,P) and A|Bt-measurable
for all t ∈ T is called a random function (associated with (St,Bt)t∈T ).
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2 1 General theory of random functions

Abb. 1.1: Example of a random set X = ∪6
i=1BRi(Yi)

Therefore it holds X : Ω × T → (St, t ∈ T ), i.e. X(ω, t) ∈ St for all ω ∈ Ω, t ∈ T and
X(·, t) ∈ A|Bt, t ∈ T . We often omit ω in the notation and write X(t) instead of X(ω, t).
Sometimes (St,Bt) does not depend on t ∈ T as well: (St,Bt) = (S,B) for all t ∈ T .

Special cases of random functions:

1. T ⊆ Z : X is called a random sequence or stochastic process in discrete time.
Example: T = Z, N.

2. T ⊆ R : X is called a stochastic process in continuous time.
Example: T = R+, [a, b], −∞ < a < b <∞, R.

3. T ⊆ Rd, d ≥ 2 : X is called a random field.
Example: T = Zd, Rd+, Rd, [a, b]d.

4. T ⊆ B(Rd) : X is called set-indexed process.
If X(·) is almost surely non-negative and σ-additive on the σ-algebra T , then X is called
a random measure.

The tradition of denoting the index set with T comes from the interpretation of t ∈ T for
the cases 1 and 2 as time parameter.
For every ω ∈ Ω, {X(ω, t), t ∈ T} is called a trajectory or path of the random function X.
We would like to prove that the random function X = {X(t), t ∈ T} is a random element

within the corresponding function space, which is equipped with a σ-algebra that now is spec-
ified.
Let ST =

∏
t∈T St be the cartesian product of St, t ∈ T , i.e., x ∈ ST if x(t) ∈ St, t ∈ T . The

elementary cylindric set in ST is defined as

CT (B, t) = {x ∈ ST : x(t) ∈ B} ,

where t ∈ T is a selected point from T and B ∈ Bt a subset of St. CT (B, t) therefore contains
all trajectories x, which go through the „gate“ B, see Figure 1.2.
Definition 1.1.3
The cylindric σ-algebra BT is introduced as a σ-algebra induced in ST by the family of all
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Abb. 1.2: Trajectories which pass a „gate“ Bt.

elementary cylinders. It is denoted by BT = ⊗t∈TBt. If Bt = B for all t ∈ T , then BT is written
instead of BT .
Lemma 1.1.1
The family X = {X(t), t ∈ T} is a random function on (Ω,A,P) with phase spaces (St,Bt)t∈T
if and only if for every ω ∈ Ω the mapping ω 7→ X(ω, ·) is A|BT -measurable.
Exercise 1.1.2
Proof Lemma 1.1.1.
Definition 1.1.4
Let X be a random element X : Ω → S, i.e. X be A|B-measurable. The distribution of X is
the probability measure PX on (S,B) such that PX(B) = P(X−1(B)), B ∈ B.
Lemma 1.1.2
An arbitrary probability measure µ on (S,B) can be considered as the distribution of a random
element X.

Proof Take Ω = S, A = B, P = µ and X(ω) = ω, ω ∈ Ω.

When does a random function with given properties exist? A random function, which consists
of independent random elements always exists. This assertion is known as
Theorem 1.1.1 (Lomnicki, Ulam):
Let (St,Bt, µt)t∈T be a sequence of probability spaces. It exists a random sequence X =
{X(t), t ∈ T} on a probability space (Ω,A,P) (associated with (St,Bt)t∈T ) such that

1. X(t), t ∈ T are independent random elements.

2. PX(t) = µt on (St,Bt), t ∈ T .

A lot of important classes of random processes is built on the basis of independent random
elements; cf. examples in Section 1.2.
Definition 1.1.5
Let X = {X(t), t ∈ T} be a random function on (Ω,A,P) with phase space (St,Bt)t∈T . The
finite-dimensional distributions of X are defined as the distribution law Pt1,...,tn of (X(t1), . . . , X(tn))T
on (St1,...,tn ,Bt1,...,tn), for arbitrary n ∈ N, t1, . . . , tn ∈ T , where St1,...,tn = St1 × . . . × Stn and
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Bt1,...,tn = Bt1⊗ . . .⊗Btn is the σ-algebra in St1,...,tn , which is induced by all sets Bt1× . . .×Btn ,
Bti ∈ Bti , i = 1, . . . , n, i.e., Pt1,...,tn(C) = P((X(t1), . . . , X(tn))T ∈ C), C ∈ Bt1,...,tn . In
particular, for C = B1 × . . .×Bn, Bk ∈ Btk one has

Pt1,...,tn(B1 × . . .×Bn) = P(X(t1) ∈ B1, . . . , X(tn) ∈ Bn).

Exercise 1.1.3
Prove that Xt1,...,tn = (X(t1), . . . , X(tn))T is a A|Bt1,...,tn-measurable random element.
Definition 1.1.6
Let St = R for all t ∈ T . The random function X = {X(t), t ∈ T} is called symmetric, if all
of its finite-dimensional distributions are symmetric probability measures, i.e., Pt1,...,tn(A) =
Pt1,...,tn(−A) for A ∈ Bt1,...,tn and all n ∈ N, t1, . . . , tn ∈ T , whereby

Pt1,...,tn(−A) = P((−X(t1), . . . ,−X(tn))T ∈ A).

Exercise 1.1.4
Prove that the finite-dimensional distributions of a random function X have the following
properties: for arbitrary n ∈ N, n ≥ 2, {t1, . . . , tn} ⊂ T , Bk ∈ Stk , k = 1, . . . , n and an
arbitrary permutation (i1, . . . , in) of (1, . . . , n) it holds:

1. Symmetry: Pt1,...,tn(B1 × . . .×Bn) = Pti1 ,...,tin (Bi1 × . . .×Bin)

2. Consistency: Pt1,...,tn(B1 × . . .×Bn−1 × Stn) = Pt1,...,tn−1(B1 × . . .×Bn−1)

The following theorem evidences that these properties are sufficient to prove the existence of
a random function X with given finite-dimensional distributions.
Theorem 1.1.2 (Kolmogorov):
Let {Pt1,...,tn , n ∈ N, {t1, . . . , tn} ⊂ T} be a family of probability measures on

(Rm × . . .× Rm,B(Rm)⊗ . . .⊗ B(Rm)),

which fulfill conditions 1 and 2 of Exercise 1.1.4. Then there exists a random function X =
{X(t), t ∈ T} defined on a probability space (Ω,A,P) with finite-dimensional distributions
Pt1,...,tn .

Proof See [13], Section II.9.

This theorem also holds on more general (however not arbitrary!) spaces than Rm, on so-
called Borel spaces, which are in a sense isomorphic to ([0, 1] ,B [0, 1]) or a subspace of that.
Definition 1.1.7
Let X = {X(t), t ∈ T} be a random function with values in (S,B), i.e., X(t) ∈ S almost
surely for arbitrary t ∈ T . Let (T,C) be itself a measurable space. X is called measurable if
the mapping X : (ω, t) 7→ X(ω, t) ∈ S, (ω, t) ∈ Ω× T , is A⊗ C|B-measurable.
Thus, Definition 1.1.7 not only provides the measurability of X with respect to ω ∈ Ω:

X(·, t) ∈ A|B for all t ∈ T , but X(·, ·) ∈ A⊗ C|B as a function of (ω, t). The measurability of
X is of significance if X(ω, t) is considered at random moments τ : Ω → T , i.e., X(ω, τ(ω)).
This is in particular the case in the theory of martingales if τ is a so-called stopping time for
X. The distribution of X(ω, τ(ω)) might differ considerably from the distribution of X(ω, t),
t ∈ T .
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1.2 Elementary examples
The theorem of Kolmogorov can be used directly for the explicit construction of random pro-
cesses only in few cases, since for a lot of random functions their finite-dimensional distributions
are not given explicitly. In these cases a new random function X = {X(t), t ∈ T} is built as
X(t) = g(t, Y1, Y2, . . .), t ∈ T , where g is a measurable function and {Yn} a sequence of random
elements (also random functions), whose existence has already been ensured. For that we give
several examples.
Let X = {X(t), t ∈ T} be a real-valued random function on a probability space (Ω,A,P).

1. White noise:
Definition 1.2.1
The random function X = {X(t), t ∈ T} is called white noise, if all X(t), t ∈ T , are
independent and identically distributed (i.i.d.) random variables.

White noise exists according to the Theorem 1.1.1. It is used to model the noise in
(electromagnetic or acoustical) signals. If X(t) ∼ Ber(p), p ∈ (0, 1), t ∈ T , one means
Salt-and-pepper noise, the binary noise, which occurs at the transfer of binary data in
computer-networks. If X(t) ∼ N (0, σ2), σ2 > 0, t ∈ T , then X is called Gaussian white
noise. It occures e.g. in acoustical signals.

2. Gaussian random function:
Definition 1.2.2
The random function X = {X(t), t ∈ T} is called Gaussian, if all of its finite-dimensional
distributions are Gaussian, i.e. for all n ∈ N, t1, . . . , tn ⊂ T it holds

Xt1,...,tn = ((X(t1), . . . , X(tn))> ∼ N (µt1,...,tn ,
∑

t1,...,tn

),

where the mean is given by µt1,...,tn = (EX(t1), . . . ,EX(tn))> and the covariance matrix
is given by

∑
t1,...,tn = ((cov(X(ti), X(tj))ni,j=1.

Exercise 1.2.1
Proof that the distribution of an Gaussian random function X is uniquely determined by
its mean value function µ(t)=EX(t), t ∈ T , and covariance function C(s, t)=E[X(s)X(t)],
s, t ∈ T , respectively.

An example for a Gaussian process is the so-called Wiener process (or Brownian motion)
X = {X(t), t ≥ 0}, which has the expected value zero (µ(t) ≡ 0, t ≥ 0) and the covariance
function C(s, t) = min {s, t}, s, t ≥ 0. Usually it is addionally required that the paths of
X are continuous functions.
We shall investigate the regularity properties of the paths of random functions in more
detail in Section 1.3. Now we can say that such a process exists with probability one
(with almost surely continuous trajectories).
Exercise 1.2.2
Prove that the Gaussian white noise is a Gaussian random function.

3. Lognormal- and χ2-functions:
The random function X = {X(t), t ∈ T} is called lognormal, if X(t) = eY (t), where Y =
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{Y (t), t ∈ T} is a Gaussian random function. X is called χ2-function, if X(t) = ‖Y (t)‖2,
where Y = {Y (t), t ∈ T} is a Gaussian random function with values in Rn, for which
Y (t) ∼ N (0, I), t ∈ T ; here I is the (n × n)-unit matrix. Then it holds that X(t) ∼ χ2

n,
t ∈ T .

4. Cosine wave:
X = {X(t), t ∈ R} is defined by X(t) =

√
2 cos(2πY + tZ), where Y ∼ U([0, 1]) and Z is

a random variable, which is independent of Y .
Exercise 1.2.3
Let X1, X2, . . . be i.i.d. cosine waves. Determine the weak limit of the finite-dimensional
distributions of the random function

{
1√
n

∑n
k=1Xk(t), t ∈ R

}
for n→∞.

5. Poisson process:
Let {Yn}n∈N be a sequence of i.i.d. random variables Yn ∼ Exp(λ), λ > 0. The stochastic
process X = {X(t), t ≥ 0} defined as X(t) = max {n ∈ N :

∑n
k=1 Yk ≤ t} is called Poisson

process with intensity λ > 0. X(t) counts the number of certain events until the time
t > 0, where the typical interval between two of these events is Exp(λ)-distributed. These
events can be claim arrivals of an insurance portfolio the records of elementary particles
in the Geiger counter, etc. Then X(t) represents the number of claims or particles within
the time interval [0, t].

1.3 Regularity properties of trajectories

The theorem of Kolmogorov provides the existence of the distribution of a random function
with given finite-dimensional distributions. However, it does not provide a statement about
the properties of the paths of X. This is understandable since all random objects are defined
in the almost surely sense (a.s.) in probability theory, with the exception of a set A ⊂ Ω with
P(A) = 0.

Example 1.3.1
Let (Ω,A,P) = ([0, 1] ,B([0, 1]), ν1), where ν1 is the Lebesgue measure on [0, 1]. We define
X = {X(t), t ∈ [0, 1]} by X(t) ≡ 0, t ∈ [0, 1] and Y = {Y (t), t ∈ [0, 1]} by

Y (t) =
{

1, t = U,
0, sonst,

where U(ω) = ω, ω ∈ [0, 1], is a U([0, 1])-distributed random variable defined on (Ω,A,P). Since
P(Y (t) = 0) = 1, t ∈ T , because of P(U = t) = 0, t ∈ T , it is clear that X d= Y . Nevertheless,
X and Y have different path properties since X has continuous and Y has discontinuous
trajectories, and P(X(t) = 0, ∀t ∈ T ) = 1, where P(Y (t) = 0, ∀t ∈ T ) = 0.

It may well be that the „set of exceptions“ A (see above) is very different for X(t) for every
t ∈ T . Therefore, we require that all X(t), t ∈ T , are defined simultaneously on a subset Ω0 ⊆ Ω
with P(Ω0) = 1. The so defined random function X̃ : Ω0 × T → R is called modification of
X : Ω×T → R. X and X̃ differ on a set Ω/Ω0 with probability zero. Therefore we indicate later
when stating that „random function X possesses a property C“ that it exists a modification
of X with this property C. Let us hold it in the following definition:
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Definition 1.3.1
The random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} defined on the same prob-
ability space (Ω,A,P) associated with (St,Bt)t∈T have equivalent trajectories (or are called
stochastically indistinguishable) if

A = {ω ∈ Ω : X(ω, t) 6= Y (ω, t) for a t ∈ T} ∈ A

and P(A) = 0.
This term implies that X and Y have paths, which coincide with probability one.

Definition 1.3.2
The random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} defined on the same proba-
bility space (Ω,A,P) are called (stochastically) equivalent, if

Bt = {ω ∈ Ω : X(ω, t) 6= Y (ω, t)} ∈ A, t ∈ T,

and P(Bt) = 0, t ∈ T .
We also can say that X and Y are versions or modifications of one and the same random

function. If the space (Ω,A,P) is complete (i.e. the implication of A ∈ A : P(A) = 0 is for all
B ⊂ A: B ∈ A (and then P(B) = 0)), then the indistinguishable processes are stochastically
equivalent, but vice versa is not always true (it is true for so-called separable processes. This
is the case if T is countable).
Exercise 1.3.1
Prove that the random functions X and Y in Example 1.3.1 are stochastically equivalent.
Definition 1.3.3
The random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} (not necessarily defined on
the same probability space) are called equivalent in distribution, if PX = PY on (St,Bt)t∈T .
Notation: X d= Y .
According to Theorem 1.1.2 it is sufficient for the equivalence in distribution of X and Y that

they possess the same finite-dimensional distributions. It is clear that stochastic equivalence
implies equivalence in distribution, but not the other way around.
Now, let T and S be Banach spaces with norms | · |T and | · |S , respectively. The random

function X = {X(t), t ∈ T} is now defined on (Ω,A,P) with values in (S,B).
Definition 1.3.4
The random function X = {X(t), t ∈ T} is called

a) stochastically continuous on T , if X(s) P−−→
s→t

X(t), for arbitrary t ∈ T , i.e.

P(|X(s)−X(t)|S > ε) −−→
s→t

0, for all ε > 0.

b) Lp-continuous on T , p ≥ 1, if X(s) Lp−−→
s→t

X(t), t ∈ T , i.e. E|X(s) − X(t)|p −−→
s→t

0. For
p = 2 the specific notation „continuity in the square mean “is used.

c) a.s. continuous on T , if X(s) f.s.−−→
s→t

X(t), t ∈ T , i.e., P(X(s) −−→
s→t

X(t)) = 1, t ∈ T .

d) continuous, if all trajectories of X are continuous functions.



8 1 General theory of random functions

In applications one is interested in the cases c) and d), although the weakest form of continuity
is the stochastic continuity.

Lp-continuity =⇒ stochastic continuity ⇐= a.s. continuity ⇐= continuity of all paths

Why are cases c) and d) important? Let us consider an example.
Example 1.3.2
Let T = [0, 1] and (Ω,A,P) be the canonical probability space with Ω = R[0,1], i.e. Ω =∏
t∈[0,1] R. Let X = {X(t), t ∈ [0, 1]} be a stochastic process on (Ω,A,P). Not all events are

elements of A, like e.g. A = {ω ∈ Ω : X(ω, t) = 0 for all t ∈ [0, 1]} = ∩t∈[0,1] {X(ω, t) = 0},
since this is an intersection of measurable events from A in uncountable number. If how-
ever X is continuous, then all of its paths are continuous functions and one can write A =
∩t∈D {X(ω, t) = 0}, where D is a dense countable subset of [0, 1], e.g., D = Q ∩ [0, 1]. Then it
holds that A ∈ A.
However, in many applications (like e.g. in financial mathematics) it is not realistic to

consider stochastic processes with continuous paths as models for real phenomena. Therefore,
a bigger class of possible trajectories of X is allowed: the so-called càdlàg-class (càdlàg =
continue à droite, limitée à gauche (fr.)).
Definition 1.3.5
A stochastic process X = {X(t), t ∈ R} is called càdlàg, if all of its trajectories are right-side
continuous functions, which have left-side limits.
Now, we would like to consider the properties of the notion of continuity (introduced above)

in more detail. One can note e.g. that the stochastic continuity is a property of the two-
dimensional distribution Ps,t of X. This is shown by the following lemma.
Lemma 1.3.1
LetX = {X(t), t ∈ T} be a random function associated with (S,B), where S and T are Banach
spaces. The following statements are equivalent:

a) X(s) P−−−→
s→t0

Y ,

b) Ps,t
d−−−−→

s,t→t0
P(Y,Y ),

where t0 ∈ T and Y is a S-valued A|B-random element. For the stochastic continuity of X,
one should choose t0 ∈ T arbitrarily and Y = X(t0).

Proof a)⇒ b)
X(s) P−−−→

s→t0
Y means (X(s), X(t))> P−−−−→

s,t→t0
(Y, Y )>.

P(|(X(s), X(t))− (Y, Y )|2︸ ︷︷ ︸
(|X(s)−Y |2S+|X(t)−Y |2S)1/2

> ε) 6 P(|X(s)− Y |S > ε/2) + P(|X(t)− Y |S > ε/2) −−−−→
s,t→t0

0

This results in Ps,t
d→ P(Y,Y ), since

P→-convergence is stronger than d→-convergence.
b)⇒ a)

For arbitrary ε > 0 we consider a continuous function gε : R→ [0, 1] with gε(0) = 0, gε(x) = 1,
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x /∈ Bε(0). It holds for all s, t ∈ T that

Egε(|X(s)−X(t)|S) = P(|X(s)−X(t)|S > ε) + E(gε(|X(s)−X(t)|S)1(|X(s)−X(t)|S ≤ ε)),

hence P(|X(s) − X(t)|S > ε) ≤ Egε(|X(s) − X(t)|S) =
∫
S
∫
S gε(|x − y|S)Ps,t(d(x, y)) −−−→

s→t0
t→t0∫

S
∫
S gε(|x − y|S)P(Y,Y )(d(x, y)) = 0, since P(Y,Y ) is concentrated on

{
(x, y) ∈ S2 : x = y

}
and

gε(0) = 0. Thus {X(s)}s→t0 is a fundamental sequence (in probability), therefore X(s) P−−−→
s→t0

Y.

It may be that X is stochastically continuous, although all of the paths of X have jumps,
i.e. X cannot possess any a.s. continuous modification. The descriptive explanation for that
is that such X may have a jump at concrete t ∈ T with probability zero. Therefore jumps of
the paths of X always occur at different locations.
Exercise 1.3.2
Prove that the Poisson process is stochastically continuous, although it does not possess any
a.s. continuous modification.
Exercise 1.3.3
Let T be compact. Prove that if X is stochastically continuous on T , then it also is uniformly
stochastically continuous, i.e., for all ε, η > 0 ∃δ > 0, such that for all s, t ∈ T with |s− t|T < δ
it holds that P(|X(s)−X(t)|S > ε) < η.
Now let S = R, EX2(t) < ∞, t ∈ T , EX(t) = 0, t ∈ T . Let C(s, t) = E [X(s)X(t)] be the

covariance function of X.
Lemma 1.3.2
For all t0 ∈ T and a random variable Y with EY 2 <∞ the following assertions are equivalent:

a) X(s) L2
−−−→
s→t0

Y

b) C(s, t) −−−−→
s,t→t0

EY 2

Proof a)⇒ b)
The assertion results from the Cauchy-Schwarz inequality:

|C(s, t)− EY 2| = |E(X(s)X(t))− EY 2| = |E [(X(s)− Y + Y )(X(t)− Y + Y )]− EY 2|
≤ E|(X(s)− Y )(X(t)− Y )|+ E|(X(s)− Y )Y |+ E|(X(t)− Y )Y |

≤
√√√√E(X(s)− Y )2 E(X(t)− Y )2︸ ︷︷ ︸

||X(s)−Y ||2
L2 ·||X(t)−Y ||2

L2

+
√√√√EY 2 E(X(s)− Y )2︸ ︷︷ ︸

||X(s)−Y ||2
L2

+
√√√√EY 2 E(X(t)− Y )2︸ ︷︷ ︸

||X(t)−Y ||2
L2

−−−−→
s,t→t0

0

with assumption a).
b)⇒ a)

E(X(s)−X(t))2 = E(X(s))2 − 2E[X(s)X(t)] + E(X(t))2

= C(s, s) + C(t, t)− 2C(s, t) −−−−→
s,t→t0

2EY 2 − 2EY 2 = 0.
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Thus, {X(s), s→ t0} is a fundamental sequence in the L2-sense, and we get X(s) L2
−−−→
s→t0

Y .

A random function X, which is continuous in the mean-square sense, may still have uncon-
tinuous trajectories. In most of the cases which are practically relevant, X however has an a.s.
continuous modification. Later on this will become more precise by stating a corresponding
theorem.
Corollary 1.3.1
The random function X, which satisfies the conditions of Lemma 1.3.2, is continuous on T
in the mean-square sense if and only if its covariance function C : T 2 → R is continuous on
the diagonal diag T 2 =

{
(s, t) ∈ T 2 : s = t

}
, i.e., lims,t→t0 C(s, t) = C(t0, t0) = VarX(t0) for all

t0 ∈ T.

Proof Choose Y = X(t0) in Lemma 1.3.2.

Remark 1.3.1
If X is not centered, then the continuity of µ(·) together with the continuity of C on diag T 2 is
required to ensure the L2-continuity of X on T .
Exercise 1.3.4
Give an example of a stochastic process with a.s. discontinuous trajectories, which is L2-
continuous.
Now we consider the property of (a.s.) continuity in more detail. As mentioned before,

we can merely talk about continuous modification or version of a process. The possibility to
possess such a version also depends on the properties of the two-dimensional distributions of
the process. This is proven by the following theorem (originally proven by A. Kolmogorov).
Theorem 1.3.1
Let X = {X(t), t ∈ [a, b]}, −∞ < a < b ≤ +∞ be a real-valued stochastic process. X has a
continuous version, if there exist constants α, c, δ > 0 such that

E|X(t+ h)−X(t)|α < c|h|1+δ, t ∈ (a, b), (1.3.1)

for sufficiently small |h|.

Proof See, e.g. [7], Theorem 2.23.

Now we turn to processes with càdlàg-trajectories. Let (Ω,A,P) be a complete probability
space.
Theorem 1.3.2
Let X = {X(t), t ≥ 0} be a real-valued stochastic process and D a countable dense subset of
[0,∞). If

a) X is stochastically right-handside continuous, i.e., X(t+ h) P−−−−→
h→+0

X(t), t ∈ [0,+∞),

b) the trajectories of X at every t ∈ D have finite right- and left-handside limits, i.e.,
| limh→±0X(t+ h)| <∞, t ∈ D a.s.,

then X has a version with a.s. càdlàg-paths.
Without proof.
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Lemma 1.3.3
Let X = {X(t), t ≥ 0} and {Y = Y (t), t ≥ 0} be two versions of a random function, both
defined on the probability space (Ω,A,P), with property that X and Y have a.s. right-handside
continuous trajectories. Then X and Y are indistinguishable.

Proof Let ΩX ,ΩY be „sets of exception“, for which the trajectories of X and Y , respec-
tively are not right-sided continuous. It holds that P(ΩX) = P(ΩY ) = 0. Consider At =
{ω ∈ Ω : X(ω, t) 6= Y (ω, t)}, t ∈ [0,+∞) and A = ∪t∈Q+At, where Q+ = Q∩ [0,+∞). Since X
and Y are stochastically equivalent, it holds that P(A) = 0 and therefore

P (Ã) ≤ P(A) + P(ΩX) + P(ΩY ) = 0,

where Ã = A∪ΩX ∪ΩY . Therefore X(ω, t) = Y (ω, t) holds for t ∈ Q+ and ω ∈ Ω\ Ã. Now, we
prove this for all t ≥ 0. For arbitrary t ≥ 0 a sequence {tn} ⊂ Q+ exists, such that tn ↓ t. Since
X(ω, tn) = Y (ω, tn) for all n ∈ N and ω ∈ Ω \ Ã, it holds that X(ω, t) = limn→∞X(ω, tn) =
limn→∞ Y (ω, tn) = Y (ω, t) for t ≥ 0 and ω ∈ Ω \ Ã. Therefore X and Y are indistinguishable.

Corollary 1.3.2
If càdlàg-processes X = {X(t), t ≥ 0} and Y = {Y (t), t ≥ 0} are versions of the same random
function then they are indistinguishable.

1.4 Differentiability of trajectories
Let T be a linear normed space.
Definition 1.4.1
A real-valued random function X = {X(t), t ∈ T} is differentiable on T in direction h ∈ T
stochastically, in the Lp-sense, p ≥ 1, or a.s., if

lim
l→0

X(t+ hl)−X(t)
l

= X
′
h(t), t ∈ T

exists in the corresponding sense, namely stochastically, in the Lp-space or a.s..
The Lemmas 1.3.1 - 1.3.2 show that the stochastic differentiability is a property that is deter-

mined by three-dimensional distributions ofX (because the common distribution of X(t+hl)−X(t)
l

and X(t+hl′ )−X(t)
l′

should converge weakly), whereas the differentiability in the mean-square
sense is determined by the smoothness of the covariance function C(s, t).
Exercise 1.4.1
Show that

1. the Wiener process is not stochastically differentiable on [0,∞).

2. the Poisson process is stochastically differentiable on [0,∞), however not in the Lp-mean,
p > 1.

Lemma 1.4.1
A centered random function X = {X(t), t ∈ T} (i.e., EX(t) ≡ 0, t ∈ T ) with E[X2(t)] <∞, t ∈
T is L2-differentiable in t ∈ T in direction h ∈ T if its covariance function C is differentiable
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twice in (t, t) in direction h, i.e., if ∃ C ′′hh(t, t) = ∂2C(s,t)
∂sh∂th

∣∣∣
s=t

. X
′
h(t) is L2-continuous in t ∈ T

if C ′′hh(s, t) = ∂2C(s,t)
∂sh∂th

is continuous in s = t. Moreover, C ′′hh(s, t) is the covariance function of
X
′
h = {X ′h(t), t ∈ T}.

Proof According to Lemma 1.3.2 it is enough to show that

I = lim
l,l′→0

E
(
X(t+ lh)−X(t)

l
· X(s+ l

′
h)−X(s)
l′

)

exists for s = t. Indeed we get

I = 1
ll′
(
C(t+ lh, s+ l

′
h)− C(t+ lh, s)− C(t, s+ l

′
h) + C(t, s)

)
= 1

l

(
C(t+ lh, s+ l

′
h)− C(t+ lh, s)
l′

− C(t, s+ l
′
h)− C(t, s)
l′

)
−−−−→
l,l′→0

C
′′
hh (s, t) .

All other statements of the lemma result from this relation.

Remark 1.4.1
The properties of the L2-differentiability and a.s. differentiability of random functions are
disjoint in the following sense: there are stochastic processes that have L2-differentiable paths,
although they are a.s. discontinuous, and vice versa, processes with a.s. differentiable paths
are not always L2-differentiable, since e.g. the first derivative of their covariance function is
not continuous.
Exercise 1.4.2
Give appropriate examples!

1.5 Moments und covariance
Let X = {X(t), t ∈ T} be a random function that is real-valued, and let T be an arbitrary
index space.
Definition 1.5.1
The mixed moment µ(j1,...,jn)(t1, . . . , tn) of X of order (j1, . . . , jn) ∈ Nn, t1, . . . , tn ∈ T is given
by µ(j1,...,jn)(t1, . . . , tn) = E

[
Xj1(t1) · . . . ·Xjn(tn)

]
, where it is required that the expected value

exists and is finite. Then it is sufficient to assume that E|X(t)|j < ∞ for all t ∈ T and
j = j1 + . . .+ jn.
Important special cases:

1. µ (t) = µ(1)(t) = EX(t), t ∈ T – mean value function of X.

2. µ(1,1) (s, t) = E [X(s)X(t)] = C(s, t) – (non-centered) covariance function of X. Whereas
the centered covariance function is: K(s, t) = cov((X(s), X(t)) = µ(1,1)(s, t) − µ(s)µ(t),
s, t ∈ T .

Exercise 1.5.1
Show that the centered covariance function of a real-valued random function X

1. is symmetric, i.e., K(s, t) = K(t, s), s, t ∈ T .
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2. is positive semidefinite, i.e., for n ∈ N, t1, . . . , tn ∈ T , z1, . . . , zn ∈ R it holds that
n∑

i,j=1
K(ti, tj)zizj ≥ 0.

3. satisfies K(t, t) = VarX(t), t ∈ T .

Property 2) also holds for the non-centered covariance function C(s, t).
The mean value function µ(t) shows a (non random) trend. If µ(t) is known, the random

function X can be centered by considering a random function Y = {Y (t), t ∈ T} with Y (t) =
X(t)− µ(t), t ∈ T .
The covariance function K(s, t) (C(s, t), respectively) contains information about the depen-

dence structure of X. Sometimes the correlation function R(s, t) = K(s,t)√
K(s,s)K(t,t)

for all s, t ∈ T :
K(s, s) = VarX(s) > 0, K(t, t) = VarX(t) > 0 is used instead of K and C, respectively. Be-
cause of the Cauchy-Schwarz inequality it holds that |R(s, t)| ≤ 1, s, t ∈ T . The set of all mixed
moments in general does not (uniquely) determine the distribution of a random function.
Exercise 1.5.2
Give an example of different random functions X = {X(t), t ∈ T} und Y = {Y (t), t ∈ T}, for
which it holds that EX(t) = EY (t), t ∈ T and E(X(s)X(t)) = E(Y (s)Y (t)), s, t ∈ T .
Exercise 1.5.3
Let µ : T → R be a measurable function and K : T × T → R be a positive semidefinite
symmetric function. Prove that a random function X = {X(t), t ∈ T} exists with EX(t) =
µ(t), cov(X(s), X(t)) = K(s, t), s, t ∈ T .
Let now X = {X(t), t ∈ T} be a real-valued random function with E |X(t)|k < ∞, t ∈ T ,

for a k ∈ N.
Definition 1.5.2
The mean increment of order k of X is given by γk(s, t) = E(X(s)−X(t))k, s, t ∈ T .
Special attention is paid to the function γ(s, t) = 1

2γ2(s, t) = 1
2E(X(s) − X(t))2, s, t ∈ T ,

which is called variogram of X. In geostatistics the variogram is often used instead of the
covariance function. A lot of times we discard the condition EX2(t) < ∞, t ∈ T , instead we
assume that γ(s, t) <∞ for all s, t ∈ T .
Exercise 1.5.4
Prove that there exist random functions without finite second moments with γ(s, t) < ∞,
s, t ∈ T .
Exercise 1.5.5
Show that for a random functionX = {X(t), t ∈ T} with mean value function µ and covariance
function K it holds that:

γ(s, t) = K(s, s) +K(t, t)
2 −K(s, t) + 1

2(µ(s)− µ(t))2, s, t ∈ T.

If the random function X is complex-valued, i.e., X : Ω× T → C, with E |X(t)|2 <∞, t ∈ T ,
then the covariance function of X is introduced as K(s, t) = E(X(s)− EX(s))(X(t)− EX(t)),
s, t ∈ T , where z is the complex conjugate of z ∈ C. Then it holds that K(s, t) = K(t, s),
s, t ∈ T , and K is positive semidefinite, i.e, for all n ∈ N, t1, . . . , tn ∈ T , z1, . . . , zn ∈ C it holds
that

∑n
i,j=1K(ti, tj)zizj ≥ 0.
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1.6 Stationarity and Independence

T be a subset of the linear vector space with operations +, − over space R.

Definition 1.6.1
The random function X = {X(t), t ∈ T} is called stationary (strict sense stationary) if for all
n ∈ N, h, t1, . . . , tn ∈ T with t1 + h, . . . , tn + h ∈ T it holds that:

P(X(t1),...,X(tn)) = P(X(t1+h),...,X(tn+h)),

i.e., all finite-dimensional distributions of X are invariant with repsect to translations in T .

Definition 1.6.2
A (complex-valued) random function X = {X(t), t ∈ T} is called second-order stationary (or
wide sense stationary) if E|X(t)|2 < ∞, t ∈ T , and µ(t) ≡ EX(t) ≡ µ, t ∈ T , K(s, t) =
cov(X(s), X(t)) = K(s+ h, t+ h) for all h, s, t ∈ T : s+ h, t+ h ∈ T .

If X is second-order stationary, it is convenient to introduce a function K(t) := K(0, t), t ∈ T
whereby 0 ∈ T .
Strict sense stationarity and wide sense stationarity do not result from each other. However

it is clear that if a complex-valued random function is strict sense stationary and possesses
finite second-order moments, then the function is also second-order stationary.

Definition 1.6.3
A real-valued random function X = {X(t), t ∈ T} is intrinsic second-order stationary if
γk(s, t), s, t ∈ T exist for k ≤ 2, and for all s, t, h ∈ T , s+h, t+h ∈ T it holds that γ1(s, t) = 0,
γ2(s, t) = γ2(s+ h, t+ h).

For real-valued random functions, intrinsic second-order stationarity is more general than
second-order stationarity since the existence of E|X(t)|2, t ∈ T is not required.
The analogue of the stationarity of increments of X also exists in strict sense.

Definition 1.6.4
Let X = {X(t), t ∈ T} be a real-valued stochastic process, T ⊂ R. It is said that X

1. possesses stationary increments if for all n ∈ N, h, t0, t1, t2, . . . , tn ∈ T , with
t0 < t1 < t2 < . . . < tn, ti + h ∈ T , i = 0, . . . , n the distribution of
(X(t1 + h)−X(t0 + h), . . . , X(tn + h)−X(tn−1 + h))>
does not depend on h.

2. possesses independent increments if for all n ∈ N, t0, t1, . . . , tn ∈ T with t0 < t1 < . . . < tn
the random variables X(t0), X(t1)−X(t0), . . . , X(tn)−X(tn−1) are pairwise independent.

Let (S1,B1) and (S2,B2) be measurable spaces. In general it is said that two random elements
X : Ω → S1 and X : Ω → S2 are independent on the same probability space (Ω,A,P) if
P(X ∈ A1, Y ∈ A2) = P(X ∈ A1)P(Y ∈ A2) for all A1 ∈ B1, A2 ∈ B2.
This definition can be applied to the independence of random functions X and Y with phase

space (ST ,BT ), since they can be considered as random elements with S1 = S2 = ST , B1 = B2 =
BT (cf. Lemma 1.1.1). The same holds for the independence of a random element (or a random
function) X and of a sub-σ-algebra G ∈ A: this is the case if P({X ∈ A}∩G) = P(X ∈ A)P(G),
for all A ∈ B1, G ∈ G (or A ∈ BT , G ∈ G).
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1.7 Processes with independent increments

In this section we concentrate on the properties and existence of processes with independent
increments.
Let {ϕs,t, s, t ≥ 0} be a family of characteristic functions of probability measures Qs,t,

s, t ≥ 0 on B(R), i.e., for z ∈ R, s, t ≥ 0 it holds that ϕs,t(z) =
∫
R e

izxQs,t(dx).

Theorem 1.7.1
There exists a stochastic process X = {X(t), t ≥ 0} with independent increments with the
property that for all s, t ≥ 0 the characteristic function of X(t) −X(s) is equal to ϕs,t if and
only if

ϕs,t = ϕs,uϕu,t (1.7.1)

for all 0 ≤ s < u < t <∞. Thereby the distribution of X(0) can be chosen arbitrarily.

Proof The necessity of the condition (1.7.1) is clear since for all s ∈ (0,∞) : s < u < t it holds
X(t)−X(s) = X(t)−X(u)︸ ︷︷ ︸

Y1

+X(u)−X(s)︸ ︷︷ ︸
Y2

, and X(t)−X(u) and X(u)−X(s) are independent.

Then it holds ϕs,t = ϕY1+Y2 = ϕY1ϕY2 = ϕs,uϕu,t.
Now we prove the sufficiency.
If the existence of a process X with independent increments and property ϕX(t)−X(s) = ϕs,t
on a probability space (Ω,A,P) had already been proven, one could define the characteristic
functions of all of its finite-dimensional distributions with the help of {ϕs,t} as follows.
Let n ∈ N, 0 = t0 < t1 < . . . < tn <∞ and Y = (X(t0), X(t1)−X(t0), . . . , X(tn)−X(tn−1))>.
The independence of increments results in

ϕY (z0, z1, . . . , zn︸ ︷︷ ︸
z

) = Eei〈z,Y 〉 = ϕX(t0)(z0)ϕt0,t1(z1) . . . ϕtn−1,tn(zn), z ∈ Rn+1,

where the distribution of X(t0) is an arbitrary probability measure Q0 on B(R). For Xt0,...,tn =
(X(t0), X(t1), . . . , X(tn))> however it holds that Xt0,...,tn = AY , where

A =


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
. . . . . . . . . . . . . . .
1 1 1 . . . 1

 .

Then ϕXt0,...,tn (z) = ϕAY (z) = Eei〈z,AY 〉 = Eei〈A>z,Y 〉 = ϕY (A>z) holds. Therefore the distri-
bution ofXt0,...,tn possesses the characteristic function ϕXt0,...,tn (z) = ϕQ0(l0)ϕt0,t1(l1) . . . ϕtn−1,tn(ln),
where l = (l1, l1, . . . , ln)> = A>z, thus

l0 = z0 + . . .+ zn
l1 = z1 + . . .+ zn

...
ln = zn
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Thereby ϕX(t0) = ϕQ0 and ϕXt1,...,tn (z1, . . . , zn) = ϕXt0,...,tn (0, z1, . . . , zn) holds for all zi ∈ R.
Now we prove the existence of such a process X.
For that we construct the family of characteristic functions

{ϕt0 , ϕt0,t1,...,tn , ϕt1,...,tn , 0 = t0 < t1 < . . . < tn <∞, n ∈ N}

from ϕQ0 and {ϕs,t, 0 ≤ s < t} as above, thus

ϕt0 = ϕQ0 , ϕt1,...,tn(0, z1, . . . , zn) = ϕt0,t1,...,tn(0, z1, . . . , zn), zi ∈ R,

ϕt0,...,tn(z) = ϕt0(z1 + . . .+ zn)ϕt0,t1(z1 + . . .+ zn) . . . ϕtn−1,tn(zn).

Now we have to check whether the corresponding probability measures of these characteristic
functions fulfill the conditions of Theorem 1.1.2. We will do that in equivalent form since by
Exercise 1.8.1 the conditions of symmetry and consistency in Theorem 1.1.2 are equivalent to:

a) ϕti0 ,...,tin (zi0 , . . . , zin) = ϕt0,...,tn(z0, . . . , zn) for an arbitrary permutation (0, 1, . . . , n) 7→
(i0, i1, . . . , in),

b) ϕt0,...,tm−1,tm+1,...,tn(z0, . . . , zm−1, zm+1, . . . , zn) = ϕt0,...,tn(z0, . . . , 0, . . . , zn), for all
z0, . . . , zn ∈ R, m ∈ {1, . . . , n}.

Condition a) is obvious. Conditon b) holds since

ϕtm−1,tm(0 + zm+1 + . . .+ zn)ϕtm,tm+1(zm+1 + . . .+ zn) = ϕtm−1,tm+1(zm+1, . . . , zn)

for all m ∈ {1, . . . , n}. Thus, the existence of X is proven.

Example 1.7.1 1. If T = N0 = N ∪ {0}, then X = {X(t), t ∈ N0} has independent incre-
ments if and only if X(n) d=

∑n
i=0 Yi, where {Yi} are independent random variables and

Yn
d= X(n) −X(n − 1), n ∈ N. Such a process X is called random walk. It also may be

defined for Yi with values in Rm.

2. The Poisson process with intensity λ has independent increments (we will show that
later).

3. The Wiener process possesses independent increments.
Exercise 1.7.1
Proof that!
Exercise 1.7.2
Let X = {X(t), t ≥ 0} be a process with independent increments and g : [0,∞) → R an
arbitrary (deterministic) function. Show that the process Y = {Y (t), t ≥ 0} with Y (t) =
X(t) + g(t), t ≥ 0, also possesses independent increments.

1.8 Additional exercises
Exercise 1.8.1
Prove the following assertion: The family of probability measures Pt1,...,tn on (Rn,B(Rn)),
n ≥ 1, t = (t1, . . . , tn)> ∈ Tn fulfills the conditions of the theorem of Kolmogorov if and only
if for n ≥ 2 and for all s = (s1, . . . , sn)> ∈ Rn the following conditions are fulfilled:
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a) ϕPt1,...,tn ((s1, . . . , sn)>) = ϕPtπ(1),...,tπ(n)
((sπ(1), . . . , sπ(n))>) for all π ∈ Sn.

b) ϕPt1,...,tn−1
((s1, . . . , sn−1)>) = ϕPt1,...,tn ((s1, . . . , sn−1, 0)>).

Remark: ϕ(·) denotes the characteristic function of the corresponding measure. Sn denotes the
group of all permutations π : {1, . . . , n} → {1, . . . , n}.

Exercise 1.8.2
Show the existence of a random function whose finite-dimensional distributions are multivariate-
normally distributed and explicitly give the measurable spaces (Et1,...,tn , Et1,...,tn).

Exercise 1.8.3
Give an example of a family of probability measures Pt1,...,tn , which do not fulfill the conditions
of the theorem of Kolmogorov.

Exercise 1.8.4
Let X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} be two stochastic processes which are defined on
the same complete probability space (Ω,F ,P) and which take values in the measurable space
(S,B).

a) Proof that: X and Y are stochastically equivalent =⇒ PX = PY .

b) Give an example of two processes X and Y for which holds: PX = PY , but X and Y are
not stochastically equivalent.

c) Proof that: X and Y are stochastically indistinguishable =⇒ X and Y are stochastically
equivalent.

d) Proof in the case of countability of T : X and Y are stochastically equivalent =⇒ X and
Y are stochastically indistinguishable.

e) Give in the case of uncountability of T an example of two processes X and Y for which
holds: X and Y are stochastically equivalent but not stochastically indistinguishable.

Exercise 1.8.5
Let W = {W (t), t ∈ R} be a Wiener Process. Which of the following processes are Wiener
processes as well?

a) W1 = {W1(t) := −W (t), t ∈ R},

b) W2 = {W2(t) :=
√
tW (1), t ∈ R},

c) W3 = {W3(t) := W (2t)−W (t), t ∈ R}.

Exercise 1.8.6
Given a stochastic process X = {X(t), t ∈ [0, 1]} which consists of idependent and identically
distributed random variables with density f(x), x ∈ R. Show that such a process can not be
continuous in t ∈ [0, 1].

Exercise 1.8.7
Give an example of a stochastic process X = {X(t), t ∈ T} which is stochastically continuous
on T , and prove why this is the case.



18 1 General theory of random functions

Exercise 1.8.8
In connection with the continuity of stochastic processes the so-called criterion of Kolmogorov
plays a central role. (see also theorem 1.3.1 in the lecture notes): Let X = {X(t), t ∈ [a, b]} be
a real-valued stochastic process. If constants α, ε > 0 and C := C(α, ε) > 0 exist such that

E|X(t+ h)−X(t)|α ≤ C|h|1+ε (1.8.1)

for sufficient small h, then the process X possesses a continuous modification. Show that:

a) If you fix the variable ε = 0 in condition (1.8.1), then in general the condition is not
sufficient for the existence of a continuous modification. Hint: Consider the Poisson
process.

b) The Wiener process W = {W (t), t ∈ [0,∞)} possesses a continuous modification. Hint:
Consider the case α = 4.

Exercise 1.8.9
Show that the Wiener process W is not stochastically differentiable at any point t ∈ [0,∞).
Exercise 1.8.10
Show that the covariance function C(s, t) of a complex-valued stochastic processX = {X(t), t ∈
T}

a) is symmetric, i.e. C(s, t) = C(t, s), s, t ∈ T ,

b) fulfills the identity C(t, t) = VarX(t), t ∈ T ,

c) is positive semidefinite, i.e. for all n ∈ N, t1, . . . , tn ∈ T , z1, . . . , zn ∈ C it holds that:
n∑
i=1

n∑
j=1

C(ti, tj)ziz̄j ≥ 0.

Exercise 1.8.11
Show that it exists a random function X = {X(t), t ∈ T} which simultaneously fulfills the
conditions:

• The second moment EX2 does not exist.

• The variogram γ(s, t) is finite for all s, t ∈ T .

Exercise 1.8.12
Give an example of a stochastic process X = {X(t), t ∈ T} whose paths are simultaneously
L2-differentiable but not almost surely differentiable, and prove why this is the case.
Exercise 1.8.13
Give an example of a stochastic process X = {X(t), t ∈ T} whose paths are simultaneously
almost surely differentiable but not L1-differentiable, and prove why this is the case.
Exercise 1.8.14
Proof that the Wiener process possesses independent increments.
Exercise 1.8.15
Proof: A (real-valued) stochastic process X = {X(t), t ∈ [0,∞)} with independent increments
already has stationary increments if the distibution of the random variable X(t+ h)−X(h) is
independent of h.



2 Counting processes

In this chapter we consider several examples of stochastic processes which model the counting
of events and thus possess piecewise constant paths.
Let (Ω,A,P) be a probability space and {Sn}n∈N a non-decreasing sequence of a.s. non-

negative random variables, i.e. 0 ≤ S1 ≤ S2 ≤ . . . ≤ Sn ≤ . . ..
Definition 2.0.1
The stochastic process N = {N(t), t ≥ 0} is called counting process if

N(t) =
∞∑
n=1

1(Sn ≤ t),

where 1(A) is the indicator function of the event A ∈ A.
N(t) counts the events which occur at Sn until time t. Sn e.g. may be the time of occurence

of

1. the n-th elementary particle in the Geiger counter, or

2. a damage in the insurance of material damage, or

3. a data paket at a server within a computer network, etc.

A special case of the counting processes are the so-called renewal processes.

2.1 Renewal processes
Definition 2.1.1
Let {Tn}n∈N be a sequence of i.i.d. non-negative random variables with P(T1 > 0) > 0. A
counting process N = {N(t), t ≥ 0} with N(0) = 0 a.s., Sn =

∑n
k=1 Tk, n ∈ N, is called

renewal process. Thereby Sn is called the time of the n-th renewal, n ∈ N.
The name „renewal process“ is given by the following interpretation. The „interarrival times“

Tn are interpreted as the lifetime of a technical spare part or mechanism within a system, thus
Sn is the time of the n-th break down of the system. The defective part is immediately replaced
by a new part (comparable with the exchange of a lightbulb). Thus, N(t) is the number of
repairs (the so-called „renewals“) of the system until time t.
Remark 2.1.1 1. It is N(t) =∞ if Sn ≤ t for all n ∈ N.

2. Often it is assumed that only T2, T3, . . . are identically distributed with ETn < ∞. The
distribution of T1 is freely selectable. Such a process N = {N(t), t ≥ 0} is called delayed
renewal process (with delay T1).

3. Sometimes the requirement Tn ≥ 0 is omitted.
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Abb. 2.1: Konstruktion und Trajektorien eines Erneuerungsprozesses

4. It is clear that {Sn}n∈N0 with S0 = 0 a.s., Sn =
∑n
k=1 Tk, n ∈ N is a random walk.

5. If one requires that the n-th exchange of a defective part in the system takes a time T ′n,
then by T̃n = Tn + T ′n, n ∈ N a different renewal process is given. Its stochastic property
does not differ from the process which is given in definition 2.1.1.

In the following we assume that µ = ETn ∈ (0,∞), n ∈ N.

Theorem 2.1.1 (Individual ergodic theorem):
Let N = {N(t), t ≥ 0} be a renewal process. Then it holds that:

lim
t→∞

N(t)
t

= 1
µ

a.s..

Proof For all t ≥ 0 and n ∈ N it holds that {N(t) = n} = {Sn ≤ t < Sn+1}, therefore
SN(t) ≤ t < SN(t)+1 and

SN(t)
N(t) ≤

t

N(t) ≤
SN(t)+1
N(t) + 1 ·

N(t) + 1
N(t) .

If we can show that SN(t)
N(t)

a.s−−−→
t→∞

µ and N(t) a.s.−−−→
t→∞

∞, then t
N(t)

a.s−−−→
t→∞

µ holds and therefore
the assertion of the theorem.
According to the strong law of large numbers of Kolmogorov (cf. lecture notes „Wahrschein-
lichkeitsrechnung“ (WR), theorem 7.4) it holds that Snn

a.s.−−−→
n→∞

µ, thus Sn
a.s.−−−→
n→∞

∞ and therefore
P(N(t) < ∞) = 1 since P(N(t) = ∞) = P( Sn ≤ t,∀n) = 1 − P(∃n : ∀m ∈ N0 Sn+m > t)︸ ︷︷ ︸

=1, if Sn
a.s−−−→
n→∞

∞

=

1− 1 = 0. Then N(t), t ≥ 0, is a real random variable.
We show that N(t) a.s.−−−→

t→∞
∞. All trajectories of N(t) are monotonously non-decreasing in
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t ≥ 0, thus ∃ limt→∞N(ω, t) for all ω ∈ Ω. Moreover it holds that

P( lim
t→∞

N(t) <∞) = lim
n→∞

P( lim
t→∞

N(t) < n) (∗)= lim
n→∞

lim
t→∞

P(N(t) < n)

= lim
n→∞

lim
t→∞

P(Sn > t) = lim
n→∞

lim
t→∞

P(
n∑
k=1

Tk > t)

≤ lim
n→∞

lim
t→∞

n∑
k=1

P(Tk >
t

n
)︸ ︷︷ ︸

−−−→
t→∞

0

= 0.

The equality (∗) holds since {limt→∞N(t) < n} = {∃t0 ∈ Q+ : ∀t ≥ t0 N(t) < n} =
∪t0∈Q+ ∩t∈Q+

t≥t0
{N(t) < n} = lim inft∈Q+

t→∞
{N(t) < n}, then the continuity of the probability

measure is used, where Q+ = Q ∩ R+ = {q ∈ Q : q ≥ 0}. Since for every ω ∈ Ω it holds that
limn→∞

Sn
n = limt→∞

SN(t)
N(t) (the codomain of a realization of N(·) is a subsequence of N), it

holds that limt→∞
SN(t)
N(t)

a.s= µ.

Remark 2.1.2
One can generalize the ergodic theorem to the case of non-identically distributed Tn. Thereby
we require that µn = ETn, {Tn − µn}n∈N are uniformly integrable and 1

n

∑n
k=1 µk −−−→n→∞

µ > 0.

Then we can prove that N(t)
t

P−−−→
t→∞

1
µ (cf. [2], page 276).

Theorem 2.1.2 (Central limit theorem):
If µ ∈ (0,∞), σ2 = Var T1 ∈ (0,∞), it holds that

µ
3
2 ·

N(t)− t
µ

σ
√
t

d−−−→
t→∞

Y,

where Y ∼ N (0, 1).

Proof According to the central limit theorem for sums of i.i.d. random variables (cf. theorem
7.5, WR) it holds that

Sn − nµ√
nσ2

d−−−→
n→∞

Y. (2.1.1)

Let [x] be the whole part of x ∈ R. It holds for a = σ2

µ3 that

P
(
N(t)− t

µ√
at

≤ x
)

= P
(
N(t) ≤ x

√
at+ t

µ

)
= P

(
Sm(t) > t

)
,

where m(t) =
[
x
√
at+ t

µ

]
+ 1, t ≥ 0, and limt→∞m(t) =∞. Therefore we get that

∣∣∣∣∣P
(
N(t)− t

µ√
at

≤ x
)
− ϕ(x)

∣∣∣∣∣ =
∣∣∣P (Sm(t) > t

)
− ϕ(x)

∣∣∣
=

∣∣∣∣∣P
(
Sm(t) − µm(t)
σ
√
m(t)

>
t− µm(t)
σ
√
m(t)

)
− ϕ(x)

∣∣∣∣∣ := It(x)
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for arbitrary t ≥ 0 and x ∈ R, where ϕ is the distribution function of the N (0, 1)-distribution.
For fixed x ∈ R we introduce Zt = − t−µm(t)

σ
√
m(t)
− x, t ≥ 0. Then it holds that

It(x) =
∣∣∣∣∣P
(
Sm(t) − µm(t)
σ
√
m(t)

+ Zt > −x
)
− ϕ(x)

∣∣∣∣∣ .
If we can prove that Zt −−−→

t→∞
0, then applying (2.1.1) and the theorem of Slutsky (theorem

6.4.1, WR) would result in Sm(t)−µm(t)
σ
√
m(t)

+ Zt
d−−−→

t→∞
Y ∼ N (0, 1) since Zt −−−→

t→∞
0 a.s. results in

Zt
d−−−→

t→∞
0. Therefore we could write It(x) −−−→

t→∞
|ϕ̄(−x)− ϕ(x)| = |ϕ(x)− ϕ(x)| = 0, where

ϕ̄(x) = 1− ϕ(x) is the tail function of the N (0, 1)-distribution, and the property of symmetry
of N (0, 1) : ϕ̄(−x) = ϕ(x), x ∈ R was used.
Now we show that Zt −−−→

t→∞
0, thus t−µm(t)

σ
√
m(t)
−−−→
t→∞

−x. It holds that m(t) = x
√
at+ t

µ + ε(t),
where ε(t) ∈ [0, 1). Then it holds that

t− µm(t)
σ
√
m(t)

= t− µx
√
at− t− µε(t)
σ
√
m(t)

= −x
√
at− µ

σ
√
x
√
at+ t

µ + ε(t)
− µε(t)
σ
√
m(t)

= − xµ

σ

√
x√
at

+ 1
µa + ε(t)

at

− µ− ε(t)
σ
√
m(t)

= −
xµσ√

µ2

σ2 + x√
at

+ ε(t)
at︸ ︷︷ ︸

−−−→
t→∞

−x

− µε(t)
σ
√
m(t)︸ ︷︷ ︸

−−−→
t→∞

0

−−−→
t→∞

−x.

Remark 2.1.3
In Lineberg form, the central limit theorem can also be proven for non-identically distributed
Tn, cf. [2], pages 276 - 277.
Definition 2.1.2
The functionH(t) = EN(t), t ≥ 0 is called renewal function of the process N (or of the sequence
{Sn}n∈N).
Let FT (x) = P(T1 ≤ x), x ∈ R be the distribution function of T1. For arbitrary distribution

functions F,G : R→ [0, 1] the convolution F ∗G is defined as F ∗G(x) =
∫ x
−∞ F (x− y)dG(y).

The k-fold convolution F ∗k of the distribution F with itself, k ∈ N0, is defined inductive:

F ∗0(x) = 1(x ∈ [0,∞)), x ∈ R,
F ∗1(x) = F (x), x ∈ R,

F ∗(k+1)(x) = F ∗k ∗ F (x), x ∈ R.

Lemma 2.1.1
The renewal function H of a renewal process N is monotonously non-decreasing and right-sided
continuous on R+. Moreover it holds that

H(t) =
∞∑
n=1

P(Sn ≤ t) =
∞∑
n=1

F ∗nT (t), t ≥ 0. (2.1.2)
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Proof The monotony and right-sided continuity of H are consequences from the almost surely
monotony and right-sided continuity of the trajectories of N . Now we prove (2.1.2):

H(t) = EN(t) = E
∞∑
n=1

1(Sn ≤ t)
(∗)=

∞∑
n=1

E1(Sn ≤ t) =
∞∑
n=1

P(Sn ≤ t) =
∞∑
n=1

F ∗nT (t),

since P(Sn ≤ t) = P(T1 + . . . + Tn ≤ t) = F ∗nT (t), t ≥ 0. The equality (∗) holds for all partial
sums on both sides, therefore in the limit as well.

Except for exceptional cases it is impossible to calculate the renewal function H by the
formula (2.1.2) analytically. Therefore the Laplace transform of H is often used in calulations.
For a monotonously (e.g. monotonously non-decreasing) right-sided continuous function G :
[0,∞)→ R the Laplace transform is defined as l̂G(s) =

∫∞
0 e−sxdG(x), s ≥ 0. Here the integral

is to be understood as the Lebesgue-Stieltjes integral, thus as a Lebesgue integral with respect
to the measure µG on BR+ defined by µG((x, y]) = G(y) − G(x), 0 ≤ x < y < ∞, if G is
monotonously non-decreasing.
Just to remind you: the Laplace transform l̂X of a random variable X ≥ 0 is defined by
l̂X(s) =

∫∞
0 e−sxdFX(x), s ≥ 0.

Lemma 2.1.2
For s > 0 it holds that:

l̂H(s) = l̂T1(s)
1− l̂T1(s)

.

Proof It holds that:

l̂H(s) =
∫ ∞

0
e−sxdH(x) (2.1.2)=

∫ ∞
0

e−sxd

( ∞∑
n=1

F ∗nT (x)
)

=
∞∑
n=1

∫ ∞
0

e−sxdF ∗n(x)

=
∞∑
n=1

l̂T1+...+Tn(s) =
∞∑
n=1

(
l̂T1(s)

)n
= l̂T1(s)

1− l̂T1(s)
,

where for s > 0 it holds that l̂T1(s) < 1 and thus the geometric series
∑∞
n=1

(
l̂T1(s)

)n
converges.

Remark 2.1.4
If N = {N(t), t ≥ 0} is a delayed renewal process (with delay T1), the statements of lemmas
2.1.1 - 2.1.2 hold in the following form:

1.
H(t) =

∞∑
n=0

(FT1 ∗ F ∗nT2 )(t), t ≥ 0,

where FT1 and FT2 , respectively are the distribution functions of T1 and Tn, n ≥ 2,
respectively.

2.
l̂H(s) = l̂T1(s)

1− l̂T2(s)
, s ≥ 0, (2.1.3)

where l̂T1 and l̂T2 are the Laplace transforms of the distribution of T1 and Tn, n ≥ 2.
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For further observations we need a theorem (of Wald) about the expected value of a sum
(with random number) of independent random variables.

Definition 2.1.3
Let ν be a N-valued random variable and be {Xn}n∈N a sequence of random variables defined
on the same probability space. ν is called independent of the future, if for all n ∈ N the event
{ν ≤ n} does not depend on the σ-algebra σ({Xk, k > n}).

Theorem 2.1.3 (Wald’s identity):
Let {Xn}n∈N be a sequence of random variables with sup E|Xn| <∞, EXn = a, n ∈ N and be
ν a N-valued random variable which is independent of the future, with Eν <∞. Then it holds
that

E(
ν∑

n=1
Xn) = a · Eν.

Proof Calculate Sn =
∑n
k=1Xk, n ∈ N. Since Eν =

∑∞
n=1 P(ν ≥ n), the theorem follows from

Lemma 2.1.3.

Lemma 2.1.3 (Kolmogorov-Prokhorov):
Let ν be a N-valued random variable which is independent of the future and it holds that

∞∑
n=1

P(ν ≥ n)E|Xn| <∞. (2.1.4)

Then ESν =
∑∞
n=1 P(ν ≥ n)EXn holds. If Xn ≥ 0 a.s., then condition (2.1.4) is not required.

Proof It holds that Sν =
∑ν
n=1Xn =

∑∞
n=1Xn1(ν ≥ n). We introduce the notation Sν,n =∑n

k=1Xk1(ν ≥ k), n ∈ N. First, we prove the lemma for Xn ≥ 0 f.s., n ∈ N. It holds Sν,n ↑ Sν ,
n → ∞ for every ω ∈ Ω, and thus according to the monotone convergence theorem it holds
that: ESν = limn→∞ ESν,n = lim

∑n
k=1 E(Xk1(ν ≥ k)). Since {ν ≥ k} = {ν ≤ k − 1}c does not

depend on σ(Xk) ⊂ σ({Xn, n ≥ k}) it holds that E(Xk1(ν ≥ k)) = EXkP(ν ≥ k), k ∈ N, and
thus ESν =

∑∞
n=1 P(ν ≥ n)EXn.

Now, let Xn be arbitrary. Take Yn = |Xn|, Zn =
∑n
n=1 Yn, Zν,n =

∑n
k=1 Yk1(ν ≥ k), n ∈ N.

Since Yn ≥ 0, n ∈ N, it holds that EZν =
∑∞
n=1 E(Xn | P(ν ≥ k)) < ∞ from (2.1.4). Since

|Sν,n| ≤ Zν,n ≤ Zν , n ∈ N, according to the dominated convergence theorem of Lebesgue it
holds that ESν = limn→∞ ESν,n =

∑∞
n=1 EXnP(ν ≥ n), where this series converges absolutely.

Conclusion 2.1.1 1. H(t) <∞, t ≥ 0.

2. For an arbitrary Borel measurable function g : R+ → R+ and the renewal process N =
{N(t), t ≥ 0} with interarrival times {Tn}, Tn i.i.d., µ = ETn ∈ (0,∞) it holds that

E

N(t)+1∑
k=1

g(Tn)

 = (1 +H(t))Eg(T1), t ≥ 0.

Proof 1. For every t ≥ 0 it is obvious that ν = 1 +H(t) does not depend on the future of
{Tn}n∈N, the rest follows from theorem 2.1.3 with Xn = g(Tn), n ∈ N.
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2. For s > 0 consider T (s)
n = min{Tn, s}, n ∈ N. Choose s > 0 such that for freely selected

(but fixed) ε > 0 : µ(s) = ET (s)
1 ≥ µ − ε > 0. Let N (s) be the renewal process which is

based on the sequence {T (s)
n }n∈N of interarrival times: N (s)(t) =

∑∞
n=1 1(T (s)

n ≤ t), t ≥ 0.
It holds N(t) ≤ N (s)(t), t ≥ 0, a.s., according to conclusion 2.1.1:

(µ− ε)(EN (s)(t) + 1) ≤ µ(s)(EN (s)(t) + 1) = ES(s)
N(s)(t)+1 = E(S(s)

N(s)(t)︸ ︷︷ ︸
≤t

+T
(s)
N(s)(t)+1︸ ︷︷ ︸
≤s

) ≤ t+ s,

t ≥ 0, where S(s)
n = T

(s)
1 + . . . + T

(s)
n , n ∈ N. Thus H(t) = EN(t) ≤ EN (s)(t) ≤ t+s

µ−ε ,
t ≥ 0. Since ε > 0 is arbitrary, it holds that lim supt→∞

H(t)
t ≤

1
µ , and also our assertion

H(t) <∞, t ≥ 0.

Conclusion 2.1.2 (Elementary renewal theorem):
For a renewal process N as defined in conclusion 2.1.1, 1) it holds:

lim
t→∞

H(t)
t

= 1
µ
.

Proof In conclusion 2.1.1, part 2) we already proved that lim supt→∞
H(t)
t ≤ 1

µ . If we show
lim inft→∞ H(t)

t ≥
1
µ , our assertion would be proven. According to theorem 2.1.1 it holds that

N(t)
t −−−→t→∞

1
µ a.s., therefore according to Fatou’s lemma

1
µ

= E lim inf
t→∞

N(t)
t
≤ lim inf

t→∞

EN(t)
t

= lim inf
t→∞

H(t)
t

.

Remark 2.1.5 1. We can prove that in the case of the finite second moment of Tn (µ2 =
ET 2

1 <∞) we can derive a more exact asymptotics for H(t), t→∞:

H(t) = t

µ
+ µ2

2µ2 + o(1), t→∞.

2. The elementary renewal theorem also holds for delayed renewal processes, where µ = ET2.
We define the renewal measure H on B(R+) by H(B) =

∑∞
n=1

∫
B dF

∗n
T (x), B ∈ B(R+).

It holds H((−∞, t]) = H(t), H((s, t]) = H(t)−H(s), s, t ≥ 0, if H is the renewal function
as well as the renewal measure.

Theorem 2.1.4 (Fundamental theorem of the renewal theory):
Let N = {N(t), t ≥ 0} be a (delayed) renewal process associated with the sequence {Tn}n∈N,
where Tn, n ∈ N are independent, {Tn, n ≥ 2} identically distributed, and the distribution
of T2 is not arithmetic, thus not concentrated on a regular lattice with probability 1. The
distribution of T1 is arbitrary. Let ET2 = µ ∈ (0,∞). Then it holds that∫ t

0
g(t− x)dH(x) −−−→

t→∞

1
µ

∫ ∞
0

g(x)dx,

where g : R+ → R is Riemann integrable [0, n], for all n ∈ N, and
∑∞
n=0 maxn≤x≤n+1 |g(x)| <∞.
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Without proof.

In particular H((t − u, t]) −−−→
t→∞

u
µ holds for an arbitrary u ∈ R+, thus H asymptotically

(for t→∞) behaves as the Lebesgue measure.

Abb. 2.2:

Definition 2.1.4
The random variable χ(t) = SN(t)+1 − t is called excess of N at time t ≥ 0.

Obviously χ(0) = T1 holds. We now give an example of a renewal process with stationary
increments.
Let N = {N(t), t ≥ 0} be a delayed renewal process associated with the sequence of interarrival
times {Tn}n∈N. Let FT1 and FT2 be the distribution functions of the delays T1 and Tn, n ≥ 2.
We assume that µ = ET2 ∈ (0,∞), FT2(0) = 0, thus T2 > 0 a.s. and

FT1(x) = 1
µ

∫ x

0
F̄T2(y)dy, x ≥ 0. (2.1.5)

In this case FT1 is called the integrated tail distribution function of T2.

Theorem 2.1.5
Under the conditions we mentioned above, N is a process with stationary increments.

Abb. 2.3:

Proof Let n ∈ N, 0 ≤ t0 < t1 < . . . < tn <∞. Because N does not depend on Tn, n ∈ N the
common distribution of (N(t1 + t)−N(t0 + t), . . . , N(tn + t)−N(tn−1 + t))> does not depend
on t, if the distribution of χ(t) does not depend on t, thus χ(t) d= χ(0) = T1, t ≥ 0, see Figure
....
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We show that FT1 = Fχ(t), t ≥ 0.

Fχ(t)(x) = P(χ(t) ≤ x) =
∞∑
n=0

P(Sn ≤ t, t < Sn+1 ≤ t+ x)

= P(S0 = 0 ≤ t, t < S1 = T1 ≤ t+ x)

+
∞∑
n=1

E(E(1(Sn ≤ t, t < Sn + Tn+1 ≤ t+ x) | Sn))

= FT1(t+ x)− FT1(t) +
∞∑
n=1

∫ t

0
P(t− y < Tn+1 ≤ t+ x− y)dFSn(y)

= FT1(t+ x)− FT1(t) +
∫ t

0
P(t− y < T2 ≤ t+ x− y)d(

∞∑
n=1

FSn(y)︸ ︷︷ ︸
H(y)

).

If we can prove that H(y) = y
µ , y ≥ 0, then we would get

Fχ(t)(x) = FT1(t+ x)− FT1(t) + 1
µ

∫ 0

t
(FT2(z + x)− 1 + 1− FT2(z))d(−z)

= FT1(t+ x)− FT1(t) + 1
µ

∫ t

0
(F̄T2(z)− F̄T2(z + x))dz

= FT1(t+ x)− FT1(t) + FT1(t)− 1
µ

∫ t+x

x
F̄T2(y)dy

= FT1(t+ x)− FT1(t+ x) + FT1(x) = FT1(x), x ≥ 0,

according to the form (2.1.5) of the distribution of T1.
Now we like to show that H(t) = t

µ , t ≥ 0. For that we use the formula (2.1.4): it holds that

l̂T1(s) = 1
µ

∫ ∞
0

e−st(1− FT2(t))dt = 1
µ

∫ ∞
0

e−stdt︸ ︷︷ ︸
1
s

− 1
µ

∫ ∞
0

e−stFT2(t)dt

= 1
µs

(
1 +

∫ ∞
0

FT2(t)de−st
)

= 1
µs

(1 + e−stFT2(t)︸ ︷︷ ︸
−FT2 (0)=0

∣∣∞
0 −

∫ ∞
0

e−stdFT2(t))︸ ︷︷ ︸
l̂T2 (s)

= 1
µs

(1− l̂T2(s)), s ≥ 0.

Using the formula (2.1.4) we get

l̂H(s) = l̂T1(s)
1− l̂T2(s)

= 1
µs

= 1
µ

∫ ∞
0

e−stdt = l̂ t
µ

(s), s ≥ 0.

Since the Laplace transform of a function uniquely determines this function, it holds that
H(t) = t

µ , t ≥ 0.

Remark 2.1.6
In the proof of Theorem 2.1.5 we showed that for the renewal process with delay which possesses
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the distribution (2.1.5), H(t) ∼ t
µ not only asymptotical for t → ∞ (as in the elementary

renewal theorem) but it holds H(t) = t
µ , for all t ≥ 0. This means, per unit of the time interval

we get an average of 1
µ renewals. For that reason such a process N is called homogeneous

renewal process.
We can prove the following theorem:

Theorem 2.1.6
If N = {N(t), t ≥ 0} is a delayed renewal process with arbitrary delay T1 and non-arithmetic
distribution of Tn, n ≥ 2, µ = ET2 ∈ (0,∞), then it holds that

lim
t→∞

Fχ(t)(x) = 1
µ

∫ x

0
F̄T2(y)dy, x ≥ 0.

This means, the limit distribution of excess χ(t), t→∞ is taken as the distribution of T1 when
defining a homogeneous renewal process.

2.2 Poisson processes

2.2.1 Poisson processes

In this section we generalize the definition of a homogeneous Poisson process (see section 1.2,
example 5)
Definition 2.2.1
The counting process N = {N(t), t ≥ 0} is called Poisson process with intensity measure Λ if

1. N(0) = 0 a.s.

2. Λ is a locally finite measure R+,i.e., Λ : B(R+) → R+ possesses the property Λ(B) < ∞
for every bounded set B ∈ B(R+).

3. N possesses independent increments.

4. N(t)−N(s) ∼ Pois(Λ((s, t])) for all 0 ≤ s < t <∞.

Sometimes the Poisson process N = {N(t), t ≥ 0} is defined by the corresponding random
Poisson counting measure N = {N(B), B ∈ B(R+)}, i.e., N = ([0, t]), t ≥ 0, where a counting
measure is a locally finite measure with values in N0.
Definition 2.2.2
A random counting measure N = {N(B), B ∈ B(R+)} is called Poissonsh with locally finite
intensity measure Λ if

1. For arbitrary n ∈ N and for arbitrary pairwise disjoint bounded sets B1, B2, . . . , Bn ∈
B(R+) the random variables N(B1), N(B2), . . . , N(Bn) are independent.

2. N(B) ∼ Pois(Λ(B)), B ∈ B(R+), B-bounded.

It is obvious that properties 3 and 4 of definition 2.2.1 follow from properties 1 and 2 of
definition 2.2.2. Property 1 of definition 2.2.1 however is an autonomous assumption. N(B),
B ∈ B(R+) is interpreted as the number of points of N within the set B.
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Remark 2.2.1
As stated in definition 2.2.2, a Poisson counting measure can also be defined on an arbitrary
topological space E equipped with the Borel-σ-algebra B(E). Very often E = Rd, d ≥ 1 is
chosen in applications.

Lemma 2.2.1
For every locally finite measure Λ on R+ there exists a Poisson process with intensity measure
Λ.

Proof If such a Poisson process had existed, the characteristic function ϕN(t)−N(s)(·) of the
increment N(t) −N(s), 0 ≤ s < t < ∞ would have been equal to ϕs,t(z) = ϕPois(Λ((s,t]))(z) =
eΛ((s,t])(eiz−1), z ∈ R according to property 4 of definition 2.2.1. We show that the family of
characteristic functions {ϕs,t, 0 ≤ s < t < ∞} possesses property 1.7.1: for all n : 0 ≤ s <

u < t, ϕs,u(z)ϕu,t(z) = eΛ((s,u])(eiz−1)eΛ((u,t])(eiz−1) = e(Λ((s,u])+Λ((u,t]))(eiz−1) = eΛ((s,t])(eiz−1) =
ϕs,t(z), z ∈ R since the measure Λ is additive. Thus, the existence of the Poisson process N
follows from theorem 1.7.1.

Remark 2.2.2
The existence of a Poisson counting measure can be proven with the help of the theorem of
Kolmogorov, yet in a more general form than in theorem 1.1.2.

From the properties of the Poisson distribution it follows that EN(B) = VarN(B) = Λ(B),
B ∈ B(R+). Thus Λ(B) is interpreted as the mean number of points of N within the set B,
B ∈ B(R+).
We get an important special case if Λ(dx) = λdx for λ ∈ (0,∞), i.e., Λ is proportional to the
Lebesgue measure ν1 on R+. Then we call λ = EN(1) the intensity of N .
Soon we will prove that in this case N is a homogeneous Poisson process with intensity λ. To
remind you: In section 1.2 the homogeneous Poisson process was defined as a renewal process
with interarrival times TN ∼ Exp(λ): N(t) = sup{n ∈ N Sn ≤ t}, Sn = T1 + . . . + Tn, n ∈ N,
t ≥ 0.

Exercise 2.2.1
Show that the homogeneous Poisson process is a homogeneous renewal process with T1

d= T2 ∼
Exp(λ). Hint: you have to show that for an arbitrary exponential distributed random variable
X the integrated tail distribution function of X is equal to FX .

Theorem 2.2.1
Let N = {N(t), t ≥ 0} be a counting process. The following statements are equivalent.

1. N is a homogeneous Poisson process with intensity λ > 0.

2. a) N(t) ∼ Pois(λt), t ≥ 0
b) for an arbitrary n ∈ N, t ≥ 0, it holds that the random vector (S1, . . . , Sn) under

condition {N(t) = n} possesses the same distribution as the order statistics of i.i.d.
random variables Ui ∈ U([0, t]), i = 1, . . . , n.

3. a) N has independent increments,
b) EN(1) = λ, and
c) property 2b) holds.
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4. a) N has stationary and independent increments, and
b) P(N(t) = 0) = 1− λt+ o(t), P(N(t) = 1) = λt+ o(t), t ↓ 0 holds.

5. a) N hast stationary and independent increments,
b) property 2a) holds.

Remark 2.2.3 1. It is obvious that Definition 2.2.1 with Λ(dx) = λdx, λ ∈ (0,∞) is an
equivalent definition of the homogeneous Poisson process according to Theorem 2.2.1.

2. The homogeneous Poisson process N was introduced in the beginning of the 20th century
from the physicists A. Einstein and M. Smoluchovsky to be able to model the counting
process of elementary particle in the Geiger counter.

3. From 4b) it follows P(N(t) > 1) = o(t), t ↓ 0.

4. The intensity of N has the following interpretation: λ = EN(1) = 1
ETn , thus the mean

number of renewals of N within a time interval with length 1.

5. The renewal function of the homogeneous Poisson process is H(t) = λt, t ≥ 0. Thereby
H(t) = Λ([0, t]), t > 0 holds.

Proof Structure of the proof: 1)⇒ 2)⇒ 3)⇒ 4)⇒ 5)⇒ 1)
1)⇒ 2):
From 1) follows Sn =

∑n
k=1 Tk ∼ Erl(n, λ) since Tk ∼ Pois(λ), n ∈ N, thus P(N(t) = 0) =

P(T1 > t) = e−λt, t ≥ 0, and for n ∈ N

P(N(t) = n) = P({N(t) ≥ n} \ {N(t) ≥ n+ 1}) = P(N(t) ≥ n)− P(N(t) ≥ n+ 1)

= P(Sn ≤ t)− P(Sn+1 ≤ t) =
∫ t

0

λnxn−1

(n− 1)!e
−λxdx−

∫ t

0

λn+1xn

n! e−λxdx

=
∫ t

0

d

dx

((λx)n

n! e−λx
)
dx = (λt)n

n! e−λt, t ≥ 0.

Thus 2a) is proven.
Now let’s prove 2b). According to the transformation theorem of random variables (cf. theorem
3.6.1, WR), it follows from 

S1 = T1
S2 = T1 + T2

...
Sn+1 = T1 + . . .+ Tn+1

that the density f(S1,...,Sn) of (S1, . . . , Sn+1)> can be expressed by the density of (T1, . . . , Tn+1)>,
Ti ∼ Exp(λ), i.i.d.:

f(S1,...,Sn+1)(t1, . . . , tn+1) =
n+1∏
k=1

fTk(tk − tk−1) =
n+1∏
k=1

λe−λ(tk−tk−1) = λn+1e−λtn+1

for arbitrary 0 ≤ t1 ≤ . . . ≤ tn+1, t0 = 0.
For all other t1, . . . , tn+1 it holds f(S1,...,Sn+1)(t1, . . . , tn+1) = 0.
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Therefore

f(S1,...,Sn)(t1, . . . , tn|N(t) = n) = f(S1,...,Sn)(t1, . . . , tn|Sk ≤ t, k ≤ n, Sn+1 > t)

=
∫∞
t f(S1,...,Sn+1)(t1, . . . , tn+1)dtn+1∫ t

0
∫ t
t1
. . .
∫ t
tn−1

∫∞
t f(S1,...,Sn+1)(t1, . . . , tn+1)dtn+1dtn . . . dt1

=
∫∞
t λn+1e−λtn+1dtn+1∫ t

0
∫ t
t1
. . .
∫ t
tn−1

∫∞
t λn+1e−λtn+1dtn+1dtn . . . dt1

×

×I(0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t)

= n!
tn

I(0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t).

This is exactly the density of n i.i.d. U([0, t])-random variables.
Exercise 2.2.2
Proof this.

2)⇒ 3)
From 2a) obviously follows 3b). Now we just have to prove the independence of the increments
of N . For an arbitrary n ∈ N, x1, . . . , xn ∈ N, t0 = 0 < t1 < . . . < tn for x = x1 + . . . + xn it
holds that

P(∩nk=1{N(tk)−N(tk−1) = xk}) = P(∩nk=1{N(tk)−N(tk−1) = xk}|N(tn) = x)︸ ︷︷ ︸
x!

x1!...xn!
∏n

k=1

(
tk−tk−1

tn

)xk according to 2b)

×

× P(N(tn) = x)︸ ︷︷ ︸
e−λtn

(λtn)x
x! according to 2a)

=
n∏
k=1

(λ(tk − tk−1))xk
xk!

e−λ(tk−tk−1),

since the probability of (∗) belongs to the polynomial distribution with parameters n,
{
tk−tk−1

tn

}n
k=1

.
Because the event (∗)is that at the independent uniformly distributed toss of x points on [0, t],
exactly xk points occur within the basket of length tk − tk−1, k = 1, . . . , n:

Abb. 2.4:

Thus 3a) is proven since P(∩nk=1{N(tk)−N(tk−1) = xk}) =
∏n
k=1 P({N(tk)−N(tk−1) = xk}).
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3)⇒ 4)
We prove that N possesses stationary increments. For an arbitrary n ∈ N0, x1, . . . , xn ∈ N,
t0 = 0 < t1 < . . . < tn and h > 0 we consider I(h) = P(∩nk=1{N(tk + h)−N(tk−1 + h) = xk})
and show that I(h) does not depend on h ∈ R. According to the formula of the total probability
it holds that

I(h) =
∞∑
m=0

P(∩nk=1{N(tk + h)−N(tk−1 + h) = xk} | N(tn + h) = m) · P(N(tn + h) = m)

=
∞∑
m=0

m!
x1! . . . xn!

n∏
k=1

(
tk + h− tn−1 − h

tn + h− h

)xk
e−λ(tn+h) (λ(tn + h))m

m!

=
∞∑
m=0

P(∩nk=1{N(tk)−N(tk−1) = xk | N(tn + h) = m)× P(N(tn + h) = m) = I(0).

We now show property 4b) for h ∈ (0, 1):

P(N(h) = 0) =
∞∑
k=0

P(N(h) = 0, N(1) = k) =
∞∑
k=0

P(N(h) = 0, N(1)−N(h) = k)

=
∞∑
k=0

P(N(1)−N(h) = k,N(1) = k)

=
∞∑
k=0

P(N(1) = k)P(N(1)−N(h) = k | N(1) = k)

=
∞∑
k=0

P(N(1) = k)(1− h)k.

We have to show that P(N(h) = 0) = 1 − λh + o(h), i.e., limh→∞
1
h(1 − P(N(h) = 0)) = λ.

Indeed it holds that

1
h

(1− P(N(h) = 0)) = 1
h

(
1−

∞∑
k=0

P(N(1) = k)(1− h)k
)

=
∞∑
k=1

P(N(1) = k) · 1− (1− h)k

h

−−−→
h→0

∞∑
k=1

P(N(1) = k) lim
h→0

1− (1− h)k

h︸ ︷︷ ︸
k

=
∞∑
k=0

P(N(1) = k)k = EN(1) = λ,

since the series uniformly converges in h because it is dominated by
∑∞
k=0 P(N(1) = k)k = λ <

∞ because of the inequality (1− h)k ≥ 1− kh, h ∈ (0, 1), k ∈ N.
Similarly one can show that limh→0

P(N(h)=1)
h = limh→0

∑∞
k=1 P(N(1) = k)k(1 − h)k−1 = λ.

4)⇒ 5)
We have to show that for an arbitrary n ∈ N and t ≥ 0

pn(t) = P(N(t) = n) = e−λt
(λt)n

n! (2.2.1)

holds. We will prove that by induction with respect to n. First we show that p0(t) = e−λt,
h = 0. For that we consider p0(t + h) = P(N(t + h) = 0) = P(N(t) = 0, N(t + h) − N(t) =
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0) = p0(t)p0(h) = p0(t)(1 − λh + o(h)), h → 0. Similarly one can show that p0(t) = p0(t −
h)(1 − λh + o(h)), h → 0. Thus p′0(t) = limh→0

p0(t+h)−p0(t)
h = −λp0(t), t > 0 holds. Since

p0(0) = P(N(0) = 0) = 1, it follows from{
p′0(t) = −λp0(t)
p0(0) = 1,

that it exists an unique solution p0(t) = e−λt, t ≥ 0. Now for n the formular (2.2.1) be approved.
Let’s prove it for n+ 1.

pn+1(t+ h) = P(N(t+ h) = n+ 1)
= P(N(t) = n,N(t+ h)−N(t) = 1) + P(N(t) = n+ 1, N(t+ h)−N(t) = 0)
= pn(t) · p1(h) + pn+1(t) · p0(h)
= pn(t)(λh+ o(h)) + pn+1(t)(1− λh+ o(h)), h→ 0, h > 0.

Thus {
p′n+1(t) = −λpn+1(t) + λpn(t), t > 0
pn+1(0) = 0 (2.2.2)

Since pn(t) = e−λt (λt)n
n! , we obtain pn+1(t) = e−λt (λt)n+1

(n+1)! as solution of (2.2.2). (Indeed
pn+1(t) = C(t)e−λt ⇒ C ′(t)e−λt = λC(t)e−λt...........+ λpn(t)
C ′(t) = λn+1tn

n! ⇒ C(t) = λn+1tn+1

(n+1)! , C(0) = 0)
5)⇒ 1)
Let N be a counting process N(t) = max{n : Sn ≤ t}, t ≥ 0, which fulfills conditions 5a)
and 5b). We show that Sn =

∑n
k=1 Tk, where Tk i.i.d. with Tk ∼ Exp(λ), k ∈ N. Since

Tk = Sk − Sk−1, k ∈ N, S0 = 0, we consider for b0 = 0 ≤ a1 < b1 ≤ . . . ≤ an < bn

P (∩nk=1{ak < Sk ≤ bk})
= P(∩n−1

k=1{N(ak)−N(bk−1) = 0, N(bk)−N(ak) = 1}
∩{N(an)−N(bn−1) = 0, N(bn)−N(an) ≥ 1})

=
n−1∏
k=1

(P(N(ak − bk−1) = 0)︸ ︷︷ ︸
e−λ(ak−bk−1)

P(N(bk − ak) = 1)︸ ︷︷ ︸
λ(bk−ak)e−λ(bk−ak)

)×

P(N(an − bn−1) = 0)︸ ︷︷ ︸
e−λ(an−bn−1)

P(N(bn − an) ≥ 1)︸ ︷︷ ︸
(1−e−λ(bn−an))

= e−λ(an−bn−1)(1− e−λ(bn−an))
n−1∏
k=1

λ(bk − ak)e−λ(bk−bk−1)

= λn−1(e−λan − e−λbn)
n−1∏
k=1

(bk − ak) =
∫ b1

a1
. . .

∫ bn

an
λne−λyndyn . . . y1.

The common density of (S1, . . . , Sn)> therefore is given by λne−λyn1(y1 ≤ y2 ≤ . . . ≤ yn).

2.2.2 Compound Poisson process
Definition 2.2.3
Let N = {N(t), t ≥ 0} be a homogeneous Poisson process with intensity λ > 0, build by
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means of the sequence {Tn}n∈N of interarrival times. Let {Un}n∈N be a sequence of i.i.d.
random variables, independent of {Tn}n∈N. Let FU be the distribution function of U1. For
an arbitrary t ≥ 0 let X(t) =

∑N(t)
k=1 Uk. The stochastic process X = {X(t), t ≥ 0} is called

compound Poisson process with parameters λ, FU . The distribution of X(t) thereby is called
compound Poisson distribution with parameters λt, FU .
The compound Poisson process X(t), t ≥ 0 can be interpreted as the sum of „marks“ Un of

a homogeneous marked Poisson process (N,U) until time t.
In queueing theory X(t) is interpreted as the overall workload of a server until time t if the
requests to the service occur at times Sn =

∑n
k=1 Tk, n ∈ N and represent the amount of work

Un, n ∈ N.
In actuarial mathematics X(t), t ≥ 0 is the total damage in a portfolio until time t ≥ 0 with
number of damages N(t) and amount of loss Un, n ∈ N.
Theorem 2.2.2
Let X = {X(t), t ≥ 0} be a compound Poisson process with parameters λ, FU . The following
properties hold:

1. X has independent and stationary increments.

2. If m̂U (s) = EesU1 , s ∈ R, is the moment generating function of U1, such that m̂U (s) <∞,
s ∈ R, then it holds that

m̂X(t)(s) = eλt(m̂U (s)−1), s ∈ R, t ≥ 0, EX(t) = λtEU1, VarX(t) = λtEU2
1 , t ≥ 0.

Proof 1. We have to show that for arbitrary n ∈ N, 0 ≤ t0 < t1 < . . . < tn and h

P

 N(t1+h)∑
i1=N(t0+h)+1

Ui1 ≤ x1, . . . ,

N(tn+h)∑
in=N(tn−1+h)+1

Uin ≤ xn

 =
n∏
k=1

P

 N(tk)∑
ik=N(tk−1)+1

Uik ≤ xk


for arbitrary x1, . . . , xn ∈ R. Indeed it holds that

P

 N(t1+h)∑
i1=N(t0+h)+1

Ui1 ≤ x1, . . . ,

N(tn+h)∑
in=N(tn−1+h)+1

Uin ≤ xn


=

∞∑
k1,...,kn=0

 n∏
j=1

F
∗kj
n (xj)

P (∩nm=1 {N(tm + h)−N(tm−1 + h) = km})

=
∞∑

k1,...,kn=0

 n∏
j=1

F
∗kj
n (xj)

( n∏
m=1

P(N(tm)−N(tm−1) = km)
)

=
n∏

m=1

∞∑
km=0

F ∗kmn (xm)P(N(tm)−N(tm−1) = km)

=
n∏

m=1
P

 N(tm)∑
km=N(tm−1)+1

≤ xm


2.

Exercise 2.2.3
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2.2.3 Cox process

A Cox process is a (in general inhomogeneous) Poisson process with intensity measure Λ which
as such is a random measure. The intuitive idea is stated in the following definition.
Definition 2.2.4
Let Λ = {Λ(B), B ∈ B(R+)} be a random a.s. locally finite measure. The random counting
measure N = {N(B), B ∈ B(R+)} is called Cox counting measure (or doubly stochastic
Poisson measure) with random intensity measure Λ if for arbitrary n ∈ N, k1, . . . , kn ∈ N0
and 0 ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn it holds that P(∩ni=1{N((ai, bi]) = ki}) =
E
(∏n

i=1 e
−Λ((ai,bi]) Λki ((ai,bi])

ki!

)
. The process {N(t), t ≥ 0} with N(t) = N((0, t]) is called Cox

process (or doubly stochastic Poisson process) with random intensity measure Λ.
Example 2.2.1 1. If the random measure Λ is a.s. absolutely continuous with respect to

the Lebesgue measure, i.e., Λ(B) =
∫
B λ(t)dt, B - bounded, B ∈ B(R+), where {λ(t), t ≥

0} is a stochastic process with a.s. Borel-measurable Borel-integrable trajectories, then
λ(t) ≥ 0 a.s. for all t ≥ 0 is called the intensity process of N .

2. In particular, it can be that λ(t) ≡ Y where Y is a non-negative random variable. Then
it holds that Λ(B) = Y ν1(B), thus N has a random intensity Y . Such Cox processes are
called mixed Poisson processes.

A Cox process N = {N(t), t ≥ 0} with intensity process {λ(t), t ≥ 0} can be build explicitly
as the following. Let Ñ = {Ñ(t), t ≥ 0} be a homogeneous Poisson process with intensity 1,
which is independent of {λ(t), t ≥ 0}. Then N d= N1, where the process N1 = {N1(t), t ≥ 0}
is given by N1(t) = Ñ(

∫ t
0 λ(y)dy), t ≥ 0. The assertion N

d= N1 of course has to be proven.
However, we shall assume it without proof. It is also the basis for the simulation of the Cox
process N .

2.3 Additional exercises
Exercise 2.3.1
Let {N(t)}t≥0 be a renewal process with interarrival times Ti, which are exponentially dis-
tributed, i.e. Ti ∼ Exp(λ).

a) Prove that: N(t) is Poisson distributed for every t > 0.

b) Determine the parameter of this Poisson distribution.

c) Determine the renewal function H(t) = EN(t).

Exercise 2.3.2
Prove that a (real-valued) stochastic process X = {X(t), t ∈ [0,∞)} with independent incre-
ments already has stationary increments if the distribution of the random variable X(t+ h)−
X(h) does not depend on h.
Exercise 2.3.3
Let N = {N(t), t ∈ [0,∞)} be a Poisson process with intensity λ. Calculate the probabilities
that within the interval [0, s] exactly i events occur under the condition that within the interval
[0, t] exactly n events occur, i.e. P(N(s) = i | N(t) = n) for s < t, i = 0, 1, . . . , n.
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Exercise 2.3.4
Let N (1) = {N (1)(t), t ∈ [0,∞)} and N (2) = {N (2)(t), t ∈ [0,∞)} be independent Poisson
processes with intensities λ1 and λ2. In this case the independence indicates that the sequences
T

(1)
1 , T

(1)
2 , . . . and T (2)

1 , T
(2)
2 , . . . are independent. Show that N = {N(t) := N (1)(t)+N (2)(t), t ∈

[0,∞)} is a Poisson process with intensity λ1 + λ2.

Exercise 2.3.5 (Queuing paradox):
Let N = {N(t), t ∈ [0,∞)} be a renewal process. Then T (t) = SN(t)+1− t is called the time of
excess, C(t) = t− SN(t) the current lifetime and D(t) = T (t) +C(t) the lifetime at time t > 0.
Now let N = {N(t), t ∈ [0,∞)} be a Poisson process with intensity λ.

a) Calculate the distribution of the time of excess T (t).

b) Show that the distribution of the current lifetime is given by P(C(t) = t) = e−λt and the
density is given by fC(t)|N(t)>0(s) = λe−λs1{s ≤ t}.

c) Show that P(D(t) ≤ x) = (1− (1 + λmin{t, x})e−λx)1{x ≥ 0}.

d) To determine ET (t), one could argue like this: On average t lies in the middle of the
surrounding interval of interarriving time (SN(t), SN(t)+1), i.e. ET (t) = 1

2E(SN(t)+1 −
SN(t)) = 1

2ETN(t)+1 = 1
2λ . Considering the result from part (a) this reasoning is false.

Where is the mistake in the reasoning?

Exercise 2.3.6
Let X = {X(t) :=

∑N(t)
i=1 Ui, t ≥ 0} be a compound Poisson process. Let MN(t)(s) = EsN(t),

s ∈ (0, 1), be the generating function of the Poisson processes N(t), L{U}(s) = E exp{−sU}
the Laplace Transform of Ui, i ∈ N, and L{X(t)}(s) the Laplace Transform of X(t). Prove
that

L{X(t)}(s) = MN(t)(L{U}(s)), s ≥ 0.

Exercise 2.3.7
Let X = {X(t), t ∈ [0,∞)} be a compound Poisson process with Ui i.i.d., U1 ∼ Exp(γ), where
the intensity of N(t) is given by λ. Show that for the Laplace transform L{X(t)}(s) of X(t) it
holds:

L{X(t)}(s) = exp
{
− λts

γ + s

}
.

Exercise 2.3.8
Write a function in R (alternatively: Java) to which we pass time t, intensity λ and a value γ
as parameters. The return of the function is a random value of the compound Poisson process
with characteristics (λ,Exp(γ)) at time t.

Exercise 2.3.9
Let the stochastic process N = {N(t), t ∈ [0,∞)} be a Cox process with intensity function
λ(t) = Z, where Z is a discrete random variable which takes values λ1 and λ2 with probabilities
1/2. Determine the moment generating function as well as the expected value and the variance
of N(t).

Exercise 2.3.10
Let N (1) = {N (1)(t), t ∈ [0,∞)} and N (2) = {N (2)(t), t ≥ 0} be two independent homogeneous
Poisson processes with intensities λ1 and λ2. Moreover, let X ≥ 0 be an arbitrary non-negative
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random variable which is independent of N (1) and N (2). Show that the process N = {N(t), t ≥
0} with

N(t) =
{
N (1)(t), t ≤ X,
N (1)(X) +N (2)(t−X), t > X

is a Cox process whose intensity process λ = {λ(t), t ≥ 0} is given by

λ(t) =
{
λ1, t ≤ X,
λ2, t > X.



3 Wiener process

3.1 Elementary properties

In Example 2) of Section 1.2 we defined the Brownian motion (or Wiener process)
W = {W (t), t ≥ 0} as an Gaussian process with EW (t) = 0 and cov(W (s),W (t)) = min{s, t},
s, t ≥ 0. The Wiener process is called after the mathematician Norbert Wiener (1894 - 1964).
Why does the Brownian motion exist? According to theorem of Kolmogorov (Theorem 1.1.2) it
exists a real-valued Gaussian process X = {X(t), t ≥ 0} with mean value EX(t) = µ(t), t ≥ 0,
and covariance function cov(X(s), X(t)) = C(s, t), s, t ≥ 0 for every function µ : R+ → R
and every positive semidefinite function C : R+ × R+ → R. We just have to show that
C(s, t) = min{s, t}, s, t ≥ 0 is positive semidefinite.

Exercise 3.1.1
Prove this!

We now give a new (equivalent) definition.

Definition 3.1.1
A stochastic process W = {W (t), t ≥ 0} is called Wiener process (or Brownian motion) if

1. W (0) = 0 a.s.

2. W possesses independent increments

3. W (t)−W (s) ∼ N (0, t− s), 0 ≤ s < t

The existence of W according to Definition 3.1.1 follows from Theorem 1.7.1 since ϕs,t(z) =

Eeiz(W (t)−W (s)) = e−
(t−s)z2

2 , z ∈ R, and e−
(t−u)z2

2 e−
(u−s)z2

2 = e−
(t−s)z2

2 for 0 ≤ s < u < t, thus
ϕs,u(z)ϕu,t(z) = ϕs,t(z), z ∈ R. From Theorem 1.3.1 the existence of a version with continuous
trajectories follows.

Exercise 3.1.2
Show that Theorem 1.3.1 holds for α = 3, σ = 1

2 .

Therefore, it is often assumed that the Wiener process possesses continuous paths (just take
its corresponding version).

Theorem 3.1.1
Both definitions of the Wiener process are equivalent.

Proof 1. From definition in Section 1.2 follows Definition 3.1.1.
W (0) = 0 a.s. follows from Var(W (0)) = min{0, 0} = 0. Now we prove that the incre-
ments ofW are independent. If Y ∼ N (µ,K) is a n-dimensional Gaussian random vector
and A a (n× n)-matrix, then AY ∼ N (Aµ,AKA>) holds, this follows from the explicit
form of the characteristic function of Y . Now let n ∈ N, 0 = t0 ≤ t1 < . . . < tn, Y =

38
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(W (t0),W (t1), . . . ,W (tn))>. For Z = (W (t0),W (t1)−W (t0), . . . ,W (tn)−W (tn−1))> it
holds that Z = AY , where

A =


1 0 0 . . . . . . 0
−1 1 0 . . . . . . 0

0 −1 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1

 .

Thus Z is also Gaussian with a covariance matrix which is diagonal. Indeed, it holds
cov(W (ti+1)−W (ti),W (tj+1)−W (tj)) = min{ti+1, tj+1}−min{ti+1, tj}−min{ti, tj+1}+
min{ti, tj} = 0 for i 6= j. Thus the coordinates of Z are uncorrelated, which means
independence in case of a multivariate Gaussian distribution. Thus the increments of
W are independent. Moreover, for arbitrary 0 ≤ s < t it holds that W (t) − W (s) ∼
N (0, t−s). The normal distribution follows since Z = AY is Gaussian, obviously it holds
that EW (t) − EW (s) = 0 and Var(W (t) − W (s)) = Var(W (t)) − 2 cov(W (s),W (t)) +
Var(W (s)) = t− 2 min{s, t}+ s = t− s.

2. From Definition 3.1.1 the definition in Section 1.2 follows.
Since W (t)−W (s) ∼ N (0, t− s) for 0 ≤ s < t, it holds

cov(W (s),W (t)) = E[W (s)(W (t)−W (s)+W (s))] = EW (s)E(W (t)−W (s))+VarW (s) = s,

thus it holds cov(W (s),W (t)) = min{s, t}. FromW (t)−W (s) ∼ N (0, t−s) andW (0) = 0
it also follows that EW (t) = 0, t ≥ 0. The fact that W is a Gaussian process, follows
from point 1) of the proof, relation Y = A−1Z.

Definition 3.1.2
The process {W (t), t ≥ 0}, W (t) = (W1(t), . . . ,Wd(t))>, t ≥ 0, is called d-dimensional Brow-
nian motion if Wi = {Wi(t), t ≥ 0} are independent Wiener processes, i = 1, . . . , d.
The definitions above and Exercise 3.1.2 ensure the existence of a Wiener process with

continuous paths. How do we find an explicit way of building these paths? We will show
that in the next section.

3.2 Explicit construction of the Wiener process
First we construct the Wiener process on the interval [0, 1]. The main idea of the construction
is to introduce a stochastic process X = {X(t), t ∈ [0, 1]} which is defined on a probability
subspace of (Ω,A,P) with X

d= W , where X(t) =
∑∞
n=1 cn(t)Yn, t ∈ [0, 1], {Yn}n∈N is a

sequence of i.i.d. N (0, 1)-random variables and cn(t) =
∫ t

0 Hn(s)ds, t ∈ [0, 1], n ∈ N. Here,
{Hn}n∈N is the orthonormed Haar basis in L2([0, 1]) which is introduced shortly now.

3.2.1 Haar- and Schauder-functions
Definition 3.2.1
The functions Hn : [0, 1] → R, n ∈ N, are called Haar functions if H1(t) = 1, t ∈ [0, 1],
H2(t) = 1[0, 1

2 ](t) − 1( 1
2 ,1](t), Hk(t) = 2

n
2 (1In,k(t) − 1Jn,k(t)), t ∈ [0, 1], 2n < k ≤ 2n+1, where

In,k = [an,k, an,k + 2−n−1], Jn,k = (an,k + 2−n−1, an,k + 2−n], an,k = 2−n(k − 2n − 1), n ∈ N.
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Abb. 3.1: Haar functions

Lemma 3.2.1
The function system {Hn}n∈N is an orthonormal basis in L2([0, 1]) with scalar product
< f, g >=

∫ 1
0 f(t)g(t)dt, f, g ∈ L2([0, 1]).

Proof The orthonormality of the system 〈Hk, Hn〉 = δkn, k, n ∈ N directly follows from def-
inition 3.2.1. Now we prove the completeness of {Hn}n∈N. It is sufficient to show that for
arbitrary function g ∈ L2([0, 1]) with 〈g,Hn〉 = 0, n ∈ N, it holds g = 0 almost everywhere on
[0, 1]. In fact, we always can write the indicator function of an interval 1[an,k,an,k+2−n−1] as a
linear combination of Hn, n ∈ N.

1[0, 1
2 ] = (H1 +H2)

2 ,

1( 1
2 ,1] = (H1 −H2)

2 ,

1[0, 1
4 ] =

(1[0, 1
2 ] + 1√

2H2)
2 ,

1( 1
4 ,

1
2 ] =

(1[0, 1
2 ] −

1√
2H2)

2 ,

...

1[an,k,an,k+2−n−1] =
(1an,k,an,k+2−n + 2−

n
2Hk)

2 , 2n < k ≤ 2n+1.

Therefore it holds
∫ (k+1)

2n
k

2n
g(t)dt = 0, n ∈ N0, k = 1, . . . , 2n − 1, and thus G(t) =

∫ t
0 g(s)ds = 0

for t = k
2n , n ∈ N0, k = 1, . . . , 2n − 1. Since G is continuous on [0, 1], it follows G(t) = 0,

t ∈ [0, 1], and thus g(s) = 0 for almost every s ∈ [0, 1].

From lemma 3.2.1 it follows that two arbitrary functions f, g ∈ L2([0, 1]) have expan-
sions f =

∑∞
n=1〈f,Hn〉Hn and g =

∑∞
n=1〈g,Hn〉Hn (these series converge in L2([0, 1])) and

〈f, g〉 =
∑∞
n=1〈f,Hn〉〈g,Hn〉 (Parseval identity).

Definition 3.2.2
The functions Sn(t) =

∫ t
0 Hn(s)ds = 〈1[0,t], Hn〉, t ∈ [0, 1], n ∈ N are called Schauder functions.



3 Wiener process 41

Abb. 3.2: Schauder functions

Lemma 3.2.2
It holds:

1. Sn(t) ≥ 0, t ∈ [0, 1], n ∈ N \ {1},

2.
∑2n
k=1 S2n+k(t) ≤ 1

22−
n
2 , t ∈ [0, 1], n ∈ N,

3. Let {an}n∈N be a sequence of real numbers with an = O(nε), ε < 1
2 , n → ∞. Then

the series
∑∞
n=1 anSn(t) converges absolutly and uniformly in t ∈ [0, 1] and therefore is a

continuous function on [0, 1].

Proof 1. follows directly from definition 3.2.2.

2. follows since functions S2n+k for k = 1, . . . , 2n have disjoint supports and S2n+k(t) ≤
S2n+k(2k−1

2n−1 ) = 2−
n
2−1, t ∈ [0, 1].

3. It suffices to show that Rn = supt∈[0,1]
∑
k>2n |ak|Sk(t) −−−→n→∞

0. For every k ∈ N and
c > 0 it holds |ak| ≤ ckε. Therefore it holds for all t ∈ [0, 1], n ∈ N∑

2n<k≤2n+1

|ak|Sk(t) ≤ c · 2(n+1)ε ·
∑

2n<k≤2n+1

Sk(t) ≤ c · 2(n+1)ε · 2−
n
2−1 ≤ c · 2ε−n( 1

2−ε).

Since ε < 1
2 , it holds Rm ≤ c · 2

ε∑
n≥m 2−n( 1

2−ε) −−−−→
m→∞

0.

Lemma 3.2.3
Let {Yn}n∈N be a sequence of (not necessarily independent) random variables defined on
(Ω,A,P), Yn ∼ N (0, 1), n ∈ N. Then it holds |Yn| = O((logn)

1
2 ), n→∞, a.s.

Proof We have to show that for c >
√

2 and almost all ω ∈ Ω it exists a n0 = n0(ω, c) ∈ N
such that |Yn| ≤ c(logn)

1
2 for n ≥ n0. If Y ∼ N (0, 1), x > 0, it holds

P(Y > x) = 1√
2π

∫ ∞
x

e−
y2
2 dy = 1√

2π

∫ ∞
x

(
−1
y

)
d

(
e−

y2
2

)
= 1√

2π

(1
x
e−

y2
2 −

∫ ∞
x

e−
y2
2

1
y2dy

)
≤ 1√

2π
1
x
e−

x2
2 .
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(We also can show that Φ̄(x) ∼ 1√
2π

1
xe
−x

2
2 , x→∞.) Thus for c >

√
2 it holds

∑
n≥2

P(|Yn| > c(logn)
1
2 ) ≤ c−1 2√

2π
∑
n≥2

(logn)−
1
2 e−

c2
2 logn = c−1√2√

π

∑
n≥2

(logn)−
1
2n−

c2
2 <∞.

According to the Lemma of Borel-Cantelli (cf. WR, Lemma 2.2.1) it holds P(∩n ∪k≥n Ak) = 0
if
∑
k P(Ak) < ∞ with Ak = {|Yk| > e · (log k)

1
2 }, k ∈ N. Thus Ak occurs in infinite number

only with probability 0, with |Yn| ≤ c(logn)
1
2 for n ≥ n0.

3.2.2 Wiener process with a.s. continuous paths

Lemma 3.2.4
Let {Yn}n∈N be a sequence of independent N (0, 1)-distributed random variables. Let {an}n∈N
and {bn}n∈N be sequences of numbers with

∑2m
k=1 |a2m+k| ≤ 2−

m
2 ,
∑2m
k=1 |b2m+k| ≤ 2−

m
2 , m ∈ N.

Then the limits U =
∑∞
n=1 anYn and V =

∑∞
n=1 bnYn, U ∼ N (0,

∑∞
n=1 a

2
n), V ∼ N (0,

∑∞
n=1 b

2
n)

exist a.s., where cov(U, V ) =
∑∞
n=1 anbn. U and V are independent if and only if cov(U, V ) = 0.

Proof Lemma 3.2.2 and 3.2.3 reveal the a.s. existence of the limits U and V (replace an by
Yn and Sn by e.g. bn in Lemma 3.2.2). From the stability under convolution of the normal
distribution it follows for U (m) =

∑m
n=1 anYn, V (m) =

∑m
n=1 bnYn, that U (m) ∼ N (0,

∑m
n=1 a

2
n),

V (m) ∼ N (0,
∑m
n=1 b

2
n). Since U (m) d−→ U , V (m) d−→ V it follows U ∼ N (0,

∑∞
n=1 a

2
n), V ∼

N (0,
∑∞
n=1 b

2
n). Moreover, it holds

cov(U, V ) = lim
m→∞

cov(U (m), V (m))

= lim
m→∞

m∑
i,j=1

aibj cov(Yi, Yj)

= lim
m→∞

m∑
i=1

aibi =
∞∑
i=1

aibi,

according to the dominated convergence theorem of Lebesgue, since according to Lemma 3.2.3
it holds |Yn| ≤ c (logn)

1
2︸ ︷︷ ︸

≤cnε, ε< 1
2

, for n ≥ N0, and the dominated series converges according to Lemma

3.2.2:

2m+1∑
n,k=2m

anbkYnYk
a.s.
≤

2m+1∑
n,k=2m

anbkc
2nεkε ≤ 22ε(m+1) · 2−

m
2 · 2−

m
2 = 2−(1−2ε)m, 1− 2ε > 0.

For sufficient large m it holds
∑∞
n,k=m anbkYnYk ≤

∑∞
j=m 2−(1−2ε)j < ∞, and this series con-

verges a.s.
Now we show

cov(U, V ) = 0 ⇐⇒ U and V are independent

Independence always results in the uncorrelation of random variables. We prove the other
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direction. From (U (m), V (m)) d−−−−→
m→∞

(U, V ) it follows ϕ(U(m),V (m)) −−−−→m→∞
ϕ(U,V ), thus

ϕ(U(m),V (m))(s, t) = lim
m→∞

E exp{i(t
m∑
k=1

akYk + s
m∑
n=1

bnYn)}

= lim
m→∞

E exp{i
m∑
k=1

(tak + sbk)Yk} = lim
m→∞

m∏
k=1

E exp{i(tak + sbk)Yk}

= lim
m→∞

m∏
k=1

exp{−(tak + sbk)2

2 } = exp{−
∞∑
k=1

(tak + sbk)2

2 }

= exp
{
− t

2

2

∞∑
k=1

a2
k

}
exp


ts

∞∑
k=1

akbk︸ ︷︷ ︸
cov(U,V )=0


exp

{
−s

2

2

∞∑
k=1

b2k

}
= ϕU (t)ϕV (s),

s, t ∈ R. Thus, U and V are independent if cov(U, V ) = 0.

Theorem 3.2.1
Let {Yn, n ∈ N} be a sequence of i.i.d. random variables that are N (0, 1)-distributed, defined
on a probability space (Ω,A,P). Then there exists a probability space (Ω0,A0,P) of (Ω,A,P)
and a stochastic process X = {X(t), t ∈ [0, 1]} on it such that X(t, ω) =

∑∞
n=1 Yn(ω+)Sn(t),

t ∈ [0, 1], ω ∈ Ω0 and X d= W . Here, {Sn}n∈N is the family of Schauder functions.

Proof According to Lemma 3.2.2, 2) the coefficients Sn(t) fulfill the conditions of Lemma 3.2.4
for every t ∈ [0, 1]. In addition to that it exists according to Lemma 3.2.3 a subset Ω0 ⊂ Ω,
Ω0 ∈ A with P(Ω0) = 1, such that for every ω ∈ Ω0 the relation |Yn(ω)| = O(

√
logn), n→∞,

holds. Let A0 = A ∩ Ω0. We restrict the probability space to (Ω0,A0,P). Then condition
an = Yn(ω) = O(nε), ε < 1

2 , is fulfilled since
√

logn < nε for sufficient large n, and according
to Lemma 3.2.2, 3) the series

∑∞
n=1 Yn(ω)Sn(t) converges absolutely and uniformly in t ∈ [0, 1]

to the function X(ω, t), ω ∈ Ω0, which is a continuous function in t for every ω ∈ Ω0. X(·, t)
is a random variable since in Lemma 3.2.4 the convergence of this series holds almost surely.
Moreover it holds X(t) ∼ N (0,

∑∞
n=1 S

2
n(t)), t ∈ [0, 1].

We show that this stochastic process, defined on (Ω0,A0,P), is a Wiener process. For that we
check the conditions of Definition 3.1.1. We consider arbitrary times 0 ≤ t1 < t2, t3 < t4 ≤ 1
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and evaluate

cov(X(t2)−X(t1), X(t4)−X(t3)) = cov(
∞∑
n=1

Yn(Sn(t2)− Sn(t1)),
∞∑
n=1

Yn(Sn(t4)− Sn(t3)))

=
∞∑
n=1

(Sn(t2)− Sn(t1))(Sn(t4)− Sn(t3))

=
∞∑
n=1

(〈Hn, 1[0,t2]〉 − 〈Hn, 1[0,t1]〉)×

(〈Hn, 1[0,t4]〉 − 〈Hn, 1[0,t3]〉)

=
∞∑
n=1
〈Hn, 1[0,t2] − 1[0,t1]〉〈Hn, 1[0,t4] − 1[0,t3]〉

= 〈1[0,t2] − 1[0,t1], 1[0,t4] − 1[0,t3]〉
= 〈1[0,t2], 1[0,t4]〉 − 〈1[0,t1], 1[0,t4]〉
−〈1[0,t2], 1[0,t3]〉+ 〈1[0,t1], 1[0,t3]〉

= min{t2, t4} −min{t1, t4} −min{t2, t3}+ min{t1, t3},

by Parseval inequality and since < 1[0,s], 1[0,t] >=
∫min{s,t}

0 du = min{s, t}, s, t ∈ [0, 1]. If
0 ≤ t1 < t2 ≤ t3 < t4 < 1, it holds cov(X(t2) −X(t1), X(t4) −X(t3)) = t2 − t1 − t2 + t1 = 0,
thus the increments of X (according to Lemma 3.2.4) are uncorrelated. Moreover it holds
X(0) ∼ N (0,

∑∞
n=1 S

2
n(0)) = N (0, 0), therefore X(0) a.s.= 0. For t1 = 0, t2 = t, t3 = 0,

t4 = t it follows that Var(X(t)) = t, t ∈ [0, 1], and for t1 = t3 = s, t2 = t4 = t, that
Var(X(t)−X(s)) = t−s−s+s = t−s, 0 ≤ s < t ≤ 1. Thus it holds X(t)−X(s) ∼ N (0, t−s),
and according to Definition 3.1.1 it holds X d= W .

Remark 3.2.1 1. Theorem 3.2.1 is the basis for an approximative simulation of the paths
of a Brownian motion through the partial sums X(n)(t) =

∑n
k=1 YkSk(t), t ∈ [0, 1], for

sufficient large n ∈ N.

2. The construction in Theorem 3.2.1 can be used to construct the Wiener process with
continuous paths on the interval [0, t0] for arbitrary t0 > 0. If W = {W (t), t ∈ [0, 1]} is
a Wiener process on [0, 1] then Y = {Y (t), t ∈ [0, t0]} with Y (t) =

√
t0W ( tt0 ), t ∈ [0, t0],

is a Wiener process on [0, t0].
Exercise 3.2.1
Prove that.

3. The Wiener process W with continuous paths on R+ can be constructed as follows. Let
W (n) = {W (n)(t), t ∈ [0, 1]} be independent copies of the Wiener process as in Theorem
3.2.1. Define W (t) =

∑∞
n=1 1(t ∈ [n − 1, n])[

∑n−1
k=1 W

(k)(1) + W (n)(t − (n − 1))], t ≥ 0,
thus,

W (t) =


W (1)(t), t ∈ [0, 1],
W (1)(1) +W (2)(t− 1), t ∈ [1, 2],
W (1)(1) +W (2)(1) +W (3)(t− 2), t ∈ [2, 3],
etc.

Exercise 3.2.2
Show that the introduced stochastic process W = {W (t), t ≥ 0} is a Wiener process on R+.
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Abb. 3.3:

3.3 Distribution and path properties of Wiener processes

3.3.1 Distribution of the maximum

Theorem 3.3.1
Let W = {W (t), t ∈ [0, 1]} be the Wiener process defined on a probability space (Ω,F ,P).
Then it holds:

P
(

max
t∈[0,1]

W (t) > x

)
=
√

2
π

∫ ∞
x

e−
y2
2 dy (3.3.1)

for all x ≥ 0.

The mapping maxt∈[0,1]W (t) : Ω→ [0,∞) given in relation (3.3.1) is a well-defined random
variable since it holds: maxt∈[0,1]W (t, ω) = limn→∞maxi=1,...,kW ( ik , ω) for all ω ∈ Ω since the
trajectories of {W (t), t ∈ [0, 1]} are continuous. From 3.3.1 it follows that maxt∈[0,1]W (t) has
an exponential bounded tail: thus maxt∈[0,1]W (t) has finite k-th moments.
Useful ideas for the proof of Theorem 3.3.1

Let {W (t), t ∈ [0, 1]} be a Wiener process and Z1, Z2, . . . a sequence of independent random
variables with P(Zi = 1) = P(Zi = −1) = 1

2 for all i ≥ 1. For every n ∈ N we define
{W̃n(t), t ∈ [0, 1]} by W̃n(t) = Sbntc√

n
+ (nt − bntc)Zbntc+1√

n
, where Si = Z1 + . . . + Zi, i ≥ 1,

S0 = 0.

Lemma 3.3.1
For every k ≥ 1 and arbitrary t1, . . . , tk ∈ [0, 1] it holds:

(
W̃ (n)(t1), . . . , W̃ (n)(tk)

)> d→ (W (t1), . . . ,W (tk))> .

Proof Consider the special case k = 2 (for k > 2 the proof is analogous). Let t1 < t2. For all
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s1, s2 ∈ R it holds:

s1W̃
(n)(t1) + s2W̃

(n)(t2) = (s1 + s2)
Sbnt1c√

n
+ s2

(Sbnt2c − Sbnt1c+1)
√
n

+Zbnt1c+1

(
(nt1 − bnt1c)

s1√
n

+ s2√
n

)
+Zbnt2c+1(nt2 − bnt2c)

s2√
n
,

since Sbnt2c = Sbnt1c + Sbnt2c − Sbnt1c+1 + Sbnt1c+1.
Now observe that the 4 summands on the right-hand-side of the previous equation are inde-
pendent and moreover that the latter two summands converge (a.s. and therefor particularly
in distribution) to zero.
Consequently, it holds

lim
n→∞

Eei(s1W̃ (n)(t1)+s2W̃ (n)(t2)) = lim
n→∞

Eei
s1+s2√

n
Sbnt1cEei

s2√
n

(Sbnt2c−Sbnt1c+1)

= lim
n→∞

Ee
i(s1+s2)

√
bnt1c
n

Sbnt1c√
bnt1cEei

s2√
n
Sbnt2c−bnt1c−1

CLT, CMT= e−
t1
2 (s1+s2)2

e−
t2−t1

2 s2
2

= e−
1
2 (s2

1t1+2s1s2t1+s2
2t2)

= e−
1
2 (s2

1t1+2s1s2 min{t1,t2}+s2
2t2)

= ϕ(W (t1),W (t2))(s1, s2),

where ϕ(W (t1),W (t2)) is the characteristic function of (W (t1),W (t2)).

Lemma 3.3.2
Let W̃ (n) = maxt∈[0,1] W̃

(n)(t). Then it holds:

W̃ (n) d= 1√
n

max
k=1,...,n

Sk, for all n ∈ N

and
lim
n→∞

P(W̃ (n) ≤ x) =
√

2
π

∫ x

0
e−

y2
2 dy, for all x ≥ 0.

Without proof

Proof of Theorem 3.3.1. We shall prove only the upper bound in Theorem 3.3.1.
From Lemma 3.3.1 and the continuous mapping theorem it follows for x ≥ 0, k ≥ 1 and
t1, . . . , tk ∈ [0, 1] that

lim
n→∞

P
(

max
t∈{t1,...,tk}

W̃ (n)(t) > x

)
= P

(
max

t∈{t1,...,tk}
W (t) > x

)
,

since (x1, ..., xk) 7→ max(x1, ..., xk) is continuous.
Consequently, it holds

lim inf
n→∞

P
(

max
t∈[0,1]

W̃ (n)(t) > x

)
≥ P

(
max

t∈{t1,...,tk}
W (t) > x

)
,
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since { max
t∈{t1,...,tk}

W̃ (n)(t) > x} ⊆ {max
t∈[0,1]

W̃ (n)(t) > x}.

With (t1, . . . , tk)> =
(

1
k , . . . ,

k
k

)>
and max

t∈[0,1]
W (t) = lim

k→∞
max
i=1,...,k

W
(
i
k

)
a.s. (and therefore

particularly in distribution) it holds

lim inf
n→∞

P
(

max
t∈[0,1]

W̃ (n)(t) > x

)
≥ lim

k→∞
P
(

max
i=1,...,k

W

(
i

k

)
> x

)
= P

(
max
t∈[0,1]

W (t) > x

)
.

Conclusively, the assertion follows from lemma 3.3.2.

3.3.2 Invariance properties

Specific transformations of the Wiener process again reveal the Wiener process.

Theorem 3.3.2
Let {W (t), t ≥ 0} be a Wiener process. Then the stochastic processes {Y (i)(t), t ≥ 0},
i = 1, . . . , 4, with

Y (1)(t) = −W (t), (Symmetry)
Y (2)(t) = W (t+ t0)−W (t0) for a t0 > 0, Translation of the origin)
Y (3)(t) =

√
cW ( tc) for a c > 0, (Scaling)

Y (4)(t) =
{
tW (1

t ), t > 0,
0, t = 0. (Reflection at t=0)

are Wiener processes as well.

Proof 1. Y (i), i = 1, . . . , 4, have independent increments with Y (i)(t2)−Y (i)(t1) ∼ N (0, t2−
t1).

2. Y (i)(0) = 0, i = 1, . . . , 4.

3. Y (i), i = 1, . . . , 3, have continuous trajectories. {Y (i)(t), t ≥ 0} has continuous trajecto-
ries for t > 0.

4. We have to prove that Y (4)(t) is continuous at t = 0, i.e. that limt→0 tW (1
t ) = 0.

limt→0 tW (1
t ) = limt→∞

W (t)
t

a.s.= 0 because of Corollary ??.

Corollary 3.3.1
Let {W (t), t ≥ 0} be the Wiener process. Then it holds:

P
(

sup
t≥0

W (t) =∞
)

= P
(

inf
t≥0

W (t) = −∞
)

= 1.

and consequently

P
(

sup
t≥0

W (t) =∞, inf
t≥0

W (t) = −∞
)
.
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Proof For x, c > 0 it holds:

P
(

sup
t≥0

W (t) > x

)
= P

(
sup
t≥0

W

(
t

c

)
>

x√
c

)
= P

(
sup
t≥0

W (t) > x√
c

)

⇒ P
({

sup
t≥0

W (t) = 0
}
∪
{

sup
t≥0

W (t) =∞
})

= P
(

sup
t≥0

W (t) = 0
)

+ P
(

sup
t≥0

W (t) =∞
)

= 1.

Moreover it holds

P
(

sup
t≥0

W (t) = 0
)

= P
(

sup
t≥0

W (t) ≤ 0
)
≤ P

(
W (t) ≤ 0, sup

t≥1
W (t) ≤ 0

)

= P
(
W (1) ≤ 0, sup

t≥1
(W (t)−W (1)) ≤ −W (1)

)

=
∫ 0

−∞
P
(

sup
t≥1

W (t)−W (1) ≤ −W (t) |W (1) = x

)
P (W (1) ∈ dx)

=
∫ 0

−∞
P
(

sup
t≥0

(W (t)−W (1)) ≤ −x |W (1) = x

)
P (W (1) ∈ dx)

=
∫ 0

−∞
P
(

sup
t≥0

W (t) = 0
)

P (W (1) ∈ dx)

= P
(

sup
t≥0

W (t) = 0
)

1
2 ,

thus P
(
supt≥0W (t) = 0

)
= 0 and thus P

(
supt≥0W (t) =∞

)
= 1.

Analogously one can show that P (inft≥0W (t) = −∞) = 1.
The remaining part of the claim follows from P (A ∩ B) = 1 for any A,B ∈ F with P (A) =
P (B) = 1.

Remark 3.3.1
P
(
supt≥0X(t) =∞, inft≥0X(t) = −∞

)
= 1 implies that the trajectories of W oscillate be-

tween positive and negative values on [0,∞) an infinite number of times.
Corollary 3.3.2
Let {W (t), t ≥ 0} be a Wiener process. Then it holds

P (ω ∈ Ω : W (ω) is nowhere differentiable in [0,∞)) = 1.

Proof

{ω ∈ Ω : W (ω) is nowhere differentiable in [0,∞)}
= ∩∞n=0{ω ∈ Ω : W (ω) is nowhere differentiable in [n, n+ 1)}.

It is sufficient to show that P(ω ∈ Ω : W (ω) is differentiable for a t0 = t0(ω) ∈ [0, 1]) = 0.
Define the set

Anm =
{
ω ∈ Ω : it exists a t0 = t0(ω) ∈ [0, 1] with |W (t0(ω) + h, ω)−W (t0(ω), ω))| ≤ mh, ∀h ∈

[
0, 4
n

]}
.
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Then it holds

{ω ∈ Ω : W (ω) differentiable for a t0 = t0(ω)} =
⋃
m≥1

⋃
n≥1

Anm.

We still have to show P(∪m≥1 ∪n≥1 Anm) = 0.
Let k0(ω) = mink=1,2,...{ kn ≥ t0(ω)}. Then it holds for ω ∈ Anm and j = 0, 1, 2∣∣∣∣W (

k0(ω) + j + 1
n

, ω

)
−W

(
k0(ω) + j

n
, ω

)∣∣∣∣ ≤ ∣∣∣∣W (
k0(ω) + j + 1

n
, ω

)
−W (t0(ω), ω)

∣∣∣∣
+
∣∣∣∣W (

k0(ω) + j

n
, ω

)
−W (t1(ω), ω)

∣∣∣∣
≤ 8m

n
.

Let ∆n(k) = W (k+1
n )−W ( kn). Then it holds

P(Anm) ≤ P

 n⋃
k=0

2⋂
j=0
|∆n(k + j)| ≤ 8m

n


≤

n∑
k=0

P

 2⋂
j=0

{
|∆n(k + j)| ≤ 8m

n

} =
(

n∑
k=0

P
(
|∆n(0)| ≤ 8m

n

))3

≤ (n+ 1)
( 16m√

2πn

)3
→ 0, n→∞,

by the independence of the increments of the Wiener Process.
Since Anm ⊂ An+1,m, it follows P (Anm) = 0.

Corollary 3.3.3
With probability 1 it holds:

sup
n≥1

sup
0≤t0<...<tn≤1

n∑
i=1
|W (ti)−W (ti−1)| =∞,

i.e. {W (t), t ∈ [0, 1]} possesses a.s. trajectories with unbounded variation.

Proof Since every continuous function g : [0, 1] → R with bounded variation is differentiable
almost everywhere, the assertion follows from Corollary 3.3.2.

Alternative proof
It is sufficient to show that limn→∞

∑2n
i=1

∣∣∣W (
it
2n
)
−W

(
(i−1)t

2n
)∣∣∣ =∞.

Let Zn =
∑2n
i=1

(
W
(
it
2n
)
−W

(
(i−1)t

2n
))2
− t. Hence EZn = 0 and EZ2

n = t22−n+1 and with
Tchebysheff’s inequality

P (|Zn| < ε) ≤ EZ2
n

ε2 =
(
t

ε

)2
2−n+1, i.e.

∞∑
i=1

P (|Zn| > ε) a.s.= 0.
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From lemma of Borel-Cantelli it follows that limn→∞ Zn = 0 almost surely and thus

0 ≤ t ≤
2n∑
i=1

(
W

(
it

2n
)
−W

((i− 1)t
2n

))2

≤ lim inf
n→∞

max
1≤k≤2n

∣∣∣∣W (
kt

2n
)
−W

((k − 1)t
2n

)∣∣∣∣ 2n∑
i=1

∣∣∣∣W (
it

2n
)
−W

((i− 1)t
2n

)∣∣∣∣ .
Hence the assertion follows since W has continuous trajectories and therefore

lim
n→∞

max
1≤k≤2n

∣∣∣∣W (
kt

2n
)
−W

((k − 1)t
2n

)∣∣∣∣ = 0.

3.4 Additional exercises
Exercise 3.4.1
Give an intuitive (exact!) method to realize trajectories of a Wiener process W = {W (t), t ∈
[0, 1]}. Thereby use the independence and the distribution of the increments ofW . Additionally,
write a program in R for the simulation of paths of W . Draw three paths t 7→ W (t, ω) for
t ∈ [0, 1] in a common diagram.
Exercise 3.4.2
Given are the Wiener process W = {W (t), t ∈ [0, 1]} and L := argmaxt∈[0,1]W (t). Show that
it holds:

P(L ≤ x) = 2
π

arcsin
√
x, x ∈ [0, 1].

Hint: Use relation maxr∈[0,t]W (r) d= |W (t)|.
Exercise 3.4.3
For the simulation of a Wiener process W = {W (t), t ∈ [0, 1]} we also can use the approxima-
tion

Wn(t) =
n∑
k=1

Sk(t)zk

where Sk(t), t ∈ [0, 1], k ≥ 1 are the Schauder functions, and zk ∼ N (0, 1) i.i.d. random
variables and the series converges almost surely for all t ∈ [0, 1] (n→∞).

a) Show that for all t ∈ [0, 1] the approximation Wn(t) also converges in the L2-sense to
W (t).

b) Write a program in R (alternative: C) for the simulation of a Wiener process W =
{W (t), t ∈ [0, 1]}.

c) Simulate three paths t 7→ W (t, ω) for t ∈ [0, 1] and draw these paths into a common
diagram. Hereby consider the sampling points tk = k

n , k = 0, . . . , n with n = 28 − 1.

Exercise 3.4.4
For the Wiener process W = {W (t), t ≥ 0} we define the process of the maximum that is given
by M = {M(t) := maxs∈[0,t]W (s), t ≥ 0}. Show that it holds:
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a) The density fM(t) of the maximum M(t) is given by

fM(t)(x) =
√

2
πt

exp
{
−x

2

2t

}
1{x ≥ 0}.

Hint: Use property P(M(t) > x) = 2P(W (t) > x).

b) Expected value and variance of M(t) are given by

EM(t) =
√

2t
π
, VarM(t) = t(1− 2/π).

Now we define τ(x) := argmin s∈R{W (s) = x} as the first point in time for which the Wiener
process takes value x.

c) Determine the density of τ(x) and show that: Eτ(x) =∞.

Exercise 3.4.5
Let W = {W (t), t ≥ 0} be a Wiener process. Show that the following processes are Wiener
processes as well:

W1(t) =
{

0, t = 0,
tW (1/t), t > 0,

W2(t) =
√
cW (t/c), c > 0.

Exercise 3.4.6
The Wiener process W = {W (t), t ≥ 0} is given. Size Q(a, b) denotes the probability that the
process exceeds the half line y = at+ b, t ≥ 0, a, b > 0. Proof that:

a) Q(a, b) = Q(b, a) and Q(a, b1 + b2) = Q(a, b1)Q(a, b2),

b) Q(a, b) is given by Q(a, b) = exp{−2ab}.



4 Lévy Processes

4.1 Lévy Processes

Definition 4.1.1
A stochastic process {X(t), t ≥ 0} is called Lévy process, if

1. X(0) = 0,

2. {X(t)} has stationary and independent increments,

3. {X(t)} is stochastically continuous, i.e for an arbitrary ε > 0, t0 ≥ 0:

lim
t→t0

P(|X(t)−X(t0)| > ε) = 0.

Remark 4.1.1
One can easily see, that compound Poisson processes fulfill the 3 conditions, since for arb. ε > 0
it holds

P (|X(t)−X(t0)| < ε) ≥ P (|X(t)−X(t0)| > 0) ≤ 1− e−λ|t−t0| −−−→
t→t0

0.

Further holds for the Wiener process for arb. ε > 0

P (|X(t)−X(t0)| > ε) =
√

2
π(t− t0)

∫ ∞
t

exp
(
− y2

2(t− t0)

)
dy

x= y√
t−t0= 2

π

∫ ∞
t√
t−t0

e−
x2
2 dx −−−→

t→t0
0.

4.1.1 Infinitely Divisibility

Definition 4.1.2
Let X : Ω → R be an arbitrary random variable. Then X is called infinitely divisible, if for
arbitrary n ∈ N there exist i.i.d. random variables Y (n)

1 , . . . , Y
(n)
n with X d= Y

(n)
1 + . . .+ Y

(n)
n .

Lemma 4.1.1
The random variable X : Ω→ R is infinitely divisible if and only if the characteristic function
ϕX of X can be expressed for every n ≥ 1 in the form

ϕX(s) = (ϕn(s))n for all s ∈ R,

where ϕn are characteristic functions of random variables.

52
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Proof „⇒ “
Y

(n)
1 , . . . , Y

(n)
n i.i.d., X d= Y

(n)
1 + . . . + Y

(n)
n . Hence, it follows that ϕX(s) =

∏n
i=1 ϕY (n)

i

(s) =
(ϕn(s))n.
“⇐ “

ϕX(s) = (ϕn(s))n ⇒ there exist Y (n)
1 , . . . , Y

(n)
n i.i.d. with characteristic function ϕn and

ϕY1,...,Yn(s) = (ϕn(s))n = ϕX(s). With the uniqueness theorem for characteristic functions
it follows that X d= Y

(n)
1 + . . .+ Y

(n)
n .

Theorem 4.1.1
Let {X(t), t ≥ 0} be a Lévy process. Then the random variable X(t) is infinitely divisible for
every t ≥ 0.

Proof For arbitrary t ≥ 0 and n ∈ N it obviously holds that

X (t) = X

(
t

n

)
+
(
X

(2t
n

)
−X

(
t

n

))
+ . . .+

(
X

(
nt

n

)
−X

((n− 1)t
n

))
.

Since {X(t)} has independent and stationary increments, the summands are obviously inde-
pendent and identically distributed random variables.

Lemma 4.1.2
Let X1, X2, . . . : Ω→ R be a sequence of random variables. If there exists a function ϕ : R→ C,
such that ϕ(s) is continuous in s = 0 and limn→∞ ϕXn(s) = ϕ(s) for all s ∈ R, then ϕ is the
characteristic function of a random variable X and it holds that Xn

d−→ X.
Definition 4.1.3
Let ν be a measure on the measure space (R,B(R)). Then ν is called a Lévy measure, if
ν({0}) = 0 and ∫

R
min

{
y2, 1

}
ν(dy) <∞. (4.1.1)

Abb. 4.1: y 7→ min(y2, 1)

Note

• Apparently every Lévy measure is σ-finite and

ν ((−ε, ε)c) < ε, for all ε > 0, (4.1.2)

where (−ε, ε)c = R \ (−ε, ε).
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• In particular every finite measure ν is a Lévy measure, if ν({0}) = 0.

• If ν(dy) = g(y)dy then g(y) ∼ 1
|y|δ for y → 0, where δ ∈ [0, 3).

• An equivalent condition to (4.1.2) is∫
R

y2

1 + y2 ν(dy) <∞, since y2

1 + y2 ≤ min
{
y2, 1

}
≤ 2 y2

1 + y2 . (4.1.3)

Theorem 4.1.2
Let a ∈ R, b ≥ 0 be arbitrary and let ν be an arbitrary Lévy measure. Let the characteristic
function of a random variable X : Ω→ R be given through the function ϕ : R→ C with

ϕ(s) = exp
{
ias− bs2

2 +
∫
R

(
eisy − 1− isy1(y ∈ (−1, 1))

)
ν(dy)

}
for all s ∈ R. (4.1.4)

Then X is infinitely divisible.
Remark 4.1.2 • The formula (4.1.4) is also called Lévy-Khintchine formula.

• The inversion of Theorem 4.1.2 also holds, hence every infinitely divisible random variable
has such a representation. Therefore the characteristic triplet (a, b, ν) is also called Lévy
characteristic of an infinitely divisible random variable.

Proof of Theorem 4.1.2 1st step
Show that ϕ is a characteristic function.
For y ∈ (−1, 1) it holds

• ∣∣∣eisy − 1− isy
∣∣∣ =

∣∣∣∣∣
∞∑
k=0

(isy)k

k! − 1− isy
∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=2

(isy)k

k!

∣∣∣∣∣ ≤ y2
∣∣∣∣∣
∞∑
k=2

sk

k!

∣∣∣∣∣︸ ︷︷ ︸
:=c

≤ y2c

Hence it follows from (4.1.1) that the integral in (4.1.4) exists and therefore it is well-
defined.

• Let now {cn} be an arbitrary sequence of numbers with cn > cn+1 > . . . > 0 and
limn→∞ cn = 0. Then the function ϕn : R→ C with

ϕn(s) := exp
{
is

(
a−

∫
[−cn,cn]c∩(−1,1)

yν(dy)
)
− bs2

2

}
exp

{∫
[−cn,cn]c

(
eisy − 1

)
ν(dy)

}

is the characteristic function of the sum of independent random variables Z(n)
1 and Z(n)

2 ,
since
– the first factor is the characteristic function of the normal distribution with expec-

tation a−
∫

[−cn,cn]c∩(−1,1) yν(dy) and variance b.
– the second factor is the characteristic function of a compound Poisson process with

parameters

λ = ν([−cn, cn]c) and PU (·) = ν(· ∩ [−cn, cn]c/ν([−cn, cn]c))

.
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• Furthermore limn→∞ ϕn(s) = ϕ(s) for all s ∈ R, where ϕ is obviously continuous in 0,
since it holds for the function ψ : R→ C in the exponent of (4.1.4)

ψ(s) =
∫
R

(
eisy − 1− isy1 (y ∈ (−1, 1))

)
ν(dy) for all s ∈ R

that |ψ(s)| = cs2 ∫
(−1,1) y

2ν(dy) +
∫

(−1,1)c
∣∣eisy − 1

∣∣ ν(dy). Out of this and from (4.1.3) it
follows by Lebesgue’s theorem that lim

s→0
ψ(s) = 0.

• Lemma 4.1.2 yields that the function ϕ given in (4.1.4) is the characteristic function of a
random variable.

2nd step
The infinite divisibility of this random variable follows from Lemma 4.1.1 and out of the fact,
that for arbitrary n ∈ N ν

n is also a Lévy measure and that

ϕ(s) = exp
{
i
a

n
s−

b
ns

2

2 +
∫
R

(
eisy − 1− isy1(y ∈ (−1, 1))

)(ν
n

)
(dy)

}
for all s ∈ R.

Remark 4.1.3
The map η : R→ C with

η(s) = ias− bs2

2 +
∫
R

(
eisy − 1− isy1(y ∈ (−1, 1))

)
ν(dy)

from (4.1.4) is called Lévy exponent of this infinitely divisible distribution.

4.1.2 Lévy-Khintchine Representation

{X(t), t ≥ 0} – Lévy process. We want to represent the characteristic function of X(t), t ≥ 0,
through the Lévy-Khintchine formula.

Lemma 4.1.3
Let {X(t), t ≥ 0} be a stochastically continuous process, i.e. for all ε > 0 and t0 ≥ 0 it holds
that limt→t0 P(|X(t) −X(t0)| > ε) = 0. Then for every s ∈ R, t 7−→ ϕX(t)(s) is a continuous
map from [0,∞) to C.

Proof • y 7−→ eisy continuous in 0, i.e. for all ε > 0 there exists a δ1 > 0, such that

sup
y∈(−δ1,δ1)

∣∣∣eisy − 1
∣∣∣ < ε

2 .

• {X(t), t ≥ 0} is stochastically continuous, i.e. for all t0 ≥ 0 there exists a δ2 > 0, such
that

sup
t≥0, |t−t0|<δ2

P (|X(t)−X(t0)| > δ1) < ε

4 .
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Hence, it follows that for s ∈ R, t ≥ 0 and |t− t0| < δ2 it holds∣∣∣ϕX(t)(s)− ϕX(t0)(s)
∣∣∣ =

∣∣∣E (eisX(t) − eisX(t0)
)∣∣∣ ≤ E

∣∣∣eisX(t0)
(
eis(X(t)−X(t0)) − 1

)∣∣∣
≤ E

∣∣∣eis(X(t)−X(t0)) − 1
∣∣∣ =

∫
R

∣∣∣eisy − 1
∣∣∣PX(t)−X(t0)(dy)

≤
∫

(−δ1,δ1)

∣∣∣eisy − 1
∣∣∣PX(t)−X(t0)(dy)

+
∫

(−δ1,δ1)c

∣∣∣eisy − 1
∣∣∣︸ ︷︷ ︸

≤2

PX(t)−X(t0)(dy)

≤ sup
y∈(−δ1,δ1)

∣∣∣eisy − 1
∣∣∣+ 2P (|X(t)−X(t0)| > δ1) ≤ ε.

Theorem 4.1.3
Let {X(t), t ≥ 0} be a Lévy process. Then for all t ≥ 0 it holds

ϕX(t)(s) = etη(s), s ∈ R,

, where η : R→ C is a continuous function. In particular it holds that

ϕX(t)(s) = etη(s) =
(
eη(s)

)t
=
(
ϕX(1)(s)

)t
, for all s ∈ R, t ≥ 0.

Proof Due to stationarity and independence of increments we have

ϕX(t+t′)(s) = EeisX(t+t′) = E
(
eisX(t)eis(X(t+t′)−X(t))

)
= ϕX(t)(s)ϕX(t′)(s), s ∈ R.

Let gs : [0,∞) → C be defined by gs(t) = ϕX(t)(s), s ∈ R, gs(t + t′) = gs(t)gs(t′), t, t′ ≥ 0.
X(0) = 0. 

gs(t+ t′) = gs(t)gs(t′), t, t′ ≥ 0,
gs(0) = 1,
gs : [0,∞)→ C continuous.

Hence there exists η : R→ C, such that gs(t) = eη(s)t for all s ∈ R, t ≥ 0. ϕX(1)(s) = eη(s) and
it follows that η is continuous.

Lemma 4.1.4 (Prokhorov):
Let µ1, µ2, . . . be a sequence of finite measures (on B(R)) with

1. supn≥1 µn(R) < c, c = const <∞ (uniformly bounded)

2. for all ε > 0 there exists Bε ∈ B(R) compact, such that fulfills the tightness condition
supn≥1 µn(Bc

ε) ≤ ε. Hence follows that there exists a subsequence µn1 , µn2 , . . . and a finite
measure over B(R), such that for all f : R→ C, bounded, continous, it holds that

lim
k→∞

∫
R
f(y)µnk(dy) =

∫
R
f(y)µ(dy)

Proof See [14], page 122 - 123.
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Theorem 4.1.4
Let {X(t), t ≥ 0} be a Lévy process. Then there exist a ∈ R, b ≥ 0 and a Lévy measure ν,
such that

ϕX(1)(s) = eias−
bs2

2 +
∫
R

(
eisy − 1− iy1(y ∈ (−1, 1))

)
ν(dy), for all s ∈ R.

Proof For all sequences (tn)n∈N ⊆ (0,∞), with lim
n→∞

tn = 0, it holds

η(s) =
(
etη(s)

)′∣∣∣∣
t=0

= lim
n→∞

etnη(s) − 1
tn

= lim
n→∞

ϕX(tn)(s)− 1
tn

, (4.1.5)

since η : R → C is continuous. The latter convergence is even uniform in s ∈ [−s0, s0] for any
s0 > 0, since Taylor’s theorem yields

lim
n→∞

∣∣∣∣∣η(s)− etnη(s) − 1
tn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣η(s)− 1
tn

∞∑
k=1

(tnη(s))k

k!

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣ 1
tn

∞∑
k=2

(tnη(s))k

k!

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣η(s)
∞∑
k=1

(tnη(s))k

(k + 1)!

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣η2(s)tn
∞∑
k=1

(tnη(s))k−1

(k + 1)!

∣∣∣∣∣
≤ lim

n→∞
M2tn

∞∑
k=1

|tnM |k−1

(k + 1)! , where M := sup
s∈[−s0,s0]

|η(s)| <∞

= lim
n→∞

M2tn

∞∑
k=1

|tnM |k−1

(k − 1)!
1

k(k + 1)

≤ lim
n→∞

M2tn

∞∑
k=1

|tnM |k−1

(k − 1)!

= lim
n→∞

M2tne
|tnM |

= 0.

Now let tn = 1
n and Pn be the distribution of X( 1

n). Hence it follows that

lim
n→∞

n

∫
R

(eisy − 1)Pn(ds) = lim
n→∞

n
ϕX( 1

n
)(s)− 1
1
n

= η(s)

lim
n→∞

∫
R
n

∫ s0

−s0

(
eisy − 1

)
Pn(dy)ds =

∫ s0

−s0
η(s)ds

and consequently

lim
n→∞

n

∫
R

(
1− sin(s0y)

s0y

)
Pn(dy) = lim

n→∞
n

∫
R
− 1

2s0

∫ s0

−s0

(
eisy − 1

)
dsPn(dy) = − 1

2s0

∫ s0

−s0
η(s)ds.
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Since η : R → C is continuous with η(0) = 0 and it follows from the mean value theorem,
that for all ε > 0 it exists δ0 > 0, such that

∣∣∣− 1
2s0

∫ s0
−s0

η(s)ds
∣∣∣ < ε. Since 1 − sin(s0y)

s0y
≥ 1

2 , for
|s0y| ≥ 2, it holds: for all ε > 0 there exist s0 > 0, n0 > 0, such that

lim sup
n→∞

n

2

∫{
y:|y|≥ 2

s0

} Pn(dy) ≤ lim sup
n→∞

n

∫
R

(
1− sin(s0y)

s0y

)
Pn(dy) < ε.

Hence for all ε > 0 there exist s0 > 0, n0 > 0, such that

n

∫{
y:|y|≥ 2

s0

} Pn(dy) ≤ 4ε, for all n ≥ n0.

Decreasing s0 gives
n

∫{
y:|y|≥ 2

s0

} Pn(dy) ≤ 4ε, for all n ≥ 1.

y2

1 + y2 ≤ c
(

1− sin y
y

)
, for all y 6= 0 and a c > 0.

Hence, it follows that

sup
n≥1

n

∫
R

y2

1 + y2 Pn(dy) ≤ c′ for a c′ <∞.

Let now µn : B(R)→ [0,∞) be defined as

µn(B) = n

∫
B

y2

1 + y2 Pn(dy) for all B ∈ B(R).

It follows that {µn}n∈N is uniformly bounded, supn≥1 µn(R) < c′. Furthermore holds y2

1+y2 ≤ 1,
supn≥1 µn

({
y : |y| > 2

s0

})
≤ 4ε and {µn}n∈N relatively compact. After lemma 4.1.3 it holds:

there exists {µnk}k∈N, such that

lim
k→∞

∫
R
f(y)µnk(dy) =

∫
R
f(y)µ(dy)

for a measure µ and f continuous and bounded. Let for s ∈ R the function fs : R → C be
defined as

fs(y) =
{ (

eisy − 1− is sin(y)
) 1+y2

y2 , y 6= 0,
− s2

2 , otherwise.
Hence follows that fs is bounded and continuous and

η(s) = lim
n→∞

n

∫
R

(
eisy − 1

)
Pn(dy)

= lim
n→∞

(∫
R
fs(y)µn(dy) + isn

∫
R

sin yPn(dy)
)

= lim
k→∞

(∫
R
fs(y)µnk(dy) + isnk

∫
R

sin yPnk(dy)
)

=
∫
R
fs(y)µ(dy) + lim

k→∞
isnk

∫
R

sin yPnk(dy)

η(s) = ia′s− bs2

2 +
∫
R

(
eisy − 1− is sin y

)
ν(dy),
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for all s ∈ R with a′ = limk→∞ isnk
∫
R sin yPnk(dy) <∞, b = µ ({0}), ν : B(R)→ [0,∞),

ν(dy) =
{

1+y2

y2 µ(dy), y 6= 0,
0 , y = 0.

∫
R
|y1(y ∈ (−1, 1))− sin y| ν(dy) <∞.

|y1(y ∈ (−1, 1))− sin y| 1 + y2

y2 < c′′, for all y 6= 0 and a c′′ > 0.

Hence follows that

η(s) = ias− bs2

2 +
∫
R

(
eisy − 1− isy1 (y ∈ (−1, 1))

)
ν(dy), for all s ∈ R.

a = a′ +
∫
R

(y1(y ∈ (−1, 1))− sin y) ν(dy).

4.1.3 Examples

1. Wiener process (it is enough to look at X(1))

X(1) ∼ N (0, 1), ϕX(1)(s) = e−
s2
2 and hence follows

(a, b, ν) = (0, 1, 0).

Let X = {X(t), t ≥ 0} be a Wiener proess with drift µ, i.e. X(t) = µt + σW (t), W =
{W (t), t ≥ 0} – Brownian motion. It follows

(a, b, ν) = (µ, σ2, 0).

ϕX(1)(s) = EeisX(1) = Ee(µ+σW (1))is = eµisϕW (1)(σs) = eisµ−σ
2 s2

2 , s ∈ R.

2. Compound Poisson process with parameters (λ,Pn)
X(t) =

∑N(t)
i=1 Ui, N(t) ∼ Pois(λt), Ui i.i.d. ∼ PU .

ϕX(1)(s) = exp
{
λ

∫
R

(
eisx − 1

)
PU (dx)

}
= exp

{
λis

∫
R
x1(x ∈ [−1, 1])PU (dx) + λ

∫
R

(
eisx − 1− isx1(x ∈ [−1, 1])

)
PU (dx)

}
= exp

{
λis

∫ 1

−1
xPU (dx) + λ

∫
R

(
eisx − 1− isx1(x ∈ [−1, 1])

)
PU (dx)

}
, s ∈ R.

Hence follows

(a, b, ν) =
(
λ

∫ 1

−1
xPU (dx), 0, λPU

)
, PU – finite on R.
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3. Process of Gauss-Poisson type
X = {X(t), t ≥ 0}, X(t) = X1(t) +X2(t), t ≥ 0.
X1 = {X1(t), t ≥ 0} and X2 = {X2(t), t ≥ 0} independent.
X1 – Wiener process with drift µ and variance σ2,
X2 – Compound Poisson process with parameters λ,PU .

ϕX(t)(s) = ϕX1(t)(s)ϕX2(t)(s)

= exp

isµ− σ2s2

2 + λ

∫
R

eisx − 1PU (dx)


= exp

{
is

(
µ+ λ

∫ 1

−1
xPU (dx)

)
− σ2s2

2

+
∫
R
λ
(
eisx − 1− isx1(x ∈ [−1, 1])

)
PU (dx)

}
, s ∈ R.

Hence follows
(a, b, ν) =

(
µ+ λ

∫ 1

−1
xPU (dx), σ2, λPU

)
.

4. Stable Lévy process
X = {X(t), t ≥ 0} – Lévy process with X(t) ∼ α stable distribution, α ∈ (0, 2]. To
introduce α-stable laws ν, let us begin with an example.
If X = W (Wiener process), then X(1) ∼ N (0, 1). Let Y, Y1, . . . , Yn be i.i.d. N (µ, σ2)-
variables. Since the normal distribution is stable w.r.t. convolution it holds

Y1 + . . .+ Yn ∼ N (nµ, nσ2) d=
√
nY + nµ−

√
nµ

=
√
nY + µ

(
n−
√
n
)

= n
1
2Y + µ

(
n

2
2 − n

1
2
)

= n
1
αY + µ

(
n− n

1
α

)
, α = 2.

Definition 4.1.4
The distribution of a random variable Y is called α-stable, if for all n ∈ N independent copies
Y1, . . . , Yn of Y exist, such that

Y1 + . . .+ Yn
d= n

1
αY + dn,

where dn is deterministic. The constant α ∈ (0, 2] is called index of stability.
Moreover, one can show that

dn =
{
µ
(
n− n

1
α

)
, α 6= 1,

µn logn , α = 1.

Example 4.1.1 • α = 2: Normal distribution, with any mean and any variance.

• α = 1: Cauchy distribution with parameters (µ, σ2). The density:

fY (x) = σ

π
(
(x− µ)2 + σ2

) , x ∈ R.

It holds EY 2 =∞, EY does not exist.
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• α = 1
2 : Lévy distribution with parameters (µ, σ2). The density:

fY (x) =


(
σ
2π
) 1

2 1
(x−µ)

3
2

exp
{
− σ

2(x−µ)

}
, x > µ,

0 , otherwise.

These examples are the only examples of α-stable distribution, where an explicit form of the
density is available. For other α ∈ (0, 2), α 6= 1

2 , 1, the α-stable distribution is introduced
through its characteristic function. In general holds: If Y α-stable, α ∈ (0, 2], then E|Y |p <∞,
0 < p < α.
Definition 4.1.5
The distribution of a random variable is called symmetric, if Y d= −Y .
If Y has a symmetric α-stable distribution, α ∈ (0, 2], then

ϕY (s) = exp {−c |s|α} , s ∈ R.

Indeed, it follows from the stability of Y that

(ϕY (s))n = eidnsϕY
(
n

1
α s
)
, s ∈ R.

It follows that dn = 0, since ϕ−Y (s) = ϕY (s) = varphiY (−s). It holds: eidns = e−idns, s ∈ R
and dn = 0. The rest is left as an exercise.
Lemma 4.1.5
Lévy-Khintchine representation of the characteristic function of a stable distribution. Any
stable law is infinitely divisible with the Lévy triplet (a, b, ν), where a ∈ R arbitrary,

b =
{
σ2, α = 2,
0 , α < 2.

and

ν(dx) =
{

0 , α = 2,
c1

x1+α 1(x ≥ 0)dx+ c2
|x|1+α 1(x < 0)dx, α < 2, c1, c2 ≥ 0 : c1 + c2 > 0

Without proof
Exercise: Prove that

P (|Y | ≥ x) ∼
x→∞

{
e−

x2
2σ2 , α = 2,

c
xα , α < 2.

Definition 4.1.6
The Lévy process X = {X(t), t ≥ 0} is called stable, if X(1) has an α-stable distribution,
α ∈ (0, 2] (α = 2: Brownian motion (with drift)).

4.1.4 Subordinators
Definition 4.1.7
A Lévy process X = {X(t), t ≥ 0} is called subordinator, if for all 0 < t1 < t2, X(t1) ≤ X(t2)
a.s.
Since

X(0) = 0 a.s. ⇒ X(t) ≥ 0, t ≥ 0, a.s.
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This class of Subordinators is important since you can easily introduce
∫ b
a g(t)dX(t) as a

Lebesgue-Stieltjes-integral.
Theorem 4.1.5
The Lévy process X = X(t), t ≥ 0 is a subordinator if and only if the Lévy-Khintchine repre-
sentation can be expressed in the form

ϕX(1)(s) = exp
{
ias+

∫
R

(
eisx − 1

)
ν(dx)

}
, s ∈ R, (4.1.6)

where a ∈ [0,∞) and ν is the Lévy measure, with

ν ((−∞, 0)) = 0,
∫ ∞

0
min

{
1, y2

}
ν(dy) <∞.

Proof Sufficiency
It has to be shown that X(t2) ≥ X(t1) a.s., if t2 ≥ t1 ≥ 0.
First of all we show that X(1) ≥ 0 a.s.. If ν ≡ 0, then X(1) = a ≥ 0 a.s., hence

ϕX(t)(s) =
(
ϕX(1)(s)

)t
= eiats, s ∈ R.

X(t) = at a.s. and therefore it follows that X(t) ↑ and X is a subordinator.
If ν([0,∞)) > 0, then there exists N > 0 such that for all n ≥ N it holds 0 < ν

([
1
n ,∞

))
<∞.

It follows

ϕX(1)(s) = exp
{
ias+ lim

n→∞

∫ ∞
1
n

(
eisx − 1

)
ν(dx)

}
= eias lim

n→∞
ϕn(s), s ∈ R,

where ϕn(s) =
∫∞

1
n

(
eisx − 1

)
ν(dx) is the characteristic function of a compound Poisson process

distribution with parameters

ν ([ 1
n ,∞

))
,
ν
(
· ∩
[

1
n
,∞
))

ν([ 1
n
,∞))

 for all n ∈ N. Let Zn be the random

variable with characteristic function ϕn. It holds: Zn =
∑Nn
i=1 Ui, Nn ∼ Pois

(
ν
([

1
n ,∞

)))
,

Ui ∼
ν(·∩[ 1

n
,∞))

ν([ 1
n
,∞)) ; hence follows Zn ≥ 0 a.s. and X(1) d= a︸︷︷︸

≥0

+ limZn︸ ︷︷ ︸
≥0

≥ 0 a.s.. Since X is a

Lévy process, it holds

X (1) = X

( 1
n

)
+
(
X

( 2
n

)
−X

( 1
n

))
+ . . .+

(
X

(
n

n

)
−X

(
n− 1
n

))
,

where, because of stationarity and independence of the increments, X
(
k
n

)
−X

(
k−1
n

) a.s.
≥ 0 for

1 ≤ k ≤ n for all n. Hence X(q2) − X(q1) ≥ 0 a.s. for all q1, q2 ∈ Q, q2 ≥ q1 ≥ 0. Now
let t1, t2 ∈ R such that 0 ≤ t1 ≤ t2. Let

{
q

(n)
1 , q

(n)
2

}
be sequences of numbers from Q with

q
(n)
1 ≤ q(n)

2 such that q(n)
1 ↓ t1, q(n)

2 ↑ t2, n→∞. For ε > 0

P (X(t2)−X(t1) < −ε) = P

X(t2)−X
(
q

(n)
2

)
+X

(
q

(n)
2

)
−X

(
q

(n)
1

)
︸ ︷︷ ︸

≥0

+X
(
q

(n)
1

)
−X (t1) < −ε


≤ P

(
X(t2)−X

(
q

(n)
2

)
+X

(
q

(n)
1

)
−X (t1) < −ε

)
≤ P

(
X(t2)−X

(
q

(n)
2

)
< −ε2

)
+ P

(
X
(
q

(n)
1

)
−X(t1) ≤ −ε2

)
−−−→
n→∞

0,
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since X is stochastically continuous. Then

P (X(t2)−X(t1) < ε) = 0 for all ε > 0 and
P (X(t2)−X(t1) < 0) = lim

ε→+0
P (X(t2)−X(t1) < ε) = 0

⇒ X(t2) ≥ X(t1) a.s.

Necessity
Let X be a Lévy process, which is a subordinator. It has to be shown that ϕX(1)(·) has the
form (4.1.6).
After the Lévy-Khintchine representation for X(1) it holds that

ϕX(1)(s) = exp
{
ias− b2s2

2 +
∫ ∞

0

(
eisx − 1− isx1(x ∈ [−1, 1])

)
ν(dx)

}
, s ∈ R.

The measure ν is concentrated on [0,∞), since X(t)
a.s.
≥ 0 for all t ≥ 0 and from the proof of

Theorem 4.1.4 ν ((−∞, 0)) = 0 can be chosen.

ϕX(1)(s) = exp
{
ias− b2s2

2

}
︸ ︷︷ ︸

:=ϕY1(s)

exp
{∫ ∞

0

(
eisx − 1− isx1 (x ∈ [−1, 1])

)
ν(dx)

}
︸ ︷︷ ︸

:=ϕY2(s)

Hence it follows that X(1) = Y1 + Y2, where Y1 and Y2 are independent, Y1 ∼ N (a, b2) and
therefore b = 0. (Otherwise Y1 could attain negative values and consequently X(1) could attain
negative values as well.)
For all ε ∈ (0, 1)

ϕX(1)(s) = exp
{
is

(
a−

∫ 1

ε
xν(dx)

)
+
∫ ε

0

(
eisx − 1− isx

)
ν(dx) +

∫ ∞
0

(
eisx − 1

)
ν(dx)

}
.

It has to be shown that for ε→ 0 it holds
∫∞
ε

(
eisx − 1

)
ν(dx)→

∫∞
0
(
eisx − 1

)
ν(dx) <∞ with∫ 1

0 min {x, 1} ν(dx) <∞. ϕX(1)(s) = exp
{
is
(
a−

∫ 1
ε xν(dx)

)}
ϕZ1(s)ϕZ2(s), where Z1 and Z2

are independent, ϕZ1(s) = exp
{
ε∫
0

(
eisx − 1− isx

)
ν(dx)

}
, ϕZ2(s) = exp

{∫∞
ε

(
eisx − 1

)
ν(dx)

}
,

s ∈ R. Then X(1) d= a−
∫ 1
ε xν(dx) + Z1 + Z2. There exist ϕ(2)

Z1
(0) = −EZ2

1
2 <∞, ϕ(1)

Z1
(0) = 0 =

iEZ1 and it therefore follows that EZ1 = 0 and P(Z1 ≤ 0) > 0. On the other hand, Z2 has a
compound Poisson distribution with parameters

(
ν ([ε,∞)) , ν(·∩[ε,+∞])

ν([ε,+∞))

)
, ε ∈ (0, 1).

⇒ P (Z2 ≤ 0) > 0, since P(Z2 = 0) > 0.
⇒ P (Z1 + Z2 ≤ 0) ≥ P (Z1 ≤ 0, Z2 ≤ 0) = P (Z1 ≤ 0) P (Z2 ≤ 0) > 0

For X(1) to be positive it follows that a−
∫ 1
ε xν(dx) ≥ 0 for all ε ∈ (0, 1). Hence a ≥ 0 and∫ ∞

0
min {x, 1} dx <∞.

Moreover, for ε ↓ 0 it holds Z1
d→ 0 and consequently

ϕX(1)(s) = exp
{
is

(
a−

∫ 1

0
xν(dx)

)
+
∫ ∞

0

(
eisx − 1

)
ν(dx)

}
, s ∈ R.
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Example 4.1.2 (α-stable subordinator):
Let X = {X(t), t ≥ 0} be a subordinator, with a = 0 and the Lévy measure

ν(dx) =
{

α
Γ(1−α)

1
x1+αdx , x > 0,

0 · 1
x1+αdx = 0, x ≤ 0.

By Lemma 4.1.5 it follows that X is an α-stable Lévy process.
We show that l̂X(t)(s) = Ee−sX(t) = e−ts

α for all s, t ≥ 0.

ϕX(t)(s) =
(
ϕX(1)(s)

)t
= exp

{
t

∫ ∞
0

(
eisx − 1

) α

Γ(1− α)
1

x1+αdx

}
, s ∈ R.

It has to be shown that

uα = α

Γ(1− α)

∫ ∞
0

(
1− e−ux

) dx

x1+α , u ≥ 0.

This is enough since ϕX(t)(·) can be continued analytically to {z ∈ C : Imz ≥ 0}, i.e. ϕX(t)(iu) =
l̂X(t)(u), u ≥ 0. In fact, it holds that∫ ∞

0

(
1− e−ux

) dx

x1+d =
∫ ∞

0
u

∫ x

0
e−uydyx−1−αdx

Fubini=
∫ ∞

0

∫ ∞
y

ue−uyx−1−αdxdy

=
∫ ∞

0

∫ ∞
y

x−1−αdxue−uydy

= u

α

∫ ∞
0

e−uyy−αdy

Subst.= u

α

∫ ∞
0

e−zz−α
1
u−α

d

(
z

u

)
= uα

α

∫ ∞
0

e−zz(1−α)−1dz

= uα

α
Γ(1− α)

and hence follows l̂X(t)(s) = e−ts
α , t, s ≥ 0.

4.2 Additional Exercises
Exercise 4.2.1
Let X eb a random variable with distribution function F and characteristic function ϕ. Show
that the following statements hold:

a) If X is infinitely divisible, then it holds ϕ(t) 6= 0 for all t ∈ R. Hint: Show that
limn→∞ |ϕn(s)|2 = 1 for all s ∈ R, if ϕ(s) = (ϕn(s))n. Note further that |ϕn(s)|2 is
again a characteristic function and limn→∞ x

1
n = 1 holds for x > 0.

b) Give an example (with explanation) for a distribution, which is not infinitely divisible.
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Exercise 4.2.2
Let X = {X(t), t ≥ 0} be a Lévy process. Show that the random variable X(t) is then infinitely
divisible for every t ≥ 0.
Exercise 4.2.3
Show that the sum of two independent Lévy processes is again a Lévy process, and state the
corresponding Lévy characteristic.
Exercise 4.2.4
Look at the following function ϕ : R→ C with

ϕ(t) = eψ(t), where ψ(t) = 2
∞∑

k=−∞
2−k(cos(2kt)− 1).

Show that ϕ(t) is the characteristic function of an infinitely divisible distribution. Hint: Look
at the Lévy-Khintchine representation with measure ν({±2k}) = 2−k, k ∈ Z.
Exercise 4.2.5
Let the Lévy process {X(t), t ≥ 0} be a Gamma process with parameters b, p > 0, that is, for
every t ≥ 0 it holds X(t) ∼ Γ(b, pt). Show that {X(t), t ≥ 0} is a subordinator with the Laplace
exponent ξ(u) =

∫∞
0 (1− e−uy)ν(dy) with ν(dy) = py−1e−bydy, y > 0. (The Laplace exponent

of {X(t), t ≥ 0} is the function ξ : [0,∞)→ [0,∞), for which holds that Ee−uX(t) = e−tξ(u) for
arbitrary t, u ≥ 0)
Exercise 4.2.6
Let {X(t), t ≥ 0} be a Lévy process with charactersistic Lévy exponent η and {τ(s), s ≥ 0} a
independent subordinator witch characteristic Lévy exponent γ. The stochastic process Y be
defined as Y = {X(τ(s)), s ≥ 0}.

(a) Show that
E
(
eiθY (s)

)
= eγ(−iη(θ))s, θ ∈ R,

where Imz describes the imaginary part of z.
Hint: Since τ is a process with non-negative values, it holds Eeiθτ(s) = eγ(θ)s for all
θ ∈ {z ∈ C : Imz ≥ 0} through the analytical continuation of Theorem 4.1.3.

(b) Show that Y is a Lévy process with characteristic Lévy exponent γ(−iη(·)).

Exercise 4.2.7
Let {X(t), t ≥ 0} be a compound Poisson process with Lévy measure

ν(dx) = λ
√

2
σ
√
π
e−

x2
2σ2 dx, x ∈ R,

where λ, σ > 0. Show that {σW (N(t)), t ≥ 0} has the same finite-dimensional distributions
as X, where {N(s), s ≥ 0} is a Poisson process with intensity 2λ and W is a standard Wiener
process independent from N .
Hint to exercise 4.2.6 a) and exercise 4.2.7

• In order to calculate the expectation for the characteristic function, the identity E(X) =
E(E(X|Y )) =

∫
R E(X|Y = y)FY (dy) for two random variables X and Y can be used. In

doing so, it should be conditioned on τ(s).
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•
∫∞
−∞ cos(sy)e−

y2
2a dy =

√
2πa · e−

as2
2 for a > 0 and s ∈ R.

Exercise 4.2.8
Let W be a standard Wiener process and τ an independent α

2 -stable subordinator, where
α ∈ (0, 2). Show that {W (τ(s)), s ≥ 0} is a α-stable Lévy process.
Exercise 4.2.9
Show that the subordinator T with marginal density

fT (t)(s) = t

2
√
π
s−

3
2 e−

t2
4s 1{s > 0}

is a 1
2 -stable subordinator. (Hint: Differentiate the Laplace transform of T (t) and solve the

differential equation)
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