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1 General theory of random functions

1.1 Random functions

Let (©,.A,P) be a probability space and (S, ) a measurable space, 2, S # &.

Definition 1.1.1
A random element X : Q - S is a A|B-measurable mapping (Notation: X € A|B), i.e.,

X' B)={weQ:X(w)eB}ec A, BebB.
If X is a random element, then X (w) is a realization of X for arbitrary w € €.

We say that the o-algebra B of subsets of S is induced by the set system M (Elements of M
are also subsets of S), if
B= N F
FoM
F-o-algebra on S

(Notation: B =o(M)).
If S is a toplological or metric space, then M is often chosen as a class of all open sets of &
and o(M) is called the Borel o-algebra (Notation: B = B(S)).

Example 1.1.1 1. If § = R, B = B(R), then a random element X is called a random
variable.

2. If §=R™, B=B(R™), m > 1, then X is called a random vector. Random variables and
random vectors are considered in the lectures ,,Elementare Wahrscheinlichkeitsrechnung
und Statistik* and ,,Stochastik I*

3. Let S be the class of all closed sets of R™. Let
M={{AeS:AnB=+@}, B - arbitrary compactum of R™}.

Then X : Q2 - S is a random closed set.

As an example we consider n independent uniformly distributed points Y3,...,Y, € [0,1]™
and Ry,...,R, > 0 (almost surely) independent random variables, which are defined on the
same probability space (£2,4,P) as Y1,...,Y,. Consider X = u]"Bg,(Y;), where B,(z) = {y €
R™ :||ly-z|| < r}. Obviously, this is a random closed set. An example of a realization is provided
in Figure 1.1.

Exercise 1.1.1
Let (22, A) and (S, B) be measurable spaces, B = 0(M), where M is a class of subsets of S.
Prove that X : Q — S is A|B-measurable if and only if X~(C) e A, C e M.

Definition 1.1.2

Let T be an arbitrary index set and (St, Bi)ier a family of measurable spaces. A family
X ={X(t),t €T} of random elements X (t) : Q - S, defined on (€, A, P) and .A|B;-measurable
for all t € T' is called a random function (associated with (S, Bt)ier).
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Abb. 1.1: Example of a random set X = ul_, Bg, (Vi)

Therefore it holds X : Q x T — (S, t € T), ie. X(w,t) € S for all w € Q, t € T and
X(-,t) € A|By, t € T. We often omit w in the notation and write X (¢) instead of X(w,t).
Sometimes (St, B;) does not depend on t € T as well: (S, B;) = (S,B) for all t e T

Special cases of random functions:

1. TcZ: X is called a random sequence or stochastic process in discrete time.
Example: T'=7Z, N.

2. T cR: X is called a stochastic process in continuous time.
Example: T =R, [a,b], —00 <a<b< oo, R.

3. TcR% d>2:X is called a random field.
Example: T =Z% R%, R?, [a,b]d.

4. T ¢ B(R?) : X is called set-indexed process.
If X(-) is almost surely non-negative and o-additive on the o-algebra T, then X is called
a random measure.

The tradition of denoting the index set with T" comes from the interpretation of t € T" for the
cases 1 and 2 as time parameter.

For every w € Q, {X(w,t), t € T} is called a trajectory or path of the random function X.

We would like to prove that the random function X = {X(t), t € T} is a random element
within the corresponding function space, which is equipped with a o-algebra that now is spec-
ified.

Let Sp = [I;er St be the cartesian product of S, t € T, ie., v € Sy if ©(t) € S, t € T. The
elementary cylindric set in St is defined as

Cr(B,t) ={z e Sr:x(t) € B},

where t € T is a selected point from T and B € B; a subset of S;. Cr(B,t) therefore contains
all trajectories x, which go through the , gate“ B, see Figure 1.2.

Definition 1.1.3
The cylindric o-algebra By is introduced as a o-algebra induced in Sy by the family of all
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v

T

Abb. 1.2: Trajectories which pass a ,gate” B;.

elementary cylinders. It is denoted by By = ®rB;. If By = B for all t € T', then BT is written
instead of Br.

Lemma 1.1.1
The family X = {X(t), t € T} is a random function on (2,4, P) with phase spaces (S, Bt)ter
if and only if for every w € Q the mapping w ~ X (w, ) is A|Bp-measurable.

Exercise 1.1.2
Proof Lemma 1.1.1.

Definition 1.1.4
Let X be a random element X : Q - S, i.e. X be A|B-measurable. The distribution of X is
the probability measure Py on (S, B) such that Px(B) = P(X~1(B)), BeB.

Lemma 1.1.2
An arbitrary probability measure p on (S, B) can be considered as the distribution of a random
element X.

Proof Take =8, A=B,P=pand X(w)=w, we. O

When does a random function with given properties exist? A random function, which consists
of independent random elements always exists. This assertion is known as

Theorem 1.1.1 (Lomnicki, Ulam):
Let (S, By, iut)ter be a sequence of probability spaces. It exists a random sequence X =
{X(t), t e T} on a probability space (2,4, P) (associated with (S, B;)«r) such that

1. X (t), t € T are independent random elements.
2. PX(t) = [t On (St,Bt), teT.

A lot of important classes of random processes is built on the basis of independent random
elements; cf. examples in Section 1.2.

Definition 1.1.5

Let X = {X(¢t),t €T} be a random function on (9,4, P) with phase space (S;, Bi)ter. The
finite-dimensional distributions of X are defined as the distribution law Py, ;. of (X(¢1),..., Xt NT
tnsBti,..tn), for arbitrary n € N, t1,...,t, € T, where S, 4, = S x ... xS, and

----------
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Bi,,..tn =By, ®...®B, is the o-algebra in &, . ¢,, which is induced by all sets By, x...x By, ,
i=1,...,n,ie, Py 4+ (C)=P((X(t1),...,X(tn))T €C), C € By 4, In particular,
for C' = By x...x By, By € B, one has

Ptl,...,tn(Bl X ... X Bn) = P(X(tl) € Bq,... ,X(tn) € Bn)

Exercise 1.1.3
Prove that Xy, ;. = (X(t1),... X () is a A|B, ... +,-measurable random element.

Definition 1.1.6

Let S; = R for all ¢t € T. The random function X = {X(t),t € T} is called symmetric, if all
of its finite-dimensional distributions are symmetric probability measures, i.e., P¢, 4 (A) =
Pit (—A) for Ae By, 4+, and all neN, ty,...,t, € T, whereby

n

Pt1,...,tn(_A) = P((—X(tl), ey —X(tn))T € A)

Exercise 1.1.4

Prove that the finite-dimensional distributions of a random function X have the following
properties: for arbitrary n € N, n > 2, {t1,...,t,} c T, By €S;,, k=1,...,n and an arbitrary
permutation (i1,...,4,) of (1,...,n) it holds:

L. Symmetry: Py, 4, (Bix...xBp) =Py, 4 (Biyx...xBj,)
2. Consistency: Py, 4, (B1X...xBp_1x8,) =Py 4, (B1x...xBy_1)

The following theorem evidences that these properties are sufficient to prove the existence of
a random function X with given finite-dimensional distributions.

Theorem 1.1.2 (Kolmogorov):
Let {P¢,.t,, ne€N, {t1,...,t,} c T} be a family of probability measures on

(R™ x ... x R™ B(R™) ®...® B(R™)),

which fulfill conditions 1 and 2 of Exercise 1.1.4. Then there exists a random function X =
{X(t),teT} defined on a probability space (£2,.4,P) with finite-dimensional distributions
Pt17"'7tn'

Proof See [13], Section IL.9. 0

This theorem also holds on more general (however not arbitrary!) spaces than R™, on so-
called Borel spaces, which are in a sense isomorphic to ([0,1],8[0,1]) or a subspace of that.

Definition 1.1.7

Let X ={X(t), t € T} be a random function with values in (S, B), i.e., X(t) € S almost surely
for arbitrary ¢ € T. Let (T,C) be itself a measurable space. X is called measurable if the
mapping X : (w,t) » X(w,t) €S, (w,t) e 2 x T, is A® C|B-measurable.

Thus, Definition 1.1.7 not only provides the measurability of X with respect to w € :
X(,t) e AIB for all t e T, but X(-,-) € A® C|B as a function of (w,?). The measurability of X
is of significance if X (w,t) is considered at random moments 7: Q - T, i.e., X(w,7(w)). This
is in particular the case in the theory of martingales if 7 is a so-called stopping time for X. The
distribution of X (w,7(w)) might differ considerably from the distribution of X (w,t), teT.
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1.2 Elementary examples

The theorem of Kolmogorov can be used directly for the explicit construction of random pro-
cesses only in few cases, since for a lot of random functions their finite-dimensional distributions
are not given explicitly. In these cases a new random function X = {X(t),t €T} is built as
X(t) =g(t,Y1,Ys,...), t € T, where g is a measurable function and {Y},} a sequence of random
elements (also random functions), whose existence has already been ensured. For that we give
several examples.

Let X ={X(t),t € T} be a real-valued random function on a probability space (€,.4, P).

1. White noise:

Definition 1.2.1
The random function X = {X(t),t €T} is called white noise, if all X(t), t € T, are
independent and identically distributed (i.i.d.) random variables.

White noise exists according to the Theorem 1.1.1. It is used to model the noise in
(electromagnetic or acoustical) signals. If X (¢) ~ Ber(p), p € (0,1), t € T, one means
Salt-and-pepper noise, the binary noise, which occurs at the transfer of binary data in
computer-networks. If X (t) ~ N(0,0%), 0 >0, t € T, then X is called Gaussian white
noise. It occures e.g. in acoustical signals.

2. Gaussian random function:

Definition 1.2.2
The random function X = {X(t), t € T} is called Gaussian, if all of its finite-dimensional

distributions are Gaussian, i.e. for all n e N, t1,...,¢, c T it holds
Xt17~--,tn = ((X(tl)v s aX(t’n))T ~ N(Ntl,,..,tnv Z )7
t1,.tn
where the mean is given by w4, = (EX(t1),...,EX(¢,))" and the covariance matrix

is given by ¥y, ¢, = ((cov(X (t:), X(tj))?,jﬂ-

Exercise 1.2.1

Proof that the distribution of an Gaussian random function X is uniquely determined by
its mean value function p(t)=EX(t),t € T, and covariance function C'(s,t)=E[ X (s) X (t)],
s,t € T, respectively.

An example for a Gaussian process is the so-called Wiener process (or Brownian motion)
X ={X(t),t >0}, which has the expected value zero (u(t) =0,¢ > 0) and the covariance
function C'(s,t) = min {s,t}, s, > 0. Usually it is addionally required that the paths of
X are continuous functions.

We shall investigate the regularity properties of the paths of random functions in more
detail in Section 1.3. Now we can say that such a process exists with probability one
(with almost surely continuous trajectories).

Exercise 1.2.2

Prove that the Gaussian white noise is a Gaussian random function.

3. Lognormal- and x*-functions:
The random function X = {X(t), t € T} is called lognormal, if X (t) = ¢¥®), where Y =
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{Y(t),t €T} is a Gaussian random function. X is called x2-function, if X (t) = |Y (¢)|?,
where Y = {Y(¢),t € T} is a Gaussian random function with values in R", for which
Y (t) ~ N (0,1), t € T; here I is the (n x n)-unit matrix. Then it holds that X () ~ x2,
teT.

4. Cosine wave:
X = {X(t),t € R} is defined by X(t) = V2cos(2rY +tZ), where Y ~1([0,1]) and Z is a
random variable, which is independent of Y.

Exercise 1.2.3
Let X7, X5,... be ii.d. cosine waves. Determine the weak limit of the finite-dimensional

distributions of the random function {ﬁ Yo Xi(t), te ]R} for n — oo.

5. Poisson process:

Let {Y;,}, .y be a sequence of i.i.d. random variables Y;, ~ Exp(\), A > 0. The stochastic
process X = {X(t),t >0} defined as X(¢) = max{neN: ¥} Y, <t} is called Poisson
process with intensity A > 0. X (¢) counts the number of certain events until the time
t > 0, where the typical interval between two of these events is Exp(\)-distributed. These
events can be claim arrivals of an insurance portfolio the records of elementary particles
in the Geiger counter, etc. Then X (¢) represents the number of claims or particles within
the time interval [0, t].

1.3 Regularity properties of trajectories

The theorem of Kolmogorov provides the existence of the distribution of a random function
with given finite-dimensional distributions. However, it does not provide a statement about
the properties of the paths of X. This is understandable since all random objects are defined
in the almost surely sense (a.s.) in probability theory, with the exception of a set A c Q with
P(A)=0.

Example 1.3.1
Let (©2,A,P) = ([0,1],B([0,1]),v1), where vy is the Lebesgue measure on [0,1]. We define
X ={X(t), te[0,1]} by X(¢)=0,te[0,1] and Y ={Y(t), t€[0,1]} by

1, t=U,
Y1) _{ 0, sonst,

where U(w) = w, w € [0,1], is a U([0, 1])-distributed random variable defined on (£, .4,P).

Since P(Y(t) =0) =1, t € T, because of P(U =t) =0, t € T, it is clear that X 2y . Nevertheless,
X and Y have different path properties since X has continuous and Y has discontinuous
trajectories, and P(X(t) =0, Yt e T) =1, where P(Y(¢) =0, VteT) =0.

It may well be that the ,set of exceptions“ A (see above) is very different for X (t) for every
t € T. Therefore, we require that all X(t), t € T, are defined simultaneously on a subset Qg €
with P(€g) = 1. The so defined random function X : Qg x T — R is called modification of
X :QxT - R. X and X differ on a set /€ with probability zero. Therefore we indicate later
when stating that ,random function X possesses a property C“ that it exists a modification
of X with this property C. Let us hold it in the following definition:
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Definition 1.3.1

The random functions X = {X(t), te T} and Y = {Y (¢), t € T} defined on the same prob-
ability space (Q,.A,P) associated with (S, Bi)iwer have equivalent trajectories (or are called
stochastically indistinguishable) if

A={weQ: X(w,t) Y (w,t) forateT}e A

and P(A) = 0.
This term implies that X and Y have paths, which coincide with probability one.

Definition 1.3.2
The random functions X = {X (t), te T} and Y = {Y(¢), t € T'} defined on the same probability
space (2,4, P) are called (stochastically) equivalent, if

B ={weQ: X(w,t) #+Y(w,t)} e A, teT,

and P(B;) =0, teT.

We also can say that X and Y are versions or modifications of one and the same random
function. If the space (9,.4,P) is complete (i.e. the implication of A € A:P(A) =0 is for all
B c A: B e A (and then P(B) =0)), then the indistinguishable processes are stochastically
equivalent, but vice versa is not always true (it is true for so-called separable processes. This
is the case if T' is countable).

Exercise 1.3.1
Prove that the random functions X and Y in Example 1.3.1 are stochastically equivalent.

Definition 1.3.3
The random functions X = {X(¢), teT} and Y = {Y(¢), t € T} (not necessarily defined on
the same probability space) are called equivalent in distribution, if Px = Py on (S, Bi)ter-

Notation: X d Y.

According to Theorem 1.1.2 it is sufficient for the equivalence in distribution of X and Y that
they possess the same finite-dimensional distributions. It is clear that stochastic equivalence
implies equivalence in distribution, but not the other way around.

Now, let T' and S be Banach spaces with norms |-|p and |- |s, respectively. The random
function X = {X (¢), t € T} is now defined on (2,4, P) with values in (S, B).

Definition 1.3.4
The random function X = {X(t), t € T} is called

P
a) stochastically continuous on T, if X(s) —> X (t), for arbitrary t € T, i.e.

st

P X (s) - X(t)|s>¢e) - 0, for all € >0.
S—

b) LP-continuous on T, p > 1, if X(s) L—pt> X(t),teT,ie. E|X(s)-X(t)]P - 0. For p=2
s S—>

the specific notation ,,continuity in the square mean “is used.

c) a.s. continuous on T, if X (s) f—8t> X(t),teT,ie., P(X(s) — X(t))=1,teT.
s s—

d) continuous, if all trajectories of X are continuous functions.
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In applications one is interested in the cases ¢) and d), although the weakest form of continuity
is the stochastic continuity.

LP-continuity ‘ = ’ stochastic continuity ‘ — ‘ a.s. continuity ‘ — ‘ continuity of all paths

Why are cases c¢) and d) important? Let us consider an example.

Example 1.3.2

Let T = [0,1] and (2, A, P) be the canonical probability space with Q = RI%! je. Q= iepo, 1 R-
Let X = {X(t), t€[0,1]} be a stochastic process on (2, .4,P). Not all events are elements of
A, like e.g. A ={weQ: X(w,t) =0 for all t € [0,1]} = 1] {X (w,t) =0}, since this is an
intersection of measurable events from A in uncountable number. If however X is continuous,
then all of its paths are continuous functions and one can write A = ngep {X (w,t) = 0}, where
D is a dense countable subset of [0,1], e.g., D =Qn[0,1]. Then it holds that A € A.

However, in many applications (like e.g. in financial mathematics) it is not realistic to
consider stochastic processes with continuous paths as models for real phenomena. Therefore,
a bigger class of possible trajectories of X is allowed: the so-called cddlag-class (cadlag =
continue a droite, limitée a gauche (fr.)).

Definition 1.3.5
A stochastic process X = {X(t), t € R} is called cadlag, if all of its trajectories are right-side
continuous functions, which have left-side limits.

Now, we would like to consider the properties of the notion of continuity (introduced above)
in more detail. One can note e.g. that the stochastic continuity is a property of the two-
dimensional distribution P,; of X. This is shown by the following lemma.

Lemma 1.3.1
Let X = {X(t), t € T} be a random function associated with (S, B), where S and 7" are Banach
spaces. The following statements are equivalent:
P
a) X(s) —Y,

s—tp

,p
e
t s it (Y,)Y)>

b) Ps

)

where tg € T and Y is a S-valued A|B-random element. For the stochastic continuity of X, one
should choose ty € T arbitrarily and Y = X (¢o).

Proof a) = b)
X(5) —— Y means (X(s), X (t))T —— (Y,Y)T.

s—to s,t—tg

P(I(X(s), X(1)) = (Y, Y)]2 > ) <P(IX(s) - Vs > £/2) + P(IX () - Y5 >¢/2) ——0

s,t—>to

(X ()-Y 541X (1)-Y[3)*/?

. . d . P . d
This results in P - P(y,y), since —-convergence is stronger than —-convergence.
b) = a)
For arbitrary e > 0 we consider a continuous function g. : R — [0, 1] with g-(0) =0, g-(x) =1,



1 General theory of random functions 9

x ¢ B-(0). It holds for all s,t € T that
Ege(1X(s) - X (t)ls) = P(lX(S)—X(t)ls>€)+E(ge(|X( ) = X(D)]s)1(1X(s) - X(D)s <€),
hence P(|X(s) - X(t)ls > €) < Ege(IX(s) - X(¥)ls) = [s[s9:(lx = yls)Pss(d(z,y)) —

s—tg
t—to

Js [s9:(| - yYls)Pv,yy(d(z,y)) = 0, since Py yy is concentrated on {(x,y) €S%:x= y} and

9:(0) = 0. Thus {X(s)},.;, is a fundamental sequence (in probability), therefore X (s) % Y.
s—to
0

It may be that X is stochastically continuous, although all of the paths of X have jumps,
i.e. X cannot possess any a.s. continuous modification. The descriptive explanation for that
is that such X may have a jump at concrete t € T" with probability zero. Therefore jumps of
the paths of X always occur at different locations.

Exercise 1.3.2
Prove that the Poisson process is stochastically continuous, although it does not possess any
a.s. continuous modification.

Exercise 1.3.3
Let T be compact. Prove that if X is stochastically continuous on T, then it also is uniformly
stochastically continuous, i.e., for all £,7>0 3§ > 0, such that for all s,¢ € T with |s - t|p < ¢ it
holds that P(|X(s) - X (t)|s >¢) <n.

Now let S =R, EX2(t) < oo, t € T, EX(t) =0, t € T. Let C(s,t) = E[X(s)X(t)] be the
covariance function of X.
Lemma 1.3.2
For all ty € T and a random variable Y with EY? < co the following assertions are equivalent:

2
a) X(s) Ly

s—to

b) C(s,t) —— EY?

s,t—tg

Proof a) = b)
The assertion results from the Cauchy-Schwarz inequality:

|C(s,t) —EY?| |E(X(s)X(t)) -EY?|=|E[(X(s)-Y +Y)(X(t)-Y +Y)] -EY?|
E[(X(s) -Y)(X(t) -Y)[+E[(X(s) - Y)Y|+E[(X(t) -Y)Y|
J E(X(s) - Y)? E(X (1) - Y)

IX ()Y 121X ()Y 12,

IA

IA

N ! N s,t—>to
1X(s)-Y113, X (®)-Y172,

+\l EY2E(X(s)-Y)%+ \l EY2E(X (1) - V)2 ——0

with assumption a).
b) = a)

E(X(s) - X(1))*

E(X(s))? - 2E[X (s) X (t)] + E(X(1))*
C(s,s) +C(t,t) —20(s,t) — 2EY? - 2EY2 = 0.

s,t—to
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LQ
Thus, {X(s), s >t} is a fundamental sequence in the L?-sense, and we get X (s) - Y. O
s—to

A random function X, which is continuous in the mean-square sense, may still have uncon-
tinuous trajectories. In most of the cases which are practically relevant, X however has an a.s.
continuous modification. Later on this will become more precise by stating a corresponding
theorem.

Corollary 1.3.1
The random function X, which satisfies the conditions of Lemma 1.3.2, is continuous on 7" in

the mean-square sense if and only if its covariance function C' : T? - R is continuous on the
diagonal diag T? = {(s,t) €eT?:s= t}, i.e., limg s, C(s,t) = C(to,to) = Var X (to) for all tg e T.

Proof Choose Y = X (tp) in Lemma 1.3.2. 0

Remark 1.3.1
If X is not centered, then the continuity of u(-) together with the continuity of C' on diag T2
is required to ensure the L?-continuity of X on 7.

Exercise 1.3.4
Give an example of a stochastic process with a.s. discontinuous trajectories, which is L2-
continuous.

Now we consider the property of (a.s.) continuity in more detail. As mentioned before,
we can merely talk about continuous modification or version of a process. The possibility to
possess such a version also depends on the properties of the two-dimensional distributions of
the process. This is proven by the following theorem (originally proven by A. Kolmogorov).

Theorem 1.3.1
Let X = {X(t), te[a,b]}, —o0o < a <b < +o0o be a real-valued stochastic process. X has a
continuous version, if there exist constants «, ¢, d > 0 such that

E|X (t+h) - X(£)|* < ||, te(a,b), (1.3.1)
for sufficiently small |h.
Proof See, e.g. [7], Theorem 2.23. 0

Now we turn to processes with cadlag-trajectories. Let (€2, .4, P) be a complete probability
space.

Theorem 1.3.2
Let X = {X(t), t >0} be a real-valued stochastic process and D a countable dense subset of
[0, 00). If

a) X is stochastically right-handside continuous, i.e., X (¢ + h) — X(t), te[0,+00),
h—+0

b) the trajectories of X at every ¢t € D have finite right- and left-handside limits, i.e.,
|limp, .0 X(t+h)| < o0, t €D as.,

then X has a version with a.s. cadlag-paths.

Without proof.
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Lemma 1.3.3

Let X = {X(t), t >0} and {Y =Y (t), t >0} be two versions of a random function, both defined
on the probability space (2,.4,P), with property that X and Y have a.s. right-handside
continuous trajectories. Then X and Y are indistinguishable.

Proof Let Qx,Qy be ,sets of exception®, for which the trajectories of X and Y, respec-
tively are not right-sided continuous. It holds that P(Qx) = P(Qy) = 0. Consider A; =
{we: X(w,t) #Y(w,t)}, te[0,+00) and A = U, A¢, where Q, = Qn [0, +00). Since X and
Y are stochastically equivalent, it holds that P(A) =0 and therefore

P(A) <P(A)+P(Qx) +P(Qy) =0,

where A = AuQx UQy. Therefore X(w,t) = Y(w,t) holds for t € Q, and w € 2\ A. Now,
we prove this for all ¢ > 0. For arbitrary ¢ > 0 a sequence {t,} ¢ Q. exists, such that ¢, | t.
Since X (w,t,) = Y (w,t,) for all n e N and w € O A, it holds that X (w,t) = limy, e X (w, 1) =
limy, 500 Y (w, t,) = Y (w,t) for t >0 and w € @\ A. Therefore X and Y are indistinguishable. [

Corollary 1.3.2
If cadlag-processes X = {X(t), t>0} and Y = {Y(¢), t >0} are versions of the same random
function then they are indistinguishable.

1.4 Differentiability of trajectories

Let T be a linear normed space.

Definition 1.4.1
A real-valued random function X = {X(¢t), t € T} is differentiable on T in direction h € T
stochastically, in the LP-sense, p > 1, or a.s., if

X(t+hl)-X(t
MRIGIIER 0

=X, (t), teT

exists in the corresponding sense, namely stochastically, in the LP-space or a.s..

The Lemmas 1.3.1 - 1.3.2 show that the stochastic differentiability is a property that is deter-

mined by three-dimensional distributions of X (because the common distribution of w

and X=X ohould converge weakly), whereas the differentiability in the mean-square

sense is determined by the smoothness of the covariance function C(s,t).

Exercise 1.4.1
Show that

1. the Wiener process is not stochastically differentiable on [0, o).

2. the Poisson process is stochastically differentiable on [0, 00), however not in the LP-mean,
p>1.

Lemma 1.4.1
A centered random function X = {X (t), te T} (i.e., EX(t) =0, t € T) with E[X2(t)] < 00, t € T
is L2-differentiable in ¢ € T in direction h € T if its covariance function C is differentiable

7" 2 ’
twice in (¢,t) in direction h, i.e., if 3 C}, (¢,t) = 8851(88{? . X, (t) is L*-continuous in ¢t € T

s=t
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e A 920 (s,t) . . " . : .
if €y, (s,t) = 8Sh(;t’h) is continuous in s = t. Moreover, C}, (s,t) is the covariance function of

X, = {X,(t), teT}.

Proof According to Lemma 1.3.2 it is enough to show that

l U

I im E (X(t +1h) = X(t) X(s+1'h)-X(s) )
LI'»0

exists for s =t. Indeed we get

I = %(C(t+lh,s+l'h)—C(t+lh,s)—C(t,s+l'h)+C(t,s))
1 (C(t +lh,s+1'h) - C(t+1h,s) C(t,s+1h) - Clt,s)

l U I

) — Cy (5,1)
1I'>0

All other statements of the lemma result from this relation. O

Remark 1.4.1
The properties of the L?-differentiability and a.s. differentiability of random functions are
disjoint in the following sense: there are stochastic processes that have L2-differentiable paths,
although they are a.s. discontinuous, and vice versa, processes with a.s. differentiable paths
are not always L2-differentiable, since e.g. the first derivative of their covariance function is
not continuous.

Exercise 1.4.2
Give appropriate examples!

1.5 Moments und covariance

Let X = {X(t), teT} be a random function that is real-valued, and let T be an arbitrary
index space.

Definition 1.5.1

The mized moment p9v9n)(ty, ... t,) of X of order (ji,...,jn) € N, t1,...,t, € T is given
by pltdn) (¢, t,) = E [le (t1)-...- Xj"(tn)], where it is required that the expected value
exists and is finite. Then it is sufficient to assume that E|X ()} < oo for all ¢t € T and j =
nt...+tIn.

Important special cases:
1. (t) = pM(t) =EX(t), t € T — mean value function of X.

2. D (s,8) = E[X(s)X(t)] = C(s,t) — (non-centered) covariance function of X. Whereas
the centered covariance function is: K(s,t) = cov((X(s), X(t)) = D (s, ) = p(s)p(t),
s, teT.

Exercise 1.5.1
Show that the centered covariance function of a real-valued random function X

1. is symmetric, i.e., K(s,t) = K(t,s), s,t€T.
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2. is positive semidefinite, i.e., for n e N, t1,...,t, €T, z1,...,2z, € R it holds that

Z K(ti,tj)ZiZj > 0.

ij=1
3. satisfies K (t,t) =VarX(t),teT.

Property 2) also holds for the non-centered covariance function C(s,t).

The mean value function p(t) shows a (non random) trend. If u(t) is known, the random
function X can be centered by considering a random function Y = {Y(¢), t € T} with Y (¢) =
X(t) - p(t), teT.

The covariance function K (s,t) (C(s,t), respectively) contains information about the depen-

K(s,t) :
R ERYD) for all s,t €T
K(s,s) =VarX(s) >0, K(t,t) =Var X(t) >0 is used instead of K and C, respectively. Because

of the Cauchy-Schwarz inequality it holds that |R(s,t)| < 1, s,t € T. The set of all mixed
moments in general does not (uniquely) determine the distribution of a random function.

Exercise 1.5.2
Give an example of different random functions X = {X(¢), te T} und Y = {Y (¢), t € T}, for
which it holds that EX (¢) = EY(t), t€ T and E(X(s)X(t)) = E(Y (s)Y (¢)), s, t € T.

Exercise 1.5.3

Let p: T — R be a measurable function and K : T'x T — R be a positive semidefinite sym-
metric function. Prove that a random function X = {X(t), t € T'} exists with EX(¢) = u(t),
cov(X(s), X (t)) = K(s,t), s,teT.

Let now X = {X(t), t € T} be a real-valued random function with E|X (¢)|" < o0, t € T, for a
ke N.

Definition 1.5.2
The mean increment of order k of X is given by yx(s,t) = E(X(s) - X (t))*, s,t e T.

Special attention is paid to the function (s, t) = 372(s,t) = 3E(X (s)-X(t))?, s,t € T, which
is called wvariogram of X . In geostatistics the variogram is often used instead of the covariance

function. A lot of times we discard the condition EX?2(t) < oo, t € T, instead we assume that
v(s,t) < oo for all s,teT.

Exercise 1.5.4
Prove that there exist random functions without finite second moments with v(s,t) < oo,
s, telT.

dence structure of X. Sometimes the correlation function R(s,t) =

Exercise 1.5.5

Show that for a random function X = {X(t), ¢ € T} with mean value function p and covariance

function K it holds that:

(s,5) + K(t,1)
2

If the random function X is complez-valued, i.e., X : QxT — C, with E |X(t)|2 <oo,teT,
then the covariance function of X is introduced as K(s,t) = E(X(s) - EX(s))(X(t) - EX(¢)),
s,t € T, where Z is the complex conjugate of z € C. Then it holds that K (s,t) = K(t,s), s,t €T,
and K is positive semidefinite, i.e, for all n € N, ¢1,...,¢t, € T, 2z1,...,z, € C it holds that

ijl K(ti, tj)ZZ‘Z_j > 0.

7(57t) = K

- K(s,t) + %(M(s) —u(t))?, s teT.
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1.6 Stationarity and Independence

T be a subset of the linear vector space with operations +, — over space R.

Definition 1.6.1
The random function X = {X (t), t € T'} is called stationary (strict sense stationary) if for all
neN, h,t1,...,t, €T with t1 +h,...,t, + h € T it holds that:

PX(t1) X (tn)) = P(X(t14h), X (En 1))

i.e., all finite-dimensional distributions of X are invariant with repsect to translations in 7.

Definition 1.6.2

A (complex-valued) random function X = {X(t), t € T} is called second-order stationary (or
wide sense stationary) if E[X(t)]> < oo, t € T, and u(t) = EX(t) = pu, t € T, K(s,t) =
cov(X(s),X(t))=K(s+h,t+h) forall h,s,teT:s+h,t+heT.

If X is second-order stationary, it is convenient to introduce a function K(t) := K(0,t), te T
whereby 0 €T

Strict sense stationarity and wide sense stationarity do not result from each other. However
it is clear that if a complex-valued random function is strict sense stationary and possesses
finite second-order moments, then the function is also second-order stationary.

Definition 1.6.3

A real-valued random function X = {X (¢), t € T'} is intrinsic second-order stationary if yx(s,t),
s,t € T exist for k < 2, and for all s,t,h € T, s+ h,t + h € T it holds that v(s,t) = 0,
v2(s,t) =y2(s+ h,t +h).

For real-valued random functions, intrinsic second-order stationarity is more general than
second-order stationarity since the existence of E|X (¢)[?, t € T' is not required.
The analogue of the stationarity of increments of X also exists in strict sense.

Definition 1.6.4
Let X = {X(t), t € T} be a real-valued stochastic process, T' c R. It is said that X

1. possesses stationary increments if for all n e N| h tg,t1,t2,...,t, € T, with
to<ti<ta<...<ty, ti+heT,i=0,...,n the distribution of
(X(t1+h)=X(to+h),...,X(tn +h) = X(tn-1+h))"
does not depend on h.

2. possesses independent increments if for all n € N, tg,t1,...,t, € T with tg <t1 < ... <ty
the random variables X (¢9), X (t1)- X (t0),. .., X (tn) = X(t,-1) are pairwise independent.

Let (S1,B1) and (S2,B2) be measurable spaces. In general it is said that two random
elements X : Q) - &1 and X : Q - Sy are independent on the same probability space (£2,.4, P)
if P(X € Al,Y € AQ) = P(X € AI)P(Y € Ag) for all Al € Bl, A2 € BQ.

This definition can be applied to the independence of random functions X and Y with phase
space (St, Br), since they can be considered as random elements with S; =Sy = Sy, By = By =
Br (cf. Lemma 1.1.1). The same holds for the independence of a random element (or a random
function) X and of a sub-o-algebra G € A: this is the case if P({X € A} nG) =P(X € A)P(G),
forall Ae By, GeG (or AeBr, GeG).
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1.7 Processes with independent increments

In this section we concentrate on the properties and existence of processes with independent
increments.

Let {¢s¢, s,t >0} be a family of characteristic functions of probability measures Qs ¢,
s,t >0 on B(R), i.e., for z € R, s,¢ >0 it holds that ¢, ,(2) = [ € Qs (dz).

Theorem 1.7.1

There exists a stochastic process X = {X(t), ¢ >0} with independent increments with the
property that for all s,¢ > 0 the characteristic function of X (t) — X(s) is equal to ¢, if and
only if

Pst = PsuPut (1.7.1)
for all 0 < s <u<t<oo. Thereby the distribution of X (0) can be chosen arbitrarily.

Proof The necessity of the condition (1.7.1) is clear since for all s € (0,00) : s < u < ¢ it holds
X(t)-X(s)=X(t) - X(u)+X(u) - X(s), and X(t) - X (u) and X(u)-X(s) are independent.

i Y
Then it holds ©s i = Vy,+v, = Py, Yy = Ps.uPut-
Now we prove the sufficiency.
If the existence of a process X with independent increments and property ¥x()-x(s) = ¥st
on a probability space (2,4, P) had already been proven, one could define the characteristic
functions of all of its finite-dimensional distributions with the help of {¢, .} as follows.
Let neN,0=tg<t1<...<t,<ooand Y = (X(t()),X(tl) —X(to),...,X(tn)—X(tn_l))T. The

independence of increments results in

oy (20,21, -, 2n) = B = o0y (20) 010, (21) - Pty 1, (20), 2 € R™
— ————
z

where the distribution of X (o) is an arbitrary probability measure Qo on B(R). For Xy, . =
(X (to),X(t1),...,X(ty))" however it holds that Xy, ¢, =AY, where

1 00 0
1 10 0
A=]11 1 1 0
1 11 1

o (2) = pay(2) = Eei(2AY) = EetA™2Y) = oy (AT2) holds. Therefore the distribu-
,,,,, i (2) = 0Q0 (10)oto,t2 (1) - - 1,1t (L),

.....

tion of Xy, . 4, possesses the characteristic function ¢ X,
where [ = (I1,01,...,l,)" = ATz, thus

l() = 2ot...+2n
lh = z1+...+2,
ln, = zn

Thereby @x (1) = 9@, and ¢x,, _, (21,--+,20) =9x,, .. (0,21,...,2,) holds for all z; € R.
Now we prove the existence of such a process X.
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For that we construct the family of characteristic functions
{©Ptor Ptostrrtns Plrytn, 0=to <ty <...<t, <00, neN}
from ¢, and {¢s:, 0< s <t} as above, thus
©to = PQ0s Ptitn (0,21, 20) = Orotr,tn (0,21, ..., 2n), 2 €R,

Gtotn (Z) = @ro(Z1 4+ 20) ot (21 4 2Zn) oo Pt 0 (20)-

Now we have to check whether the corresponding probability measures of these characteristic
functions fulfill the conditions of Theorem 1.1.2. We will do that in equivalent form since by
Exercise 1.8.1 the conditions of symmetry and consistency in Theorem 1.1.2 are equivalent to:

a) Pligroostin (Zigs - -+ »2in) = Pto,..itn (20, .., 2,) for an arbitrary permutation (0,1,...,n)
(io,il, . ,in),

D) Pttt tmstsestn (205 -« s Zm=1, Zmals - 2n) = Pto,.tn (205---,0,..., 2,), for all
20y---,2n €ER,me{l,... ,n}.

Condition a) is obvious. Conditon b) holds since

Ot 1t (OF Zma1 + oo+ 20) Ot toner (a1 + oo+ 20) = Ot 1 s Bty -5 2n)
for all me {1,...,n}. Thus, the existence of X is proven. 0

Example 1.7.1 1. If T'= Ny = Nu{0}, then X = {X(t), t € No} has independent increments
if and only if X (n) g "o Yi, where {Y;} are independent random variables and Y, d
X(n) - X(n-1), neN. Such a process X is called random walk. It also may be defined
for Y; with values in R™.

2. The Poisson process with intensity A has independent increments (we will show that
later).

3. The Wiener process possesses independent increments.

Exercise 1.7.1
Proof that!

Exercise 1.7.2

Let X = {X(t), t 20} be a process with independent increments and g : [0, 00) — R an arbitrary
(deterministic) function. Show that the process Y = {Y'(¢), ¢t >0} with Y (¢) = X (¢)+g(t), t >0,
also possesses independent increments.

1.8 Additional exercises

Exercise 1.8.1

Prove the following assertion: The family of probability measures Py, ;. on (R",B(R")),
n>1,t=(t1,...,t,)" € T™ fulfills the conditions of the theorem of Kolmogorov if and only if
for n > 2 and for all s = (s1,...,s,)" € R" the following conditions are fulfilled:

.....

o ((81,...,80)7) = PP )ty ((S7(1)s-- 1 8m(ny) ") for all T € S,,.
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b) PPy, tnfl((slv"wsn—l)-r) =Py tn((slv"-73n—1a0)T)‘

Remark: ¢(-) denotes the characteristic function of the corresponding measure. S,, denotes the
group of all permutations 7 : {1,...,n} - {1,...,n}.

Exercise 1.8.2
Show the existence of a random function whose finite-dimensional distributions are multivariate-
normally distributed and explicitly give the measurable spaces (Et, . t,,E ..t )-

Exercise 1.8.3
Give an example of a family of probability measures Py, . ., which do not fulfill the conditions
of the theorem of Kolmogorov.

Exercise 1.8.4
Let X ={X(t),teT}and Y = {Y(¢), t € T} be two stochastic processes which are defined on
the same complete probability space (€2, F,P) and which take values in the measurable space

(S,B).
a) Proof that: X and Y are stochastically equivalent = Px = Py-.

b) Give an example of two processes X and Y for which holds: Px = Py, but X and Y are
not stochastically equivalent.

c) Proof that: X and Y are stochastically indistinguishable == X and Y are stochastically
equivalent.

d) Proof in the case of countability of 7: X and Y are stochastically equivalent = X and
Y are stochastically indistinguishable.

e) Give in the case of uncountability of 7" an example of two processes X and Y for which
holds: X and Y are stochastically equivalent but not stochastically indistinguishable.

Exercise 1.8.5
Let W = {W(t), t € R} be a Wiener Process. Which of the following processes are Wiener
processes as well?

a) Wi = {Wi(t) = -W(t), t e R},
b) W = {Wa(t) = VAW (1), t e R},
¢) Wiy = {Wa(t) = W(2t) - W (1), t € R}.

Exercise 1.8.6

Given a stochastic process X = {X(t), ¢t € [0,1]} which consists of idependent and identically
distributed random variables with density f(x), € R. Show that such a process can not be
continuous in ¢ € [0, 1].

Exercise 1.8.7
Give an example of a stochastic process X = {X(t), t € T} which is stochastically continuous
on T, and prove why this is the case.

Exercise 1.8.8
In connection with the continuity of stochastic processes the so-called criterion of Kolmogorov
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plays a central role. (see also theorem 1.3.1 in the lecture notes): Let X = {X(¢), t € [a,b]} be
a real-valued stochastic process. If constants «,e >0 and C := C'(«,¢) > 0 exist such that

E|X(t+h) - X(t)|* < C|n|*** (1.8.1)
for sufficient small h, then the process X possesses a continuous modification. Show that:

a) If you fix the variable € = 0 in condition (1.8.1), then in general the condition is not
sufficient for the existence of a continuous modification. Hint: Consider the Poisson
process.

b) The Wiener process W = {W (t), t € [0,00)} possesses a continuous modification. Hint:
Consider the case o = 4.

Exercise 1.8.9
Show that the Wiener process W is not stochastically differentiable at any point ¢ € [0, 00).

Exercise 1.8.10
Show that the covariance function C'(s,t) of a complex-valued stochastic process X = {X (¢), t €
T}

a) is symmetric, i.e. C(s,t) =C(t,s), s,teT,
b) fulfills the identity C(¢,t) =Var X(t), teT,

c) is positive semidefinite, i.e. for all n e N, ¢1,...,t, €T, z1,...,2, € C it holds that:

i=1j=1

Exercise 1.8.11
Show that it exists a random function X = {X(t), t € T} which simultaneously fulfills the
conditions:

e The second moment EX?2 does not exist.
o The variogram (s, t) is finite for all s,t € T.

Exercise 1.8.12
Give an example of a stochastic process X = {X(¢), t € T} whose paths are simultaneously
L2-differentiable but not almost surely differentiable, and prove why this is the case.

Exercise 1.8.13
Give an example of a stochastic process X = {X(t), t € T} whose paths are simultaneously
almost surely differentiable but not L!-differentiable, and prove why this is the case.

Exercise 1.8.14
Proof that the Wiener process possesses independent increments.

Exercise 1.8.15
Proof: A (real-valued) stochastic process X = {X(t), t € [0,00)} with independent increments
already has stationary increments if the distibution of the random variable X (¢ + h) — X (h) is
independent of h.



2 Counting processes

In this chapter we consider several examples of stochastic processes which model the counting
of events and thus possess piecewise constant paths.

Let (£2,A,P) be a probability space and {S,},y a non-decreasing sequence of a.s. non-
negative random variables, i.e. 0<S1 <S5, <...<S5, <....

Definition 2.0.1
The stochastic process N = {N(t), t > 0} is called counting process if

N(t) = 3 1S, <),
n=1

where 1(A) is the indicator function of the event A € A.

N(t) counts the events which occur at S,, until time ¢. S,, e.g. may be the time of occurence
of

1. the n-th elementary particle in the Geiger counter, or

2. a damage in the insurance of material damage, or

3. a data paket at a server within a computer network, etc.

A special case of the counting processes are the so-called renewal processes.

2.1 Renewal processes

Definition 2.1.1
Let {T),,}nen be a sequence of ii.d. non-negative random variables with P(7; > 0) > 0. A
counting process N = {N(t), ¢ >0} with N(0) =0 a.s., S, = X3_; Tk, n € N, is called renewal
process. Thereby S, is called the time of the n-th renewal, n € N.

The name ,,renewal process® is given by the following interpretation. The ,interarrival times*
T,, are interpreted as the lifetime of a technical spare part or mechanism within a system, thus
Sy, is the time of the n-th break down of the system. The defective part is immediately replaced

by a new part (comparable with the exchange of a lightbulb). Thus, N(¢) is the number of
repairs (the so-called ,renewals“) of the system until time ¢.

Remark 2.1.1 1. It is N(t) = o if S,, <t for all n e N.

2. Often it is assumed that only T5,T3,... are identically distributed with ET;, < co. The
distribution of T} is freely selectable. Such a process N = {N(t), ¢t > 0} is called delayed
renewal process (with delay T1).

3. Sometimes the requirement T, > 0 is omitted.

19
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Abb. 2.1: Konstruktion und Trajektorien eines Erneuerungsprozesses

4. Tt is clear that {S), }nen, with So =0 a.s., Sp = ¥}1 Tk, n € N is a random walk.

5. If one requires that the n-th exchange of a defective part in the system takes a time 7},
then by T,, =T, + T, n € N a different renewal process is given. Its stochastic property
does not differ from the process which is given in definition 2.1.1.

In the following we assume that pu =ET,, € (0,00), n € N.

Theorem 2.1.1 (Individual ergodic theorem):
Let N = {N(t), t >0} be a renewal process. Then it holds that:

lim m = l a.s..

Proof For all £ >0 and n € N it holds that {N(t) =n} = {S, <t < Sp41}, therefore Sy <t <
Sn(t)+1 and

Snew _t_ Snws N()+1

N(t) TN(t) " N(t)+1  N(t)
If we can show that ]\],V((tt)) BN —H and N (t) ta—s> oo, then W BN —H holds and therefore the

assertion of the theorem.
According to the strong law of large numbers of Kolmogorov (cf. lecture notes ,Wahrschein-

lichkeitsrechnung“ (WR), theorem 7.4) it holds that S” '—> 11, thus S, —>— oo and therefore

n—oo

P(N(t) < o0) =1 since P(N(t) =o0) =P( S, stVn)—l P(Eln Vm e Ny Spam >t)=1-1=0.

=1, if S"%""’
Then N(t), t >0, is a real random variable.
We show that N(t ) —> oo. All trajectories of N(t) are monotonously non-decreasing in ¢ > 0,



2 Counting processes 21

thus 3limy_ e N(w,t) for all w e Q. Moreover it holds that

) Jim lim P(N(t) <n)

n—oo t—o00

P(lim N(t) <o) = lim P(tlirgloN(t) <n)

t—o00 n—oo

n
= lim lim P(S, >t) = lim lim P() T} > t)

n—oo t—o0 n—oo t—oo k=1

IN

lim lim Y P(Tj > 3) =0.
k=1 n

n—oo t—oo

—>0

t—o0

The equality () holds since {lim,oo N(t) <n} = {3ty e Q4 : Vt 2 tg N(t) < n} = Ueq, NicQ,
>

t>to

{N(t) < n} = liminf,q, {N(t) < n}, then the continuity of the probability measure is used,
t—o0

Sn SN ()

where Q; = QnR, = {g € Q: ¢ >0}. Since for every w € Q it holds that lim,,_, e 22 = limy, 0 N0

n
(the codomain of a realization of N(-) is a subsequence of N), it holds that lim;_, e % = .

O

Remark 2.1.2

One can generalize the ergodic theorem to the case of non-identically distributed 7,,. Thereby

we require that p, = ET,, {T), — tin },y are uniformly integrable and %22:1 . — > 0.
n—oo

Then we can prove that @ tL> % (cf. [2], page 276).

Theorem 2.1.2 (Central limit theorem):
If e (0,00), 0% = VarTy € (0, 00), it holds that
s N(t)-+
,U«% ) ( ) uwod Y,
0-\/% t—o0

where Y ~ N(0,1).

Proof According to the central limit theorem for sums of i.i.d. random variables (cf. theorem

7.5, WR) it holds that
Sz _d_ (2.1.1)

no? mnoee

Let [2] be the whole part of z € R. It holds for a = Z—i that

N(t)-L
P(WM3$)=P(N(t)s:c\/ﬁ+£)=P(5m(t)>t),

where m(t) = [;U\/E + ﬁ] +1,¢2>0, and lim,o m(t) = co. Therefore we get that
(

t —
‘P(% Sx) - p(x)

=2
==

P (Sm@ry > t) = ¢(2)]

Sty = Hm(t) ¢ - pm(t) )
= |P -p(x
‘ ( av/m(t) g ov/m(t) #()

= It(l‘)
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for arbitrary ¢ > 0 and = € R, where ¢ is the distribution function of the N (0, 1)-distribution.

For fixed x € R we introduce Z; = —Z% —x,t>0. Then it holds that

Ii(x) = ‘P (—Sm(t) —pm(t)

av/m(t

+ 7> —x) - o(x)

If we can prove that Z; P 0, then applying (2.1.1) and the theorem of Slutsky (theorem
Sp(ty=Hm(t) d N '
o/m(t) ez o0 Y ~ N(0,1) since Z, P 0 a.s. results

in Z, % 0. Therefore we could write I;(z) = lo(—2) — o(x)| = |e(z) — e(z)| = 0, where

6.4.1, WR) would result in

@(x) =1 - p(x) is the tail function of the N (0, 1)-distribution, and the property of symmetry
of N(0,1) : p(-x) = p(x), x € R was used.
Now we show that Z; = 0, thus =20, _ 5 Tt holds that m(t) = xv/at + ﬁ +e(t),

cn/m(t) t—o0
where £(t) € [0,1). Then it holds that
t—pm(t)  t-pavat —t—pe(t) - Vat —p _pe(?)
ay/m(t) oy/m(t) o\/x at+ﬁ+5(t) a/m(t)
_ Tp _ p—e(?)
z 1 s®)  oy/m(t)
o oV
_ zh _pe(t) B
2 z (t) m(t t—o0
L Et avmt)
—0
t—o0 - o
O
Remark 2.1.3

In Lineberg form, the central limit theorem can also be proven for non-identically distributed
Ty, cf. [2], pages 276 - 277.

Definition 2.1.2
The function H(t) = EN(t), t > 0 is called renewal function of the process N (or of the sequence

{S’VZ}neN)‘

Let Fr(z) = P(T) < x), « € R be the distribution function of Tj. For arbitrary distribution
functions F,G : R - [0,1] the convolution F * G is defined as F » G(x) = [ F(z -y)dG(y).
The k-fold convolution F** of the distribution F with itself, k € Ny, is defined inductive:

F*O(z) 1(x €[0,00)), z € R,
F*l(x) F(z), x €R,
F*®&D @y = PRy F(a), zeR.

Lemma 2.1.1
The renewal function H of a renewal process N is monotonously non-decreasing and right-sided
continuous on R,. Moreover it holds that

H(t) =Y P(Sa<t)= 3 E2(1), t 20, (2.1.2)

n=1 n=1
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Proof The monotony and right-sided continuity of H are consequences from the almost surely
monotony and right-sided continuity of the trajectories of N. Now we prove (2.1.2):

H(t)=EN(t) =EY 1(Sn<t) @ Y EL(S, <t) = Y P(Su<t) = 3 Fi(1),
n=1 n=1 n=1 n=1

since P(S,, <t) =P(Th+...+ T, <t) = F;"(t), t > 0. The equality (*) holds for all partial sums

on both sides, therefore in the limit as well. |

Except for exceptional cases it is impossible to calculate the renewal function H by the
formula (2.1.2) analytically. Therefore the Laplace transform of H is often used in calulations.
For a monotonously (e.g. monotonously non-decreasing) right-sided continuous function G :
[0, 00) — R the Laplace transform is defined as I (s) = [;° e **dG(x), s > 0. Here the integral is
to be understood as the Lebesgue-Stieltjes integral, thus as a Lebesgue integral with respect to
the measure ug on By, defined by ug((z,y]) = G(y)-G(x), 0 <z < y < oo, if G is monotonously
non-decreasing.

Just to remind you: the Laplace transform [x of a random variable X > 0 is defined by
= [y e dFx(z), s>0.

Lemma 2.1.2

For s > 0 it holds that:

a(s) =1

Proof It holds that:
7 e —sT (2.1.2) e —sx - *70 - e —sx *70
lg(s) = ‘/0- e **dH (z) = ‘/(; e d(ZFT (m))zZ/O e TdF* " (x)
n=1 n=1

= ;lT1+...+Tn() nZ::l(lTl( )) l—lATl(S)7

where for s> 0 it holds that Iz, (s) < 1 and thus the geometric series ¥, (ZAT1 (3))n converges.
0

Remark 2.1.4
If N ={N(t), t>0} is a delayed renewal process (with delay T7), the statements of lemmas
2.1.1 - 2.1.2 hold in the following form:

1.
H(t) = ), (Fr, = P,") (1), t 20,

n=0

where Fr, and Fr,, respectively are the distribution functions of 77 and 75, n > 2,
respectively.

> _ lATl (S)
)

where le and fTQ are the Laplace transforms of the distribution of 77 and T, n > 2.

, 20, (2.1.3)
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For further observations we need a theorem (of Wald) about the expected value of a sum
(with random number) of independent random variables.

Definition 2.1.3

Let v be a N-valued random variable and be {X,}, . a sequence of random variables defined
on the same probability space. v is called independent of the future, if for all n € N the event
{v <n} does not depend on the o-algebra o({Xk, k> n}).

Theorem 2.1.3 (Wald’s identity):
Let {Xp},.ey be a sequence of random variables with sup E|X,| < 0o, EX,, =a, ne N and be v a
N-valued random variable which is independent of the future, with Ev < co. Then it holds that

E(> X,)=a-Ev.
n=1

Proof Calculate S, = ¥}_; X, n € N. Since Ev = Y77, P(v > n), the theorem follows from
Lemma 2.1.3. 0

Lemma 2.1.3 (Kolmogorov-Prokhorov):
Let v be a N-valued random variable which is independent of the future and it holds that

P(v > n)E|X,| < co. (2.1.4)

n=1
Then ES, =Y, P(v > n)EX, holds. If X,, >0 a.s., then condition (2.1.4) is not required.

Proof It holds that S, = ¥y 1 X, = Yooy Xp1(v > n). We introduce the notation S, , =
Y1 Xipl(v 2 k), n € N. First, we prove the lemma for X,, >0 f.s., n € N. It holds S, ,, 1 Sy,
n — oo for every w € {2, and thus according to the monotone convergence theorem it holds that:
ES, = lim,e0 ESyy = lim ¥)_ E(X;1(v > k)). Since {v >k} = {v <k -1}° does not depend
on o(Xx) c o({X,, n>k}) it holds that E(X;1(v > k)) = EXxP(v > k), k € N, and thus
ES, =Y, P(v2n)EX,.

Now, let X,, be arbitrary. Take Y, = |X,|, Z, = Xn_1Yn, Zopn = Xy Yel(v 2 k), n e N.
Since Y, > 0, n € N, it holds that EZ, = Y>>, E(X,, | P(v 2 k)) < oo from (2.1.4). Since
|Sunl < Zyn < Z,, n €N, according to the dominated convergence theorem of Lebesgue it holds
that ES, =1lim;, o ESy, = Yooy EX;,P(v > n), where this series converges absolutely. O

Conclusion 2.1.1 1. H(t) < oo, t 0.
2. For an arbitrary Borel measurable function g : Ry - R, and the renewal process N =

{N(t), t >0} with interarrival times {T,}, T}, i.i.d., u=ET, € (0, 00) it holds that

N(t)+1
E( z g(Tn>)=(1+H(t>)Eg<T1>, £20,

Proof 1. For every ¢ > 0 it is obvious that v = 1 + H(t) does not depend on the future of
{T}, } nen, the rest follows from theorem 2.1.3 with X, = g(7},), n € N.

2. For s > 0 consider T,SS) = min{T,,, s}, n € N. Choose s > 0 such that for freely selected
(but fixed) e >0: p(s) = ETl(S) > p—e>0. Let N be the renewal process which is based
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on the sequence {T( )}neN of interarrival times: N()(t) = (T(S) <t), t>0. It holds
N(t) < N©O)(t), t >0, a.s., according to conclusion 2.1.1:
s s s (s) (s) (s)
(=) (EN® (1) +1) < u(ENG (1) +1) = SN(S)(M+1 E(Syis 9(1) TN(S)(t)+1) <t+s,

<t <s

t20, where S = T{” + ...+ T{”, n e N. Thus H(t) = EN(t) < ENC)(t) < &2 ¢ > 0.
Since € > 0 is arbitrary, it holds that lim sup,_, . # < % and also our assertion H ( ) < o0,
t>0.
0
Conclusion 2.1.2 (Elementary renewal theorem):
For a renewal process N as defined in conclusion 2.1.1, 1) it holds:
H
lim ﬂ = l
t—o0 t "
Proof In conclusion 2.1.1, part 2) we already proved that limsup,_, ., @ < i If we show
liminf;, e @ > ﬁ, our assertion would be proven. According to theorem 2.1.1 it holds that
@ —— L as., therefore according to Fatou’s lemma

t—o0

1 = Eliminfm < ljmjnfEN_(t) = liminf Ht(t)

ol t—oo t—o00 t—o00

O

Remark 2.1.5 1. We can prove that in the case of the finite second moment of T,, (ug =
ET? < 00) we can derive a more exact asymptotics for H(t), t — oo:

H(t):—+£+o(1) t > co.
T

2. The elementary renewal theorem also holds for delayed renewal processes, where y = ET5.
We define the renewal measure H on B(R.) by H(B) = Y52, [z dEf™(x), Be B(Ry). Tt
holds H((-o0,t]) = H(t), H((s,t]) = H(t) - H(s), s,t >0, if H is the renewal function

as well as the renewal measure.

Theorem 2.1.4 (Fundamental theorem of the renewal theory):
Let N = {N(t), t >0} be a (delayed) renewal process associated with the sequence {7}, }nen,
where T),, n € N are independent, {7}, n > 2} identically distributed, and the distribution
of T5 is not arithmetic, thus not concentrated on a regular lattice with probability 1. The
distribution of 77 is arbitrary. Let ET» = p € (0,00). Then it holds that

Sy att=0at @)~ [~ gt

where ¢ : R, - R is Riemann integrable [0,n], for all n € N, and ¥ 2 max,<z<n+1 |g(2)] < oo.
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Su(:) l/_\

A4

Without proof.

In particular H((t — u,t]) P /% holds for an arbitrary u € R, thus H asymptotically (for

t - o0) behaves as the Lebesgue measure.

Definition 2.1.4
The random variable x(t) = Sy(s)+1 —t is called excess of N at time ¢ > 0.

Obviously x(0) = 77 holds. We now give an example of a renewal process with stationary
increments.
Let N = {N(t), t >0} be a delayed renewal process associated with the sequence of interarrival
times {7}, }nen. Let Fr, and Fp, be the distribution functions of the delays 77 and T),, n > 2.
We assume that = ETy € (0, 00), Fr,(0) =0, thus 75 > 0 a.s. and

1 T _
Fr@) = [ Pr.dy, = >0. (2.15)

In this case Frp, is called the integrated tail distribution function of Ts.

Theorem 2.1.5
Under the conditions we mentioned above, N is a process with stationary increments.

Proof Let n e N, 0 <ty <t; <...<t, < oco. Because N does not depend on T,,, n € N the
common distribution of (N (t1 +¢) = N(tg+t),..., N(tn+t) = N(tn-1+t))" does not depend on
t, if the distribution of x(¢) does not depend on ¢, thus x(t) gX(O) =Ty, t >0, see Figure ....
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We show that Fry = F, (), t 20.

Fy 1) ()

n=0

27

P(x(t) <z) =) P(Sp<t, t<Sp <t+x)

= P(So=0$t, t<S1=T, St+1‘)

+ Y E(E(L(Sn <t, t<Sy+Tha <t+2)|Sy))
n=1

el t
- FTl(t+x)-FTl(t)+Z[0 P(t =y < Tps1 <+ - y)dFs, (y)
n=1

_ FTl(t+x)—FTl(t)+/OtP(t—y<T2£t+x—y)d(iF5n(y)).
n=1

—— ——
H(y)

If we can prove that H(y) = %, y > 0, then we would get

Fx(t) (:E)

= FTl(t+[E) —FTl(t) +

1 0
Fri(t+a) = Fr ()« [ (Pr(z+2) =141 Pr()d(-2)
wJt

i[ot(FTQ(z) - Fr,(z+1))dz

1 t+xr _
= Fry(t )~ Fu ()« Fr () - [ Fr()dy
= Fp(t+z)-Fp(t+x)+ Fp(z) = Fp(z), >0,

according to the form (2.1.5) of the distribution of 77.
Now we like to show that H(t) = l%, t > 0. For that we use the formula (2.1.4): it holds that

1

I (s) = [T e (1= Fr ()

I

1 oo 1 [
- f e Stdt —— [ e S B, (t)dt
w Jo w Jo
—————

1
s

1 had —s 1 —S e o —S
- us (1 " f FT2 (t)de t) - _(1 te tFTQ (t) |0 B f € tdFT2 (t))
us N 0

S 0
1 .

= —(1-In(s)), s20.
S

Using the formula (2.1.4) we get

; n(s) 1

) e

_F - Y
T, (0)=0 i, (5)

1

=—/ eStdt =1.(s), s20.
m

w Jo

Since the Laplace transform of a function uniquely determines this function, it holds that

H(t)=,t20.

Remark 2.1.6

O

In the proof of Theorem 2.1.5 we showed that for the renewal process with delay which possesses
the distribution (2.1.5), H(t) ~ ﬁ not only asymptotical for ¢ - oo (as in the elementary renewal
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theorem) but it holds H(t) = ﬁ, for all t > 0. This means, per unit of the time interval we

get an average of i renewals. For that reason such a process N is called homogeneous renewal
process.

We can prove the following theorem:

Theorem 2.1.6
If N ={N(t), t >0} is a delayed renewal process with arbitrary delay 77 and non-arithmetic
distribution of T, n > 2, u = ET € (0, 00), then it holds that

. 1o
lim By (2) = m fo Fr,(y)dy, «20.

This means, the limit distribution of excess x(t), ¢t — oo is taken as the distribution of 7} when
defining a homogeneous renewal process.

2.2 Poisson processes

2.2.1 Poisson processes
In this section we generalize the definition of a homogeneous Poisson process (see section 1.2,
example 5)

Definition 2.2.1
The counting process N = {N(t), t >0} is called Poisson process with intensity measure A if

1. N(0) =0 a.s.

2. A is a locally finite measure R, i.e., A: B(R;) — R, possesses the property A(B) < oo for
every bounded set B € B(R,).

3. N possesses independent increments.
4. N(t) - N(s) ~Pois(A((s,t])) for all 0 < s <t < oo.

Sometimes the Poisson process N = {N(t¢), ¢t > 0} is defined by the corresponding random
Poisson counting measure N = {N(B), B € B(R,)}, i.e., N = ([0,¢]), t > 0, where a counting
measure is a locally finite measure with values in Ng.

Definition 2.2.2
A random counting measure N = {N(B), B € B(R,)} is called Poissonsh with locally finite
intensity measure A if

1. For arbitrary n € N and for arbitrary pairwise disjoint bounded sets Bi, Bo,..., B, €
B(R.) the random variables N(By), N(Bs),...,N(By,) are independent.

2. N(B) ~Pois(A(B)), B € B(R,), B-bounded.

It is obvious that properties 3 and 4 of definition 2.2.1 follow from properties 1 and 2 of
definition 2.2.2. Property 1 of definition 2.2.1 however is an autonomous assumption. N(B),
B e B(R,) is interpreted as the number of points of N within the set B.
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Remark 2.2.1

As stated in definition 2.2.2, a Poisson counting measure can also be defined on an arbitrary
topological space E equipped with the Borel-o-algebra B(FE). Very often E = R d > 1 is
chosen in applications.

Lemma 2.2.1
For every locally finite measure A on R, there exists a Poisson process with intensity measure
A.

Proof If such a Poisson process had existed, the characteristic function ¢y -n(s)(-) of the
increment N(t) - N(s), 0 < s <t< oo would have been equal to ¢s:(2) = ©pois(a((s,1]))(?) =
AD(E*-1) 2 ¢ R according to property 4 of definition 2.2.1. We show that the family of
characteristic functions {ps¢, 0 <s <t < oo} possesses property 1.7.1: foralln:0<s<u <t,
SOS u(z)gpu t(z) = eA((Svu])(eiz_l)eA((u’t])(eiz_l) = e(A((Svu])+A((u7t]))(eiz_1) = eA((Sut])(eiZ_l) = SOS t(z)7
z € R since the measure A is additive. Thus, the existence of the Poisson process N follows
from theorem 1.7.1. 0

Remark 2.2.2
The existence of a Poisson counting measure can be proven with the help of the theorem of
Kolmogorov, yet in a more general form than in theorem 1.1.2.

From the properties of the Poisson distribution it follows that EN(B) = Var N(B) = A(B),
B e B(R,). Thus A(B) is interpreted as the mean number of points of N within the set B,
B e B(R,).

We get an important special case if A(dx) = M\dzx for X € (0,00), i.e., A is proportional to the
Lebesgue measure 1 on Ry. Then we call A = EN(1) the intensity of N.

Soon we will prove that in this case N is a homogeneous Poisson process with intensity A. To
remind you: In section 1.2 the homogeneous Poisson process was defined as a renewal process
with interarrival times T ~ Exp(A): N(t) =sup{neN S, <t}, S, =T1+...+T,,neN, ¢t >0.

Exercise 2.2.1

Show that the homogeneous Poisson process is a homogeneous renewal process with T d Ty ~
Exp()\). Hint: you have to show that for an arbitrary exponential distributed random variable
X the integrated tail distribution function of X is equal to Fx.

Theorem 2.2.1
Let N = {N(t), t >0} be a counting process. The following statements are equivalent.

1. N is a homogeneous Poisson process with intensity A > 0.

2. a) N(t)~Pois(At), t>0

b) for an arbitrary n € N, ¢t > 0, it holds that the random vector (Si,...,S,) under
condition {N(t) = n} possesses the same distribution as the order statistics of i.i.d.
random variables U; e U([0,t]), i=1,...,n.

) N has independent increments,
) EN(1) =, and
c¢) property 2b) holds.

)

N has stationary and independent increments, and
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b) P(N(t) =0) =1- Xt +o(t), P(N(t) = 1) = M + o(t), ¢ | 0 holds.

5. a) N hast stationary and independent increments,

b) property 2a) holds.

Remark 2.2.3 1. It is obvious that Definition 2.2.1 with A(dx) = Adz, A € (0,00) is an
equivalent definition of the homogeneous Poisson process according to Theorem 2.2.1.

2. The homogeneous Poisson process N was introduced in the beginning of the 20th century
from the physicists A. Einstein and M. Smoluchovsky to be able to model the counting
process of elementary particle in the Geiger counter.

3. From 4b) it follows P(N(t) > 1) = o(t), t | 0.

4. The intensity of N has the following interpretation: A\ = EN(1) = E_;“n’ thus the mean
number of renewals of N within a time interval with length 1.

5. The renewal function of the homogeneous Poisson process is H(t) = At, t > 0. Thereby
H(t) = A([0,¢]), t >0 holds.

Proof Structure of the proof: 1) = 2) = 3) =4) = 5) = 1)

1) = 2):

From 1) follows S, = ¥7_; T, ~ Erl(n,\) since T}, ~ Pois(A), n € N, thus P(N(t) =0) = P(71 >
t)=e t>0, and for n e N

P(N(t)=n) = PU{N@)2n}~{N(t)2>n+1}) =P(N(t) >n) - P(N(t) > n+1)
t )\nxn—l S t )\n+1xn S
= P(Snst)—P(Sn+1st)=£ (n—l)!e A d$_‘[0 Te AZ o
e (()\:Lc!)ne_m) e O ot

Thus 2a) is proven.
Now let’s prove 2b). According to the transformation theorem of random variables (cf. theorem
3.6.1, WR), it follows from

S1 = 1T
SQ = T1 + T2
Sn+1 = T1 +...+ Tn+1

that the density f(s, s,y of (S1,...,Sn+1)" can be expressed by the density of (T1,...,Tns1)",
T; ~ Exp(A), i.i.d.:

n+1 n+1
f(Sl,...,Sn+1)(t1a o 7tn+1) _ H ka (tk: _ tk:—l) _ H )\e—)\(tk—tk—1) — )\n+16—)\tn+1
k=1 k=1

for arbitrary 0 <t¢1 <...<tp41, to=0.
For all other t1,...,t,41 it holds f(Sl,...,SnH)(th ceytng1) =0.
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Therefore

fesn,nsny (E ey

talN(t)

:n)

31
f(Sl,.A.,Sn)(tla cee 7tn|Sk < ta k< n, Sn+1 > t)
_[too f(S1,...,Sn+1) (t17 s atn+1)dtn+l
I L L L Fs sy (t et )t dt, . dty

ft°° )\n+1e_>‘t7l+1 dtn+1

o fL o S [T At e Aty dt, . dty

x[(0<t; <t <.

n!
= t—ﬂI(Ostlstgs...

<ty <t)

<tn <t).

This is exactly the density of n i.i.d. U([0,¢])-random variables.

Exercise 2.2.2
Proof this.

2) = 3)

From 2a) obviously follows 3b). Now we just have to prove the independence of the increments

of N. For an arbitrary n € N, z1,..., 2, e N, tg=0<1t; <...

that

P(pai AN (tk) = N(tr-1) = 2}) = P(npo {N(t)

= N(tg-1)

<thpbforx=x1+...

+ x, it holds

= 2N () = ) x

W jji 1(M) * according to 2b)
P(N(tn) =)

S~——

- I

emdtn M according to 2a)
AMtg - tk 1))

_)‘(tk_tk—l)
)

n

n
since the probability of (*) belongs to the polynomial distribution with parameters n, {t’“_t#} et

Because the event (*)is that at the independent uniformly distributed toss of  points on [0, ],
exactly xp points occur within the basket of length ¢ —tx_1, k=1,...,n:

/X1 /xz
6 o

Abb. 2.4:

Thus 3a) is proven since P(n?_;{N(tx) - N(tp-1) = z1}) =

ITi=1 PN ()

= N(tp-1) = zi}).
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3)=4)
We prove that N possesses stationary increments. For an arbitrary n € Ny, z1,...,z, € N,
to=0<t; <...<t, and h >0 we consider I(h) = P(np_{N(tx +h) = N(tp—1 + h) = x1}) and
show that I(h) does not depend on h € R. According to the formula of the total probability it
holds that

I
e f0e e

I(h) P(Mii AN (tx + h) = N(tg-1 + h) =z} [ N(tn + h) =m) - P(N(tn + h) = m)

m! (tk-Ffl—tn—l—-h)xke—xan+h)(A(tn*-h)yn
A I 8 Rl thn+h—-"h m!

PRy (N (6r) = N(thot) = 24 | N (b + h) = m) x PN (tn + k) = m) = 1(0).
We now show property 4b) for 4 € (0,1):
P(N(h)=0) = > P(N(h)=0,N(1)=Fk)= iOP(N(h) 0, N(1) = N(h) = k)
= SP(N(L) = N(h) = k, N(1) ] k)
= S P(NV(1) = )P(N(1) - N(h) = k| N(1) = k)
= S P(NV(L) = k) (1 - h)b,

We have to show that P(N(h) =0) =1-Xh+o(h), i.e., limh_)oo%(l -P(N(h) =0)) = A. Indeed
it holds that

00 0o _ _ k
Ta-pev=0) = 1(1-Seevw-no-nt) - See -n U
k=0 k=1
i o 1-(1-h)*
RN L
k

= i P(N(1) =k)k=EN(1) = A,
k=0

since the series uniformly converges in h because it is dominated by Y72, P(N(1) =k)k =X < o0
because of the inequality (1—-h)* >1—kh, he (0,1), keN.

Similarly one can show that limj_, w =limyo X520, P(N(1) = k)k(1-h)*1 = \. 4) = 5)
We have to show that for an arbitrary n e N and ¢ >0

p(t) =P(N(t) =n) = e‘“—(/\t,) (2.2.1)
n!
holds. We will prove that by induction with respect to n. First we show that p(t) =
For that we consider po(t+h) = P(N(t+h) =0) = P(N(t) =0, N(t+h)-N(t) =0) = po ( )

t h=0.
Dpo(h) =
po(t)(1=Ah+o(h)), h = 0. Similarly one can show that po(t) = po(t —h)(1=Ah+0(h)), h = 0.
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Thus pj(t) = limy,o 2282 — _\po(#), ¢ > 0 holds. Since pp(0) = P(N(0) = 0) = 1, it

follows from
po(t) = =Apo(t)
po(0) 1,

that it exists an unique solution pg(t) = e, t > 0. Now for n the formular (2.2.1) be approved.
Let’s prove it for n + 1.

pne1(t+h) = P(N(t+h)=n+1)

= P(N(t)=n,N(t+h)-N(t)=1)+P(N(t)=n+1,N(t+h)-N(t) =0)

= pu(t) -p1(h) +pra1(t) - po(h)

= pn(t)()\h+o(h)) +pns1(t)(1=Ah+0(h)), h—>0,h>0.
e (1 (£) + Apa(t

L) = =Apnsi(t) + Apn(t), t>0
{ pmi(o) 0 (2.2.2)

Since py(t) = _/\t(’\t) , we obtaln P (t) = e M (();i)j;,l as solution of (2.2.2). (Indeed py+1(t) =
C(t)e™ = C'(t)e” i =AC(e Mo, + Apn (t)
C'(t) = 25 = (1) = 255 0<0) = 0)
5)=1)

Let N be a counting process N(t) = max{n : S, < t}, t > 0, which fulfills conditions 5a) and
5b). We show that S,, = ¥.2_; T), where T}, i.i.d. with T}, ~ Exp(\), k € N. Since Tj = Sg, — Sk-1,
keN, Sy=0, we consider for bjp =0<a; <by1 <...<a, <b,

P (nzzl{ak < S < bk})

= P(nZ{N(ak) = N(bg-1) =0,N(by) - N(ax) = 1}
N{N(an) = N(bn-1) =0, N(bn) - N(an) 2 1})
n-1
= JT(P(N(ar =bg-1) = 0) P(N (b, — ay) = 1)) x
= e*““ki”k—1> ¥>\(bk—ak)e**<bk*%>
P(N (@~ bn_1) = 0) P(N (bn — ) > 1)
M an—bp_1) (1= Abn-an))

n—1
- e_)\(an_bn—l)(l _ e—A(bn—an)) H by, - ak)e_)‘(bk_bk—l)

The common density of (Si,...,S,)T therefore is given by \e ™ r1(y; <yo < ... <yn). O

2.2.2 Compound Poisson process

Definition 2.2.3

Let N = {N(t), t >0} be a homogeneous Poisson process with intensity A > 0, build by means
of the sequence {7}, }nen of interarrival times. Let {U,}nen be a sequence of i.i.d. random
variables, independent of {7}, },ey. Let Fiy be the distribution function of Uy. For an arbitrary
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t>0let X(t) = ZN(t) Uy. The stochastic process X = {X (¢), t >0} is called compound Poisson
process with parameters A, Fyy. The distribution of X (¢) thereby is called compound Poisson
distribution with parameters \t, F;.

The compound Poisson process X (¢), t >0 can be interpreted as the sum of ,marks“ U, of
a homogeneous marked Poisson process (N, U) until time ¢.
In queueing theory X (t) is interpreted as the overall workload of a server until time ¢ if the
requests to the service occur at times S, = Y.;_; T, n € N and represent the amount of work
Un, neN.
In actuarial mathematics X (¢), t > 0 is the total damage in a portfolio until time ¢ > 0 with
number of damages N(t) and amount of loss Uy, n € N.

Theorem 2.2.2
Let X = {X(t), t >0} be a compound Poisson process with parameters A\, Fi;. The following
properties hold:

1. X has independent and stationary increments.

2. If iy (s) = Ee*V1, s € R, is the moment generating function of Uy, such that g (s) < oo,
s € R, then it holds that

iy (s) =M™ g e R 120, EX(t) = MEU;, Var X (t) = MEUZ, t>0.

Proof 1. We have to show that for arbitrary ne N, 0 <ty <1 <...<t, and h
N(t1+h) N(tn+h) N(tr)
P Z Ui, <x1,..., Z . STy HP Z Ui, <xi
i1=N(to+h)+1 z‘n=N(tn,1+h)+1 k=1 ig=N{(tg_1)+1

for arbitrary z1,...,z, € R. Indeed it holds that

N(t1+h) N(tn+h)
P ( Z Uilﬁl'l,..., Z Uinﬁl'n)
i11=N(to+h)+1 in=N(tn-1+h)+1
= Z (H ’(mJ )P(ﬁfn:1 {N(tm +h) = N(tm-1+h)=kn})
ki, k =1
_ (n F;’mj)) ( [T PN () - N(tm 1) = km>)
E1,ekn=0 \j=1 m=1
= [1 > EF(@m)P(N(tm) - N(tm-1) = k)
m=1 k,,=0

E )

m=1 km=N(tm_1)+1

Exercise 2.2.3
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2.2.3 Cox process

A Cox process is a (in general inhomogeneous) Poisson process with intensity measure A which
as such is a random measure. The intuitive idea is stated in the following definition.

Definition 2.2.4

Let A = {A(B), B € B(R,)} be a random a.s. locally finite measure. The random counting
measure N = {N(B), B e B(R,)} is called Coz counting measure (or doubly stochastic Poisson
measure) with random intensity measure A if for arbitrary n € N, k1, ..., k, € Npand 0 < a1 < b <
a5 <by < ... < @y < by it holds that P(nfy {N((ai,b]) = ki}) = E(TT, e—A(<%bi1>A’”+j;7‘”])).
The process {N(t), t > 0} with N(t) = N((0,t]) is called Coz process (or doubly stochastic
Poisson process) with random intensity measure A.

Example 2.2.1 1. If the random measure A is a.s. absolutely continuous with respect to
the Lebesgue measure, i.e., A(B) = [z A(t)dt, B - bounded, B € B(R, ), where {\(¢),t >0}
is a stochastic process with a.s. Borel-measurable Borel-integrable trajectories, then
A(t) >0 a.s. for all ¢ >0 is called the intensity process of N.

2. In particular, it can be that A(¢) =Y where Y is a non-negative random variable. Then
it holds that A(B) = Yvi(B), thus N has a random intensity Y. Such Cox processes are
called mized Poisson processes.

A Cox process N = {N(t), t >0} with intensity process {A(¢), ¢ >0} can be build explicitly
as the following. Let N = {N(t), t > 0} be a homogeneous Poisson process with intensity 1,
which is independent of {\(¢), ¢t > 0}. Then N g N7, where the process N1 = {Ny(t), ¢t >0}
is given by Ni(t) = N(fot/\(y)dy), ¢ > 0. The assertion N £ Ny of course has to be proven.
However, we shall assume it without proof. It is also the basis for the simulation of the Cox
process N.

2.3 Additional exercises

Exercise 2.3.1
Let {N(t)}+>0 be a renewal process with interarrival times 7;, which are exponentially dis-
tributed, i.e. T; ~ Exp(\).

a) Prove that: N(t) is Poisson distributed for every ¢ > 0.
b) Determine the parameter of this Poisson distribution.
c) Determine the renewal function H(t) = EN(t).

Exercise 2.3.2

Prove that a (real-valued) stochastic process X = {X(t), t € [0,00)} with independent incre-
ments already has stationary increments if the distribution of the random variable X (¢t + h) —
X (h) does not depend on h.

Exercise 2.3.3

Let N = {N(t),t € [0,00)} be a Poisson process with intensity . Calculate the probabilities
that within the interval [0, s] exactly ¢ events occur under the condition that within the interval
[0,t] exactly n events occur, i.e. P(N(s) =i | N(t)=n) for s<t,i=0,1,...,n.
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Exercise 2.3.4

Let N = {NW(t), ¢ € [0,00)} and NPZ = {N®)(t), ¢ € [0,00)} be independent Poisson
processes with intensities A\; and As. In this case the independence indicates that the sequences
Tl(l),TQ(I), ... and T1(2),T2(2), ... are independent. Show that N = {N(t) :== NOD(t) + N (¢), t e
[0,00)} is a Poisson process with intensity A; + Ag.

Exercise 2.3.5 (Queuing paradox):

Let N ={N(t),t€[0,00)} be a renewal process. Then T'(t) = Sy ()41 —t is called the time of
excess, C(t) =t — Sy the current lifetime and D(t) = T(t) + C(t) the lifetime at time t > 0.
Now let N = {N(t), t€[0,00)} be a Poisson process with intensity A.

a) Calculate the distribution of the time of excess T'(t).

b) Show that the distribution of the current lifetime is given by P(C(t) = t) = e and the
density is given by fo)n)s>0(s) = e M1{s < t}.

¢) Show that P(D(t) < x) = (1 - (1 + Amin{t,z})e™**)1{z > 0}.

d) To determine ET(t), one could argue like this: On average ¢ lies in the middle of the
surrounding interval of interarriving time (Syy, Sn@y+1), i-e. ET(t) = %E(SN(t)H -
Sny) = %ETN(t)H = % Considering the result from part (a) this reasoning is false.
Where is the mistake in the reasoning?

Exercise 2.3.6

Let X = {X(t) := Zf\ﬁt) Ui, t > 0} be a compound Poisson process. Let My (s) = EsN(®),
s€(0,1), be the generating function of the Poisson processes N (t), L{U}(s) = Eexp{-sU?} the
Laplace Transform of U;, i € N, and £L{X (¢)}(s) the Laplace Transform of X (¢). Prove that

LLX(t) }(s) = My (£{U}(s)), s20.

Exercise 2.3.7

Let X = {X(t), t €[0,00)} be a compound Poisson process with U; i.i.d., Uy ~ Exp(7y), where
the intensity of N(¢) is given by A. Show that for the Laplace transform £{X (¢)}(s) of X (t)
it holds:

LN =exp{ -2},

]

Exercise 2.3.8

Write a function in R (alternatively: Java) to which we pass time ¢, intensity A and a value ~y
as parameters. The return of the function is a random value of the compound Poisson process
with characteristics (A, Exp(7y)) at time t.

Exercise 2.3.9

Let the stochastic process N = {N(t),t € [0,00)} be a Cox process with intensity function
A(t) = Z, where Z is a discrete random variable which takes values A1 and Ao with probabilities
1/2. Determine the moment generating function as well as the expected value and the variance

of N(t).

Exercise 2.3.10
Let N(W = {NM(#), t € [0,00)} and N@) = {N®)(¢), t > 0} be two independent homogeneous
Poisson processes with intensities A\; and As. Moreover, let X > 0 be an arbitrary non-negative
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random variable which is independent of N and N(?). Show that the process N = {N(t),t>
0} with

N @), t< X,

CINOX)+ N -X), t>X

is a Cox process whose intensity process A = {\(t), t > 0} is given by

A, <X,
/\(t)= 1,
)\2, t>X.



3 Wiener process

3.1 Elementary properties

In Example 2) of Section 1.2 we defined the Brownian motion (or Wiener process)

W ={W(t), t >0} as an Gaussian process with EW(t) = 0 and cov(W (s), W(t)) = min{s, t},
s,t > 0. The Wiener process is called after the mathematician Norbert Wiener (1894 - 1964).
Why does the Brownian motion exist? According to theorem of Kolmogorov (Theorem 1.1.2)
it exists a real-valued Gaussian process X = {X (¢), ¢t > 0} with mean value EX (t) = u(t), t >0,
and covariance function cov(X(s), X(t)) = C(s,t), s,t > 0 for every function p: Ry - R and
every positive semidefinite function C' : Ry x R, - R. We just have to show that C(s,t) =
min{s,t}, s,t > 0 is positive semidefinite.

Exercise 3.1.1
Prove this!

We now give a new (equivalent) definition.

Definition 3.1.1

A stochastic process W = {W(t), t >0} is called Wiener process (or Brownian motion) if
1. W(0) =0 a.s.
2. W possesses independent increments

3. W(t)-W(s) ~N(0,t-s),0<s<t

The existence of W according to Definition 3.1.1 follows from Theorem 1.7.1 since @5 4(2) =

. _(t—s)22 _(t—u)z2 _(u—s)z2 _(t—s)z2
Ec?W(O-WE) = =75 2 eR, and e 2z e 2z =€ 2 for0<s<uc<t thus

Vs ul(2)put(2) = psi(z), z € R. From Theorem 1.3.1 the existence of a version with continuous
trajectories follows.

Exercise 3.1.2
Show that Theorem 1.3.1 holds for aa =3, o = %

Therefore, it is often assumed that the Wiener process possesses continuous paths (just take
its corresponding version).

Theorem 3.1.1
Both definitions of the Wiener process are equivalent.

Proof 1. From definition in Section 1.2 follows Definition 3.1.1.
W(0) =0 a.s. follows from Var(W(0)) = min{0,0} = 0. Now we prove that the increments
of W are independent. If Y ~ N{(u,K) is a n-dimensional Gaussian random vector
and A a (n x n)-matrix, then AY ~ N (Au, AKAT) holds, this follows from the explicit
form of the characteristic function of Y. Now let n e N, 0 = tg < t; < ... <tp,, Y =

38
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(W(to), W(t1),...,W(tn))". For Z = (W(to), W(t1) - W(to),...,W(tn) - W(tn-1))" it
holds that Z = AY', where

0 0 . 0

- 10 0

A= 0 -1 1 O 0
0 00 -1 1

Thus Z is also Gaussian with a covariance matrix which is diagonal. Indeed, it holds
COV(W(tHl) - W(ti), W(tj+1) - W(tj)) = min{ti+1,tj+1} - min{tiﬂ,tj} - min{ti,t]’+1} +
min{¢;,¢;} = 0 for ¢ # j. Thus the coordinates of Z are uncorrelated, which means inde-
pendence in case of a multivariate Gaussian distribution. Thus the increments of W are
independent. Moreover, for arbitrary 0 < s < ¢ it holds that W (t) — W(s) ~ N(0,t - s).
The normal distribution follows since Z = AY is Gaussian, obviously it holds that
EW (t)-EW (s) = 0 and Var(W (t)-W (s)) = Var(W (t))-2cov(W (s), W(t))+Var(W(s)) =
t—-2min{s,t} +s=t-s.

2. From Definition 3.1.1 the definition in Section 1.2 follows.
Since W (t) = W (s) ~N(0,t - s) for 0 < s <t, it holds

cov(W (), W (1)) = E[W (s) (W (£)=W (s)+W ()] = EW (s)E(W ()W (s))+Var W (s) = s,

thus it holds cov(W (s), W(t)) = min{s,t}. From W (t)-W(s) ~ N (0,t-s) and W(0) =0
it also follows that EW (t) =0, t > 0. The fact that W is a Gaussian process, follows from
point 1) of the proof, relation Y = A™1Z.

0

Definition 3.1.2
The process {W(t), t 20}, W(t) = (W1(t),...,Wy(t))", t 20, is called d-dimensional Brownian
motion if W; = {W;(t), t >0} are independent Wiener processes, i =1,...,d.

The definitions above and Exercise 3.1.2 ensure the existence of a Wiener process with

continuous paths. How do we find an explicit way of building these paths? We will show
that in the next section.

3.2 Explicit construction of the Wiener process

First we construct the Wiener process on the interval [0,1]. The main idea of the construction
is to introduce a stochastic process X = {X(t), ¢t € [0,1]} which is defined on a probability

subspace of (2,4, P) with X LW, where X(t) =22 1en(t)Yn, t€[0,1], {Yn}nen is a sequence
of i.i.d. NM(0,1)-random variables and ¢, (t) = fot H,(s)ds, t € [0,1], n € N. Here, {Hy,}ney is
the orthonormed Haar basis in La([0,1]) which is introduced shortly now.

3.2.1 Haar- and Schauder-functions

Definition 3.2.1

The functions H,, : [0,1] - R, n € N, are called Haar functions if Hi(t) = 1, t € [0,1],

Hg(t) = 1[0 ;](t) - 1(; 1](t), Hk(t) = 2%(1[nk(t) - 1Jnk(t)), te€ [0,1], 2" < k < 2n+17 where
2 2 ' ’

In,k: = [an’k, Qn.k + 2—n—1]’ Jn,k = (an,k + 2—n—17 an,k + 2—n]7 Qpk = 2_n(k - 2" — 1), n € N,
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A
2"
| :
‘h._l E r 1 }
0 apk 5 tanit2 " 4 t
R S—

Abb. 3.1: Haar functions

Lemma 3.2.1
The function System {H,,}nen is an orthonormal basis in L2([0,1]) with scalar product

<f,g>= fo t)dt, f,g e L*([0,1]).

Proof The orthonormality of the system (Hy, H,) = 0kn, k,n € N directly follows from def-
inition 3.2.1. Now we prove the completeness of {Hp}nen. It is sufficient to show that for
arbitrary function g € L%([0,1]) with (g, H,) = 0, n € N, it holds g = 0 almost everywhere on
[0,1]. In fact, we always can write the indicator function of an interval 1[%7]“%,16 42-n-1] @s a
linear combination of H,, n € N.

1o 1 _ (H1 +H2)
[0,5] 9 ’
L, o (h-H)
(571] 92 )
1 1 = (1[0’2] * 7H2)
[071] 2 ’
1
L G5
(175] 2 ?
1 —+ 273 H,
1[% a2 1] = ( an,k,an,k+22 k), M < k< 2n+1.

(k+1)
Therefore it holds [,2" g(t)dt =0, ne€Ng, k=1,...,2" =1, and thus G(¢ fo g(s)ds =0 for
o
t= 2,“ neNpy, k=1,...,2" = 1. Since G is continuous on [0,1], it follows G( ) =0, te[0,1],
and thus g(s) =0 for almost every s € [0, 1]. 0

From lemma 3.2.1 it follows that two arbitrary functions f,g € L?([0,1]) have expan-
sions f = Y2 (f, H, )H and g = ¥22,({g, Hy)H,, (these series converge in L%([0,1])) and

(f7 ) Zn 1(f7 )( g, > (Parseval ldentItY)

Definition 3.2. 2
The functions S, ( fo s)ds = (1194, Hn), t € [0,1], n € N are called Schauder functions.
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AS1(H) AS2(t) AS3()

14— — —

S

Abb. 3.2: Schauder functions

Lemma 3.2.2
It holds:
1. Sp(t) 20,t€[0,1], ne N\ {1},
2. Y2 Sonai(t) <2272, ¢ €[0,1], neN,

3. Let {ay, }nen be a sequence of real numbers with a,, = O(nf), € < %, n — oo. Then the series
Yo 1 anSn(t) converges absolutly and uniformly in ¢ € [0,1] and therefore is a continuous
function on [0, 1].

Proof 1. follows directly from definition 3.2.2.

2. follows since functions Sonyy for k = 1,...,2" have disjoint supports and Son i (t) <
SQ"+k(3IZ_:11) = 2_5_17 e [071]

3. It suffices to show that Ry, = sup,[o 1] Lkson [ak|Sk(t) —— 0. For every ke N and ¢ >0
’ n—oo
it holds |ag| < ck®. Therefore it holds for all t € [0,1], n e N

Y aklSk(t) < -2+, Y Sk(t) < c-2(mDe 9751 ¢ (L gemn(5e)

2n<k<2n+l 2n<k<2n+l

Since ¢ < %, it holds R, <c-2°% 5 o-n(z=e) 0.

m—o0

Lemma 3.2.3
Let {Y, }nen be a sequence of (not necessarily independent) random variables defined on (2, A, P),

Y,, ~N(0,1), n e N. Then it holds |Y,| = O((logn)%), n — 00, a.s.

Proof We have to show that for ¢ > /2 and almost all w € Q it exists a ng = no(w, c) € N such
that |Y,| < c(logn)% for n >ng. Y ~N(0,1), >0, it holds

P(Y > x)

I
=)
ﬁ

3

ml

wfSe

Q.

Ny

I
Fo
8]

8
—
[
< | =
—
Q,
—
ml

wfSe

o S —



42 3 Wiener process

We also can show that ®(x NLle_%, x — 00.) Thus for ¢ >+/2 it holds
Ver @
% P(al > clogm)®) s 2 3 (ogn)Eer T 5 < T B tog )
o> e(logn)2) <t —= ogn) s Tlogn & V2 ogn T < oo.
n>2 n>2 \/_ n>2

According to the Lemma of Borel-Cantelli (cf. WR, Lemma 2.2.1) it holds P(n,, Ugsp, Ax) =
if ¥ P(Ag) < oo with Ag = {|Yx| > e (log kz)%}, k € N. Thus Ay occurs in infinite number only
with probability 0, with |Y,| < ¢(log n)% for n > ng. 0

3.2.2 Wiener process with a.s. continuous paths

Lemma 3.2.4

Let {Y,, }nen be a sequence of independent A (0, 1)-distributed random variables. Let {ay}nen
and {b, }nen be sequences of numbers with Y2, agm x| < 277, Y27 |bomk| < 2%, meN. Then
the limits U = 20, a, Y, and V = Y22, b, Y, U ~ N (0,552, a2), V ~ N(0,55°, b2) exist a.s.,
where cov(U,V) =¥ apb,. U and V are independent if and only if cov(U, V) =

Proof Lemma 3.2.2 and 3.2.3 reveal the a.s. existence of the limits U and V' (replace a,, by Y,
and S, by e.g. b, in Lemma 3.2.2). From the stability under convolution of the normal distri-
bution it follows for U™ = ¥™  4,Y,, V™ =™ b,V that U™ ~ N(0,£7,a2), V™) ~

N0, 5™, b2). Since U™ S U, v Ly it follows U ~ N(0, 52, a2), V ~ N(0, 52, b2).
Moreover, it holds

lim cov(U™, V(M)

m—>oo

cov(U, V)

m

= lim 7 aibj cov(¥;,Y))

3,7=1

m [e <]
= lim a;b; =) a;b;

according to the dommated convergence theorem of Lebesgue, since according to Lemma 3.2.3

it holds |Y;,| < ¢ (log n) for n > Ny, and the dominated series converges according to Lemma
———

<cné®, £<%
3.2.2:
2m+1 as. 2m+1 . .
Yo anbkYnVi &Y apbpc®ntkS < 220D 975 975 2 9m(2m 1y 9c 5,
n,k=2m n,k=2m

For sufficient large m it holds Z;’: ke OnbE Y Y < Z;’Zm 27(1-2)j ¢ oo, and this series converges
a.s.

Now we show
cov(U,V) =0 <= U and V are independent

Independence always results in the uncorrelation of random variables. We prove the other
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direction. From (U™, V(™) BN (U, V) it follows Luem) ym)y —— P,v), thus

m—00

QO(U(m)y(m))(s,t) = hm Eexp{i(t ZakYk+s Z bnYr)
k=1 n=1

= lim Eexp{i ) (tag + sby)Yy} = h H
meee k=1 k=
LT

exp{i(tay + sbr) Yy}

T 1—[ exp{ (tak + Sbk) tak + Sbk)

m—)oo

2 oo 2 oo
= exp{—t— > ak}exp ts kz axby exp{—— > bk} u(t)pv(s),
1

cov(U,V)=0

s,t € R. Thus, U and V are independent if cov(U, V) = 0. O

Theorem 3.2.1

Let {Y,, n € N} be a sequence of i.i.d. random variables that are A(0,1)-distributed, defined

on a probability space (£2,.4,P). Then there exists a probability space (£0,.Ao, P) of (2,4, P)

and a stochastic process X = {X(¢), t € [0,1]} on it such that X (¢t,w) = ¥ 72 Y, (w+)S,(t),
€[0,1], we Qo and X 2 W. Here, {Sn }nen is the family of Schauder functions.

Proof According to Lemma 3.2.2, 2) the coefficients S, (t) fulfill the conditions of Lemma 3.2.4
for every t € [0,1]. In addition to that it exists according to Lemma 3.2.3 a subset Qy c Q,
Qo € A with P(Qq) = 1, such that for every w € Qq the relation |Y,(w)| = O(yv/logn), n — oo,
holds. Let Ag = A n Q. We restrict the probability space to (€g,.49,P). Then condition
n = Yo(w) = O(n®), € < 35, is fulfilled since \/logn < n® for sufficient large n, and according
to Lemma 3.2.2, 3) the series Y72 Y, (w)Sn(t) converges absolutely and uniformly in ¢ € [0, 1]
to the function X(w,t), w € Qp, which is a continuous function in ¢ for every w € Qg. X (-,t)
is a random variable since in Lemma 3.2.4 the convergence of this series holds almost surely.
Moreover it holds X () ~ N (0, X2, S2(t)), t € [0,1].
We show that this stochastic process, defined on (€0,.49, P), is a Wiener process. For that we
check the conditions of Definition 3.1.1. We consider arbitrary times 0 <ty < to,t3 <t4 <1 and
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evaluate

cov(X(t2) - X (t1), X (t4) - X(t3))

3 Wiener process

cov( 3 Ya(Sn(t2) - Sultr)), i Ya(Sa(ta) - Su(ts)))

n=1

gk

(Sn(t2) = Sn(t1)) (Sn(ts) = Sn(t3))

3
I
—_

gk

(Hns 10,t01) = (Hns Lo 07)) %

) 1[0,t4]> - <Hn’ 1[0,t3]>)

~~~ 3
1

—
=

gk

(Hn, L0.45] = Ljo,0 )1 Hns Lo,£4] = L[0,24])

=
—_

0,21 =~ L[0,17> L[0,641 — L[0,t1)

L0575 10,021} = (L[0,475 L[0,ta])

(L0421 L[0,t51) + (10,1175 L0,t5])

min{te,t4} — min{ty, t4} — min{ty, t3} + min{ty, 3},

—~ e~ 3

by Parseval inequality and since < 1fg ], 1[04 >= fomln{s7t} du = min{s,t}, s,t € [0,1]. If 0 <
t1 < tg £ t3 < tg < 1, it holds COV(X(tQ) - X(tl),X(t4) —X(tg)) =ty —t1 —to +t1 = 0, thus
the increments of X (according to Lemma 3.2.4) are uncorrelated. Moreover it holds X (0) ~
N(0,%52,52(0)) = N(0,0), therefore X (0) “2" 0. For t; =0, tg =t, t3=0, t4 =t it follows that
Var(X(t)) =t,te[0,1], and for t; =t3 = s, to = t4 = t, that Var(X(t)-X(s)) =t-s-s+s=1t-s,
0<s<t<1. Thus it holds X(t) - X(s) ~N(0,t-s), and according to Definition 3.1.1 it holds

xdw.

O

Remark 3.2.1 1. Theorem 3.2.1 is the basis for an approximative simulation of the paths
of a Brownian motion through the partial sums X (t) = Yo YiSk(t), t € [0,1], for

sufficient large n € N.

2. The construction in Theorem 3.2.1 can be used to construct the Wiener process with
continuous paths on the interval [0,¢o] for arbitrary to > 0. If W = {W (t), t€[0,1]} is a
Wiener process on [0,1] then Y = {Y (¢), ¢ € [0,t0]} with Y(t) = \/%W(%), t €[0,t0], is

a Wiener process on [0,%].

Exercise 3.2.1
Prove that.

3. The Wiener process W with continuous paths on R, can be constructed as follows. Let
W) = {w (¢, te[0,1]} be independent copies of the Wiener process as in Theorem
3.2.1. Define W(t) = Y22, 1(t € [n - 1,n])[Spzs W (1) + W) (¢ — (n - 1))], ¢ >0, thus,

WM (), telo,1],

W(t) =

Exercise 3.2.2

W)+ W (t-1), te[1,2],
WO+ W)+ WO(t-2), te[2,3],
etc.

Show that the introduced stochastic process W = {W(t), ¢t >0} is a Wiener process on R,.
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W(n(l) -

wO+w®(1)

\ 4

Abb. 3.3:

3.3 Distribution and path properties of Wiener processes

3.3.1 Distribution of the maximum

Theorem 3.3.1
Let W = {W(t), t € [0,1]} be the Wiener process defined on a probability space (£2,F,P).

Then it holds:
2 [ s
P(maX W(t) > l’) = \/jf e 2dy (3.3.1)
te[0,1] T Jz

for all z > 0.

The mapping maxyo,1) W (t) : Q > [0, 00) given in relation (3.3.1) is a well-defined random
variable since it holds: maxe[g 1] W (t,w) = limy, e max;=1 W(%,w) for all w € Q since the
trajectories of {W(t), t € [0,1]} are continuous. From 3.3.1 it follows that max[g 1] W (t) has
an exponential bounded tail: thus maxyg 1) W {(t) has finite k-th moments.

Useful ideas for the proof of Theorem 3.3.1
Let {W(t), t € [0,1]} be a Wiener process and Z1, Zs, ... a sequence of independent random
variables with P(Z; =1) = P(Z; = -1) = 1 for all i > 1. For every n € N we define {W"(t), t e

[0,1]} by W"(t) = % + (nt - [ntJ)Zln—T, where S;=Z1+...+Z;,i>1, Sy =0.

Lemma 3.3.1
For every k > 1 and arbitrary ¢1,...,tx € [0,1] it holds:

(W(n)(tl)’ - ,,W(”)(tk))T LW (t),...,W(te))T.

Proof Counsider the special case k = 2 (for k > 2 the proof is analogous). Let ¢; < to. For all
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s1, 82 € R it holds:

T T Sn Sn -5 n
WO (1) + 52W (1) = (s1+ 52) o +82( nta) = Sl 1)

vn vn

+Z[ntlj+1((nt1_lnt1J)\/— \8/2—)

S
+Zny )51 (k2 = [nta]) =

NG

since Siuty| = Snty| + Slnta] = Slnty|+1 + S|nty |+1-

Now observe that the 4 summands on the right-hand-side of the previous equation are inde-
pendent and moreover that the latter two summands converge (a.s. and therefor particularly
in distribution) to zero.

Consequently, it holds

| ~ y . 51+59 ;52 -
lim EelstWM ()W (1)) L ) Eel v Slnnl Bt U (Slnea) ~S(ney o)
Tim n—oo
[ntl nt1
= lim BTV U] Bt VA Slnta -nt 11
n—»oo
CLT,=CMT e 2(S1+52)2 _t2;t18%
_ ¢ %( t1+25182t1+8§t2)
= e %( 2t1+2s1so min{ty,ta}+s3t2)

= CW (1), W (t2)) (515 52),
where @y (4,),w (t,)) 18 the characteristic function of (W (1), W (t2)). 0
Lemma 3.3.2 )
Let W™ =max;c[o1; W™ (t). Then it holds:

e d Lo S,, forallneN

T e,

. 2 T2
lim POW™ <2) =1/ 2 / e dy, forall 220,
n—»oo ™ JO

Proof of Theorem 3.3.1. We shall prove only the upper bound in Theorem 3.3.1.
From Lemma 3.3.1 and the continuous mapping theorem it follows for z > 0, k > 1 and ¢1,...,t; €
[0,1] that

and

Without proof

limP( max W(”)(t)>x):P( max W(t)>x),

n—oo  \te{ty,...tx} te{te,..,tr}

since (x1,...,x)) = max(z1,...,x;) is continuous.
Consequently, it holds

liminf P ( max W™ (t) > ;U) >P ( max W(t) > :c) ,
n—>oo te[0,1] te{t1,...,tr}
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since { max W (t) >z} ¢ {max W () > z}.

te{ti,...,tx} te[0,1]
With (t1,...,t;)" = (%,...,%)T and n[lg)lc]W(t) = k}lm rrllax W(%) a.s. (and therefore partic-
te|0, —00 1= s

ularly in distribution) it holds
limian(maX [ARIO B x) > lim P( max W(l) > ac) = P(max W(t) > CL’) .
n—>00 te[0,1] k—oo  \i=1,..k k te[0,1]
Conclusively, the assertion follows from lemma 3.3.2. |

Corollary 3.3.1
Let {W(t), t >0} be a Wiener process. Then it holds:

p(nm@= )=1

t—oo

Proof Exercise. O

3.3.2 Invariance properties

Specific transformations of the Wiener process again reveal the Wiener process.

Theorem 3.3.2
Let {W( ), t > 0} be a Wiener process. Then the stochastic processes {Y (), ¢t > 0},
i= ., 4, with

YD) = -W(), (Symmetry)
YO (t) = W(t+to)-W(ty) foraty>0, Translation of the origin)
YyOI(t) = VeW (1) forac>0, (Scaling)
1
Y4 (¢) { W t())’ ii 8’ (Reflection at t=0)

are Wiener processes as well.

Proof 1. Y(® j=1,... 4, have independent increments with Y(i)(tg) ~Y O (t1) ~ N(0, g —
t1).

2. YO(0)=0,i=1,...,4.

3. Y(® i=1,...,3, have continuous trajectories. {Y(i)(t), t > 0} has continuous trajectories
for t > 0.

4. We have to prove that Y *)(¢) is continuous at ¢ = 0, i.e. that lim,_g tW(%) = 0.

W(t) a.s.

limy_q tW(%) = lim¢ 0o =" 0 because of Corollary 3.3.1.

Corollary 3.3.2
Let {W(t), t >0} be the Wiener process. Then it holds:

p (sup W(t) = oo) _p (itggvv(t) _ —oo) _ 1

t>0



48 3 Wiener process

and consequently

P (sup W(t) = oo, inf W(t) = —oo) )
t>0 t>0

Proof For z,c> 0 it holds:

t T
P (sttzlg)W(t) > :B) =P (sggW (E) > \/E) =P (StlZl(I))W(t) > %)
=P ({su(l))W(t) = O} U {su(;))W(t) = oo}) =P (supW(t) = 0) +P (su%)W(t) = oo) =1.
Moreover it holds

P (sup W(t) = 0)

t>0

P(supW )<P(W(t)<0 sup W (t) < )
£20 t21

1l
)

(W ) < 0,sup W(t)—W(l))S—W(l))
t>1

0

—o° t>1

PlsupW(t) -W(1) <-W(t) | W(1) = :U) P(W(1) edz)

T

8

t>0
0

- fo sup(W (1) = W(1)) < -z | W(1) = x) P(W(1) e dx)

PlsupW(t) = )P(W(l) € dr)

—oo t>0

P (sup W(t) = 0) 1

20 2’

thus P (supsg W(t) =0) =0 and thus P (sup,so W(t) = o) = 1.

Analogously one can show that P (infio W (t) = —o0) = 1.
The remaining part of the claim follows from P(An B) =1 for any A, B € F with P(A) =
P(B)=1. 0

Remark 3.3.1
P (supyso X (t) = o0, inf;50 X (t) = —o0) = 1 implies that the trajectories of W oscillate between
positive and negative values on [0, 00) an infinite number of times.

Corollary 3.3.3
Let {W(t), t >0} be a Wiener process. Then it holds

P(w e Q:W(w) is nowhere differentiable in [0, 00)) = 1.
Proof

{w e Q:W(w) is nowhere differentiable in [0, 00)}
=Ny o{w € Q: W(w) is nowhere differentiable in [n,n + 1)}.

It is sufficient to show that P(w € Q: W (w) is differentiable for a tg = tg(w) € [0,1]) = 0. Define
the set

4
A = {w €0 it exists a fo = to(w) € [0, 1] with W (fo(w) + h,w) = W (to(w),w))| <mh, Vh e [0, —]}
n
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Then it holds
{w e Q:W(w) differentiable for a tg =to(w)} = U | Anm-
m21n21

We still have to show P(U»1 Ups1 Apm) = 0.
Let ko(w) = mink=172,,_,{% >to(w)}. Then it holds for we A,,, and 7 =0,1,2

‘W(k()(w)+j+17w) —W(kO(W)+j,W)‘

n n

IA

‘W(M,w)—W(tg(w),w)

n

+‘W(@,w)-vv(tl(w),w)

&m

n

Let A, (k) = W(%) - W(%) Then it holds

P(A.m)

IA
-
—
Cs
KD"’
=
3
—~~
=
+
<
-~
IA
———

IA
NgE
-
e

IN
—~~~
S
+
—_
N
—

by the independence of the increments of the Wiener Process.
Since Ay € Aps1m, it follows P (Apyy,) = 0. O

Corollary 3.3.4
With probability 1 it holds:

sup  sup Z |[W(t;) =W (ti—1)| = oo,

n>1 0<tp<...<tp<l j=1

i.e. {W(t), te[0,1]} possesses a.s. trajectories with unbounded variation.

Proof Since every continuous function g : [0,1] — R with bounded variation is differentiable
almost everywhere, the assertion follows from Corollary 3.3.3.

Alternative proof

It is sufficient to show that lim,,— e 212:1

() (58] -

Let Z,, = Z%:l (W (21—,2) -W ( (i;i)t))Q—t. Hence EZ,, =0 and EZ,QZ = 2271 and with Tchebysh-

eff’s inequality

EZ2 t 2 N a.s
P(|Zn] <¢) < 62n = (g) 27 e ZP(|ZH| >¢e) “£0.
=1
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From lemma of Borel-Cantelli it follows that lim, .. Z, =0 almost surely and thus

. , . ,
0<t < g(w(;_i)_w((z 2nl)t))

i=1

Hence the assertion follows since W has continuous trajectories and therefore

lim max W(g)—W(%) =0.

n—>oo 1<k<2n

3.4 Additional exercises

Exercise 3.4.1

Give an intuitive (exact!) method to realize trajectories of a Wiener process W = {W(t), t €
[0,1]}. Thereby use the independence and the distribution of the increments of W. Addition-
ally, write a program in R for the simulation of paths of W. Draw three paths ¢ = W (t,w) for
t€[0,1] in a common diagram.

Exercise 3.4.2
Given are the Wiener process W = {W (t), t € [0,1]} and L := argmax;e[o )W (). Show that it
holds: 5

P(L<x)==arcsiny/x, z¢€l[0,1].

s

Hint: Use relation max,.[g 4 W (r) d |[W(t)].

Exercise 3.4.3
For the simulation of a Wiener process W = {W(t), t € [0, 1]} we also can use the approximation

Wa(t) = Y. Sk(t)zk
k=1
where Si(t), t € [0,1], k > 1 are the Schauder functions, and z ~ N'(0,1) i.i.d. random variables

and the series converges almost surely for all ¢ € [0,1] (n — o).

a) Show that for all ¢ € [0,1] the approximation W, (t) also converges in the L?-sense to
W (t).

b) Write a program in R (alternative: C) for the simulation of a Wiener process W =
{W(t), te[0,1]}.

c) Simulate three paths ¢t » W(t,w) for ¢ € [0,1] and draw these paths into a common
diagram. Hereby consider the sampling points tj = %, k=0,...,n with n=2%-1.

Exercise 3.4.4
For the Wiener process W = {W(t), t > 0} we define the process of the maximum that is given
by M = {M(t) := maxg[g W(s), t 20}. Show that it holds:
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a) The density f«) of the maximum M (t) is given by

2 z?
fuy(2) = \/;exp {_2_t} 1{z >0}.

Hint: Use property P(M (t) > z) = 2P(W (t) > x).

b) Expected value and variance of M (t) are given by

EM(t) = \/% Var M(t) = t(1 - 2/).

Now we define 7(z) := argmin ¢z {W(s) = 2} as the first point in time for which the Wiener
process takes value .

¢) Determine the density of 7(z) and show that: Er(z) = co.

Exercise 3.4.5
Let W = {W(t), t > 0} be a Wiener process. Show that the following processes are Wiener
processes as well:

0, t=0, ~
Wl(t)z{tW(l/t), £0 Wa(t) =+/cW (t/c), ¢>0.

Exercise 3.4.6
The Wiener process W = {W(t), t > 0} is given. Size Q(a,b) denotes the probability that the
process exceeds the half line y = at +b, t 20, a,b > 0. Proof that:

a) Q(a‘a b) = Q(bva) and Q(a7b1 +b2) = Q(avbl)Q(avbQ)a
b) Q(a,b) is given by Q(a,b) = exp{—2ab}.



4 Lévy Processes

4.1 Lévy Processes

Definition 4.1.1
A stochastic process { X (¢), ¢t >0} is called Lévy process, if

1. X(0)=0
2. {X(¢)} has stationary and independent increments,
3. {X(t)} is stochastically continuous, i.e for an arbitrary ¢ > 0, to > 0:

lim P(|X (t) - X (to)| > €) = 0.

t—to

Remark 4.1.1
One can easily see, that compound Poisson processes fulfill the 3 conditions, since for arb. € >0
it holds

P(IX(t) - X (to)] <) > P (IX (1) - X (t0)| > 0) < 1 = e M=ol .

t—to

Further holds for the Wiener process for arb. £ > 0

P (X (1) - X(t0)] > <) \/ s [ (s )

4.1.1 Infinitely Divisibility

Definition 4.1.2
Let X : Q - R be an arbitrary random variable. Then X is called inﬁnitely divisible, if for

arbitrary n € N there exist i.i.d. random variables Yl(n) Y(") with X = Y(n) .+ Yn(n).

Lemma 4.1.1
The random variable X : Q2 - R is infinitely divisible if and only if the characteristic function
px of X can be expressed for every n > 1 in the form

ox(s) =(pn(s))" forall seR,

where ,, are characteristic functions of random variables.

52
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Proof |, =«
Y, r " did, X Y 4+ v Hence, it follows that ox(s) = TT&y ¢y (s) =

(pn(s))".

13 “
L —

ox(8) = (pn(s))™ = there exist Yl(n),...,Yn(n) iid. with characteristic function ¢, and
oy, () = (pn(s))" = px(s). With the uniqueness theorem for characteristic functions

it follows that X d Yl(n) +.. 4+ ern). O

Theorem 4.1.1
Let {X(t), t >0} be a Lévy process. Then the random variable X (¢) is infinitely divisible for
every t > 0.

Proof For arbitrary ¢ > 0 and n € N it obviously holds that

=X (2) ((2)- 5 () ()5 (52)

Since {X(t)} has independent and stationary increments, the summands are obviously inde-

pendent and identically distributed random variables. O
Lemma 4.1.2
Let X1, X5,...: Q2 = R be a sequence of random variables. If there exists a function ¢ : R - C,

such that ¢(s) is continuous in s = 0 and lim,_e @x, (s) = ¢(s) for all s € R, then ¢ is the
characteristic function of a random variable X and it holds that X, 4 X.

Definition 4.1.3
Let v be a measure on the measure space (R,B(R)). Then v is called a Lévy measure, if
v({0}) =0 and

Amin {yQ, 1} v(dy) < oo. (4.1.1)

] >
1

Abb. 4.1: y - min(y?,1)
Note
e Apparently every Lévy measure is o-finite and
v((-¢,6))<e, foralle>0, (4.1.2)

where (-g,£) =R~ (-¢,¢).
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o In particular every finite measure v is a Lévy measure, if v({0}) = 0.
o If v(dy) = g(y)dy then g(y) ~ ﬁ for y — 0, where ¢ € [0, 3).

o An equivalent condition to (4.1.2) is

2

/]1% I -?i J? v(dy) < oo, since

%
1+y2

2
Y <min{y?1} <2 (4.1.3)

Theorem 4.1.2
Let a € R, b > 0 be arbitrary and let v be an arbitrary Lévy measure. Let the characteristic
function of a random variable X : {2 - R be given through the function ¢ : R - C with

bs?

©(s) = exp {ias ey + /R (eisy -1-isyl(ye (-1, 1))) y(dy)} for all seRR. (4.1.4)

Then X is infinitely divisible.
Remark 4.1.2 o The formula (4.1.4) is also called Lévy-Khintchine formula.
e The inversion of Theorem 4.1.2 also holds, hence every infinitely divisible random variable

has such a representation. Therefore the characteristic triplet (a,b,v) is also called Lévy
characteristic of an infinitely divisible random variable.

Proof of Theorem 4.1.2 1st step
Show that ¢ is a characteristic function.
For y € (-1,1) it holds

) 00 (s k ) k ook
|ezsy 1= i8y| — Z (Zsy) 1= isy — Z (Zsy) < y2 Z S_ < y2C
k=0 k! k=2 k! k=2 k!
N——

=C
Hence it follows from (4.1.1) that the integral in (4.1.4) exists and therefore it is well-
defined.

o Let now {c,} be an arbitrary sequence of numbers with ¢, > ¢p41 > ... > 0 and limy, 00 ¢ =
0. Then the function ¢, : R - C with

bs?

nlS) = ex 18 la - vid )__ ex {] eisy_ll/d }
on(s) p{ ( f[_%cﬂ]m(_my (dy)) - = } p [_CM]C( ) v(dy)

is the characteristic function of the sum of independent random variables Zl(n) and ZQ(n),

since

— the first factor is the characteristic function of the normal distribution with expec-
tation a — f[_cn en]en(-1,1) YV(dy) and variance b.

— the second factor is the characteristic function of a compound Poisson process with
parameters

A=v([-cn,cn]9) and Py() =v(-n[-cn,cn]/v([-cn,cn]))
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o Furthermore lim, . @n(s) = ¢(s) for all s € R, where ¢ is obviously continuous in 0,
since it holds for the function ¢ : R - C in the exponent of (4.1.4)

P(s) = /R (€Y -1 -isyl(ye (-1, 1)))v(dy) for all seR

that |[¢(s)| = cs? f(_lvl)yQV(dy) + f(—l,l)c 'Y —1|v(dy). Out of this and from (4.1.3) it
follows by Lebesgue’s theorem that lir%w(s) = 0.

o Lemma 4.1.2 yields that the function ¢ given in (4.1.4) is the characteristic function of a
random variable.

2nd step
The infinite divisibility of this random variable follows from Lemma 4.1.1 and out of the fact,
that for arbitrary n € N Z is also a Lévy measure and that

b .2

©o(s) = exp {igs - "7 + A (eisy -1-isyl(ye (-1, 1))) (%) (dy)} for all seR.

n

Remark 4.1.3
The map n: R - C with

s ;
n(s) =ias—%+[R(ezsy—l—isyl(ye (-1,1))) v(dy)

from (4.1.4) is called Lévy exponent of this infinitely divisible distribution.

4.1.2 Lévy-Khintchine Representation
{X(t), t >0} — Lévy process. We want to represent the characteristic function of X(t), ¢t >0,
through the Lévy-Khintchine formula.

Lemma 4.1.3

Let {X(t), t >0} be a stochastically continuous process, i.e. for all € >0 and ty > 0 it holds
that limy_, P(|X (t) - X (to)| > €) = 0. Then for every s € R, t —> @ x(4)(s) is a continuous map
from [0, 00) to C.

Proof o y+—> €'Y continuous in 0, i.e. for all € >0 there exists a §; > 0, such that

: 3
sup |elsy - 1| < 3
yE(—51,(51)

o {X(t), t >0} is stochastically continuous, i.e. for all ¢y > 0 there exists a d2 > 0, such that

sup P (|X(t) - X(to)| > 1) <

t>0, |t—t0|<52

RO
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Hence, it follows that for s € R, ¢ >0 and |t - to| < J2 it holds

|E (eisX(t) _e'isX(to))| <E

o) (5) = ex(10) (5)]

X 1) (X=Xt _ 1)

is(X(t)-X is
< EleX® (tO))—1|=A§\e Y =1 Px(1)-x(t0) (4y)
< e — 1Py (- d
f(_ml)\ | Px(t)-x(t0) ()
+ f e’V - 1‘ PX(t)—X(tO)(dy)
(_61751)0\_ —
<2
< sup [V -1+ 2P (IX(t) - X (to)] > 61) <e.

ye(=01,01)

Theorem 4.1.3
Let {X(t), t >0} be a Lévy process. Then for all ¢ > 0 it holds

ex((s) =€) seR,

, where n: R - C is a continuous function. In particular it holds that

¢
ox)(s) = etn(s) = (e”(s)) = (goX(l)(s))t7 for all seR, t>0.
Proof Due to stationarity and independence of increments we have

Px ey (5) = EoisX(t+) _ g (eisX(t)eis(X(t+t’)—X(t))) = ox((8)exn(s), seR.
Let gy : [0,00) - C be defined by gs(t) = ©x()(s), s € R, gs(t +t') = gs(t)gs(t'), t,¢' > 0.
X (0) =0.

gs(t +
9s(0)

t') = gs(t)gs(t'), t,t'>0,
= 17
gs : [0,00) - C continuous.

Hence there exists 7 : R — C, such that g4(t) = ¢”®) for all s € R, ¢ > 0. ox(1)(s) = ") and it
follows that n is continuous. O

Lemma 4.1.4 (Prokhorov):
Let 1, pa, ... be a sequence of finite measures (on B(R)) with

1. sup,s; pn(R) < ¢, ¢ = const < oo (uniformly bounded)

2. for all £ > 0 there exists B. € B(R) compact, such that fulfills the tightness condition
SUp,»; fin (BE) < e. Hence follows that there exists a subsequence i, , fin,, ... and a finite
measure over B(R), such that for all f:R — C, bounded, continous, it holds that

i [ ) = [ ()

Proof See [14], page 122 - 123. 0
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Theorem 4.1.4
Let {X(t), t >0} be a Lévy process. Then there exist a € R, b > 0 and a Lévy measure v, such
that

bs2

ox(1)(s) = P A (eisy -1-iyl(ye (-1, 1))) v(dy), for all seR.

Proof For all sequences (,,)nen € (0, 00), with lim ¢, =0, it holds

n—oo

tan(s) _ s)—1
Chim T M, (4.1.5)

t=0 N—>o° n n—»00 tn

n(s) = ()

since 1 : R - C is continuous. The latter convergence is even uniform in s € [-sg, so] for any
sp > 0, since Taylor’s theorem yields

tan(s) _ 1 1 = k
lim |n(s) - 70 - dim n(s)-—>y (Ean(s))
n—co tn n—co te 2 K

R (tnn(S))""‘
= lim|— ) ———
n—oo tn k:z:Q k!
: (tnn
= 1
nivoo | 1;1 k:+1)
: = n77(5)
= 1
nro | Z:: (k+ 1)
t Mk 1
< lim Mztnz | » where M= sup [n(s)]| < o0
oo (k 1) €[-s0,50]
t,MFY 1
- lim M2, 3
noos Z (k-1)! k(k+1)
tn M|
< lim a2, 3 M
S abe Z (k-1)!
= lim MQtnelt"M|
= 0

Now let t,, = % and P, be the distribution of X (%) Hence it follows that

A Px(1y(s) -1
lim nf(e’sy 1)P,(ds) = lim n% =n(s)

n—oo n—oo =
n

nmf [ ey _ (dy)ds-[on(s)ds
n—o00 -80

and consequently

. 1 s
lim n/ 1- sin(soy) P, (dy) = lim n/ / 'Y — ) dsPy(dy) = —— f O7)(5)ds.
n—»oo R Soy n—oo R 250 280 -850

Since 1 : R - C is continuous with 7(0 ) 0 and it follows from the mean value theorem, that

for all € > 0 it exists dp > 0, such that | s 550 (s)ds| <e. Since 1 - % > %, for |soy| > 2,
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it holds: for all € > 0 there exist sy > 0, ng > 0, such that

hmsup oy Pn(dy) Slimsupn[(l—w) P.(dy) <e
n—oo 2 {y:|y|25} n—oo R SoY

Hence for all € > 0 there exist sg >0, ng >0, such that
n f , 1 Pn(dy) <4e,  for all n 2ng.
{y:|y|2%}

Decreasing sg gives
n [ P.(dy) <4e, foralln>1.
{viyi=2}

2 .
4 Sc(l—smy), forall y#0 andac>0.
L+y? y
Hence, it follows that
2
y ! 4
S Pn(dy) < for a ¢’ < oo.
nglfnjl%l+y2 n(dy) <c rac <oo

Let now p, : B(R) - [0,00) be defined as
pn(B) = / Ty n(dy) for all B € B(R).

It follows that {sn},,y is uniformly bounded, sup,,s; pn(R) < ¢’. Furthermore holds % <1,
SUpP,,>1 Mn ({y y| > %}) <4e and {pn },,oy relatively compact. After lemma 4.1.3 it holds: there

tim [ @ (@) = [ F@)nay)

for a measure p and f continuous and bounded. Let for s € R the function fs: R — C be defined
as

exists {fin, } ey, Such that

(eisy -1-is sin(y)) 1;—32, y+0,

fs(y)z{ 2

-5 , otherwise.
Hence follows that fs is bounded and continuous and
n(s) = Ai_l)rgonﬁ%(eisy—l) P.(dy)
=t [ Awda(dy) +isn [ singPa(ay))
= kliggo(f fs (V) piny (dy) +isny, fRsinyPnk(dy))
_ / fow)in(dy) + lim isny A% sinyPy, (dy)

b .
ia's — % + A@ (ezsy -1 —issiny) v(dy),

n(s)
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for all s € R with a’ = limy_,e 51, [ sinyPp, (dy) < oo, b= ({0}), v: B(R) - [0, 00),

1+y>
v (dy) :{ o p(dy), y¢8,
, y=0.

[R lyl(y € (-1,1)) —siny|v(dy) < co.

1+q?
lyl(y € (-1,1)) —siny| 2y <c’, forally#0 andac”>0.
Yy

Hence follows that
. b82 is .
n(s) =ias — -t A@ (e -1-isyl(ye(-1,1))) v(dy), forall seR.

a=a'+A§(yl(yE (-1,1)) —siny) v(dy).

4.1.3 Examples

1. Wiener process (it is enough to look at X (1))
52
X(1) ~N(0,1), px1y(s) =7 and hence follows

(a,b,v) =(0,1,0).

Let X = {X(¢), t 20} be a Wiener proess with drift p, i.e. X(t) = ut + cW(t), W =
{W(t), t >0} — Brownian motion. It follows

(a,b,v) = (M,O'Q,O).

(S) _ EeisX(l) _ Ee(u+JW(1))is _ e,uz's

L2
Yx(1) ewy(os) =72, seR.

2. Compound Poisson process with parameters (\, P,,)
X(t) = XD, N(t) ~ Pois(At), Us i.id. ~Py.

<PX(1)(5)

|
@
"
o
——
>
—_—

L eism—l) PU(daz)}
exp{)\is‘[Rl‘l(xe[—1,1])PU(dx)+)\A(eisz—1—isxl(xe[—1,1]))PU(d:U)}

exp{Ais/_llmPU(d:L‘)+>\/R(eisx—1—isx1(:ne[—1,1]))PU(dm)}, seR.

Hence follows

1
(a,b,v) = ()\ f1 xPU(dx),O,)\PU) . Py — finite on R.
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3. Process of Gauss-Poisson type
X ={X(t), t >0}, X(t) = X1(t) + Xo(t), t > 0.
X1 = {X1(t), t 20} and X5 = {X>5(t), ¢t >0} independent.
X1 — Wiener process with drift 4 and variance o2,

X5 — Compound Poisson process with parameters A, Py.

ex)(8) = vx,1)(8)ex,) ()

025> :
exp | isp — — A / e —1Py(dx)
R

1 2.2
exp {z’s (,u+Af1 xPU(daz)) - 028

+Ax(eisx-1-isx1(xe[-1,1]))PU(dx)}, seR.

Hence follows )
(a,b,v) = (,u+ )\/1 $PU(d$),O’2,)\PU) .

4. Stable Lévy process
X = {X(t), t >0} — Lévy process with X(t) ~ « stable distribution, a € (0,2]. To
introduce a-stable laws v, let us begin with an example.
If X =W (Wiener process), then X (1) ~ A'(0,1). Let Y,Y7,...,Y, be iid. N(u,c?)-
variables. Since the normal distribution is stable w.r.t. convolution it holds

Yi+...+ Y, ~N(np,no?) d VY +np—/np
= \/EY+u(n—\/ﬁ)

= n%Y+u(n% —n%)

= néY+u(n—ni), a=2.

Definition 4.1.4
The distribution of a random variable Y is called a-stable, if for all n € N independent copies
Yi,...,Y, of Y exist, such that

Y1+...+YngnéY+dn,

where d,, is deterministic. The constant « € (0,2] is called index of stability.
Moreover, one can show that
1
an{ u(n—na), azl,

pnlogn | a=1.
Example 4.1.1 e «a=2: Normal distribution, with any mean and any variance.

o «a=1: Cauchy distribution with parameters (u,c?). The density:
o
fr(z) = , xeR.
() 7r((ac—,u)2+02)

It holds EY? = oo, EY does not exist.
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e a= %: Lévy distribution with parameters (u,o?). The density:

1
e ks Sl )

, otherwise.

These examples are the only examples of a-stable distribution, where an explicit form of
the density is available. For other « € (0,2), « # %, 1, the a-stable distribution is introduced
through its characteristic function. In general holds: If Y a-stable, « € (0,2], then E|Y|P < oo,
O<p<a.

Definition 4.1.5
The distribution of a random variable is called symmetric, if Y d y.
If Y has a symmetric a-stable distribution, « € (0, 2], then

oy (s) =exp{-c|s|"}, seR.

Indeed, it follows from the stability of Y that

1

(py (s))" = ey (nEs) . seR.

It follows that d, = 0, since ¢_y(s) = @y (s) = varphiy (=s). It holds: e/® = ¢7n3 s e R and
dp, = 0. The rest is left as an exercise.

Lemma 4.1.5

Lévy-Khintchine representation of the characteristic function of a stable distribution. Any
stable law is infinitely divisible with the Lévy triplet (a,b,v), where a € R arbitrary,

b 0%, a=2,
10, a<2.
and

d) = 0 , =2,
v(dz) = x‘fﬁl(wz())dx+|$|cﬁl(w<0)dx, a<2, ¢, 220 cp+c2>0

Without proof
Exercise: Prove that

P(Y[22), 5wt €570 @2
= , a<2
Definition 4.1.6
The Lévy process X = {X(t), t >0} is called stable, if X (1) has an a-stable distribution,
a € (0,2] (a=2: Brownian motion (with drift)).

4.1.4 Subordinators

Definition 4.1.7
A Lévy process X = {X(t), t >0} is called subordinator, if for all 0 < t; < to, X(t1) < X(t2) a.s.
Since

X(0)=0 as. = X(t)20, t20, as.
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This class of Subordinators is important since you can easily introduce f g(t)dX (t) as a
Lebesgue-Stieltjes-integral.

Theorem 4.1.5
The Lévy process X = X (t), t >0 is a subordinator if and only if the Lévy-Khintchine repre-
sentation can be expressed in the form

©x(1)(s) = exp {ias + [R (eisw - 1) V(dm)}, seR, (4.1.6)

where a € [0,00) and v is the Lévy measure, with

v((-00,0)) =0, Ammin{l,yz}y(dy)<m

Proof Sufficiency
It has to be shown that X (o) > X( ) L if tg >t > 0.
First of all we show that X(1) >0 a If v =0, then X(1) =a >0 a.s., hence
t iats
pxn(5) = (px)(s)) =€, seR.

X (t) = at a.s. and therefore it follows that X (¢) 1 and X is a subordinator.
If v([0,00)) > 0, then there exists N > 0 such that for all n > N it holds 0 < u([%, oo)) <oo. It
follows

©x(1)(s) = exp {ias + lim /1 (eisx -1) I/(dﬂ?)} = ¢ lim @,(s), seR,
n—oo P n—oo

where ¢, (s f 1 ( isz _ 1) v(dx) is the characteristic function of a compound Poisson process

v - m[%,m))

distribution with parameters (1/ ([%, oo)) , W) for all n € N. Let Z,, be the random

variable with characteristic function ¢,. It holds- Ly = va"l Uj, Np ~ Pois(u([%,oo))),

1
U; ~ ((rE[l );) hence follows Z,, > 0 a.s. and X(l) = +1lim Z,, > 0 a.s.. Since X is a Lévy
N——

process, it holds

x0=x(3)+ (e ()2 () ( () -x (7))
n n n n n
where, because of stationarity and independence of the increments, X (%) -X (%) $0 for

1<k <nfor all n. Hence X(q2) - X(q1) >0 a.s. for all ¢1,¢q2 € Q, g2 > q1 >0. Now let t1,t2 € R

such that 0 < ¢; < t3. Let { (n),qén)} be sequences of numbers from QQ with q(") < qén)

that q§n) Vi, qén) tt9, m—o00. For e >0

20 >0

such

P(X(ts)-X(t))<-¢) = P X(tg)—X(qgn))+X( (n )) X(qﬁn))+X(q§"))—X(t1)<—e

~

>0
P (002~ (1) = X (47) - X (1) < =)

P (X(tg) - X (qgm) < -g) +P (X (q§")) - X(t) < —g) — 0,

n—00

IN

IN
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since X is stochastically continuous. Then

P(X(t2) - X(t1) <e)=0 forall e>0 and
P(X(t2) - X (t1) <0) = limOP (X(t2) = X(t1)<e)=0
e+
= X(tg) 2> X(tl) a.s.
Necessity
Let X be a Lévy process, which is a subordinator. It has to be shown that ¢ X(l)(') has the

form (4.1.6).
After the Lévy-Khintchine representation for X (1) it holds that

2.2 o
@X(l)(s)zexp{zas—%+‘[o (e“x—l—isxl(xe[—1,1]))V(da:)}, seR.

The measure v is concentrated on [0, %), since X (t) 70 for all £ > 0 and from the proof of
Theorem 4.1.4 v ((-o00,0)) =0 can be chosen.
b?s?

¢x(1)(s) =exp {ias - 7} exp {fox (e"* -1 -isal(z € [-1,1])) y(dx)}

:=¢Y1 (s) :ZSDYQ (s)

Hence it follows that X (1) = Y] + Y5, where Y} and Y; are independent, Y; ~ N(a,b?) and
therefore b = 0. (Otherwise Y7 could attain negative values and consequently X (1) could attain
negative values as well.)

For all € € (0,1)

@X(l)(s):exp{is(a-[wy(dm))+[; (em-1-isx)y(dx)+/0°°(eisw-1)y(dx)}.

It has to be shown that for € > 0 it holds [~ (e"** - 1) v(dz) - [;~ (€"* - 1) v(dz) < oo with

fol min {x, 1} v(dz) < co. @X(l)(s) { ( —f; mv(dw))}gozl(s)gozz(s), where Z; and Zo
are independent, @z, (s) = exp {Ofg( isT _q —zsx) v(dz)}, ©z,(s) = exp {f ( m_l) I/(d{L‘)},

seR. ThenX(l)—a f av(dx) + Z1 + Zy. There exist ()() Zl < 00 ’90(21)( )=0=14EZ;

and it therefore follows that EZ; =0 and P(Z; <0) > 0. On the other hand, Zs has a compound
Poisson distribution with parameters (1/ ([e,00)), %), e€(0,1).
=P (Z3<0)>0, since P(Z2=0)>0.
=>P(Z1+7Z2<0)>2P(Z21£0,Z,<0)=P(Z1<0)P(Z2<0)>0

For X (1) to be positive it follows that a — f; zv(dz) >0 for all £ € (0,1). Hence a >0 and
/0 min {z, 1} dz < .

Moreover, for € | 0 it holds Z; k3 0 and consequently

@X(l)(s)=exp{is(a—/01:1w(dx))+/0°°(eism—1)l/(dx)}, seR.
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Example 4.1.2 (a-stable subordinator):
Let X = {X(t), t >0} be a subordinator, with @ = 0 and the Lévy measure

dr, >0
dz) = I'(1-a) z1*e )
v(dr) {o-xmdx 0, z<0.

By Lemma 4.1.5 it follows that X is an a-stable Lévy process.
We show that [x(;)(s) = Ee™*X(®) = 7" for all 5,1 > 0.

t e 18T « 1
ox)(s) = (ex(1)(s)) =exp {tfo (e*-1) mxlmdﬂc}, seR.

It has to be shown that

u® / e ") d$, u>0.
F(l a) rlto

This is enough since px ;) (-) can be continued analytically to {z € C:Imz > 0}, i.e. px)(iu) =
iX(t)(u), u > 0. In fact, it holds that

](; (1-e7%) $1+d [ / Ty e
Fugml f / ue—u x—l—ad'xdy
0 Y
= f / 2 dzue™Wdy
0 Yy
© [ gy
subst. U f o _a_d(z)
= —/ e (1m0 1g,

= —F(l a)

and hence follows ZX(t)(s) =% £ 5>0.

4.2 Additional Exercises

Exercise 4.2.1
Let X eb a random variable with distribution function F' and characteristic function ¢. Show
that the following statements hold:

# 0 for all t € R.  Hint: Show that
2(s))™. Note further that |on(s)|® is
1 holds for x > 0.

a) If X is infinitely divisible, then it holds ¢(¢
limy, oo [0n(8)]? = 1 for all s € R, if ¢(s)
again a characteristic function and limy,_, o x

) #
(¢

1
n

b) Give an example (with explanation) for a distribution, which is not infinitely divisible.
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Exercise 4.2.2
Let X = {X(t), t >0} be a Lévy process. Show that the random variable X (¢) is then infinitely
divisible for every ¢ > 0.

Exercise 4.2.3
Show that the sum of two independent Lévy processes is again a Lévy process, and state the
corresponding Lévy characteristic.

Exercise 4.2.4
Look at the following function ¢ : R - C with

o(t) =e¥® | where 1(t) =2 Z 27% (cos(2Ft) - 1).

Show that (t) is the characteristic function of an infinitely divisible distribution. Hint: Look
at the Lévy-Khintchine representation with measure v({£2F}) =27%, ke Z.

Exercise 4.2.5

Let the Lévy process {X(t),t > 0} be a Gamma process with parameters b,p > 0, that is, for
every t >0 it holds X (t) ~T'(b,pt). Show that {X(t),t >0} is a subordinator with the Laplace
exponent £(u) = [;7 (1 - e™™)v(dy) with v(dy) = py~te¥dy, y > 0. (The Laplace exponent
of {X(t),t> 0} is the function € : [0, 00) — [0, 00), for which holds that Ee"*X() = =€) for
arbitrary ¢,u > 0)

Exercise 4.2.6

Let {X(t),t > 0} be a Lévy process with charactersistic Lévy exponent n and {7(s),s > 0} a

independent subordinator witch characteristic Lévy exponent . The stochastic process Y be
defined as Y = {X(7(s)),s >0}.

(a) Show that
E (ei9Y(S)) = Mm@ g e R
where Imz describes the imaginary part of z.
Hint: Since 7 is a process with non-negative values, it holds Eci07(s) = ¢7(0)s for all
0 € {z € C:Imz >0} through the analytical continuation of Theorem 4.1.3.
(b) Show that Y is a Lévy process with characteristic Lévy exponent v(-in(-)).

Exercise 4.2.7
Let {X(¢), t >0} be a compound Poisson process with Lévy measure
W2 a2

v(dz) = Gﬁe_ﬁdx, zeR,

where A, 0 > 0. Show that {cW (N(t)), t >0} has the same finite-dimensional distributions as
X, where {N(s), s>0} is a Poisson process with intensity 2\ and W is a standard Wiener
process independent from N.

Hint to exercise 4.2.6 a) and exercise 4.2.7

. In order to calculate the expectation for the characteristic function, the identity E(X) =
E(X|Y)) = [R E(X|Y =y)Fy(dy) for two random variables X and Y can be used. In
domg so, it should be conditioned on 7(s).
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2 as?
O e cos(sy)e Zady =/2ma-e“s for a>0 and s € R.

Exercise 4.2.8
Let W be a standard Wiener process and 7 an independent g-stable subordinator, where
a€(0,2). Show that {WW(7(s)),s >0} is a a-stable Lévy process.

Exercise 4.2.9
Show that the subordinator 7" with marginal density

. 2
s_%e_fTsl{s >0}

fre(s) = 23%

is a %—stable subordinator. (Hint: Differentiate the Laplace transform of T'(¢) and solve the
differential equation)



5 Martingales

5.1 Basic ldeas

Let (Q2, F,P) be a complete probability space.

Definition 5.1.1
Let {F%, t >0} be a family of o-algebras F; c F. It is called

1. a filtration if Fs € F, 0<s<t.

2. a complete filtration if it is a filtration such that Fy (and therefore all F,, s > 0) contains
all sets of zero probability.
Later on we will always assume, that we have a complete filtration.

3. a right-continuous filtration if for all t > 0 F; = NgspFs.

4. a natural filtration for a stochastic process { X (t), t > 0}, if it is generated by the past of
the process until time ¢ > 0, i.e. for all ¢t >0 F; is the smallest o-algebra which contains
the sets {we Q: (X(t1),...,X(tn))" ¢ B}, forallneN, 0<tq,...,t, <t, BeB(R").

A random variable 7: Q — R, is called stopping time (w.r.t. the filtration {F;, ¢t >0}), if for
all t 20 {weQ:7(w) <t} e F.
If {F;, t >0} is the natural filtration of a stochastic process {X (t), t > 0}, then 7 being a
stopping time means that by looking at the past of the process X you can tell, whether the
moment 7 occurred.

Lemma 5.1.1
Let {F;, t >0} be a right-continuous filtration. 7 is a stopping time w.r.t. {F;, ¢t > 0} if and

only if {r<t}eF forallt>0.
————
{weir(w)<t}eF:

Proof , <«
Let {T <t} e Fy, t 2 0. To show: {7 <t} e F;.
{r<t}= nse(n”s){T <s}foralle>0 = {7 <t} engFs=F

“

” =
To show: {7 <t}eF, t20=> {r<t}eF, t>0.
{7 <t} = Use0){T <t =5} € Use0,1y Fi—s © Fi |

Definition 5.1.2

Let (Q,F,P) be a probability space, {F;, t >0} a filtration (F; c F, t 20) and X = {X(¢), ¢t >
0} a stochastic process on (2, F,P). X is adapted w.r.t. the filtration {F3,t > 0}, if X(t) is
Fi-measurable for all ¢t >0, i.e. for all B e B(R) {X(t) € B} € F;.

67
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Definition 5.1.3
The time 75(w) = inf{t >0: X(¢t) € B}, w e Q, is called first hitting time of the set B € B(R) by
the stochastic process X = {X(t), t >0} (also called: first passage time, first entrance time).

Theorem 5.1.1

Let {F;, t > 0} be a right-continuous filtration and X = {X(¢), t > 0} an adapted (w.r.t.
{F:, t > 0}) cadlag process. For open B c R, 7p is a stopping time. If B is closed, then
7p(w) =inf{t >0: X(t) € B or X(t-) € B} is a stopping time, where X (t-) = limgy; X (s).

Proof 1. Let B € B(R) be open. Because of Lemma 5.1.1 it is enough to show that {75 <
t} € Fi, t > 0. Because of right-continuity of the trajectories of X it holds:

{TB < t} = Use@m[o,t) {X(S) € B} € Use(@r\[(},t)fs c ft, since Fg C ft, s<t.

2. Let B e B(R) be closed. For all € >0 let B. = {x e R:d(x,B) <&} be a parallel set of B,
where d(z, B) = inf ep |z —y|. B: is open for all € > 0.

{%Bst}z( U ]{X( eB}) (ﬂ U {X()EBI})Eft,

s€Qn(0,¢ nz1 seQn(0,t)

since X is adapted w.r.t. {F;, ¢t >0}.

Lemma 5.1.2
Let 71,7 be stopping times w.r.t. the filtration {F;, ¢ > 0}. Then min{r, 7o}, max{r, 72},
71 + 72 and a7y, a > 1, are stopping times (w.r.t. {F;, t>0}).

Proof For all ¢ >0 holds:

{min{m, 7} <t} ={m <tju{m <t} e F,
—— N———
eFy eFi

{max{r, 72} <t} ={n <t}n{n <t} e F,
{am <t} ={m <Ll}eF: cF,since L <t,

{m+m <t} = {mn+mn >t} = {n>tju{n>tju{nzt,n>0u{nxt,n1>0}u
S
Eft Eft E]'-t E.Ft

{0<7’2 <t,m1 +T2>t}U{0<T1 <t,T9+T] >t}7

To show: {0 <7 <t,71+72 >t} eF. (That also {0 <7 <t,75+7 >t} € F; works analogously.)
{0<m<t,m+m>t}= U {s<n<t,m>t-s}eF O

seQn(0,t)

Theorem 5.1.2

Let T be an a.s. finite stopping time w.r.t. the filtration {F;,¢ > 0} on the probability space
(2, F,P), i.e. P(7 <o) =1. Then there exists a sequence of discrete stopping times {7, } nen,
TL2To 273 2..., such that 7, | 7, n > o a.s.

Proof For all n e N let
0 if 7(w)=0
- { ) 1 ( )

%, if2ﬁn<7'( )Sk;;l, for a k € Ny
For all £ > 0 and for allneNEIk:eNo.z—nst ]“221, i.e. it holds {Tn<t}—{7'n$—n =
{r< 2n}EJ’:k c Ft = T, is a stopping time. Obviously 7, | 7, n — oo a.s. 0
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Corollary 5.1.1

Let 7 be an a.s. finite stopping time w.r.t. the filtration {F;, ¢t >0} and X = {X(t), t >0} a

cadlag process on (2, F,P), Fr c F for all t >0. Then X (w,7(w)), w € is a random variable
n (Q,F,P).

Proof To show: X(7):Q — R measurable, i.e. for all Be B(R) {X(7)e B}eF. Let 7, | T,
n — oo be as in Theorem 5.1.2. Since X is cadlag, it holds that X (7,) —— X(7) a.s.. Then
n—-oo

X (7) is F-measurable as the limit of X (7,), which are themselves F-measurable. Indeed, for
all B € B(R) it holds

{X(r,) € B} = U { k} {X(—)EB} eF

~

eF eF

5.2 (Sub-, Super-)Martingales

Definition 5.2.1

Let X = {X(t), t >0} be a stochastic process adapted w.r.t. to a filtration {F3, ¢t >0}, Fy c F,
t >0, on the probability space (€2, F,P), E|X(t)| < o0, ¢t > 0.

X is called martingale, resp. sub- or supermartingale, if E(X(t) | Fs) = X(s) a.s., resp.
E(X(t) | Fs) = X(s) a.s. or E(X () | Fs) < X(s) a.s. for all s,¢>0 with t >s: = E(X(t)) =
E(X(s)) = const for all s, t.

Examples

Very often martingales are constructed on the basis of a stochastic process Y = {Y(t), t > 0}
as follows: X(t) = g(Y(t)) - Eg(Y (t)) for some measurable function g : R - R, or by

etuY (t)

X( )=m,f0r any fixed u € R.

1. Poisson process
Let Y = {Y(t), t >0} be the homogeneous Poisson process with intensity A >0. EY(t) =
VarY (t) = At since Y (t) ~ Pois(At), t > 0.

a) X(t) = Y(t) - X, t > 0 = X(¢t) is a martingale w.r.t. the natural filtration
{Fs, s>0}.

E(X(t) | Fs)se = E(Y(t)-At-(Y(s) - As+ (Y (s) - As)) | Fs)
= Y(s)-As+E(Y(t)-Y(s) - A(t-s)|Fs)
I Y (5) = As + E(Y(t) - Y () - A(t - s)
= Y(s)-As+E(Y(t-35))-A(t-s)
vare

= Y(s)-As"E X(s)
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b) X(t) = X2(t) = M, t >0 = X(t) is a martingale w.r.t. {F,, s>0}.

E(X(t) | Fs) = E(XP(t)-At|F) =E((X(t) - X(s) + X(s))* = M| Fy)
= EN((X(t) —X(5))?2+2(X(t) - X(5))X(5) + X2(s) = As = A(t —s) | Fs)
= X(s)+ E((X(t) - X(s)))* +2X (s) E(X () - X(s)) =A(t - 5)

=Var(Y (£)-Y (5))=A(t-s) -0
2 X'(s), s<t.

2. Compound Poisson process
Y(t) = Zﬁgt) U;, t > 0, N — homogeneous Poisson process with intensity A > 0, U; —
independent identically distributed random variables, E|U;| < oo, {U;} independent of N.
Let X(t) =Y (t) -EY (¢t) =Y (t) - MEUy, t > 0.

Exercise 5.2.1
Show that X = {X(t), t >0} is a martingale w.r.t. its natural filtration.

3. Wiener process
Let W = {W(t), t >0} be a Wiener process, {Fs, s> 0} be the natural filtration.

a) Y ={Y(t), t>0}, where Y (t) := W2(t) —EW?2(t) = W2(t) - t, t > 0, is a martingale
w.r.t. {Fs, s> 0}
Indeed, it holds

E(Y (1) | Fs)
= E((W(t)-W(s) +W(s))* =s—(t-5) | Fs)
= E((W(t) =W (s5))* +2W (s)(W(t) - W (s)) + W(s)*| Fs) =5 - (t —9)
= E((W(t) - W (s))?) +2W (s)E(W (t) = W (s)) + E(W?(s) | Fs) —s = (t - s)
= t-s+W?(s)-s—(t-s)
= Ws)-s"CY(s), s<t.

b) V(t) :=e"WO"5 ¢>0 and a fixed u e R.
2t 2t

E[Y (1) = e EW () = ¢v*3¢%"5 = 1 < 0. We show that ¥ = {Y(t), t >0} is a
martingale w.r.t. {Fs, s2>0}.

E(Y/(t) | ]:S) E(eu(VV(t)—VV(S)H/V(S))_u2%_“2 (t;S) | fs)

_ e—u2§€uW(S) e—u2 (t;S) E(eU(W(t)_W(S)) | ]Z‘S)

:E(euW(t—s) ):GuZ (tES)

= Y(s)e™™ 2 e 2 =Y(s), s<t.

4. Regular martingale
Let X be a random variable (on (€2, F,P)) with E|X| < co. Let {Fs, s >0} be a filtration
on (Q,F,P).
Construct Y (t) =E(X | F), t 20. Y ={Y(t), t >0} is a martingale.
Indeed, E|Y (t)| = E[E(X | )| < E(E(|X]|| 7)) = E|X| < 00, £ > 0.
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E(Y(t) | Fs) =E(E(X | F2) | Fs) € E(X | Fs) = Y(s), s <t since Fs € F;.

If {Y(n)| n=1,..,N}, where N € N, is a martingale, then it is regular since Y(n) =
E(Y(N)|F,)) foralln=1,...,N,ie. X:=Y(N).

However, the latter is not possible for processes of the form {Y(n)| n € N} or
{Y(t)| t >0}.

5. Lévy processes
Let X = {X(t), t > 0} be a Lévy process with Lévy exponent n and natural filtration
{Fs, s>0}.

a < oo, define t) = t)—-t t > 0. As in the previous cases it can
) If E|X (1)] < oo, define Y (£) = X(t) - tEX(1), t > 0. As in the p

S——

=EX (1)

be shown that Y = {Y(¢), ¢t > 0} is martingale w.r.t. the filtration {Fs, s > 0}.
(Compare Example 1 and 2)

b) In the general case one can use the combination from example 3b — normalize et X (t)
by the characteristic function of X (t), i.e. let Y (¢) = % = % = X (O)=tn(u)
t
t>0, uelR.

To show: Y = {Y (t), t >0} is a complex-valued martingale.
E[Y ()] = [e"(™)] < o0, since 1 : Ry - C. EY(t) =1, ¢ > 0. Furthermore, it holds

E(Y (t) | Fs) (X (O)=X())=(t=s)n(u) giuX(s)=sn(u) |

(X (8)=sn(w) =(1=s)n(u) E (X (=X ()

Y (s)e” (=) g(t=s)n(u) a5y gy

6. Monotone Submartingales/Supermartingales
Every integrable stochastich process X = {X(t), ¢t > 0}, which is adapted w.r.t. to
a filtration {Fs, s > 0} and has a.s. monotone nondecreasing (resp. non-increasing)
trajectories, is a sub- (resp. a super-)martingale.
In fact, it holds e.g. X(¢) S X(s), t>s = E(X(t) | F) S E(X(s) | F) = X(s). In
particular, every subordinator is a submartingale.

Lemma 5.2.1

Let X = {X(t), t >0} be a stochastic process, which is adapted w.r.t. a filtration {F;, ¢ >0}
and let f:R — R be convex such that E|f(X(¢))| < o0, t 20. Then Y = {f(X(t)), t >0} is a
sub-martingale, if

a) X is a martingale, or
b) X is a sub-martingale and f is monotone nondecreasing.

Proof Use Jensen’s inequality for conditional expectations.

E(f(X(0)) | Fo) S FE(X(1) | Fo) 2 f(X(s)).

N— ——
x(s), 2X(s)
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5.3 Uniform Integrability

It is known, that in general X, 2%, X does not yield X, BECEN X. Here X, X1,X5,...

n—>o00 n—>oo

are random variables, defined on the probability space (2, F,P). When does , X, AN 6

n—oo

L
= X, —— X*hold? The answer for this provides the notion of uniformly integrability of

n—oo
{X,, neN}.
Definition 5.3.1
The sequence {X,, n € N} of random variables is called uniformly integrable, if E|X,| < oo,
n €N, and sup E(|X,,|1(|X,| > €)) —— 0.
neN

e—>+o00

Lemma 5.3.1
The sequence {X,,, n € N} of random variables is uniformly integrable if and only if

1. sup E|X,,| < oo (uniformly bounded) and
neN

2. for every e > 0 there is a 6 > 0 such that E(|X,|1(A)) <¢ for all n € N and all A € F with
P(A) < 4.
Proof Let {X,} be a sequence of random variables.
It has to be shown that
1) supE|X,|< o

sup E(| X, |1(|Xp| > 2)) —— 0 <= neN
neN a>too 2) Ve>035>0:E(X,1(A)) <e ¥VAe F:P(A) <6
c“

Set A, = {|Xn| >z} for all n € N and = > 0. It holds P(A,,) < %E|Xn| by virtue of Markov’s in-
equality and consequently sup,, P(A4,,) < %supn E[Xn|<S ——0=3IN>0:Vx>N P(4,) <0
Tr—>00

2
2 sup, E(IXal1(A,)) <.
Since € > 0 can be chosen arbitrarily small = sup,, E(|X,,|1(|X,,| > )) —— 0.

r—>00

S “
”

IA

sup E| Xy Sglp(E(anll(anl >x)) + E(|Xn[1(|Xn| < 7))

A

< sup(B([Xn[1(|Xn] > 2)) +2 P(Xa] < 7))
<1

< e+x<o0

2. For all € >0 3z > 0 such that E(|X,[|1(|X,| > x)) < § because of uniform integrability.
Choose ¢ > 0 such that x6 < 5. Then it holds

E(IXnI1(A)) = E(IXn| 1(|Xn| < 2) 1(A)) + E(|Xn[1(|Xn] > ) 1(A4) )
<z <1 <1
< 2P(A) + E(|Xu[1(1Xn] > 7)),

<

N|m
N



5 Martingales 73

Lemma 5.3.2 b
Let {X, }nen be a sequence of random variables with E|X,,| < o0, n € N, X;, —— X. Then

n—o0

1
X, L Xifand only if { X}, } ey is uniformly integrable.

n—>oc

Particularly, X,, r, X implies EX,, —— EX.
n—oo

n—oo

Proof 1) Let {X,,} ey be uniformly integrable. It has to be shown that E|X,, - X| —— 0.
n—oo

P
Since X,, —— X one obtains that (X,),ey has a subsequence (X, )ren converging almost

n—o00

surely to X. Consequently, Fatou’s Lemma yields

E|X| < lim inf E|X,,, | < sup E|X,],
k—o0 neN

and therefore E|X| < oo by Lemma 5.3.1.1).
Moreover, one infers from lim P(|X,, — X|>¢) =0 and Lemma 5.3.1.2) that
n—->oo

lim E(|X, - X[1 (| X, - X|>¢)) =0

for all € >0. (It is an easy exercise to verify that the uniform integrability of {X,, }ney implies
the uniform integrability of {X,, — X },en.)
Conclusively it follows

lim E(|X, - X|) = lim E(|X,, - X|1 (|X, = X|>¢)) + E(| Xy - X[1 (| X0 - X| <€) <&
n—oo n—oo

1
for all € >0, i.e. X, L Lx.

n—o00

2) Now let E|X,, - X| —— 0. The properties 1) and 2) of Lemma 5.3.1 have to be shown.
n—oo

1
1. sup E|X,,| < sup E|X,, — X| + E|X| < o0, since X, X,
2. For all Ac F, P(A) <é:

E(IXal1(A)) <E(|1 X, - X| 1(A) ) + E(|X|1(A)) < E[X,, - X]| +§ —¢
<1 <

N

with an appropriate choice of ¢, since E|X| < oo and since for all € >0 3N, such that for
all n > N E|X,, - X[ < 5.
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5.4 Stopped Martingales

Notation: 4 = (z)+ = max(z,0), z € R.

Theorem 5.4.1 (Doob’s inequality):
Let X = {X(t), t >0} be a cadlag process, adapted w.r.t. the filtration {F, ¢t >0}. Let X be
a submartingale. Then for arbitary ¢t > 0 and arbitrary = > 0 it holds:

PECIOE

P(sup X(x)>x
x

0<s<t

Proof W.lo.g. assume X(t) >0, ¢ >0 a.s..
P(suppese X (8) > ) = P(suppes ((X(5))+ > ), forall t >0, 2 >0. A={sup;, , X(s)>=x},
0<ty <ta<...<t, <t arbitrary times. A =up_, Ay,

A1 = {X(t1)>l‘}
Ao = {X(tg)ﬁﬂ?,X(t2)>CL‘}

A = (X(t) <2, X(0) <@y X (o) <2, X (8) > ),

k=2,....n, AinA;j=0,i%].

It has to be shown that P(A) < M

E(X(t)) 2 E(X(ta)1(A)) = $joy E(X (8)1(Ar)) 2 2 Xy P(A) = aP(A), k= 1,....n— 1,
since X is a martingale and thus follows that E(X (¢,)1(Ax)) > E(X (tx)1(A4x)) > (xl(Ak))

a:P(Ak), k=1,....n-1, t, > t.
Let B c [0,t] be a finite subset, 0 € B, t € B = it is proven similarly that P(maxsp X(s) >
x) < EXT(t)
Q is dense in R = [0,¢) nQu {t} = up?, By, By, c [0,t) nQu {t} finite, By c By, k <n. By the
monotonicity of the probability measure it holds:
EX ()

x

n—oo seB seBy, seU,, B,

lim P (maXX(S) > x) =P (Un{mng(s) > :v}) = P( sup X (s) > a:) <

EX(t)

By the right-continuity of the paths of X it holds P(suppcs<; X (s) > x) <

Corollary 5.4.1

For the Wiener process W = {W (t), ¢t >0} we are looking at the Wiener process with negative
drift: Y (t) = W(t) = pt, u >0, t > 0. From example nr.3 of section 5.3 X (¢) = exp{u(Y (t) +
tp) - “7%}, t > 0 is a martingale w.r.t. the natural filtration of W. For w =2y it holds

X(t) =exp{2uY(t)}, t>0.

P{suppcs; Y (s) >z} =P {sup0<s<t 2 (s) 5 62‘“”} < w =e 2 x>0

and consequently
P(supY(s) > x) = lim P(sup Y (s)>z) < e 24
520 t—>o0 O<s<t
Theorem 5.4.2
Let X = {X(t), t >0} be a martingale w.r.t. the filtration {F;, t > 0} with cadlag paths. If
7:Q > [0,00) is a finite stopping time w.r.t. the filtration {F;, ¢ > 0}, then, the stochastic
process { X a¢(t) 20} is called a stopped martingale. Here a A b =min{a,b}.
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Lemma 5.4.1
Let X ={X(t), ¢t >0} be a martingale with cadlag-trajectories w.r.t. the filtration {F;, ¢t > 0}.
Let 7 be a finite stopping time and let {7, }nen be the sequence of discrete stopping times out
of Theorem 5.1.2, for which 7,, | 7, n — oo, holds. Then {X (7, At) }nen is uniformly integrable
for every ¢ > 0.

Proof

0 , ifr=0
T, =
" %, 1f£<7$k24;1,f0rakeN0

1. Tt is to be shown: E|X (7, At)| < oo for all n.
E|IX (7ant)[ < X, & , EIX (£)[+E|X ()] < o0, since X is a martingale, therefore integrable.
o

- <t

2. It is to be shown: sup,, E(|X (7, At)|1(| X (7, AL)| > x)) —— 0.
r—>00
An

sup E(|X (T A1)|1(AR))

a2 ()

sl B (X ({m= e} 0 4) ) +EAX@ON (> 0 4w)

n Kk:%d

({Tn - 2%} nAn)) +E(IX()|1 (1 > 1) 1(A4,))

_ SEPKE (t) ({ - } ))+E|X()|1({Tn>t}nAn))

= supE(|X(1 )|1(A )) <supE(IX(0)]1(Y > 2))
= (IX( N1 >z)),

where 1(A,) < 1(sup,, |X (7, At)| > ). It remains to prove that P(Y > 2) —— 0. (The
r—>00
Y

latter obviously implies lim E (| X (¢)|1(Y >z)) =0, since E|X (t)| < oo for all ¢ > 0.)
r—>00
Doob’s inequality yields

P(Y > ) <P(sup | X(s)|>z) < ElX(?)]

O<s<t x T>too

Proof of Theorem 5.4.2
It is to be shown that {X (7 At), ¢t >0} is a martingale.

1. E|X(7At)| < oo forallt > 0. Asin conclusion 5.1.1 7, | 7, n = 00 = X (1,At) ——> X (TAt)
n—>oo

is approximated, but since E|X (7, At)| < oo for all n it follows E|X (7 At)| < co because of
Lemma 5.4.1, since uniform integrability gives L'-convergence.
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2. Martingale property
It is to be shown:

E(X(TAt)|Fs)

5 Martingales

X(tAs), s<t

= 1

E(X(TAt)1(A)) "2 E(X(rAs)l(A)), AeF,

First of all, we show that E(|X (7, At)|1(A)) = E(|X (7 A s)|1(A4)), A€ Fs, n e N. Let
t1,...,tx € (s,t) be discrete values, which 7,, takes with positive probability in (s,t).

E(X (7 At) | Fs)

Q
T

E(E(X (0 A1) | Fii) | Fs)

E(E(X (7 At) 1(mn <tg) | Fr,) | Fs)
——
X (tx)

+E(E(X (1o A ) (1 > tie) | Fr,.) | Fs)

X(t)
ECX ()1 < 1) | 2) + E(Lm > 5)E(X (1) | 7o) | Fo)
E(X(te ATn) | Fs) = = E(X(the1 AT) | Fs) = - ..
E(X(t1 A7) | Fs) =... =E(X (1 A8) | Fs)
X (1 A S)

Since X is cadlag and 7, | 7, n — oo, it holds X (7 At) —— X (7, A t). Furthermore
n— 00

{X (70 At) }nen is uniformly integrable because of L!-convergence. Therefore follows that

E(X(rn At)1(A)) = E(X(1nAs)1(A)) forall AeF,

|

|

E(X(rAt)1(A) = E(X(rAs)1(A))

= {X (7 At), t >0} is a martingale.

Definition 5.4.1
Let 7:Q - R, be a stopping time w.r.t. the filtration {F;, ¢ >0}, F; ¢ F, t > 0. The ,stopped*
o-algebra F; is defined by A e F, = An {7 <t} e F; for all £ > 0.

Lemma 5.4.2

Proof

it holds F,, ¢ F;.

1. Let n, 7 be stopping times w.r.t. the filtration {F;, ¢t >0}, n 2 7. Then

2. Let X = {X(t), t > 0} be a martingale with cadlag-trajectories w.r.t. the filtration
{F:, t >0} and let 7 be a stopping time w.r.t. {F;, ¢t >0}. Then X (7) is F,-measurable.

= AeF,.

1. Ae Fs=> An{n<tye F, t20. An{r<t}=An{n<tin{r<t}eF foralt>0

—_————— S——
eFt eFi

2. X(1)=gof, [+ Q>QxRy, f(w) = (w,7(w)), g: QxR > R, g(w, s) = X(s,w).
It has to be shown: f-F | F x Bg,-measurable, g-F x By, | Fr-measurable = go f-F | Fr-

measurable.
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f-F | F x Br,-measurable is obvious, since 7 is a random variable. If we’re looking at the
restriction of X = {X(s), s >0} on s¢€[0,¢], t>0.

It has to be shown: {X(7) e B} n{r <t} e F; for all t >0, B € B(R).

X — cadlag = X(s,w) = X(0,w)1(s = 0) + limy—e0 Zile(tQﬁn,w)l(k;nlt <s< Qﬁnt) =
X (s,w) is Bjgy) x Fi-measurable = X (1) is F | Fr-measurable.

Theorem 5.4.3 (Optional sampling theorem):
Let X = {X(t), t >0} be a martingale with cadlag-trajectories w.r.t. a filtration {F;, ¢ > 0},
and let 7 be a finite stopping time w.r.t. {F;, ¢t >0}. Then E(X (¢) | F;) € X (7 At), t > 0.

Proof First of all we show that E(X(t) | F»,) "€ X (7, At), t 20, n €N, where 7, | 7, n — oo,
is the discrete approximation of 7, cf. Theorem 5.1.2. Let t; <to < ... <t; =t be the values,
attained by 7, At with positive probability. It is to be shown that for all A € . it holds:
E(X(1)1(A)) = E(X (7 A 1)1(A)).

T
L

tr=t

(X(t) - X(ma A1))1(A) = (X () - X(E))1{ma At =t} 0 A)

.
1l
—_

M=

2 (X (tr) = X (i) 1({mn At = tia } 0 A)

~.
U
[\

M=

~
I

\V)
.
I
.

) (X(t5) = X (1)) 1({mm At =tia} 0 A)

I}
M=
Pﬁu
X
T
>

_1))1({Tn At = ti—l} ﬂA)

.
[
\v)
~
|(
[N}

1l
™=

(X(t5) = X (tj-1)1({m At <tjor} 0 A)

7j=2
k
E[(X(#) - X(ra At))L(A)] = Z;E[(X(ty)—X(tj—l))l({fn/\tﬁtj—l}ﬂA)]
j=
C SN (L) - X ()L AL € ) 0 A)] | By ]
7=2 N——— ~-
€Fty g eFi;y

1l

E[1({mn At <tja} n A)EL(X(4)) | Fiyy I =X (25-1))]

=X(tj_1)

)
I
[\V]

1l
]

by Definition 5.4.1 and martingale property. Hence it holds E(X(t) | Fy,) " X (7, A t), since
X (7p) is Fr,-measurable. Since 7 < 7,, Vn, by Lemma 5.4.2, F, ¢ F, . Then

E(X(8) | Fr) & E(X (1) | Fr,) = X(ma At) = X(7 A1), (n > o0),

since X is cadlag. O
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Corollary 5.4.2

Let X = {X(t), t > 0} be a cadlag-martingale and let 1,7 be finite stopping times, such
that P(n < 7) = 1. Then it holds E(X(7 At) | F,) € E(X(nAt)), t > 0. In particular
E(X (7 At))) =E(X(0)) holds.

Proof Since X is a martingale, by Theorem 5.4.2 {X (7 At), t >0} is also a martingale. Apply
Theorem 5.4.3 to it:

E(X(TAt)| F)) *E X(tAanat) E X(nat),

since 7 < 7. Set n =0, then E(E(X(r At) | Fo)) = EX(0At) = EX(0). O

5.5 Lévy processes and Martingales

Theorem 5.5.1
Let X = {X(t), t >0} be a Lévy process with characteristics (a, b, v).

1. There exists a cadlag-modification of X = {X (t), t > 0} of X with the same characteristics
(a,b,v).

2. The natural filtration of cadlag-Lévy processes is right-continuous.

Without proof

Theorem 5.5.2 (Regeneration theorem for Lévy processes):

Let X = {X(t), t > 0} be a cadlag-Lévy process with natural filtration {F;X, ¢ > 0} and let
7 be a finite stopping time w.r.t. {F;X, t > 0}. The process Y = {Y(t), t > 0}, given by
Y(t) = X(1+t)-X(7), t 20, is also a Lévy process, adapted w.r.t. the filtration {FX,, t >0},

which is independent of ]:;X and has the same characteristics as X. 7 is called regeneration

time.

A 4

Abb. 5.1:
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Proof For any n € N, take arbitrary 0 < g < --- < t,, and uy,...,u, € R. We state that all
assertions of the theorem follow from the relation

E(MA)wp{iquYﬁﬁ—YXQ4»}):PQQE(wp{iyuﬂX@ﬁ—XX@4»}) (5.5.1)
for all Ae FX.

1. By Lemma 5.4.2, since 7 and 7 + ¢, t > 0 are stopping times with 7 < 7+ ¢ a.s., we have
FX e FX, ie. { X }is0 is a filtration, and Y (t) = X (1 +t) (7') is {F. +t} adapted:
X (7) is {FX}-measurable, X (7 +1) is {FX,}-measurable, FX ¢ FX,.

2. It follows from (5.5.1) for A = Q that X d Y, ie., Y is a Lévy process with the same Lévy
exponent n as X.

3. Tt also follows from (5.5.1) that Y and FX are independent, since arbitrary increments
of Y do not depend on FX.
4. Now let us prove (5.5.1). We begin with the case of

a.) 3¢>0: P(r<c) =1. By example 5, b) of section 5.2., Y; ={Y;(t)}i20,5 = 1,...,n with
Y;(t) = exp {iu; X (t) —tn(u;)}, t 2 0 are complex-valued martingales. Furthermore,
it holds

E(1(A eXP{ZWJ(Y (tj) =Y (t-1))})

7=1

= EQ(A)exp{ ) iu; (X(7 +1;) - X(7) = X(7 +tj21) = X(7)))})

(T+1tj-1) exp{n(u;)(T+tj-1)}
V(T +t;)
Y/(T+t] 1)

= it exp{n(Uj)(T+tj)})

exp{(tj —tj_1)n(u;)} | ‘Fjit]’—l))

T X 8) ymtymynguy €070

17jj(7+tj—1) Y, (7 +tn_1) B (r+ta) | 7 +t" 1))

(t] tj- 1)77(u;)

e(tn—tnfl)ﬂ(un) )

= ... =E(1(A) H e(timti-1)n(us)) = p(A) ﬁ e(ti=tj-1)n(u;)

s ML

P(A)E(exp{i ) (u; (X (t;) - X(j-1)))})

J=1

b.) Prove (5.5.1) for arbitrary finite stopping times 7: P(7 < o0) = 1. For any k € N it
holds Ay = An{r <k} e FX,, if Ae FX. Then it follows from 4. a.) and (5.5.1) that

E (1(Ak) exp{zn: i (Vi = Yk,tj_l))}) =P(Ag)E (eXp{Zn: iui (X (t5) - X(tj_l))})

7=1 7=1
(5.5.2)
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for Yy, = X((t Ak) +t) = X(7 Ak). Now let n — oo on both sides of (5.5.2). By

Lebesgue’s theorem on majorized convergence, (5.5.1) follows for any a.s. finite 7,

since T Ak 53 7, (n - o0).

5.6 Martingales and Wiener Process

Our goal: We would like to show that if W = {W(t), ¢t >0} is a Wiener process, then it holds

2 +00 2
P( max W(s)>x)=\/—/ e Tdy, x>0.
s€[0,t] mt Jx

Theorem 5.6.1 (Reflection principle):
Let 7 be an arbitrary finite stopping time w.r.t. the natural filtration {F}V, t > 0}. Let X =
{X(t),t >0} be the reflected Wiener process at time 7, i.e. X (t) = W(rAt)=(W(t)-W (7 At)),

£>0. Then X £ W holds.

X(1)
W+ — — — — — — — 4§— — — — — — — —

0)

A 4

Abb. 5.2: Reflection principle.

Proof It holds

W (t) ,t<T

X(t)y=W(rat)—(W(t)-W(rAat))= {2W(T) W) sy

Let Xi(t) = W(r At), Xo(t) = W(r+t)—W(r), t >0. From Theorem 5.5.2 it follows that
Xo is independent of (7, X1) (W — Lévy process and 7 — regeneration time). It holds W (t) =
Xl(t) + XQ((t — T)+), X(t) = Xl(t) - XQ((t - T)+), t > 0. Indeed,

W (t) + X2(0) = W(¢) t<T

Xq(t) + Xo((t-7)4) = {W(T) +W(r+t-7)-W(r)=W(t) ,t>71
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= W(t) = X1(t) + Xo((t = 7)+), t > 0. Furthermore

W (t) = X2(0) = W(t t<r
Xi(0) - Xa((t=7)2) = 00~ X0 =W LD
W(r)-W(t)y+W(r)=2W(r)-W(t) ,t>r
= X (t) = X1(t) - X2((t = 7)+), t 2 0. From theorems 5.5.2 and 3.3.2 it follows that X5 dyy,
d
-W =W and hence

(717X17X2) = (77X17_X2)
J J
W g X

O

Let W = {W(t), t > 0} be the Wiener process on (2, F,P), let {F}V, ¢t >0} be the natural
filtration w.r.t. W. For z € R let T{VZ} =inf{t > 0: W(t) = z}. TVL/} := 7V is an a.s. finite
stopping time w.r.t. {F}V, t >0}, z >0, since it obviously holds {FV <t} e F/V. Since W has
continuous paths (a.s.), {F}V, t >0} is right-continuous.

Corollary 5.6.1
Let M; = maxge[os W(s), t 2 0. Then it follows for all z > 0, y > 0, that P(M; > 2z, W (t) <
z-y)=P(W(t) >y+2).

Proof M; is a random variable, since W has continuous paths. Let 7 := T;/V . By Theorem 5.6.1,
it holds for Y (t) = W (r at)— (W (t) =W (7 At)), t >0, that Y £W. Hence, {7V, W} {z¥ Y},
since W(7) = z, 7}V = Y. Therefore

P(r<t,W(t)<z-y)=P(r) <t,Y(t) <z-y),

whereas {7} <t} n{Y(t) < z-y} = {rY <t} n{22-W(t) < z-y}. If7 =7 <t then
Y (t) =2W () - W(t) =2z - W(t), and hence

P(r<t, W(t)<z-y)=P(r<t,22-W(t)<z-y)=P(r <t, W(t) >z +y) =P(W(t) >z +y).
Per definition of 7 = 7% it holds:
P(r<t,W(t)<z-y)=P(M;22,W(t)<z-y)=P(W(t) >y+2),
since {7}V <t} <= {maxy[o,; W (s) > z}. 0
Theorem 5.6.2 (Distribution of the maximum of W):

For t >0 and x >0 it holds
2 oo 42
P(My>z) = —/ e Tdy
T

mt
Proof In Corollary 5.6.1, set y =0 = P(M; > z, W(t) < z) = P(W(t) > z). It holds P(W (¢t) >
z) =P(W(t) 2 2) for all t and all z, since W (t) ~ N(0,t), thus continuously distributed
= P(My 22z, W(t)<z)+P(W(t) 22) =P(W(t) >z) + P(W(t) > 2)
My 22, W(t)<z)+P(My >z, W(t) 2 z)2= P(M; > z) =2P(W (t) > 2)

= P(
2
= P(M;>z)=2P(W(t)>z) = 2\/%” [Femdy= e e T dy i
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Let X(t) = W(t) —tu, t 20, u > 0, be the Wiener process with negative drift. Consider
P(supsso X(t) > x), z > 0.

Motivation Calculation of the following ruin probability in risk theory.

Assumptions Initial capital x > 0. Let p be the volume of premiums per time unit.= ut
— earned premiums at time t > 0. Let W (¢) be the loss process (price development). =
Y (t) = x +tpu - W(t) — remaining capital at time ¢. The ruin probability is

P(%I;S’Y(t) <0)=P(z —stlj([))X(t) <0) = P(stl>1£)X(t) > )

Theorem 5.6.3
It holds
P(supX(t) >z)=e 2 >0, u>0.
t0

Proof Let 7=7X =inf{t>0: X(t) =x}. It holds

P(sup X(t) > 2) =P(7 < 00) = lim P(7 <t).

>0 t—+o00

Compute this limit. For that, introduce the process Y = {Y (¢t), t > 0},

Y (t) =exp{uX(t) _t(u; —uu)}, t>0,

u > 0 fixed. It can be easily shown that Y is a martingale. 7/ = 7 At is a finite stopping time
w.r.t. filtration {F7, t > 0}. By Corollary 5.4.1, EY(7') = EY'(0) = ¢® = 1. On other hand,

1=EY(r") = E(Y(r")1(7 <)) + E(Y (1) 1(7 2 1))
=E(Y(7)1(r <)) + E(Y(7)1(7 2 1)).
If we can show that

lim E(Y(7")1(T>t)) =0, (5.6.1)

t—>+o0

then limy, 0o E(Y (7)1(7 < t)) = 1. Since Y (7) = exp {ua: -7 (“72 - uu)}, it follows
u2 —-uxr
tkﬁnoo E [exp {—7‘ (5 - u,u)} 1(r< t)] =e

: 0 -1 _ ,2px
lim E[e"1(r <t)] tlgrnooP(T<t) e

t—>+o0

and for u = 2 it holds

= P(sup X (t) > z) = e72**. Now let us prove (5.6.1). By Corollary 3.3.2, it is known that
20

WT(t) 0 (t > +00).
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Hence,

lim&=lim (M—u)=—,u

tsoo ¢ t—o0 t

a.s

= X (t) > —oo, (t > +00). Then,
Y()1(r>t) =exp {2uX ()} 1(r 2 1) 30 (t - +00)
By Lebesgue’s theorem, it holds E[Y (7/)1(7 > ¢)] = 0, (t — +0). O

Theorem 5.6.4

Let X = {X(t), t >0} be a Lévy process and let 7 = {7(t), t > 0} be a subordinator, which
are both defined on a probability space (2, F,P). Let X and 7 be independent. Then Y =
{Y'(t), t >0} definded by Y (t) = X (7(t)), t 20, is a Lévy process.

Without proof

5.7 Additional Exercises

Exercise 5.7.1
Let X,Y : Q — R be arbitrary random variables on (2, F,P) with

E|X|< o0, E|Y|<oo, E|XY]|< oo,

and let G c F be an arbitrary sub-o-Algebra of F. Then it holds a.s. that
E(X|{@,0Q}) =EX,E(X|F) =
E(aX +bY|G) = aE(X|G) + bE(Y]|G) for arbitrary a,b € R,
E(X|G) <E(Y]G),if X <Y,
E(XY|G) =YE(X|G), if Y is a (G, B(R))-measurable random variable,
E(E(X]G2)|G1) = E(X]|G1), if G1 and G are sub-o-algebras of F with G; c G,

(

E(X|G) = EX, if the o-algebra G and o(X) = X }(B(R)) are independent, i.e.,
if P(AnA") =P(A)P(A’”) for arbitrary A e G and A’ € o(X).

(g) E(f(X)|G) = f(E(X]G)), if f:R - R is a convex function such that E|f(X)]| < oo.

Exercise 5.7.2

Look at the two random variables X and Y on the probability space ([-1,1],B([-1,1]), %y)
with E|X| < oo, where v is the Lebesgue measure on [-1,1]. Determine o(Y’) and a version of
the conditional expectation E(X|Y") for the following random variables.

(a) Y(w) =w® (Hint: Show first that o(Y) = B([-1,1]))

(b) Y(w) = (-1)* for we [ﬁ ﬁ) k=1,...,4and Y(1) =
(Hint: It holds E(X|B) 15) for Be O'( ) with P(B) >0)

P(B

)
(c) Calculate the distribution of E(X|Y") in (a) and (b), if X ~ U[-1,1].
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Exercise 5.7.3
Let X and Y be random variables on a probability space (2, F,P). The conditional variance
Var(Y|X) is defined by

Var(Y|X) = E((Y - E(Y]X))?X).

Show that
VarY = E(Var(Y|X)) + Var(E(Y|X)).

Exercise 5.7.4
Let S and 7 be stopping times w.r.t. the filtration {F;,¢ > 0}. Show:

(a) An{S<7t}eF;, AeFs
(b) fmin{S,T} =FsnF;

Exercise 5.7.5 (a) Let {X(¢),t > 0} be a martingale. Show that EX(¢) = EX(0) holds for
all t > 0.

(b) Let {X(t),t > 0} be a sub- resp. supermartingale. Show that EX(t) > EX(0) (resp.,
EX(t) <EX(0)) holds for all ¢ > 0.

Exercise 5.7.6
The stochastic process X = {X(t),t >0} is adapted and cadlag. Show that

P X(w)>x) 75
(osslql}s)t (v) > ) z? + EX (t)?

holds for arbitrary = >0 and ¢ > 0, if X is a submartingale with EX (t) =0 and EX (¢)? < oco.

Exercise 5.7.7 (a) Let g:[0,00) — [0, 00) be a monotone increasing function with

1C) R
x
Show that the sequence X1, Xo,... of random variables is uniformly integrable, if

suppest Eg (| Xal) < oo.

(b) Let X = {X(n),n € N} be a martingale. Show that the sequence of random variables
X(7A1),X(7A2),...1is uniformly integrable for every finite stopping time 7, if
E|X ()| < 00 and E(|X (n)|1{75n}) — 0 for n — oo.
Exercise 5.7.8
Let S ={S, =a+ Y, X;,n € N} be a symmetric random walk with a > 0 and P(X; = 1) =
P(X;=-1)=1/2 for i e N. The random walk is stopped at the time 7, when it exceeds or falls
below one of the two values 0 and K > a for the first time, i.e.

7 =min{S, <0 or S, > K}.
k>0

Show that M, =¥1,S; - %Sg is a martingale and E(}]_, S;) = %(K2 - a?)a +a holds.
Hint: To calculate E(M,|FX), n > m, you can use E(X!, X;)? =0, 1 <k <I, M, =
70 S+ X1 Sr = 355 and Sy = Sy = S + S
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A discrete martingale w.r.t. a filtration {F,, },ey is a sequence of random variables { X, },en on
a probability space {Q, F,P), such that X, is measurable w.r.t. {F;,}neny and E(X,41|X5) = X,
a.s. for all n € N. A discrete stopping time w.r.t. {F,}ney is @ random variable
7:Q > Nu{oo} such that {r <n}eF, for all n e Nu {oo}, where Foo = o{Us>; Fn}-

Exercise 5.7.9
Let {X,}nen be a discrete martingale and 7 a discrete stopping time w.r.t. {F,}nen. Show
that{ X an }nen is also a martingale w.r.t. {F, }nen-

Exercise 5.7.10

Let {Sy, }neny be a symmetric random walk with S, = Y7, X; for a sequence of independent and
identically distributed random variables X, Xs, ..., such that P(X; =1) =P(X;=-1) = % Let
7 =inf{n:|S,|>+/n} and F, =o{X1,..., X}, neN.

(a) Show that 7 is a stopping time w.r.t. {F, }nen.

(b) Show that {G,}neny with Gy, = S2,,, =7 An is a martingale w.r.t. {F,}ney. (Hint: Use
Exercise 5.7.9)

(¢) Show that |G| < 47 holds for all n € N.

(Hint: It holds |G| < |S2,,| + |7 An| < S2,, +7)

Exercise 5.7.11

Let X1, Xo,... be a sequence of independent and identically distributed random variables with
E|X:| < 00. Let F, = 0{X1,...,Xn}, n €N, and let 7 be a stopping time w.r.t. {F,}nen with
ET < oo.

(a) Let 7 be independent of X, Xo,.... Derive a formula for the characteristic function of
Sy =¥7_ X; and verify Wald’s identity ES; = ETEX].

(b) Let additionally EX; = 0 and 7 = inf{n : S,, < 0}. Use Theorem 2.1.3, to show that
E7T = oo. (Hint: Proof by contradiction)
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6.1 Sequences of Independent Random Variables

It is known that the series

Z;":ln%<oo —= a>l,
~1)™
Z;’L"zl(na) <o <« «a>0,

since the drift of neighboring terms in the second series has order nl%’ ie.

= (-1)" ©( 1 1
2 no __1+,§1((2k)a_(2k+1)a)’

n=1
whereas
11 @kt 20) (1) =1 e L g -1 40(5)
(2k)e  (2k+1)  (2k)*(2k+ 1)  (2k+1)> (2k + 1)

_a+to(l) 1 ) 1 i
C2k(2k+ 1) O((Qk)a+1) - O(W), n =2k.

For which a > 0 does the series Y77, fL—Z converge, where ¢, are i.i.d. random variables with
Ed, =0, e.g. P(6, ==1) = %?

More general problem: Under which conditions holds Y77, X,, < oo a.s., where X, are inde-
pendent random variables?

It is known that for a sequence of random variables {Y,,} with Y, %, Y it holds that

n—oo
P
Y, —— Y. The opposite is in general not true.
n—oo
Theorem 6.1.1 o
Let X,,, n € N be independent random variables. If S,, = ¥1*; X; —— S then 5, N
n—oo

n—o0

Without proof

Corollary 6.1.1
If the X,,, n € N are independent random variables with Var X,, < oo, EX,, =0, n € N and
Yo Var X, < oo, then Y77, X, converges a.s.

Proof Let S, = ¥, X; for n € N. Prove that {S,}ney is a Cauchy sequence in L?(Q, F,P).
Namely, for n > m it holds

n
E(Sn = Sm)” =[S = Sl72= Y VarX; ——0,
i=m+1 ’

since ¥.52; Var X; < oo. Hence, {S,, }nen is a Cauchy sequence in L?(Q2, F,P). Then

o0

39 = lim S, = Y X;

n—00 4
=1

86
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P
in the mean square sense and thus S, —— 5. The statement of the corollary then follows

n—o0

from Theorem 6.1.1. O

Corollary 6.1.2
If ¥2°,a2 < oo, where {ay}neny is a deterministic sequence, and {,} is a sequence of i.i.d.

random variables with Ed, =0, Vard, = 02 < oo, n € N, then the series Yo2 i andy converges a.s.
Exercise 6.1.1
Derive Corollary 6.1.2 from Corollary 6.1.1.

In our motivating example &, i.i.d., E6, = 0, Vard, = 0? >0 (e.g. P(, = +1) = %), an = —=,

n eN. Z;’L’;ln%<oo, ifz;':;ln%<oo, ie. foroz<%.

Corollary 6.1.3 (Three-Series-Theorem):
Let {X,, }nen be a sequence of independent random variables with 72 EX,,, ¥~ Var X, < co.

a.s.

Then ¥, X,, ‘< 0.

Proof Let Y, = X,,-EX,,, thus X, = EX,, +Y,,, n e N, and EY,, =0, ¥, a,, < oo by our assump-

——
—an
tions. Then Y72, Y, C oo by Corollary 6.1.1, since Var X,, = VarY,,, ne N, ¥°2, Var X,, < co =
oo oo o0 a.s.
Yo Xn =Yy + 20 Y, < oo. -

6.2 Stationarity in the Narrow Sense and Ergodic Theory

6.2.1 Basic ldeas

Let {X,,}nen be a stationary in the narrow sense sequence of random variables, i.e. for all
n, k € N the distribution of (X,,..., X,4%)" is independent of n € N. In particular, this means
that all X, are identically distributed. In the language of Kolmogorov’s theorem:

P((Xn,Xn+1,.. ) € B) = P((Xl,XQ,...) € B),

for all n e N and B € B(R*) where R* =RxRx...x....

Example 6.2.1 (Stationary sequences of random variables): 1. Let {X,,},en be a se-
quence of i.i.d. random variables, then {X,, } ey is stationary.

2. Let Y, =apX,, + ...+ ax X4k, k — fixed natural number, {X,, }eny from 1), ag,...,a; € R
(fixed), n € N. Y}, are not independent anymore, but identically distributed. The sequence
{Y, }nen is stationary.

3. Let Y,, = Zj‘z’o a;j X4 for arbitrary n € N. The sequence {a;} ey is a sequence of real
numbers and {X,}>, are independent random variables with EX,, =0, ¥>°; Var X,, < o0
(compare Corollary 6.1.3).

It is obvious that {Y}, }ney is a stationary sequence if {X,,}>2; is i.i.d. (This construction
is important for autoregressive time series (AR-processes), e.g. in econometrics).

4. Let Y, = g(Xpn, Xns1,--.), n €N, g : R*® - R measurable, { X}, }nen from 1). Then {Y}, }ren
is stationary.
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Remark 6.2.1 1. An arbitrary stationary sequence of random variables X = {X,, }nen can
be extended to a stationary sequence X = { X }nez- In fact, the finite dimensional distri-
bution of X can be defined as:

d
(Xn,...,Xn_,.k)=(X1,...,Xk+1), nEZ, keN.

Therefore, by Kolmogorov’s theorem, there exists a probability space and a sequence
{Yy }nez with the above distribution. We set X = {¥}, } ez and hence follows that {Y}, }nen d
{Xn}neN-

2. We define a shift of coordinates. Let x € R®,, = = (zk,k € Z). Define the mapping
0 :R*, - R*®., (0x)r = x4 (shift of the coordinates by 1), k € N, k € Z. If 0 is
considered on R%,, then it is bijective and the inverse mapping would be (87*x)y = z4_1,

keZ. )
Let now X = {X,,, n € Z} be a stationary sequence of random variables. Let X = X,

X =07'X. It is obvious that X and X are again stationary and X dxex ie.,
P(@'X eB)=P(X e B)=P(X eB), BeB([R>=).
0 is called a measure preserving map. There are also other maps which have a measure

preserving effect.

Definition 6.2.1
Let (2, F,P) be an arbitary probability space. A map T :Q — Q is called measure preserving,
if

1. T is measurable, i.e. T"'Ae F forall Ae F,
2. P(T'A) =P(A), AerF.

Lemma 6.2.1

Let T be a measure preserving mapping and let Xy be a random variable. Define X,,(w) =
Xo(T"(w)), w € Q, n € N. Then the sequence of random variables X = {Xg, X1, X2,...} is
stationary.

Proof Let
X (w) = (Xo(w), Xo(T'(w)), Xo(T*(w)), .- ),
QX(W) = (XO(T(W))aXU(TQ(w))v .. ‘)7

BeB(R*), A={weQ: X(w) e B}, Ay ={weQ:0X(w) € B}. Therefore we A1 < T(w) € A.
Since P(T*A) = P(A), it holds P(A;) = P(A). For A, = {w e Q:0"X (w) € B} the same holds,
P(A;,) =P(A), n e N (Induction).Hence the sequence X is stationary. 0

The sequence X in Lemma 6.2.1 is called the sequence generated by T.

Definition 6.2.2
A map T :Q - Q is called measure preserving in both directions, if

1. T is bijective and T'(2) = (2,
2. T and T~' are measurable,

3. P(T7'A) =P(A), A€ F, and therefore P(T'A) = P(A).
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Thus, exactly as in Lemma 6.2.1, we can construct stationary sequences of random variables
with time parameter n € Z:

X(w) = {Xo(T" (W) }nen, weld,

where T is a measure preserving map (in both directions), Xo(T%(w)) = Xo(w), (T° = Id).

Lemma 6.2.2
For an arbitrary stationary sequence of random variables X = (Xg, X1,...) there exists a mea-
sure preserving map T and a random variable Y, such that Y (w) = {Yo(T"(w)) }neny has the

same distribution as X: X £V. The same statement holds for sequences with time parameter
n e Z.

Proof Consider the canonical probability space (R, B(R*),Px), Y(w) =w, w e R, T = 6.
Thus, Y is constructed since Px(A) = Py (A) =Px (Y € A), A e B(R*). O

Example 6.2.2 (Measure preserving maps): 1. Let Q = {wi,...,w}, k 2 2, F = 2%,
P(w;) = %, 1=1,...,k, be a Laplace probability space. Tw; = w;;1 foralli=1,..., k-1,
ka =Wwi.

2. Let Q=10,1), F =B([0,1)), P =14 — Lebesgue-measure on [0,1). Tw = (w+s) mod 1,
s > 0. T is measure preserving in both directions.

Sequences of random variables, which in these examples can be generated by the map 7', are
mostly deterministic resp. cyclic. In example 1) we can consider a random variable Xy : Q - R,
such that X (w;) = z; are all pairwise distinct. Therefore X,,(w) = Xo(T"(w)) uniquely defines
the value of X,41(w) = Xo(T"(w)), for all n e N.

Remark 6.2.2

Measure preserving maps play an important role in physics. There, T is interpreted as the
change of state of a physical system and the measure P can e.g. be the volume. (Example: T
— Change of temperature, measure P — volume of the gas.) Therefore the ergodic theory to be
developed can be immediately transfered to some physical processes.

Theorem 6.2.1 (Poincaré):
If T is a measure preserving map on (€, F,P), A € F, then for almost all w € A the relation
{T"(w) € A} holds for infinitely many n € N.

That means, the trajectory {T"(w), n € N} returns to A infinitely often, if w e A, P(A) > 0.
Proof Let N ={we A:T"(w) ¢ A, Vn > 1}. It is obvious that N € F, since {we Q: T"(w) ¢
A}yeFforalln>1. NnT™"N =g for all n > 1. In fact, if we NNnT™N, V n, then w e A,
T (w) ¢ Aforalln>1, w; =T™"(w), wi € N. Hence it follows that w; € A and T"(w) € A. That

is a contradiction with w € N. It holds
T™"N ={weN:T"(w) € N}. For arbitrary m € N it holds

T "NaT "IN =T (NaT™"N)=T"(g) = 2.

Hence follows that the sets T7"N, n € N, are pairwise disjoint, belong to F and P(T™"N) =
P(N) =a >0 holds. Then

13> P(UT"N) = S P(T"N) = Y a

n=0 n=0
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which is possible only if a = 0, i.e., P(N) = 0. Hence it follows that for almost all w € A
(w e A\N) there exists a n; = nj(w) such that 7" (w) € A. Now use T* instead of T, k € N
in the above reasoning. It holds P(Ny) = 0 and for all w € A\N}, there exists ny = ni(w) such
that (T%)™ (w) € A. Since kny, > k it follows for almost all w € A, that T™(w) € A for infinitely
many n. 0

Corollary 6.2.1
Let X >0 be a random variable, A = {w € Q : X(w) > 0}. Then it holds for almost all w € A
that 372 X (T"(w)) = +o00, where T is a measure preserving map.

Exercise 6.2.1
Prove it.

Remark 6.2.3

The proof of Theorem 6.2.1 holds for the sets A € F : P(A) > 0. If however P(A) =0, it is
possible that A\N =@ and thus the statement of the theorem is trivial.

As an example we consider Q = [0,1), F = Bjg ), P = 11 — Lebesgue-measure, T'(w) = w + s (
mod 1), s ¢ Q. Set A = {wp}, wo € Q. Then T™(wp) # wp holds for all n, because otherwise
there exist k,m € N such that wy + ks —m = wy and hence follows s = 7 € Q. Thus we get a
contradiction.

6.2.2 Mixing Properties and Ergodicity

Here we study the dependence structure in a stationary sequence of random variables, which
is generated by a measure preserving map 7.
Let X = {X,},y be a stationary sequence (in the narrow sense) of random variables. Then

there exists a measure preserving map 7' : 2 — Q, such that X,,(w) g Xo(T"(w)) and X, 2 X,
and thus X gives the marginal distribution of the sequence X. In turn, the map 7 is responsible
for the dependence within X (it indicates the properties of multidimensional distributions). We
shall therefore now examine the depedence properties of X generated by T'.

Definition 6.2.3 1. Event A € F is called invariant w.r.t. (a measure preserving map)
T:Q-Q,if T71A=A.

2. Event A € F is called almost invariant w.r.t. T, if P(T"'A A A) = 0. Here A is the
symmetric difference of sets.

Exercise 6.2.2
Show that the set of all (almost) invariant events T is a o-algebra J(J*).

Lemma 6.2.3
Let A e J*. Then there exists B € J such that P(A A B) =0

Proof Let B =limsup,,_,o, T "A=n, U T %A, It is to be shown that B e J, P(Aa B) =0.
It is obvious that 77'(B) = limsup,,_,., T~"*Y A = B and hence B € J.

It is easy to see that A & B c U (T™%A a T-*D A). Since P(T7%A & T-*+D A4) = 0 for all
k>1 due to A e J*, it follows that P(A A B) =0. 0

Definition 6.2.4 1. The measure preserving map 1T : Q — Q is called ergodic if for every

AelJ

P(A)z{(l) .
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2. The stationary sequence of random variables X = {X,,}, . is called ergodic if the measure
preserving map 1 :  — €, which generates X, is ergodic.

Lemma 6.2.4
The measure preserving map 7T is ergodic if and only if the probability of almost invariant sets

P(A) ={ (1) for all AeJ”.

Proof ,, <«

Obvious, since arbitrary invariant sets are also alsmost invariant, i.e. J c J*

[13
”

Let T be ergodic and A € J*. According to Lemma 6.2.3 it follows that there exists B € J such
that P(A A B) =0. Therefore P(A) = P(AnB) = P(B). Since T is ergodic and B € J it follows

~—

Definition 6.2.5
A random variable Y : - R is called (almost) invariant w.r.t. a measure preserving map

T:Q-Qif Y(w)=Y(T(w)) for (almost) all w € Q.

Theorem 6.2.2
Let T: Q2 > R be a measure preserving map. The following statements are equivalent:

1. T — ergodic
2. If Y is almost invariant w.r.t. T then Y = const a.s.

3. If Y is invariant w.r.t. 7" then Y = const a.s.
Proof 1) =2) = 3) = 1)
1) =2)
Let T — ergodic, Y — almost invariant. It is to be shown that Y (w) = const for almost all w € Q.

Y(T(w)) = Y(w) almost surely. Let A, = {weQ:Y(w)<v}, v e R. Hence it follows that
A, e J* for all v e R and by Lemma 6.2.4

P(A,) {

Let ¢ = sup{v:P(A,) =0}. Show that P(Y =¢) =1. It holds A, 1 Q, v > 00, A, | &, v > —00

= |c| < 00. Thus

0
1 for all v.

P(Y <¢) :P(u;;‘;1 {ch—%}) < i P(AC_%)zo,

=0
by definition of ¢. Analogously one proves that P(Y > ¢) =0 and hence P(Y =¢) = 1.
2) = 3)
is obvious.
3) = 1) It is to be shown that T is ergodic, i.e. P(A) = { (1] for all AeJ.
- . . 0 0
Let Y =14. It is invariant w.r.t. T, hence it follows that 14 = const = 1 and P(A) = 1 O
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Remark 6.2.4 1. The statements of Theorem 6.2.2 stay true if you demand 3) for a.s.
bounded random variables Y.

2. If Y is invariant w.r.t. T then Y,, = min {Y,n}, n € N, is also invariant w.r.t. 7.
Example 6.2.3 1. Let Q ={wy,...,wa}, F =2 P({w;}) =3, i=1,...,d. Let T(w;) = wis1

1=1,...,d-1, wg—> wi. T is obviously ergodic and hence any invariant random variable
is constant.

2. Let Q=[0,1), F = Bjg1y, P =11, T(w) = (w+s) mod 1. Show that T is ergodic <=
s¢ Q.

Proof , <«

Let s ¢ Q, Y be an arbitrary invariant random variable. Let Y be bounded a.s. so that EY? < oo
(compare Remark 6.2.4, 1)). We decompose the random variable Y into a Fourier-series. The
Fourier series of Y is Y (w) = £0°a,e?™¥. We want to show that a, = 0, n > 0, and hence
follows that Y(w) = ag a.s.. Then T is ergodic by Theorem 6.2.2. Indeed, by definition of T,
T(w) =w+s—k, keN. Since T is measure preserving and since Y is invariant w.r.t. 7" it holds

a, =< Y(w), e?m’nw >ro= E(y(w)e—%rinw) - E(y(T(w))e—anw)e—Zwins - e—?m’nsan'

Therefore if s ¢ Q then a, = 0.

, =>“
If s =7 € Q then 7' is not ergodic, i.e., there exists A € J such that 0 < P(A) < 1. Indeed, set
A=ui; {w €N: % <w< 2’;—;1} It is clear that P(A) = % Ais invariant, since T'(A4) = (A + 22—’:)

mod 1 = A. D

Definition 6.2.6 1. The measure preserving map 7" : Q — Q is called mizing (on average), if
for all Ay, Ay € F it holds: P(A;nT "Ay) —— P(A1)P(Az) (£ Tf P(A1nTF43) —
n—>oo n— 00
P(A1)P(A2), respectively), i.e., by repeated application of T to Ag, A; and As are getting
asymptotically independent.

2. Let X = {Xn}neNo be a stationary sequence of random variables which are generated by a
random variable Xy and a measure preserving map 7. X is called weakly dependent (on
average) if the random variables Xj, and Xy, are getting asymptotically independent for
n — oo , i.e. for all By, By € Br, and k € Ny

P(Xk € Bl,Xk+n € Bg) — P(X() € Bl)P(X[) € Bg)

n—oo

12
(— Z P(X() € Bl,Xk € Bg) E— P(X() € Bl)P(XO € Bg), respectively)
=1 nee

Theorem 6.2.3
A stationary sequence of random variables X = {Xn}neNo, generated by the measure preserving
map 7T, is weakly dependent (on average) if and only if 7" is mixing (on average).

Proof We prove the equivalence of mixing and weak dependence. The proof of the equivalence
of mixing and weak dependence on average is analogous and left as an exercise to the reader.
, < ¢ If T' is mixing we have to show that X = {X, }nen, with X, (w) = Xo(T"(w)), n € Ny is
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weakly dependent.
Let By, Bs € Bg. W.l.o.g., choose k =0. Then

P(Xo€By,Xo0T" € By) =P(X;" (B1)nT (X' (B2)))

=A; =T-m Ay
— P(Al)P(AQ) = P(XU € Bl)P(XO € BQ)

n—oo

» = Let any X = {X,, }nen, with X, (w) = Xo(T"(w)), n € Ny be weakly dependent. For any
Aq, Ay € F construct the random variable

0, wé¢AiuA,
Xo(w) = 1, weAlnAg'
2, weAinA,
3, weAinA

Since X, (w) = Xo(T"(w)) yields a weakly dependent sequence, it holds
P(A1nT™"Az) = P({1 < Xo <2} n{Xy, 22}) —— P(Xp € [1,2])P(X¢ > 2) = P(A1)P(Ay).

Hence, T' is mixing. O

Theorem 6.2.4
Let T be a measure preserving map. 1 is ergodic iff it is mixing on average.

Proof |, <«
It is to be shown that if T is mixing on average then T is ergodic, i.e. for all A € J it holds

P(A)={ 0 . Let Aj e F, Ay =AeJ. Then

1
% Yr1 P(AINT(Az)) =P(A1nAy) — P(A1)P(A3), which is possible only if P(A1nA3) =
—_——
=A5
P(A1)P(Ay). For Ay = A, we get P(A) = P?(A) and hence P(A) = { ?
Later. O

Now we give the motivation for the term ,mixing

Theorem 6.2.5
Let Ae F, P(A) > 0. The measure preserving map T': 2 — 2 is ergodic (i.e. mixing on average)
iff

P(ur T "A)=1,

i.e. the preimages T~ " A, n € Ny, cover almost the whole (2.

Proof , <«
Let B = U T™A. Obviously, T7'B = u22,T™"A c B. Since T is measure preserving, i.e.
P(T™1B) = P(B), it follows that P(T"'B A B) = P(B\T"'B) = P(B) - P(T"'B) = 0. Hence,

O p(B)>P(4)>0= P(B)-1.

Be J* (B — almost invariant w.r.t. T') and P(B) = { 1
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s [13
”

Let T be non-ergodic. It is to be shown, that P(B) < 1.
If T is not ergodic, there exists A € J such that 0 < P(A) <1. B=u?,T™A = A and hence
——

A
P(B) < 1. 0

Remark 6.2.5

So far, the fact that the random variables X are real-valued was never explicitly used. Therefore
the above observations can be transfered without modifications to sequences of random elements
with values in an arbitrary measurable space M.

6.2.3 Ergodic Theorem

Let X ={X,},., be a sequence of random variables on the probability space (2, F,P). If X,
are i.i.d., then by the strong law of large numbers

1 5
=3 Xj, —= EXo, if E[Xo| < co.
mn k)=0 n—00

We want to prove a similar statement about stationary sequences.

Theorem 6.2.6 (Ergodic theorem, Birkhoff-Khinchin):

Let X = {Xn}neNo be a stationary sequence of random variables, generated by the random
variable Xy and a measure preserving map 7 : ) — Q. Let J be the o-algebra of the invariant
sets from T and E|X(| < co. Then

173, as.
- >, Xp ——E(Xo | J).
k=0

If X is weakly dependent on average (i.e. T — ergodic) then E(Xy | J) = E(Xp).
Lemma 6.2.5
Let {X,}, T be as above. Let S, (w) = Y72 Xo(T*(w)), Mi(w) = max {0, 51 (w),...,Sk(w)}.
Under the condition of Theorem 6.2.6 it holds
E(Xol(M,>0))>0, neN.

Proof Let w € {w: M,(w) > 0}. For all k£ < n it holds Si(wo) < Mp(wp), wo € Q. Take
wo =T (w). We can add X and get

Xo(w) + My (T(w)) = Xo(w) + Sk(T(w)) = Ske1(w).

For k = 0 it holds Xo(w) > Sk+1(w) — Myp(T(w)), k = 0,...,n — 1. Hence it follows that
Xo(w) 2 max {S1(w),..., (w)} -M,(T(w)). Since M, (w) >0, then M, = max{S1,...,Sy}.

=Mn(w)
It follows that

E(Xo1(My > 0)) 2 E((My, = My (T))1(My > 0)) 2 E(My, - M (T)) =0,

since 7' is measure preserving. 0
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Proof of the Theorem 6.2.6 W.l.o.g. let E(X( | J) =0, otherwise replace Xy by Xo—-E(X |

7). .

It has to be shown: limy, e 22 az

Sy, = ZZ;& Xj. It is enough to show that

0 Sliminf& Slimsup& <0.

n—oo N n—oo N

First we show that S = limsup,,_,, S—Tf <0. Tt is enough to show that P(.S >¢) =0 for all £ > 0.
——
Ae
Let X§ = (Xo-¢€)la., Sf = Z 0 X5 (T (w)), M} = max{0,S5,...,57}. By Lemma 6.2.5, it
follows E(X51(M, >0)) >0 for all n>1. But

S)(‘
{M, >0} = {max Sp > O} oo {sup Sp > 0} {sup—k > 0} = {sup Bl > 5} nA, = A,
k k1 k>l K k>1 K

since {supk>1 > 8} > {S > E} = A;. By Lebesgue’s theorem
0< E(Xol(M* >0)) — E(X{14.), since E|X{j| < E|Xo|+¢e. Hence 0 < E(Xj14.) = E((Xo -
n—->oo

£)14.) = E(Xola.)-eP(A.) = E(E(Xola, | J))-eP(A) BE(14. E(X | J))-eP(A.) = —eP(A.)
~——
=0
which means that P(A;) <0, i.e. P(A:) =0 for all € > 0.

In oder to show 0 < liminf, . S—; S it is enough to look at —X, instead of X, since
M sup,, o0 (—52) = liminf,, e (3*). Since P(-S < 0) = 1 it holds P(S > 0) = 1. Consider
now the case if T is ergodic. Slnce Y = E(Xy|J) is an invariant random variable by definition
of J, it follows from Theorem 6.2.2, 3) that Y = const. a.s., i.e., Y = EY = E(E(Xy|J)) = EXj.

®: Since S = limsup S;L—” is invariant w.r.t. 7 (S(T) = S) then A. = {S >} € J, and hence 14,

is J-measurable. Then
E(Xola.|J) =14, -E(X0|J).

Remark 6.2.6
The peculiarity of the Ergodic Theorem in comparison with the strong law of large numbers
lies in the fact that the limiting value E(Xq | J) is random.

Example 6.2.4
We consider the probability space from Example 6.2.3 a): Q = {w1,...,wq}, d=2leN. T:Q -
Q) be defined by

T(wl) = Wit2 i:17"°7d_27
T(wg-1) = w1,
T(wd) = w2

Let Ay = {wi,ws,...,wo_1}, A2 = {wo,wy,...,wo}. Since (2, F,P) is a Laplace probability
space (P({wi}) = é, for all 7) it follows that P(A;) = %, i=1,2. On the other hand, A;, Ay € J
w.r.t. T and therefore T is not ergodic. For an arbitrary random variable Xy : Q2 - R it holds

l”le (T"(w)) 27 ()XO(WQJH) with probability %, if we Ay,
0 d -1 Xo(w2;) , with probability %, if we As.

k) 0 n—oo
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Proof of theorem 6.2.4 It has to be shown: If T : Q - Q is ergodic, then T is mixing on
average, i.e. for all Ay, Ay e F

3=

n—o00

nz_:l P(Al nT_kAQ) — P(Al)P(AQ)
k=0

Theorem 6.2.6
_—

Let Y, = % YA 1(T*Ay) P(Az), since T is ergodic, thus the sequence {1(T_kA2)}keN

is weakly dependent on average. By Lebesgue’s theorem it follows from 1(A1)Y; ——— 1(A1)P(As)
n—oc
that
E(1(A

Slf—‘

j P(A; nT*Ay) —— P(A,)P(As).

n—oo

Lemma 6.2.6

If {X,},n is @ uniformly integrable sequence of random variables and p,; > 0, such that
Yiipni =1 for all n € N, then the sequence of random variables Y;, = Y1 pni | Xi|, n € N,
uniformly integrable as well.

Without proof

Conclusion 6.2.1
Under the conditions of theorem 6.2.6 it holds

1n1
—ZXk—>E(X0|J)
;=0

resp.
1 n—1
- Z X SN E(Xo)

k’ 0 n—00

in the ergodic case.

Proof If { X, },en, is stationary, it then holds sup,, E(|X,|1(| X,| > €)) = E(|X0|1(|Xo| > €)) 7
&

0, since E[Xo| < c0. Let Sy = & X320 Xk = £y PniXict, Pnji = s Sn = 5 Lo Xk = Tiy Poil Xicl.

From lemma 6.2.6, {Sn}nEZ is also uniformly integrable and after Lemma 5.3.2 it follows from

S :—> 0 that E[S,| < £ 3723 E[X,| —— 0. 0
—>00 n—>o00

6.3 Stationarity in the Wide Sense

Let {X,,},,cz be a sequence of random variables, which is stationary in the wide sense: E| X% <
oo, n € N. E|X,| = const, n €N, cov(X,,X;n,) =C(n—-m), n,meZ.

6.3.1 Correlation Theory

Theorem 6.3.1 (Herglotz):
Let C : Z - R be a positive semi-definite function. Then there exists a finite measure p on
(-7, m), such that

C’(n)=[: inz,(dz), nel.

u is called spectral measure of C.
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Remark 6.3.1
Since covariance function of a stationary sequence is positive semi-definit, the the above repre-
sentation holds for an arbitrary covariance function C.

Definition 6.3.1
A family {Q», X € A} of probability measures is called weakly relatively compact, if an arbitrary
sequence of measures {Qx, },y has a subsequence {Qxn, } which converges weakly.

Definition 6.3.2
A family of probability measures @ = {Qx, A€ A} on (S,B), B — Borel g-algebra on a metric
space S is called tight, if for all € > 0 there exists a compactum, such that K. € B and Q) (K;) >
1-¢ for all AeA.

Theorem 6.3.2 (Prokhorov):

If the family of probability measures @ = {@»x, A € A} on the metric measurable space (S, B) is
tight, then it is weakly relatively compact. If S is a Banach space, then every weakly relatively
compact familiy @ = {Qx, A € A} of measures is also tight.

Without proof

neN?

The theorem of Prokhorov is used to prove the weak convergence of a sequence of probability
measures, by checking the tightness among other things. In particular, if S is compact, then
every family of probability measures on (S, B) is tight, since K. =S for all € > 0.

Proof of theorem 6.3.2 ,, < “
If C(n) =" "™ pu(dz), n€Z, then for all n e N, for all z1,...,2, € C and t1,...,t, € Z

n T . 2
Z ZjEjC(ti - tj) = f Z z; " ,u(d:c) >0.
1,5=1 T li=1
Hence follows that C' is positive semi-definit.
” = 13
For all N > 1, z € [-7, 7], define the function gy (z) = ﬁ Zﬁj:l C(k—j)e *=eli® > 0, which is

continuous in x, since C' is positive semi-definit. It holds

gn(z) = % | |Z:N (1 - %) C(n)e ™,

sine there are N — |n| pairs (k,j) € {1,..., N}?, such that k — j = n. Define the measure py on
([-7, 7], Bjxx1) by un(B) = [ gn(x)dz, B e B([-m,7]).

/:W €M Qn (dr) = /:W " gy (x)dr = { (1 - %) C(n), nl <N,

n n 0, otherwise,

since {eim}nez is a orthogonale system in L?[-7,7]. For n = 0 it holds Qx([-7,7]) = C(0) < oo,
hence {%} N is a family of probability measures, which is tight. After theorem 6.3.2 there
ne

exists a subsequence {Nj}rcn,
such that Qn % . p — finite measure on [-7, 7] and hence follows

lim 7reimg]\/(x)d:r: = k}im (1 - ]lvil) C(n)=C(n), forallneZ.

k—oo J—7 oo k
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O

Let X = {X,},,; be a stationary in the wide sense sequence of random variables. Then the
following spectral representation holds:

Xnif ¢ Z(dz), neZ,
—T

where Z is an orthogonal random measure on ([-m, 7], B([-m,7])). Therefore both Z and
I(f) = [" f(xz)Z(dz) are to be introduced for deterministic functions f : [-m, 7] - C.

6.3.2 Orthogonal Random Measures
Construction scheme of Z resp. I(-):

1. Z is defined on a semiring I (the sumbset of A).
2. Z is defined on the algebra A, which is generated by K.

3. Define the integrall w.r.t. Z for a simple function on o(A), if the measure p(A) < oo,
— given measure.

4. Define I as limy, o I(fy) for arbitrary random functions f, f = lim, oo [, fn simple,
u(A) < oo.

5. Define I on a o-finite space A = U, Ay, p(Ay) <oo, AynAy =@, n+m,as I(f) =%, I(f]|
Ay), I, — integralw.r.t. Z on A,. Hence Z is extended on {A€o(A): u(A) < oo} as
Z(A) = I(1(A)).

Step 1

Let IC be a semiring of the subsets of A (A — arbitrary space), i.e. for all A, B € K it holds

AnBeK;if Ac B, then there exist Ay,..., A4, €K, A;nA; =@, i+ j,suchthat B = Auu]_ A;.
Definition 6.3.3 1. A complexvalued random measure Z = {Z(B), B € K}, given on the
probability space (2, F,P), is called orthogonal, if
a) all Z(B) e L*(Q, F,P), BeK,
b) A,B ek, AnB = = (Z(4), Z(B)) aor.p) - E(Z(A), Z(B)) =0,
c¢) as a random measure the o-additivity of Z holds: If B, By,...,By,... € K, B=u,B,,
BinB; =g, i#j Z(B) ® %,Z(B,), where the convergence of this series is
intepreted in L?(2, F,P) terms.

2. The term p = {u(B), B € K} defined by u(B) = E|IZ(B)|* = (Z2(B), Z(B)) 20,7 p),
B e K, is called stucture measure of Z. It is easy to see that u is in fact a measure on K.
If A e K, then p is finite, otherwise o-finite, A = U, Ay, Ay, € K, Ay n Ay, = &, such that
w(Ay) < oo.

3. The orthogonal random measure Z is called centered, if EZ(B) =0, B € K.

Example 6.3.1

Let A = [0,00), K = {[a,b), 0 <a<b< oo}, Z([a,b)) = W(b)-W(a), 0<a<b< oo, where
W = {W(t), t >0} is the Wiener process. Z is an orthogonal random measure on K, since W
has independent increments. Analog, this definition can be transfered to an arbitrary quadratic
integrable stochastic process X with independent increments instead of W.
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Step 2

Theorem 6.3.3

Let p be a o-finite measure on the algebra A, which is generated by K (after the theorem of
Caratheodon p is uniquely continued on o(A)). Then there exists a probability space (€2, F, P)
and a centered orthogonal random measure Z on (2, F,P), defined on {B € A: u(B) < oo},
with structure measure (or control measure) pu.

Without proof
To the definition of Z on A: for B e A, B =U_B;, B e K, B,nB; =@, i # j, we set
Z(B) = £, Z(B;).

6.3.3 Integral regarding an Orthogonal Random Measure

Step 3

Let f: A - C be a simple function, i.e. f(z) = ¥iv;¢1l(z € B;), for ¢; € C and B; € &,
i=1,...,n,such that Ul";B; = A, BinB; =@, i #+ j, and (A, &, ) be a measurable space with
p(A) < oo.
Definition 6.3.4
The integral of f w.r.t. an orthogonal random measure Z defined on (€, F,P) is given by

fA =YL 6 Z(Bi).

Exercise 6.3.1
Show that the definition is correct, i.e. I(f) does not depend on the representation of f as a
simple function.

Lemma 6.3.1 (Properties of I):
Let I(-) be the integral w.r.t. the orthogonal random measure, defined on a simple function
A — C as abovev. The following properties hold:

1. Isometry' (I(t),](g))Lg(Q) = (f,9)12(q), where f and g are simple functions A - C,
N2y = Ja f( x)g(z)A(dz).

2. Linearity: For every simple function f,g: A — C holds I(f +g) “= I(f) +1(g).
Exercise 6.3.2
Proof it.

Step 4
Let now f € L?(Q,&, ). Then there exists a sequence of simple functions f, : A - C, such

2
that f, —(> f (simple functions are tight in L?(A)). Then define I(f) = lim,—eo I(fn),

whereas thls limit is to be understood in the LQ(Q,]: ,P) sense. You can show, that the
definition of I(f) is independent of the choice of the sequence {f,}.

Lemma 6.3.2
The statements of lemma 6.3.1 hold for the general case.

Proof Use the continuity (-, -). O

Remark 6.3.2
If Z is centered, then EI(f) = 0 holds for arbitrary functions f € L?(A, &, u).
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Step 5
Let now A be o-finite, i.e. A = UpA,, w(Ay) < oo, Ay n Ay = @, n# m. Then for all
feL?(A,E ) holds f =Y, fla,- On L2(An,E N Ay, 1) the integral I, w.r.t. Z is defined as in

1)- 4). Now set I(f) =%, In(fla,)-
Theorem 6.3.4

The map g : L?(A, &, 1) - L*(Q, F,P) is an isometry. In particular, as a result, the random
measure Z on {B e¢e: u(B) < £} can be continued as Z(B) :=I(1p), Be & : u(B) < co.

6.3.4 Spectral Representation

Let X = {X(t), t € T} be an arbitrary complexvalued stochastic process on (Q, F,P), T —
an arbitrary index set, EIX(t)]> < oo, t € T, EX(t) = 0, t € T (w.lo.g., otherwise consider
X(t)=X(t) -EX(t)), teT, with C(s,t) = E(X(s),X(t)), s,teT).

Theorem 6.3.5 (Karhunen):

X has the spectral representation X (t) = [, f(t,z)Z(dz), t € T (i.e., there exists a centered

orthogonal random measure on {B € 8 w(B) < oo}, where L?(A,E, 1) is an as above defined

space), if and only if there exists a system of the functionsf(t,-) € L>(A, &, ), t € T, such that
t) = [ f(s,2)f(t,x)pu(dx), s,t € T, and this system F is completely in L3(AE, 1) (ie.

(f(t,.),qp)LQ(Q) =0, e L*(Q,E,p), for all t e T and ¢ = 0, p almost everywhere).

Without proof

Theorem 6.3.6
Let {X,,, n € Z} be a centered complexvalued stationary in the wide sense sequence of ran-
dom variables on (€, F,P). Then there exists an orthogonal centered random measure on

([-m, 7], B([-7,7])) (defined on (€2, F,P)), such that X, =" [" ™ Z(dz), n € Z.

Proof Let F = {e"*, x¢[-n,m], neZ}. This system in complete on L*([-m,7]) (comp. the
theory of the Fourier-series). From the theorem of Herglotz follows that

C(n,m) = E(X, Xom) = f : ¢TI (Y

where p is the spectral measure of X, thus a finite measure on ([-m,7],B([-7,7])). Af-
ter theorem 6.3.5 there exists an orthogonal random measure on (Q, F,P), such that X,, °=
7 e Z(dx), neZ. O

Theorem 6.3.7 (Ergodic theorem for stationary (in the wide sense) sequences of
random variables):
Unter the conditions of theorem 6.3.6 it holds

1 7= 1 LQ(Q)
— Z Xy — Z({0}).

L%(Q
In particular if X is not centered, i.e. EX,, = a, n € Z, then %ZZ;& Xy L> a converges, if
E|Z({0})]* =0, thus Z and therefore u has no atom in zero.
N —

1({0})
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. 1
Proof S, = %ZZ:—& Xp=/[ % Yrod etk Z(da). b (z) = { new s L0 , forall neN. §, -
1, =0
Yn(z) ) )
Z({0}) = /7, Wn(2) - U2 = 0)) Z(dx) = [ en(@)Z(dz). |90 = Z({0O})] 22 (0 = lon (@) |2 (o ir) ) =

v

n(z)
7 |on(z)Pu(dx) — 0 after the theorem of Lebesgue, since |y, (z)| < ﬁ —— 0 for all
n—oo n—oo

x€[-mm]. 0

6.4 Additional Exercises

Exercise 6.4.1

Let Zy,Z3,... be a sequence of random variables, such that the series }.;2; Z; converges almost
surely. Let aj,as,... be a monotone increasing sequence of positive (deterministic) numbers
with a, — o0, n - oo. Show that

1 n a.s.
—Zaka -0, n-—oo.
On j=1

Exercise 6.4.2
Let X be a non-negative variable on a probability space (2, F,P) an T : Q —  a measure
preserving map. Show that

3 X(TFw)) =00 a.s.
k=0

for almost all w € Q with X (w) > 0.

Exercise 6.4.3
Let X be a random variable on a probability space (2, F,P) and T': 2 — 2 a measure preserving
map. Show that EX =E(X o T), i.e.

fQX(T(w))P(dw)=[QX(W)P(dw).

(Hint: algebraic induction)

Exercise 6.4.4

Let (92, F,P) be a probability space, where Q = [0,1), F = B([0,1)) and P is the Lebesgue
measure. Let X € (0,1).

(a) Show that T'(x)
amodm=a- l

(z+ ) mod 1 is a measure preserving map, where
Jm for a e R and b€ Z and || is the Gauss bracket.

SIS

(b) Show that T'(x) = Az and T'(z) = 22 are no measure preserving maps.
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