

ulm university universität

Prof. Dr. Evgeny Spodarev Dipl.-Math. Stefan Roth

Stochastics II Exercise Sheet 11

Due to: Wednesday, 13th of January 2016

Exercise 1 (5 Points)

Let $\{X(t), t \ge 0\}$ be a Gamma process with parameters b, p > 0, i.e. $X(t) \sim \Gamma(b, pt)$. Show that $\{X(t), t \ge 0\}$ is a subordinator with Laplace exponent

$$\xi(u) = \int_{0}^{\infty} (1 - e^{-uy})\nu(dy)$$

where $\nu(dy) = py^{-1} \exp(-by) dy$, y > 0. Note that the Laplace exponent of $\{X(t), t \ge 0\}$ is defined as the function $\xi : [0, \infty) \to [0, \infty)$ with $E \exp(-uX(t)) = \exp(-t\xi(u))$ for arbitrary $t, u \ge 0$.

Exercise 2 (7 Points)

Let $\{X(t); t \ge 0\}$ be a compound Poisson process with Lévy measure

$$\nu(dx) = \frac{\lambda\sqrt{2}}{\sigma\sqrt{\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx, \quad x \in \mathbb{R},$$

where $\lambda, \sigma > 0$. Let furthermore $W = \{W(t); t \ge 0\}$ be a Wiener process and $N = \{N(t); t \ge 0\}$ be a Poisson process with intensity 2λ . Assume that N and W are independent. Show¹ that the process $\{\sigma W(N(t)); t \ge 0\}$ has the same finite dimensional distributions as X.

Exercise 3 (6 Points)

Let T be a subordinator with density given by

$$f_{T(t)}(s) = \frac{t}{2\sqrt{\pi}} s^{-3/2} \exp(-t^2/4s) \mathbb{1}_{(0,\infty)}(s), \quad s \in \mathbb{R}.$$

Show² that T is a 1/2-stable ³ subordinator.

Exercise 4 (4 Points)

Let $W = \{W(t); t \ge 0\}$ be a Wiener process and τ be a $\alpha/2$ -stable subordinator, $\alpha \in (0, 2)$. Show that $\{W(\tau(s)); s \ge 0\}$ is an α -stable Lévy process.

³A subordinator $X = \{X(t); t \ge 0\}$ is called α -stable (cf. Example 4.1.2) if $\varphi_{X(1)}(s) = \exp(\int_{\mathbb{R}} (e^{isx} - 1)\nu(dx)), s \in \mathbb{R}$, with Lévy measure ν given by

$$\nu(dx) = \begin{cases} \frac{\alpha}{\Gamma(1-\alpha)} \frac{1}{x^{1+\alpha}} dx & , x > 0\\ 0 & , x \le 0. \end{cases}$$

WS 2015/2016

¹You can use Theorem 5.6.4 without proof.

²Find a differential equation by differentiating the Laplace transform of T(t).