

Prof. Dr. Evgeny Spodarev Dipl.-Math. Stefan Roth

Stochastics II Exercise Sheet 14

Due to: Wednesday, 3rd of February 2016

Exercise 1 (3 Points)

Let ξ_1, ξ_2, \ldots be a sequence of independent random variables with $\mathbb{E}\xi_i = 0$, for all $i \in \mathbb{N}$. Show that for each $k \in \mathbb{N}$ the sequence $\{X_n^{(k)}\}_{n \in \mathbb{N}_0}$ given by

$$X_0^{(k)} = 0, \quad X_n^{(k)} = \sum_{1 \le i_1 < \dots < i_k \le n} \xi_{i_1} \dots \xi_{i_k}$$

is a martingale w.r.t. the filtration generated by ξ_1, ξ_2, \ldots

Exercise 2 (4 Points)

Let $X = \{X_n\}_{n \in \mathbb{N}}$ be a martingale and $\tau : \Omega \to \mathbb{N}$ be a finite stopping time. Show that $\{X_{\tau \wedge n}\}_{n \in \mathbb{N}}$ is uniformly integrable, if $\mathbb{E}|X_{\tau}| < \infty$ and $\lim_{n \to \infty} \mathbb{E}(|X_n| \mathbb{1}_{\{\tau > n\}}) = 0$.

Exercise 3 (7 Points)

Let X_1, X_2, \ldots be i.i.d. with $P(X_1 = 1) = P(X_1 = -1) = 1/2$ and

$$S_n = \sum_{k=1}^n X_k, \quad n \in \mathbb{N}.$$

Define $T = \inf\{n : |S_n| > \sqrt{n}\}$ and $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$, $n \in \mathbb{N}$.

- (a) Show that T is a stopping time w.r.t. $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$.
- (b) Show¹ that $\{G_n\}_{n\in\mathbb{N}}$ with $G_n = S^2_{T\wedge n} T \wedge n$ is a martingale w.r.t. $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$.
- (c) Show that $|G_n| \leq 4T$ for all $n \in \mathbb{N}$.

Exercise 4 (6 Points)

Let $W = \{W(t); t \ge 0\}$ be a Wiener process. For a > 0 denote by

$$\tau_a = \inf\{t \ge 0; \ |W(t)| = a\},\$$

the first exit time of W from the strip (-a, a).

- (a) Show that $P(W(\tau_a) = a) = P(W(\tau_a) = -a) = 1/2$.
- (b) Compute $\mathbb{E}e^{-\lambda \tau_a}$ for $\lambda > 0$.
- (c) Compute² $\mathbb{E}\tau_a^2$.

WS 2015/2016

¹See Exercise 4, (b) on exercise sheet 13.

 $^{^{2}}$ Use part (b).