Stochastics II
 Exercise Sheet 1

Due to: Wednesday, 21st of October 2015
In the following we use the notation from the lecture notes. For a random function $X=$ $\{X(t), t \in T\}$ associated with $\left(\mathcal{S}_{t}, \mathcal{B}_{t}\right)_{t \in T}$ let $\mathcal{S}_{t_{1}, \ldots, t_{n}}=\mathcal{S}_{t_{1}} \times \cdots \times \mathcal{S}_{t_{n}}$ as well as $\mathcal{B}_{t_{1}, \ldots, t_{n}}=$ $\mathcal{B}_{t_{1}} \otimes \cdots \otimes \mathcal{B}_{t_{n}}$ where $n \in \mathbb{N}$ and $t_{1}, \ldots, t_{n} \in T$. All random elements are defined on a common probability space (Ω, \mathcal{A}, P).

Exercise 1 ($3+4+4$ Points)

Let $\mu \in \mathbb{R}^{n}$ and $K \in \mathbb{R}^{n \times n}$ a positive semi-definite, symmetric matrix. A random vector $X=$ $\left(X_{1}, \ldots, X_{n}\right)^{\top}$ is called gaussian with expectation μ and covariance matrix K, if its characteristic function ${ }^{1} \psi_{X}$ is given by

$$
\psi_{X}(z)=\mathbb{E} \exp \left(i z^{\top} X\right)=\exp \left(i z^{\top} \mu-\frac{1}{2} z^{\top} K z\right), \quad z \in \mathbb{R}^{n}
$$

and we write $X \sim N(\mu, K)$. Show the following properties of X :
(a) For any matrix $A \in \mathbb{R}^{m \times n}$ and any $\nu \in \mathbb{R}^{m}$ it holds $A X+\nu \sim N\left(A \mu+\nu, A K A^{\top}\right)$.
(b) For arbitrary $1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n, l \in\{1, \ldots, n\}$ the random vector $\tilde{X}=$ $\left(X_{i_{1}}, \ldots, X_{i_{l}}\right)^{\top}$ is gaussian. Specify its expectation and covariance matrix.
(c) The components of X are independent, if and only if the covariance matrix K is diagonal, i.e. for $K=\left(k_{i j}\right)_{i, j=1, \ldots, n}$ it holds $k_{i j}=0$ for $i \neq j$.

Exercise 2 (4 Points)

Show the existence of a gaussian random function and specify the measurable spaces $\left(\mathcal{S}_{t_{1}, \ldots, t_{n}}, \mathcal{B}_{t_{1}, \ldots, t_{n}}\right)$.
Hint: Combine Exercise 1.8.1 from the lecture notes (without proof) and Exercise 1 above.

Exercise 3 (4 Points)

Let $X=\{X(t), t \in T\}$ and $Y=\{Y(t), t \in T\}$ be two stochastic processes on a common probability space (Ω, \mathcal{A}, P) with values in $(\mathcal{S}, \mathcal{B})$.
(a) Show that if X and Y are stochastically equivalent then they have the same distribution, i.e. $P_{X}=P_{Y}$.
(b) Give an example of two stochastic processes which are not equivalent but have the same distribution.

[^0]Exercise 4 (5 Points)
Let $X=\{X(t), t \in T\}$ be a random function. Show that the vector $\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)^{\top}$ is $\mathcal{A} \mid \mathcal{B}_{t_{1}, \ldots, t_{n}}$-measurable for every $n \in \mathbb{N}$ and arbitrary $t_{1}, \ldots, t_{n} \in T$.

Hint: It holds $\left(X\left(t_{1}, \omega\right), \ldots, X\left(t_{n}, \omega\right)\right)^{\top}=p_{t_{1}, \ldots, t_{n}} \circ X(\omega)$ with the projection map $p_{t_{1}, \ldots, t_{n}}$: $\left\{x, x(t) \in \mathcal{S}_{t}, t \in T\right\} \rightarrow \mathcal{S}_{t_{1}, \ldots, t_{n}}, x \mapsto\left(x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right)^{\top}$.

[^0]: ${ }^{1}$ The distribution of a random vector is (as in the case of random variables) uniquely determined by its characteristic function.

