Stochastics II
 Exercise Sheet 4

Due to: Wednesday, 11th of November 2015
Exercise 1 (2 Points)
Prove Remark 2.1.4: For a delayed renewal-process $N=\{N(t) ; t \geq 0\}$ with delay T_{1} it holds
(a) $H(t)=\sum_{k=0}^{\infty}\left(F_{T_{1}} * F_{T_{2}}^{* k}\right)(t), t \geq 0$.
(b) $\hat{l}_{H}(s)=\frac{\hat{l}_{T_{1}}(s)}{1-\hat{l}_{T_{2}}(s)}, s>0$.

Exercise 2 (2 Points)

Let $N=\{N(t) ; t \geq 0\}$ be a Poisson process with intensity $\lambda>0$. Find
(a) $P\left(N_{1}=2, N_{2}=3, N_{3}=5\right)$.
(b) $P\left(N_{1} \leq 2, N_{2}=3, N_{3} \geq 5\right)$.
(c) the probability that $N(t)$ is even respectively odd, $t>0$.

Exercise 3 (4 Points)

Let $N=\{N(t) ; t \geq 0\}$ be a Poisson process with intensity $\lambda>0$. Calculate

$$
P(N(s)=i \mid N(t)=n)
$$

for $0<s<t$ and $i=1, \ldots, n$.
Exercise 4 (6 Points)
Let $N=\{N(t) ; t \geq 0\}$ be a Poisson process with intensity $\lambda>0$. Let Y be a random variable with $P(Y=1)=P(Y=-1)=1 / 2$ which is independent of the process N. Define a stochastic process $X=\{X(t) ; t \geq 0\}$ by $X(t)=Y \cdot(-1)^{N(t)}$.
(a) Let $t>0$ be arbitrary but fixed. Calculate the probability that $X(t)$ is 1 (-1 , respectively).
(b) Calculate the covariance function of X.

Exercise 5 (8 Points)

Let $\mathcal{B}_{0}\left(\mathbb{R}^{d}\right):=\left\{B \in \mathcal{B}\left(\mathbb{R}^{d}\right), \nu_{d}(B)<\infty\right\}$, where ν_{d} denotes the d-dimensional Lebesgue-measure. Let furthermore $\mu: \mathcal{B}\left(\mathbb{R}^{d}\right) \rightarrow[0, \infty]$ be a locally finite measure (i.e. $\mu(B)<\infty$ for every $B \in$ $\mathcal{B}_{0}\left(\mathbb{R}^{d}\right)$). The non-homogeneous Poisson process can be defined as $N=\left\{N(B), B \in \mathcal{B}\left(\mathbb{R}^{d}\right)\right\}$ with the following properties:
1.) $N(B) \sim \operatorname{Poi}(\mu(B))$ for every $B \in \mathcal{B}_{0}\left(\mathbb{R}^{d}\right)$.
2.) $N\left(B_{1}\right), \ldots, N\left(B_{n}\right)$ are independent random variables for pairwise disjoint $B_{i} \in \mathcal{B}_{0}\left(\mathbb{R}^{d}\right)$, $i=1, \ldots, n$ and arbitrary $n \in \mathbb{N}$.
μ is called the intensity measure of N.
(a) Let $A_{1}, A_{2} \in \mathcal{B}_{0}\left(\mathbb{R}^{d}\right)$ be arbitrary. Show that for fixed $k \in \mathbb{N}_{0}$ and $l=0, \ldots, k$, the probability $P\left(N\left(A_{1} \cup A_{2}\right)=k, N\left(A_{1} \cap A_{2}\right)=l\right)$ is given by

$$
\frac{\mu^{k}\left(A_{1} \cup A_{2}\right)}{k!} e^{-\mu\left(A_{1} \cup A_{2}\right)}\binom{k}{l}\left(\frac{\mu\left(A_{1} \cap A_{2}\right)}{\mu\left(A_{1} \cup A_{2}\right)}\right)^{l}\left(1-\frac{\mu\left(A_{1} \cap A_{2}\right)}{\mu\left(A_{1} \cup A_{2}\right)}\right)^{k-l} .
$$

(b) Let $n \in \mathbb{N}, k_{1}, \ldots, k_{n} \in \mathbb{N}_{0}$ and $B_{1}, \ldots, B_{n} \in \mathcal{B}_{0}\left(\mathbb{R}^{d}\right)$ pairwise disjoint. Verify that for $k=\sum_{i=1}^{n} k_{i}$ and $B=\cup_{i=1}^{n} B_{i}$ it holds

$$
P\left(N\left(B_{1}\right)=k_{1}, \ldots, N\left(B_{n}\right)=k_{n} \mid N(B)=k\right)=\frac{k!}{k_{1}!\ldots k_{n}!} \frac{\mu^{k_{1}}\left(B_{1}\right) \ldots \mu^{k_{n}}\left(B_{n}\right)}{\mu^{k}(B)}
$$

provided that $\mu(B)>0$.

