Stochastics II
 Exercise Sheet 5

Due to: Wednesday, 18th of November 2015

Exercise 1 (4 Points)

Let $N^{(1)}=\left\{N^{(1)}(t) ; t \geq 0\right\}$ and $N^{(2)}=\left\{N^{(2)}(t) ; t \geq 0\right\}$ be two independent Poisson processes with intensities $\lambda_{1}, \lambda_{2}>0$, i.e. the sequences $\left\{T_{k}^{(1)}\right\}_{k \in \mathbb{N}}$ and $\left\{T_{k}^{(2)}\right\}_{k \in \mathbb{N}}$ of interarrival times are independent. Show that $N=\{N(t) ; t \geq 0\}$ defined by

$$
N(t)=N^{(1)}(t)+N^{(2)}(t), \quad t \geq 0
$$

is a Poisson process with intensity $\lambda_{1}+\lambda_{2}$.
Exercise 2 (5 Points)
Let $N=\{N(t), t \geq 0\}$ be a renewal process. Define $\chi(t)=S_{N(t)+1}-t$ and $C(t)=t-S_{N(t)}$, $t>0$. χ is called excess time, C current life time. Now let N be a Poisson process with intesity $\lambda>0$.
(a) Calculate the distribution of $\chi(t)$.
(b) Show that the distribution of the current life time is given by

$$
P(C(t) \leq s)=\exp (-\lambda t) \delta_{t}(s)+\int_{0}^{\min \{s, t\}} \lambda \exp (-\lambda x) d x, \quad s \in[0, t],
$$

with $\delta_{t}(s)=1$, if $s=t$ and 0 otherwise.

Exercise 3 (5 Points)

Let $N=\{N(t), t \geq 0\}$ be a homogeneous Poisson process with intensity $\lambda>0$ and let $U=$ $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ be an i.i.d. sequence of non-negative random variables defined on the same probability space as N. Let furthermore N and U be independent. Define the process $X=\{X(t) ; t \geq 0\}$ by

$$
X(t)=\sum_{i=1}^{N(t)} U_{i}, \quad t \geq 0
$$

Show that
(a) the Laplace transform of $X(t)$ is given by

$$
\hat{l}_{X(t)}(s)=m_{N(t)}\left(\hat{l}_{U_{1}}(s)\right), \quad s \geq 0
$$

where $m_{N(t)}(s)=\mathbb{E} s^{N(t)}$ denotes the generating function of $N(t)$.
(b) if $U_{1} \sim \operatorname{Exp}(\gamma), \gamma>0$, then $\hat{l}_{X(t)}(s)=\exp \left(-\frac{\lambda t s}{\gamma+s}\right), s \geq 0$.

Exercise 4 (6 Points)
Let $\left\{T_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of i.i.d. random variables with $T_{1} \sim \operatorname{Exp}(\lambda), \lambda>0$. For $n \in \mathbb{N}$, define $S_{n}=\sum_{k=1}^{n} T_{k}$. Show that for any $n \in \mathbb{N}$ it holds that

$$
\left(\frac{S_{1}}{S_{n+1}}, \ldots, \frac{S_{n}}{S_{n+1}}\right) \stackrel{d}{=}\left(U_{(1)}, \ldots, U_{(n)}\right),
$$

where U_{1}, \ldots, U_{n} are i.i.d. random variables with $U_{1} \sim U([0,1])$ and $U_{(k)}$ denotes the k-th order statistic of $\left(U_{1}, \ldots, U_{n}\right)$.

Exercise 5 (4 Points)
Consider a Poisson counting measure N as in Exercise 5, Sheet 4. Let $B_{0} \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ and $\tilde{\mu}(\cdot):=\mu\left(\cdot \cap B_{0}\right)$. Show, that the random counting measure $\tilde{N}=\left\{\tilde{N}(B), B \in \mathcal{B}\left(\mathbb{R}^{d}\right)\right\}$ defined by $\tilde{N}(\cdot):=N\left(\cdot \cap B_{0}\right)$ is a Poisson counting measure with intensity measure $\tilde{\mu}$.

