

ulm university universität

Prof. Dr. Evgeny Spodarev Dipl.-Math. Stefan Roth WS 2015/2016

uum

Stochastics II Exercise Sheet 6

Due to: Wednesday, 25th of November 2015

Exercise 1 (6 Points)

Let $X = \{X(t), t \ge 0\}, X(t) = \sum_{j=1}^{N(t)} U_j, t \ge 0$, be a compound Poisson process with parameters λ, F_U .

- (a) Determine its characteristic function $\varphi_{X(t)}(z) = \mathbb{E}e^{izX(t)}, z \in \mathbb{R}, t \ge 0.$
- (b) Let $\mathbb{E}|U_1| < \infty$. Show that

$$\varphi'_U(z) = \frac{1}{\lambda t} \frac{\varphi'_{X(t)}(z)}{\varphi_{X(t)}(z)}, \quad z \in \mathbb{R},$$

where φ_U denotes the characteristic function of U_1 .

Exercise 2 (9 Points)

Let $N = \{N(t), t \in [0, \infty)\}$ be a Cox process with random intensity measure $\Lambda = \{\Lambda(B), B \in \mathcal{B}(\mathbb{R}_+)\}$. Show the following statements:

(a) If the moment generating function $M_{\Lambda((0,t])}$ of $\Lambda((0,t])$ exists in a neighborhood U of 0, then

$$M_{N(t)}(s) = M_{\Lambda((0,t])}(e^s - 1), \quad s \in \tilde{U}$$

where $M_{N(t)}(s)$ denotes the moment generating function of N(t), t > 0 and $\tilde{U} = \{s \in \mathbb{R}, e^s - 1 \in U\}$.

- (b) If $\mathbb{E}|\Lambda((0,t])| < \infty$, then $\mathbb{E}N(t) = \mathbb{E}\Lambda((0,t])$.
- (c) If $\mathbb{E}\Lambda^2((0,t]) < \infty$, then $\operatorname{Var}N(t) = \mathbb{E}\Lambda((0,t]) + \operatorname{Var}\Lambda((0,t])$.

Exercise 3 (3 Points)

Give an algorithm of how to simulate the trajectories of a Wiener process $W = \{W(t), t \in [0, 1]\}$ by using the independence and the distribution of the increments of W.

Exercise 4 (4 Points)

An approximation for the Wiener process $W = \{W(t), t \in [0, 1]\}$ is given by

$$W_n(t) = \sum_{k=1}^n S_k(t) Z_k \tag{1}$$

where S_k are the Schauder functions, $t \in [0, 1]$, $k \ge 1$ and $Z_k \stackrel{\text{i.i.d.}}{\sim} N(0, 1)$. The convergence of the sequence in (1) $(n \to \infty)$ has to be understood in L^2 -sense for all $t \in [0, 1]$. Show¹ that

$$W_n(t) \xrightarrow{L^2} W(t) \quad (n \to \infty)$$

¹You can use that the L^2 -limit of $\{W_n(t)\}_{n\in\mathbb{N}}$ is a Wiener process without proof (see also Theorem 3.2.1.).