

ulm university universität

Prof. Dr. Evgeny Spodarev Dipl.-Math. Stefan Roth WS 2015/2016

uulm

Stochastics II Exercise Sheet 7

Due to: Wednesday, 2nd of December 2015

Exercise 1 (4 Points)

Let $W_1 = \{W_1(t), t \ge 0\}$ and $W_2 = \{W_2(t), t \ge 0\}$ be two independent Wiener processes. For which numbers $a, b \in \mathbb{R}$ is the process $W = \{W(t), t \ge 0\}$ defined by $W(t) = aW_1(t) + bW_2(t), t \ge 0$, a Wiener process as well?

Exercise 2 (4 Points)

Let $W = \{W(t), t \in [0,1]\}$ be a Wiener process. Use the extension of Kolmogorov's continuity criterion¹ to show that for any $\gamma < 1/2$ the process W has a Hölder continuous modification with Hölder exponent γ .

Exercise 3 (4 Points)

Show² that the Wiener process $W = \{W(t), t \in [0, 1]\}$ is a.s. not absolutely continuous.

Exercise 4 (1 + 4 Points)

Let $W = \{W(t), t \in [0,1]\}$ be a Wiener process and $L = \operatorname{argmax}_{t \in [0,1]} W(t)$. Show³ that

$$P(L \le x) = \frac{2}{\pi} \arcsin \sqrt{x}, \quad x \in [0, 1].$$

Exercise 5 (5 + 3 Points)

Write a program in \mathbf{R} which simulates the trajectory of a Wiener process on [0, 1]

- (a) by using approximation with Schauder functions and input parameters t and m, where t is a finite dimensional vector of locations in [0,1] and m is the cutt-off parameter of the series expansion.
- (b) exactly by using the algorithm from sheet 6, exercise 3 with input parameter t defined as in (a).

Simulate and plot a trajectory in both cases. Take m = 12 in (a) and $t = (t_0, \ldots, t_{1000})$ in (b), where $t_0 = 0$ and $t_k = k/1000$, $k = 1, \ldots, 1000$.

¹Kolmogorov's continuity criterion: Let $X = \{X(t), t \in [0,1]\}$ be a real valued stochastic process. Suppose there exist $p > 0, c > 0, \varepsilon > 0$ so that for every $s, t \ge 0$,

$$\mathbb{E}|X(t) - X(s)|^p \le c|t - s|^{1+\varepsilon}.$$

Then, there exists a modification \tilde{X} of X which is a.s. continuous, and even α -Hölder continuous for any $\alpha \in (0, \varepsilon/p)$.

²Use that any absolutely continuous function is a.e. differentiable.

³Use the second statement from Theorem 3.3.2 as well as the fact that $\max_{r \in [0,t]} W(r) \stackrel{d}{=} |W(t)|$.