

ulm university universität **UU**

Prof. Dr. Volker Schmidt Matthias Neumann

Wintersemester 2015/2016

Elementare Wahrscheinlichkeitsrechnung und Statistik Übungsblatt 1

Abgabe am 22.10.2015 vor Beginn der Übung

Hinweise:

- Für die Zulassung zur Klausur ist das Erreichen von 50 % der Übungspunkte notwendig.
- Zur Anrechnung der erzielten Übungspunkte ist eine Anmeldung im SLC notwendig (https://slc.mathematik.uni-ulm.de).
- Übungsblätter sollen zu zweit abgegeben werden. Stehen mehr als zwei Namen auf dem Blatt, werden keine Punkte vergeben.

Aufgabe 1 (2.5 + 3 + 1.5 Punkte)

Betrachte folgendes Zufallsexperiment: Drei Würfel mit den Ziffern 1,2,3,4,5,6, werden hintereinander geworfen. Bezeichne $A_{i,j}$ das Ereignis, dass bei genau j Würfeln die Ziffer i geworfen wird, für alle $i \in \{1, 2, 3, 4, 5, 6\}, j \in \{0, 1, 2, 3\}.$

- (a) Drücke unter Verwendung geeigneter Mengenoperationen die folgenden Ereignisse B, C, D, E und F mit Hilfe der Ereignisse $A_{i,j}$ aus:
 - -B = "Es werden die Ziffern 1,2 und 3 geworfen. "
 - -C = "Es wird mindestens eine 6 geworfen. "
 - D= "Es wird entweder keine 3 geworfen oder es wird weniger als zwei mal eine 4 geworfen. "
 - -E = "Alle drei geworfenen Ziffern sind verschieden. "
 - -F = "Alle drei geworfenen Ziffern sind gleich. "
- (b) Überlege, wie die zugehörige Grundmenge Ω definiert werden kann, und gib die Ereignisse B, C, D, E, und F als Teilmengen von Ω an.
- (c) Welche der Ereignisse B, C, D, E, und F sind paarweise unvereinbar?

Bitte wenden.

Aufgabe 2 (2 + 2 Punkte)

Zeige oder widerlege ob die folgenden Mengensysteme \mathcal{F}_1 und \mathcal{F}_2 eine Algebra oder σ -Algebra über dem jeweiligen Grundraum Ω bilden.

- (a) Sei Ω beliebig und $\mathcal{F}_1 = \{A \subset \Omega : f(A) = A\}$, wobei $f : \Omega \longrightarrow \Omega$ eine beliebige bijektive Abbildung ist. Hier bezeichnet f(A) das Bild von A unter f für jedes $A \subset \Omega$.
- (b) Sei $\Omega = \mathbb{R}$ und $\mathcal{F}_2 = \{A \subset \mathbb{R} : A \text{ oder } A^c \text{ ist abgeschlossen}\}.$

Aufgabe 3 (2.5 + 1.5 Punkte)

Sei Ω eine Menge und sei \mathcal{E} eine Familie von Teilmengen von Ω . Definiere

$$\sigma(\mathcal{E}) = \bigcap_{\substack{\mathcal{E} \subset \mathcal{F} \\ \mathcal{F} \sigma - \text{Algebra}}} \mathcal{F}.$$

- (a) Zeige, dass $\sigma(\mathcal{E})$ eine σ -Algebra ist.
- (b) Sei $\Omega = \mathbb{R}$ und $\mathcal{E} = \{(0,2), \{1\}\}$. Bestimme $\sigma(\mathcal{E})$.

Aufgabe 4 (2 Punkte)

Sei (Ω, \mathcal{F}) ein Meßraum und seien $A_1, A_2, \ldots \in \mathcal{F}$ Ereignisse mit $A_{i+1} \subset A_i$ für alle $i \in \mathbb{N}$. Zeige $A_n \longrightarrow \bigcap_{n=1}^{\infty} A_n$ für $n \longrightarrow \infty$.

Aufgabe 5 (2 Punkte)

Sei Ω eine Menge und seien \mathcal{F}_1 und \mathcal{F}_2 beliebige σ -Algebra auf Ω . Zeige, dass $\mathcal{F}_1 \cup \mathcal{F}_2$ im Allgemeinen keine σ -Algebra ist.

Aufgabe 6 (2+1+3) Punkte)

Sei (Ω, \mathcal{F}) ein Meßraum. Eine Familie von Teilmengen \mathcal{G} von Ω heißt Dynkin-System, wenn folgende Eigenschaften erfüllt sind: 1. $\Omega \in \mathcal{G}$. 2. Seien $A, B \in \mathcal{G}$ mit $A \supset B$. Dann gilt $A \setminus B \in \mathcal{G}$. 3. Für eine Folge $A_1, A_2, \ldots \in \mathcal{G}$ mit $A_1 \subset A_2 \subset \ldots$ ist $\bigcup_{k=1}^{\infty} A_k \in \mathcal{G}$. Eine Familie von Teilmengen \mathcal{G} von Ω heißt π -System, wenn sie stabil unter endlicher Schnittbildung ist, d.h. wenn für jedes feste $N \geq 1$ und jede Folge $A_1, A_2, \ldots \in \mathcal{G}$ gilt: $\bigcap_{k=1}^{N} A_k \in \mathcal{G}$. Zeige folgende Aussagen:

- (a) \mathcal{F} ist ein Dynkin-System.
- (b) \mathcal{F} ist ein π -System.
- (c) Wenn \mathcal{G} ein Dynkin-System und ein π -System ist, dann ist \mathcal{G} eine σ -Algebra. Hinweis: Seien $A_1, A_2, \ldots \in \mathcal{G}$. Zeige mit Hilfe der Eigenschaften des π -Systems, dass eine Folge $B_1, B_2, \ldots \in \mathcal{G}$ mit $B_1 \subset B_2 \subset \ldots$ existiert, sodass $\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} B_k$.