

ulm university universität **UU**

Prof. Dr. Volker Schmidt Matthias Neumann

Wintersemester 2015/2016

Elementare Wahrscheinlichkeitsrechnung und Statistik Übungsblatt 10

Abgabe am 7.1.2016 vor Beginn der Übung

Aufgabe 1 (2+2+2+2+2+2+2) Punkte)

Es sei X eine Zufallsvariable. Berechne den Erwartungswert $\mathbb{E} X$ von X, falls

- (a) $X \sim \text{Poi}(\lambda)$ mit Parameter $\lambda > 0$,
- (b) $X \sim \text{Geo}(p)$ mit Parameter $p \in (0, 1)$,
- (c) $X \sim U(a, b)$ mit Parametern a < b,
- (d) $X \sim \text{Exp}(\lambda)$ mit Parameter $\lambda > 0$,
- (e) X Pareto-verteilt ist mit Parametern $\alpha, k > 0$,
- (f) X Rayleigh-verteilt ist mit Parameter $\sigma > 0$.
- (g) $F_X(x) = (1 0.8e^{1-x}) \mathbb{1}_{[1,\infty)}(x)$.

Hinweis: Eine absolutstetige Zufallsvariable X heißt Pareto-verteilt mit Parametern $\alpha, k > 0$, falls ihre Dichte durch $f_X(x) = \frac{\alpha}{k} \left(\frac{k}{x}\right)^{\alpha+1} \mathbb{1}_{[k,\infty)}(x)$ gegeben ist.

Aufgabe 2 (2 + 1 Punkte)

Sei $n \in \mathbb{N}$ und seien X_1, \dots, X_n beliebige integrierbare Zufallsvariablen. Seien ferner a_1, \dots, a_n beliebige reelle Zahlen.

- (a) Zeige $\mathbb{E}(a_1X_1 + \ldots + a_nX_n) = a_1 \mathbb{E} X_1 + \ldots + a_n \mathbb{E} X_n$.
- (b) Sei $k \geq 1, \lambda > 0$. Sei Y Erlang-verteilt mit Parametern k und λ . Bestimme $\mathbb{E}Y$.

Aufgabe 3 (4 Punkte)

Sei r > 0 und X eine Zufallsvariable mit $\mathbb{E}(X^r) < \infty, P(X \ge 0) = 1$ und Verteilungsfunktion F. Zeige, dass

$$\mathbb{E}(X^r) = \int_0^\infty rx^{r-1} (1 - F(x)) \, \mathrm{d}x.$$

Bitte wenden.

Aufgabe 4 (4 Punkte)

Sei X eine integrierbare Zufallsvariable mit Verteilungsfunktion F. Zeige $\lim_{x\to -\infty} x\cdot F(x)=0$. Hinweis: Zeige, dass $\mathbbm{1}_B(X)$ für alle $B\in \mathcal{B}(\mathbb{R})$ eine Bernoulli-verteilte Zufallsvariable ist und berechne deren Erwartungswert.