

Dr. Kirsten Schorning Dipl.-Math. Stefan Roth WS 2016/17 13. Dezember 2016

Angewandte Stochastik 2 - Übungsblatt 9

Besprechung: 19. Dezember im \mathbf{R} -Tutorium.

Aufgabe 1 (6 Punkte)

Was passiert in folgendem Programm? Erkläre die einzelnen Funktionen sowie das Ergebnis.

```
1 \text{ density} = \text{function}(x, \text{lambda}) \{
2
  if(x<0)
3
   return(0)
4
5
   return(lambda*exp(-lambda*x))
6
7
   mle = function(sample, func, theta){
   for (i in 1:length (sample)) {
   res = res * func(sample[i], theta)
11
12
13
   return (res)
14
15
   sample=\mathbf{c}(0.4, 0.5, 1, 4.3, 4.1, 0.5, 0.7, 0.8)
16
17
   opt = function(theta){
19
   return (mle (sample, density, theta))
20
21
   optimize (f=opt, interval=\mathbf{c}(0, 10), maximum=\mathbf{T})
```

Aufgabe 2 (2+2+2 Punkte)

Gegeben sei eine i.i.d. Stichprobe zur Normalverteilung mit Parametern μ und σ^2 . Implementiere in ${\bf R}$ die Konfidenzintervalle aus der Vorlesung, d.h. schreibe je ein Programm, welches obere und untere Intervallgrenze des Konfidenzintervalls für μ bei bekannter und unbekannter Varianz ausgibt, sowie selbiges für die Varianz leistet (bei unbekanntem Erwartungswert). Die Eingabeparameter der drei Funktionen sollen dabei wie folgt aussehen:

- (i) sample, sigma, alpha, für μ bei bekannter Varianz
- (ii) sample, alpha, für μ bei unbekannter Varianz
- (iii) sample, alpha, für σ^2 (bei unbekanntem Erwartungswert)

Aufgabe 3 (2 + 5 Punkte)

In dieser Aufgabe untersuchen wir die Auswirkung der Varianz und des Stichprobenumfangs auf das Konfidenzintervall für den Mittelwert einer Normalverteilung.

- (a) Simuliere je n Realisierungen einer Zufallsvariablen $X \sim N(\mu, \sigma^2)$ für $n \in \{10, 100, 1000\}$, $\sigma^2 \in \{1, 10, 100\}$ und $\mu = 5$, d.h. 9 verschiedene Stichproben und berechne für jede dieser Stichproben den oberen und unteren Endpunkt des 95%-Konfidenzintervalls für μ mithilfe von Aufgabe 2 (bei bekannter Varianz).
- (b) Erstelle einen Plot, in dem die x-Achse mit den Parameterpaaren (n, σ^2) beschriftet ist und für jede der 9 Parameterkombinationen der obere und untere Endpunkt des Konfidenzintervalls aufgetragen wird. Zeichne außerdem zusätzlich zu den vertikalen Konfidenzintervallen eine horizontale Line für den wahren Wert $\mu=5$ ein.

 ${\it Hinweis:}$ Für Teil (b) ist der Grafikparameter ${\it xaxt}$ und der Befehl ${\it axis()}$ nützlich.