WS 2015/2016 07.04.2016

Angewandte Stochastik II – 2. Klausur

Bearbeitungszeit: 120 Minuten

Ergebnisse sollen auf 4 Nachkommastellen gerundet werden. Alle Antworten sind zu begründen! Erlaubte Hilfsmittel: Nicht programmierbarer Taschenrechner, ein beidseitig von Hand beschriebenes DIN A4 Blatt.

Aufgabe 1 (10+10 Punkte)

Gegeben sei eine Zufallsstichprobe $(X_1,...,X_n)$ von unabhängigen und identisch verteilten Zufallsvariablen, wobei $X_1 \sim \Gamma(b,p)$, d.h., X_1 ist gammaverteilt mit Parametern b,p>0 folgt. Die Dichte der Gammaverteilung lautet

$$f(x) = \frac{b^p}{\Gamma(p)} x^{p-1} e^{-bx} \mathbb{1}_{(0,\infty)}(x), \quad x \in \mathbb{R},$$

wobei $\Gamma:(0,\infty)\to(0,\infty)$ die aus der Übung bekannte Gammafunktion ist.

(a) Bestimme den Momenten-Schätzer für (*b*, *p*). *Hinweis:* Es darf verwendet werden, dass

$$\mathbb{E}(X_1) = \frac{p}{b} \text{ und } \mathbb{E}(X_1^2) = \frac{p(p+1)}{b^2}.$$

(b) Sei nun der Parameter p bekannt. Bestimme den Maximum-Likelihood Schätzer für b.

Aufgabe 2 (8 Punkte)

Schreibe eine Funktion test(mu, var, values) in R, welche Zahlen $mu \in \mathbb{R}$ und var > 0 sowie einen Vektor values mit ganzzahligen Werten übergeben bekommt, die für jeden Eintrag n in values jeweils n Realisierungen einer N(mu, var)-verteilten Zufallsvariablen erzeugt, den Parameter mu als Mittelwert der Realisierungen schätzt und dann den Absolutbetrag des Schätzfehlers gegen die Werte in values plottet.

Aufgabe 3 (10 Punkte)

Eine Investmentbank kauft seit Jahren Aktien von frisch an die Börse gekommenen Unternehmen und nimmt hierbei eine (in %) N(μ , σ^2)-verteilte Aktienrendite, mit $\mu \in \mathbb{R}$, $\sigma^2 > 0$, an. Die Bank möchte nun auf Basis ihrer Aktienrenditen der letzten 4 Jahre überprüfen, ob ihre Annahme, dass für die Varianz der Aktienrenditen $\sigma^2 = 1$ gilt, auch weiterhin gerechtfertigt ist. Die Aktienrenditen der letzten 4 Jahre (in %) betrugen:

Prüfe, ob das Datenmaterial mit der Hypothese

$$H_0: \sigma^2 = 1$$
 gegen die Alternative $H_1: \sigma^2 \neq 1$

zum Niveau $\alpha = 0.05$ vereinbar ist. Dazu darf angenommen werden, dass die Messwerte Realisierungen von unabhängigen normalverteilten Zufallsvariablen sind, wobei der Erwartungswert unbekannt sei.

Folgende Quantile seien gegeben: $\chi^2_{4,0.975} = 6.25$, $\chi^2_{3,0.95} = 7.81$, $\chi^2_{3,0.975} = 9.35$, $\chi^2_{4,0.025} = 0.48$, $\chi^2_{3,0.05} = 0.35$, $\chi^2_{3,0.025} = 0.21$.

Aufgabe 4 (10+10 Punkte)

- (a) Es sei (X_1, \ldots, X_n) eine Stichprobe von unabhängigen und identisch verteilten Zufallsvariablen, wobei $X_1 \sim \mathrm{U}(\theta, \theta + 2)$, mit $\theta > 0$. Bestimme mit Hilfe des zentralen Grenzwertsatzes ein zweiseitiges, asymptotisches Konfidenzintervall für θ zum Niveau 1α .
- (b) Es sei (X_1, \ldots, X_n) eine Stichprobe von unabhängigen und identisch verteilten Zufallsvariablen, wobei $X_1 \sim \text{Wei}(\lambda, 2)$, d.h., X_1 ist Weibull-verteilt mit Parameter $\lambda > 0$ und festem zweiten Parameter. Die Verteilungsfunktion einer Zufallsvariablen $X \sim \text{Wei}(\lambda, k)$ lautet

$$P(X \le x) = (1 - e^{-(\lambda x)^k}) \mathbb{1}_{[0,\infty)}(x), \quad x \in \mathbb{R}.$$

Bestimme ein Konfidenzintervall für λ . Zeige hierfür zunächst, dass $\lambda \min(X_1, \dots, X_n) \sim \text{Wei}(\sqrt{n}, 2)$. Konstruiere darauf basierend ein exaktes zweiseitiges Konfidenzintervall für λ zum Niveau $1 - \alpha$.

Hinweis: Die Quantile der Weibull-Verteilung müssen dazu nicht berechnet werden, sondern können mit Wei $\sqrt{n}.2.\frac{q}{3}$ bzw. Wei $\sqrt{n}.2.1-\frac{q}{3}$ bezeichnet werden.

Aufgabe 5 (8+4+8+4 Punkte)

Es sei $(X_1, ..., X_n)$ eine Zufallsstichprobe von unabhängigen und identisch verteilten Zufallsvariablen, wobei X_1 verteilt ist mit der Dichte

$$f(x) = \frac{\mathbb{1}_{[1,\infty)}(x)e^{-\frac{1}{\theta}x}}{\theta e^{-\frac{1}{\theta}}}, \quad x \in \mathbb{R},$$

für einen Parameter $\theta > 0$.

- (a) Konstruiere mit Hilfe der Momentenmethode einen Schätzer für θ .
- (b) Zeige, dass der Schätzer aus (a) erwartungstreu für θ ist.
- (c) Berechne die erwartete quadratische Abweichung (mean squared error, MSE) des Schätzers aus (a).
- (d) Zeige, dass der Schätzer aus (a) stark konsistent für θ ist.

Aufgabe 6 (10 Punkte)

Es seien X_1, \ldots, X_n unabhängige und identisch Pareto-verteilte Zufallsvariablen, d.h. $X_1 \sim \text{Par}(k, l)$, mit Parametern k, l > 0, wobei l bekannt sei. Beobachtbar sei allerdings nur $X_{(1)}$, also das Minimum von X_1, \ldots, X_n . Zeige zunächst, dass $lX_{(1)} \sim Par(kn, l^2)$ und konstruiere dann basierend auf $X_{(1)}$ einen Test zum Niveau α für die Nullhypothese $H_0: k = k_0$ gegen die Alternativhypothese $H_1: k < k_0$. Hinweis: Die Verteilungsfunktion der Pareto-Verteilung ist gegeben durch:

$$F(x) = \begin{cases} 1 - \left(\frac{l}{x}\right)^k, & \text{falls } x \ge l \\ 0, & \text{falls } x < l. \end{cases}$$

Aufgabe 7 (8 Punkte)

Was macht folgende R-Funktion (siehe Rückseite), wenn sie mit einem Vektor x, einer Zahl $\sigma > 0$ und einer Zahl $0 < \alpha < 1$ aufgerufen wird?

```
confInt=function(x, sigma, alpha){
lower=mean(x)-qnorm(1-alpha/2)*sigma/sqrt(length(x))
upper=mean(x)+qnorm(1-alpha/2)*sigma/sqrt(length(x))
return(c(lower, upper))
}
```