Exercise sheet 13 (total - 24 points)

Exercise 13-1 (3 points)

Let $\mathcal{F}_{n}, n \geq 0$ be a filtration on $(\Omega, \mathcal{F}, \mathbf{P})$. Let σ and τ be two stopping times w.r.t. $\mathcal{F}_{n}, n \geq 0$ such that $\sigma(\omega) \leq \tau(\omega), \omega \in \Omega$ and $A_{n}=\{\omega: \sigma(\omega)<n \leq \tau(\omega)\}$. Show that A_{n} is \mathcal{F}_{n-1}-measurable for each $n \geq 1$.

Exercise 13-2 (3 points)

Let a random sequence $\left\{X_{n}, n \geq 0\right\}$ be a submartingale w.r.t. the filtration $\left\{\mathcal{F}_{n}, n \geq 0\right\}$. Prove that there exists a non-negative martingale $\left\{M_{n}, n \geq 0\right\}$ such that

$$
\max \left(0, X_{n}\right) \leq M_{n}, n \geq 0, \quad \text { and } \quad \sup _{n \geq 0} \mathbf{E}\left[\max \left(0, X_{n}\right)\right]=\sup _{n \geq 0} \mathbf{E} M_{n}
$$

Exercise 13-3 (4 points)

(Doob decomposition) Let a random sequence $\left\{X_{n}, n \geq 0\right\}$ be a submartingale w.r.t. the filtration $\left\{\mathcal{F}_{n}, n \geq 0\right\}$. Prove that there exists a martingale $\left\{M_{n}, n \geq 0\right\}$ and non-decreasing integrable random sequence $\left\{A_{n}, n \geq 0\right\}$ such that $A_{0}=0, A_{n}$ is \mathcal{F}_{n-1}-measurable for each $n \geq 1$, and

$$
X_{n}=M_{n}+A_{n}, \forall n \geq 0
$$

Exercise 13-4 (3 points)

(Polya's Urn Scheme) An urn contains r red and g green balls. At each time, we draw a ball out, then put it back, and add c more balls of the color drawn. Let X_{n} be the fraction of green balls after the $n^{\text {th }}$ drawing. Prove that $X_{n}, n \geq 1$ is a martingale.

Exercise 13-5 (5 points)

(L_{p} maximum inequality.) If $X_{n}, \geq 0$ is a martingale then for any $1<p<\infty$

$$
\mathbf{E}\left(\max _{0 \leq n \leq N}\left|X_{n}\right|\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \mathbf{E}\left(\left|X_{N}\right|^{p}\right)
$$

Hint: Firstly, consider $\left(\max _{0 \leq n \leq N} X_{n}\right) \wedge M$ for some constant $M>0$. Then apply Doob's inequality for it.

Exercise 13-6 (6 points)

(a) Prove that if $X_{n}, n \geq 0$ is a non-negative supermartingale, then $\exists \lim _{n \rightarrow \infty} X_{n}=X$ a.s. and $\mathbf{E} X \leq \mathbf{E} X_{0}$.
Hint: Use upcrossing inequality: if $Y_{n}, n \geq 0$ is a submartingale then $(b-a) \mathbf{E} U_{n} \leq \mathbf{E}\left(Y_{n}-\right.$ $a)_{+}-\mathbf{E}\left(Y_{0}-a\right)_{+}$, where U_{n} is the number of upcrossings of interval (a, b) by $Y_{m}, m \geq 0$ completed by time n.
(b) Let random sequences $X_{n}, n \geq 0$ and $Y_{n}, n \geq 0$ be a.s. non-negative, integrable and adapted to the filtration $\mathcal{F}_{n}, n \geq 0$. Suppose $\mathbf{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right) \leq\left(1+Y_{n}\right) X_{n}, \forall n \geq 0$ with $\sum_{n=0}^{\infty} Y_{n}<\infty$ a.s. Prove that X_{n} converges a.s. to a finite limit.

Hint: Consider $Z_{n}=X_{n} / \prod_{i=1}^{n-1}\left(1+Y_{i}\right), n \geq 1$.

