Stochastics II WS 2016/2017 January 27, 2017 Universität Ulm Prof. Dr. Evgeny Spodarev Dr. Vitalii Makogin

Exercise sheet 13 (total - 24 points)

till February 8, 2017

Exercise 13-1 (3 points)

Let $\mathcal{F}_n, n \geq 0$ be a filtration on $(\Omega, \mathcal{F}, \mathbf{P})$. Let σ and τ be two stopping times w.r.t. $\mathcal{F}_n, n \geq 0$ such that $\sigma(\omega) \leq \tau(\omega), \omega \in \Omega$ and $A_n = \{\omega : \sigma(\omega) < n \leq \tau(\omega)\}$. Show that A_n is \mathcal{F}_{n-1} -measurable for each $n \geq 1$.

Exercise 13-2 (3 points)

Let a random sequence $\{X_n, n \ge 0\}$ be a submartingale w.r.t. the filtration $\{\mathcal{F}_n, n \ge 0\}$. Prove that there exists a non-negative martingale $\{M_n, n \ge 0\}$ such that

 $\max(0, X_n) \le M_n, n \ge 0$, and $\sup_{n \ge 0} \mathbf{E}[\max(0, X_n)] = \sup_{n \ge 0} \mathbf{E}M_n.$

Exercise 13-3 (4 points)

(Doob decomposition) Let a random sequence $\{X_n, n \ge 0\}$ be a submartingale w.r.t. the filtration $\{\mathcal{F}_n, n \ge 0\}$. Prove that there exists a martingale $\{M_n, n \ge 0\}$ and non-decreasing integrable random sequence $\{A_n, n \ge 0\}$ such that $A_0 = 0$, A_n is \mathcal{F}_{n-1} -measurable for each $n \ge 1$, and

$$X_n = M_n + A_n, \forall n \ge 0.$$

Exercise 13-4 (3 points)

(*Polya's Urn Scheme*) An urn contains r red and g green balls. At each time, we draw a ball out, then put it back, and add c more balls of the color drawn. Let X_n be the fraction of green balls after the n^{th} drawing. Prove that $X_n, n \ge 1$ is a martingale.

Exercise 13-5 (5 points)

 $(L_p \text{ maximum inequality.})$ If $X_n \ge 0$ is a martingale then for any 1

$$\mathbf{E}\left(\max_{0\leq n\leq N}|X_n|\right)^p\leq \left(\frac{p}{p-1}\right)^p\mathbf{E}(|X_N|^p).$$

Hint: Firstly, consider $(\max_{0 \le n \le N} X_n) \land M$ for some constant M > 0. Then apply Doob's inequality for it.

Exercise 13-6 (6 points)

(a) Prove that if X_n, n ≥ 0 is a non-negative supermartingale, then ∃lim_{n→∞} X_n = X a.s. and EX ≤ EX₀.
Hint: Use upcrossing inequality: if Y_n, n ≥ 0 is a submartingale then (b − a)EU_n ≤ E(Y_n −

Hint: Use upcrossing inequality: If $Y_n, n \ge 0$ is a submartingale then $(b-a)\mathbf{E}U_n \le \mathbf{E}(Y_n - a)_+ - \mathbf{E}(Y_0 - a)_+$, where U_n is the number of upcrossings of interval (a, b) by $Y_m, m \ge 0$ completed by time n.

(b) Let random sequences $X_n, n \ge 0$ and $Y_n, n \ge 0$ be a.s. non-negative, integrable and adapted to the filtration $\mathcal{F}_n, n \ge 0$. Suppose $\mathbf{E}(X_{n+1}|\mathcal{F}_n) \le (1+Y_n)X_n, \forall n \ge 0$ with $\sum_{n=0}^{\infty} Y_n < \infty$ a.s. Prove that X_n converges a.s. to a finite limit. Hint: Consider $Z_n = X_n / \prod_{i=1}^{n-1} (1+Y_i), n \ge 1$.