## Exercise sheet 8 (total - 19 points)

till December 14, 2016

## Exercise 5-1 (2 points)

Let $W$ be the Wiener process. Find the characteristic function for $W(2)+2 W(1)$.

## Exercise 5-2 (4 points)

Let $W$ be the Wiener process. Find:

1. $\mathbf{E}(W(t))^{m}, m \in \mathbb{N}$,
2. $\mathbf{E} \exp (2 W(1)+W(2))$,
3. $\mathbf{E} \cos (2 W(1)+W(2))$,
4. $\mathbf{E}[W(2)>1 \mid W(1)<2]$.

## Exercise 5-3 (3 points)

Let $X=\left\{X(t):=\int_{0}^{t} W(s) d s, t \geq 0\right\}$, where $W$ is the Wiener process. Find the distribution of random variable $X(T)$ for $T>0$.

Hint: Recall that a limit of Gaussian random variables is also Gaussian.

## Exercise 5-4 (10 points)

(6 points) Write a program in R which simulates the trajectory of the Wiener process on $[0, T]$
(a) by using approximation with Schauder functions and input parameters $t, T$ and $m$, where $t$ is a finite dimensional vector of locations in $[0, T]$ and $m$ is the cutt-off parameter of the series expansion;
(a) by using the independence and the distribution of the increments of $W$, with input parameter $t$ defined as in (a);
(c) by using ideas for the proof of Theorem 3.3.1: Let $\{W(t), t \in[0,1]\}$ be the Wiener process and $Z_{1}, Z_{2}, \ldots$ a sequence of independent random variables with $\mathbf{P}\left(Z_{i}=1\right)=\mathbf{P}\left(Z_{i}=\right.$ $-1)=\frac{1}{2}$ for all $i \in \mathbb{Z}_{+}$. For every $n \in \mathbb{N}$ we define $\left\{\tilde{W}^{n}(t), t \in[0,1]\right\}$ by $\tilde{W}^{n}(t)=$ $\frac{S_{\lfloor n t\rfloor}}{\sqrt{n}}+(n t-\lfloor n t\rfloor) \frac{Z_{\lfloor n t\rfloor+1}}{\sqrt{n}}$, where $S_{i}=Z_{1}+\ldots+Z_{i}, i \geq 1, S_{0}=0$.
(1 point) Simulate 500 trajectories of a Wiener process on $[0,5]$ in cases (a)-(c). Take $m=10$ in (a) and $t=\left(t_{0}, \ldots, t_{1000}\right)$ in (b), where $t_{0}=0$ and $t_{k}=k T / 1000, k=1, \ldots, 1000$. Take $n=1000$ in (c).
(1 point) Plot one trajectory for all cases.
(3 points) For each simulated trajectory $\tilde{W}$ compute the approximation $\tilde{X}(5)=\frac{1}{1000} \sum_{i=0}^{1000} \tilde{W}\left(t_{i}\right)$ of random variable $X(5)$. Compare the empirical distribution of $\tilde{X}(5)$ with the distribution of $X(5)$ from Exercise $5-3$ using Kolmogorov-Smirnov test and Kolmogorov's distance as a measure. Which method of simulation is better?

