Dr. Vitalii Makogin

Exercise sheet 1 (total - 20 points)

Exercise 1-1 (2 points)

Let ξ be a random variable with distribution function F. Prove that $X(t), t \in \mathbb{R}$ is a stochastic process, if

1. $X(t)=\max \left(\xi, t^{2}\right), t \in \mathbb{R}$.
2. $X(t)=\max \left(e^{\xi t}-K, 0\right), t \in \mathbb{R}, K>0$.

Draw the sample paths of the process X. Find one-dimensional distributions of the process X.

Exercise 1-2 (4 points)

Let ξ_{1}, \ldots, ξ_{n} be i.i.d. r.v.'s with distribution function F, and $X(t)=\frac{1}{n} \#\left\{k \mid \xi_{k} \leq t\right\}=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}\left\{\xi_{k} \leq\right.$ $t\}, t \in \mathbb{R}$. Draw the sample paths of the process X. Find all m-dimensional distributions of the process $X^{1}, n \geq 1, m \geq 1$.

Exercise 1-3 (4 points)

Prove the following result (based on Kolmogorov's theorem).
Proposition 1. The family of measures $\mathbf{P}_{t_{1}, \ldots, t_{d}}$ on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right),\left(t_{1}, \ldots, t_{d}\right) \in T^{d}, d \geq 1$, satisfies the conditions of symmetry and consistency iff for all $d \geq 2,\left(s_{1}, \ldots, s_{d}\right) \in \mathbb{R}^{d}$ and $\left(t_{1}, \ldots, t_{d}\right) \in T^{d}$ it holds $\varphi_{\mathbf{P}_{t_{1}, \ldots, t_{d}}}\left(\left(s_{1}, \ldots, s_{d}\right)\right)=\varphi_{\mathbf{P}_{t_{i_{1}}, \ldots, t_{i_{d}}}}\left(\left(s_{i_{1}}, \ldots, s_{i_{d}}\right)\right)$ for any permutation $(1, \ldots, d) \rightarrow\left(i_{1}, \ldots, i_{d}\right)$, and $\varphi_{\mathbf{P}_{t_{1}, \ldots, t_{d-1}}}\left(\left(s_{1}, \ldots, s_{d-1}\right)\right)=\varphi_{\mathbf{P}_{t_{1}, \ldots, t_{d}}}\left(\left(s_{1}, \ldots, s_{d-1}, 0\right)\right)$.

Exercise 1-4 (4 points)

1. (1 point) Let $Z=\left(\xi_{1}, \ldots, \xi_{n}\right)^{T}$ be a random vector with independent $N(0,1)$-distributed components. Let V be a $n \times n$ matrix, $\bar{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)^{T}$. Calculate the characteristic function of n-dimensional Gaussian random vector $Y=A Z+\bar{\mu}$. Find its mean vector and covariance matrix $\Sigma=\left(\sigma_{i, j}\right)_{i, j}^{n}$.
2. (2 point) Show the existence of a random function with finite dimensional multivariate Gaussian distributions and specify spaces $\left(S_{t_{1}, \ldots, t_{n}}, \mathcal{B}_{t_{1}, \ldots, t_{n}}\right)$.
3. (1 point) Find the finite dimensional distributions of Gaussian white noise.

Exercise 1-5 (3 points)

Two devices start to operate at the instant of time $t=0$. They operate independently of each other for random periods of time and after that they shut down. The operating time of the $i-$ th device has a distribution function $F_{i}, i=1,2$. Let $X(t)$ be the number of operating devices at the instant t. Find one- and two-dimensional distributions of the process $\left\{X(t), t \in \mathbb{R}_{+}\right\}$.

Exercise 1-6 (3 points)

Let G be a set of functions $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ which are non-decreasing in each coordinate. Show that $G \in \mathcal{B}_{T}$ $\left(\mathcal{S}_{t}=\mathbb{R}, t \in T=\mathbb{R}^{d}\right)$. Let $\mathbf{X}=\left\{X_{t}=\xi(1+f(t) \eta), t \in \mathbb{R}^{d}\right\}$, where $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a non-decreasing function in each coordinate, and ξ, η are independent $U[-1,2]$-distributed random variables. Denote by $\mathbf{P}_{\mathbf{X}}$ probability measure (distribution, law) of \mathbf{X} on $\left(\mathcal{S}_{T}, \mathcal{B}_{T}\right)$. Find $\mathbf{P}_{\mathbf{X}}(G)$.

[^0]
[^0]: ${ }^{1}$ note that $X=\hat{F}_{n}$ is the empirical distribution function based on the sample $\left(\xi_{1}, \ldots, \xi_{n}\right)$

