Stochastics II WS 2017/2018 January 12, 2018 Universität Ulm Prof. Dr. Evgeny Spodarev Dr. Vitalii Makogin

Exercise sheet 11 (total - 20 points)

till January 24, 2018

Exercise 11-1 (3 points)

Let $\{A_n\}$ be a partition of Ω such that $A_i \cap A_j = \emptyset$, $i \neq j$ and $\mathbf{P}(A_i) > 0$. Let $\mathcal{F} = \sigma(A_n : n \in \mathbb{N})$. Prove that for any $X \in L^1(\Omega, \mathcal{A}, \mathbf{P})$,

$$\mathbf{E}[X|\mathcal{F}] = \sum_{n \ge 0} \mathbb{I}_{A_n} \frac{\mathbf{E}[X\mathbb{I}_{A_n}]}{\mathbf{P}(A_n)}$$

Exercise 11-2 (4 points)

Let X and Y be random variables on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$. The conditional variance is defined by $\mathbf{Var}(Y|X) = \mathbf{E}((Y - \mathbf{E}(Y|X))^2|X)$. Show that:

- 1. (2 points) $\mathbf{E}Y = \mathbf{E}(\mathbf{E}(Y|X)),$
- 2. (2 points) $\operatorname{Var} Y = \mathbf{E}(\operatorname{Var}(Y|X)) + \operatorname{Var}(\mathbf{E}(Y|X)).$

Exercise 11-3 (7 points)

For a stopping time τ define the stopped σ -algebra \mathcal{F}_{τ} as follows:

$$\mathcal{F}_{\tau} = \{ B \in \mathcal{F} : B \cap \{ \tau \le t \} \in \mathcal{F}_t \text{ for arbitrary } t \ge 0 \}.$$

Let now σ and τ be stopping times w.r.t. the filtration $\{\mathcal{F}_t, t \geq 0\}$.

- 1. (3 points) Prove that \mathcal{F}_{τ} is a σ -algebra.
- 2. (2 points) Show that $A \cap \{\sigma \leq \tau\} \in \mathcal{F}_{\tau} \ \forall A \in \mathcal{F}_{\sigma}$.
- 3. (2 points) Prove that $\mathcal{F}_{\min\{\sigma,\tau\}} = \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$.

Exercise 11-4 (3 points)

Let ξ_1, ξ_2, \ldots be a sequence of independent N(0, 1)-distributed random variables. Let $S_n = \xi_1 + \cdots + \xi_n$. Prove that the sequence $\{X_n, n \ge 1\}$ given by

$$X_n = \frac{1}{\sqrt{n+1}} \exp\left(\frac{S_n^2}{2(n+1)}\right)$$

is a martingale w.r.t. the filtration $\mathcal{F}_n = \sigma(\xi_1, \ldots, \xi_n), n \ge 1$.

Exercise 11-5 (3 points)

Let ξ_1, ξ_2, \ldots be a sequence of random variables with finite means and satisfying

$$\mathbf{E}(\xi_{n+1}|\xi_0,\ldots,\xi_n) = a\xi_n + b\xi_{n-1}, n \ge 1,$$

where 0 < a, b < 1 and a + b = 1. Find a value of α for which $X_n = \alpha \xi_n + \xi_{n-1}, n \ge 1$. defines a martingale with respect to the filtration generated by sequence $\{\xi_n, n \ge 1\}$.