Exercise sheet 12 (total - 18 points)

Exercise 12-1 (2 points)

Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a discrete martingale and τ a discrete stopping time w.r.t. $\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$. Show that $\left\{X_{\min \{\tau, n\}}\right\}_{n \in \mathbb{N}}$ is also a martingale w.r.t. $\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$.

Exercise 12-2 (4 points)

(Doob decomposition) Let a random sequence $\left\{X_{n}, n \geq 0\right\}$ be a submartingale w.r.t. the filtration $\left\{\mathcal{F}_{n}, n \geq 0\right\}$. Prove that there exists a martingale $\left\{M_{n}, n \geq 0\right\}$ and non-decreasing integrable random sequence $\left\{A_{n}, n \geq 0\right\}$ such that $A_{0}=0, A_{n}$ is \mathcal{F}_{n-1}-measurable for each $n \geq 1$, and

$$
X_{n}=M_{n}+A_{n}, \forall n \geq 0 .
$$

Exercise 12-3 (3 points)

Let the stochastic process $X=\{X(t), t \geq 0\}$ be adapted and càdlàg. Show that

$$
\mathbf{P}\left(\sup _{0 \leq v \leq t} X(v)>x\right) \leq \frac{\mathbf{E} X(t)^{2}}{x^{2}+\mathbf{E} X(t)^{2}}
$$

holds for arbitrary $x>0$ and $t \geq 0$, if X is a submartingale with $\mathbf{E} X(t)=0$ and $\mathbf{E} X(t)^{2}<\infty$.

Exercise 12-4 (3 points)

Let $X=\{X(n), n \in \mathbb{N}\}$ be a martingale. Show that the sequence of random variables $X(\tau \wedge 1), X(\tau \wedge 2), \ldots$ is uniformly integrable for every finite stopping time τ, if $\mathbf{E}|X(\tau)|<\infty$ and $\mathbf{E}\left(|X(n)| \mathbb{I}_{\{\tau>n\}}\right) \rightarrow 0$ for $n \rightarrow \infty$.

Exercise 12-5 (6 points)

1. (3 points) Prove that if $\left\{X_{n}, n \geq 0\right\}$ is a non-negative supermartingale, then $\exists \lim _{n \rightarrow \infty} X_{n}=X$ a.s. and $\mathbf{E} X \leq \mathbf{E} X_{0}$.
Hint: Use the upcrossing inequality: if $\left\{Y_{n}, n \geq 0\right\}$ is a submartingale then $(b-a) \mathbf{E} U_{n} \leq \mathbf{E}\left(Y_{n}-a\right)_{+}-\mathbf{E}\left(Y_{0}-a\right)_{+}$, where U_{n} is the number of upcrossings of interval (a, b) by $Y_{m}, m \geq 0$ completed by time n.
2. (3 points) Let random sequences $\left\{X_{n}, n \geq 0\right\}$ and $\left\{Y_{n}, n \geq 0\right\}$ be a.s. non-negative, integrable and adapted to the filtration $\mathcal{F}_{n}, n \geq 0$.
Suppose $\mathbf{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right) \leq\left(1+Y_{n}\right) X_{n}, \forall n \geq 0$ with $\sum_{n=0}^{\infty} Y_{n}<\infty$ a.s. Prove that X_{n} converges a.s. to a finite limit.
Hint: Consider $Z_{n}=X_{n} / \prod_{i=1}^{n-1}\left(1+Y_{i}\right), n \geq 1$.
