Stochastics II WS 2017/2018 January 12, 2018 Universität Ulm Prof. Dr. Evgeny Spodarev Dr. Vitalii Makogin

Exercise sheet 12 (total – 18 points) till January 31, 2018

Exercise 12-1 (2 points)

Let $\{X_n\}_{n\in\mathbb{N}}$ be a discrete martingale and τ a discrete stopping time w.r.t. $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$. Show that $\{X_{\min\{\tau,n\}}\}_{n\in\mathbb{N}}$ is also a martingale w.r.t. $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$.

Exercise 12-2 (4 points)

(*Doob decomposition*) Let a random sequence $\{X_n, n \ge 0\}$ be a submartingale w.r.t. the filtration $\{\mathcal{F}_n, n \ge 0\}$. Prove that there exists a martingale $\{M_n, n \ge 0\}$ and non-decreasing integrable random sequence $\{A_n, n \ge 0\}$ such that $A_0 = 0$, A_n is \mathcal{F}_{n-1} -measurable for each $n \ge 1$, and

$$X_n = M_n + A_n, \forall n \ge 0.$$

Exercise 12-3 (3 points)

Let the stochastic process $X = \{X(t), t \ge 0\}$ be adapted and càdlàg. Show that

$$\mathbf{P}\left(\sup_{0 \le v \le t} X(v) > x\right) \le \frac{\mathbf{E}X(t)^2}{x^2 + \mathbf{E}X(t)^2}$$

holds for arbitrary x > 0 and $t \ge 0$, if X is a submartingale with $\mathbf{E}X(t) = 0$ and $\mathbf{E}X(t)^2 < \infty$.

Exercise 12-4 (3 points)

Let $X = \{X(n), n \in \mathbb{N}\}$ be a martingale. Show that the sequence of random variables $X(\tau \wedge 1), X(\tau \wedge 2), \ldots$ is uniformly integrable for every finite stopping time τ , if $\mathbf{E}|X(\tau)| < \infty$ and $\mathbf{E}(|X(n)|\mathbb{I}_{\{\tau > n\}}) \to 0$ for $n \to \infty$.

Exercise 12-5 (6 points)

- 1. (3 points) Prove that if $\{X_n, n \ge 0\}$ is a non-negative supermartingale, then $\exists \lim_{n\to\infty} X_n = X$ a.s. and $\mathbf{E}X \le \mathbf{E}X_0$. Hint: Use the upcrossing inequality: if $\{Y_n, n \ge 0\}$ is a submartingale then $(b-a)\mathbf{E}U_n \le \mathbf{E}(Y_n-a)_+ - \mathbf{E}(Y_0-a)_+$, where U_n is the number of upcrossings of interval (a, b) by $Y_m, m \ge 0$ completed by time n.
- 2. (3 points) Let random sequences $\{X_n, n \ge 0\}$ and $\{Y_n, n \ge 0\}$ be a.s. non-negative, integrable and adapted to the filtration $\mathcal{F}_n, n \ge 0$.

Suppose $\mathbf{E}(X_{n+1}|\mathcal{F}_n) \leq (1+Y_n)X_n$, $\forall n \geq 0$ with $\sum_{n=0}^{\infty} Y_n < \infty$ a.s. Prove that X_n converges a.s. to a finite limit. Hint: Consider $Z_n = X_n / \prod_{i=1}^{n-1} (1+Y_i), n \geq 1$.