Stochastics II WS 2017/2018 February 1, 2018 Universität Ulm Prof. Dr. Evgeny Spodarev Dr. Vitalii Makogin

Exercise sheet 14 (total – 18 points)

till February 14, 2018

Exercise 14-1 (3 points)

Let $X_n, n \ge 0$ be a stationary sequence, and $g : \mathbb{R}^{\infty} \to \mathbb{R}$ be a measurable function. Prove that the random sequence $Y_n := g(X_{n+1}, X_{n+2}, \ldots), n \ge 0$ is stationary as well. Prove that if $\{X_n, n \ge 0\}$ is ergodic then the sequence $\{Y_n, n \ge 0\}$ is ergodic, too.

Exercise 14-2 (3 points)

Let $X = \{X_n, n \ge 1\}$ be a stationary random sequence with $\mu = \mathbf{E}X_n$ such that $\mathbf{Cov}(X_0, X_n) \to 0$, as $n \to \infty$. Show that

$$\frac{1}{n}\sum_{j=1}^{n}X_{j}\xrightarrow{L_{2}}\mu, n\to\infty.$$

Exercise 14-3 (4 points)

Let $\{N_t, t \ge 0\}$ be a Poisson process with intensity $\lambda > 0$. Consider the process $X_t := \xi(-1)^{N_t}$, $t \ge 0$, where ξ is a random variable independent of N with $\mathbf{P}(\xi = -1) = \mathbf{P}(\xi = 1) = 1/2$.

- 1. (2 points) Compute the mean value and the covariance function of the process X. Show that the random sequence $\{X_n, n \ge 0\}$ is stationary in wide sense.
- 2. (2 points) Find the spectral density of the covariance function of the random sequence $\{X_n, n \ge 0\}$.

Exercise 14-4 (5 points)

Let $\{W(t), t \in \mathbb{R}_+\}$ be a Wiener process. Define the family of random variables Z((a, b]) := W(b) - W(a) on the semiring $\mathcal{K} = \{(a, b], -\infty < a < b < \infty\}$.

- 1. (1 point) Show that Z is an orthogonally scattered random measure on \mathcal{K} .
- 2. (2 points) Let I(f) be the stochastic integral of $f \in L^2(\mathbb{R})$ with respect to Z. Show that I(f) is a Gaussian random variable. Find $\mathbf{E}I(f)$ and $\mathbf{E}[I(f)^2]$.
- 3. (2 points) Prove that I(f) is a Gaussian random variable for any orthogonally scattered Gaussian random measure Z.

Exercise 14-5 (3 points)

Let Z be the orthogonal random measure from Exercise 15-4.

- 1. (1 point) Find its structure measure μ .
- 2. (1 points) Find

$$\mathbf{E} \left| \int_0^\pi \sin t \, dZ(t) \right|^2.$$

3. (1 points) Find

$$\mathbf{E}\left(\int_0^1 t \ dZ(t) \overline{\int_0^1 (2+t^2) \ dZ(t)}\right).$$