Stochastics II WS 2017/2018 November 16, 2017 Universität Ulm Prof. Dr. Evgeny Spodarev Dr. Vitalii Makogin

Exercise sheet 4 (total – 19 points) till November 22, 2017

Exercise 4-1 (2 points)

Prove that the Wiener process has a modification with Hölder-continuous sample paths.

Exercise 4-2 (4 points)

Prove that there does not exist a process with independent increments $\{X(t), t \ge 0\}$ such that

- 1. (2 point) X(0) has a non-atomic distribution, but the distribution of X(1) has an atom.
- 2. (2 points) The distribution of X(0) is absolutely continuous but the distribution of X(1) is not.

Hint: Let μ be a probability measure on $\mathcal{B}(\mathbb{R})$, and let φ be its characteristic function. Then

$$\mu(\{a\}) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \varphi(t) dt.$$

If $\lim_{t\to\pm\infty} |\varphi(t)| = 0$, then μ has no atoms.

Exercise 4-3 (4 points)

Prove the following statements.

- 1. (2 point) The Wiener process possesses independent increments.
- 2. (2 points) The Poisson process with intensity λ has independent increments.

Hint: Find the characteristic function of increments and verify the formula (1.7.1) from the lecture notes.

Exercise 4-4 (2 points)

Let $Z_k, k \in \mathbb{N}$ be independent identically distributed random variables with mean 0 and finite variance σ^2 , and let $X_n = \sum_{k=1}^n Z_k$. Let τ be a N-valued random variable which is independent of the future w.r.t. $Z_k, k \in \mathbb{N}$ and $\mathbf{E}\tau < \infty$. Show that $\mathbf{Var}(X_{\tau}) = \sigma^2 \mathbf{E}\tau$

Exercise 4-5 (4 points)

Let $\{N(t), t \geq 0\}$ be renewal process with interarrival times $T_k, k \in \mathbb{N}$. Prove that $\mathbf{E}e^{\theta N(t)} < \infty$ for some strictly positive θ whenever $\mathbf{E}T_1 > 0$.

Hint: Consider the renewal process with interarrival times $\tilde{T}_k = \varepsilon \mathbb{I}\{T_k \ge \varepsilon\}$ for some suitable $\varepsilon > 0$.

Exercise 4-6 (3 points)

Let the time between the renewals of a renewal process N be U[0, 1]-distributed. Find the mean and variance of $N(t), 0 \le t \le 1$.