Stochastics II WS 2017/2018 December 5, 2017 Universität Ulm Prof. Dr. Evgeny Spodarev Dr. Vitalii Makogin

Exercise sheet 7 (total -16 points)

till December 13, 2017

Exercise 7-1 (2 points)

Let $\{X(t), t \in \mathbb{R}\}$ be a centered Gaussian process with covariance C_X . Find mean and covariance functions for the process $\{Y(t) = X^2(t), t \in \mathbb{R}\}$.

Exercise 7-2 (2 points)

Let W be the Wiener process. Find the characteristic function of aW(t) + bW(s), where a, b, t, s > 0.

Exercise 7-3 (4 points)

The fractional Brownian motion with Hurst index $H \in (0, 1)$ is the centered Gaussian process $\{B^H(t), t \in \mathbb{R}\}$ with covariance $C_{B^H}(t, s) = \frac{1}{2}(|t|^{2H} + |s|^{2H} - |t - s|^{2H}), t, s \in \mathbb{R}$. Prove that the fractional Brownian motion (in particular, the Wiener process) is a process with stationary increments, that is, the distribution of $\{X(s) := B^H(t+s) - B^H(t), s \ge 0\}$ does not depend on t.

Exercise 7-4 (4 points)

The Brownian bridge is the centered Gaussian process $\{B(t), t \in [0, 1]\}$ with covariance function $C_B(t, s) = t \land s - st, s, t \in [0, 1].$

1. Let $\{B(t), t \in [0, 1]\}$ be the Brownian bridge. Prove that

$$\{X(t) = (1+t)B\left(1 - \frac{1}{1+t}\right), t \in \mathbb{R}_+\}$$

is a Wiener process.

2. Let $\{W(t), t \in [0, 1]\}$ be the Wiener process. Prove that the process

$$\{X(t) = W(t) - tW(1), t \in [0, 1]\}$$

is a Brownian bridge.

Exercise 7-5 (4 points)

Let $\{W(t), t \ge 0\}$ be the two-dimensional Wiener process, that is $W(t) = (W_1(t), W_2(t)), t \ge 0$, where W_1 and W_2 are two independent Wiener processes. Let $B(0, r) = \{x \in \mathbb{R}^2 : ||x|| \le r\}, r > 0$ and $[a, b] = [a_1, b_1] \times [a_2, b_2], 0 \le a_1 < b_1, 0 \le a_2 < b_2$. Find

- 1. $\mathbf{P}(W(t) \in B(0, r)).$
- 2. $\mathbf{P}(W(t) \in [a, b]).$