Exercise sheet 8 (total - 20 points)

Exercise 8-1 (6 points)

Let $W=\{W(t), t \geq 0\}$ be a Wiener process. Define the process of the maximum as $M=\left\{M_{t}=\right.$ $\left.\max _{s \in[0, t]} W(s), t \geq 0\right\}$. Show:

1. (2 points) The probability density of M_{t} is given by

$$
f_{M_{t}}(x)=\sqrt{\frac{2}{\pi t}} \exp \left(-\frac{x^{2}}{2 t}\right) \mathbb{1}\{x \geq 0\}
$$

2. (2 points) The expectation and variance of M_{t} are given via $\mathbf{E} M_{t}=\sqrt{\frac{2 t}{\pi}}, \operatorname{Var} M_{t}=t\left(1-\frac{2}{\pi}\right)$.
3. (2 points) Let $\tau(x):=\min \{s \geq 0, W(s)=x\}$ be the first time when W attains the value x. Prove that $\tau(x)$ has Lévy distribution with density

$$
f_{\tau(x)}(y)=\frac{x}{\sqrt{2 \pi y^{3}}} \exp \left(-\frac{x^{2}}{2 y}\right) \mathbb{1}\{y \geq 0\}
$$

Show that $\mathbf{E} \tau(x)=\infty$.

Exercise 8-2 (3 points)

Let $X=\left\{X(t):=\int_{0}^{t} W(s) d s, t \geq 0\right\}$, where W is the Wiener process. Find the distribution of random variable $X(t)$ for $t>0$.

Hint: Recall that a limit of Gaussian random variables is also Gaussian.

Exercise 8-3 (11 points)

1. (6 points) Write a program in R which simulates the trajectory of the Wiener process on $[0, T]$
(a) by using an approximation with Schauder functions and input parameters t, T and m, where t is a finite dimensional vector of locations in $[0, T]$ and m is the cut-off parameter of the series expansion;
(a) by using the independence and the distribution of the increments of W, with input parameter t defined as in (a);
(c) by using Donsker's invariance principle: for every $n \in \mathbb{N}$ we define $\left\{\tilde{W}^{n}(t), t \in[0,1]\right\}$ by $\tilde{W}^{n}(t)=\frac{S_{\lfloor n t\rfloor}}{\sqrt{n}}+(n t-\lfloor n t\rfloor) \frac{Z_{\lfloor n t\rfloor+1}}{\sqrt{n}}$, where $S_{i}=Z_{1}+\ldots+Z_{i}, i \geq 1, S_{0}=0$, where Z_{1}, Z_{2}, \ldots are i.i.d. r.v.'s with $\mathbf{E} Z_{i}=0, \operatorname{Var} Z_{i}=1$. Experiment with different distributions of $Z_{i}, i \geq 1$ (at least three).
2. (1 point) Simulate 500 trajectories of a Wiener process on $[0,5]$ in cases (a)-(c). Take $m=10$ in (a) and $t=\left(t_{0}, \ldots, t_{1000}\right)$ in (a)-(b), where $t_{0}=0$ and $t_{k}=k T / 1000, k=1, \ldots, 1000$. Take $n=1000$ in (c). Plot one trajectory for each case.
3. (2 points) For each simulated trajectory \tilde{W} compute the approximation $\tilde{M}_{5}=\max _{i=0, \ldots, 1000} \tilde{W}\left(t_{i}\right)$ of random variable M_{5}. Compare the empirical distribution of \tilde{M}_{5} with the distribution of M_{5} from Exercise 8-1 using Kolmogorov-Smirnov test and Kolmogorov's distance as a measure.
4. (2 points) For each simulated trajectory \tilde{W} compute the approximation $\tilde{X}(5)=\frac{1}{1000} \sum_{i=0}^{1000} \tilde{W}\left(t_{i}\right)$ of random variable $X(5)$. Compare the empirical distribution of $\tilde{X}(5)$ with the distribution of $X(5)$ from Exercise 8-2 using Kolmogorov-Smirnov test and Kolmogorov's distance as a measure.
