
Mathematical Statistics

Lecture Notes

Prof. Dr. Evgeny Spodarev

Ulm

2024



Preface

The present lecture notes aim to give an introduction to different aspects
of modern statistics. They are, in their current state, a result of holding
lectures on statistics at Ulm University in the years 2010-2023 for students
of mathematical bachelor’s and master’s programs.
The goal of the lectures is to provide an overview of typical problem settings
and approaches to statistical inference. Additionally it aims to present a
middle ground between practically orientated applied statistical monographs
(which are usually mathematically sparse) and arid books on mathematical
statistics. Whether I actually succeeded in finding said middle ground, shall
be decided by the reader.
I would like to thank my colleagues at the Institute of Stochastics for their
support and exhilarating discussions during the making of these notes. A
special thanks goes to Linus Lach for the English translation of the German
version and the creation of figures which accompany the text. I am also in-
debted to Tobias Brosch for the initial creation of the German LATEX–version
and to Viet Hoang for the many corrections.

Ulm, July 11, 2025
Evgeny Spodarev



Contents

Table of Contents i

1 Point Estimation 1
1.1 Parametric families of reference distributions . . . . . . . . . 2

1.1.1 Gamma distribution . . . . . . . . . . . . . . . . . . . 2
1.1.2 Student’s t distribution . . . . . . . . . . . . . . . . . 6
1.1.3 Fisher-Snedecor distribution (F distribution) . . . . . 8

1.2 Methods for obtaining point estimators . . . . . . . . . . . . 11
1.2.1 Plug-In estimator . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Method of moments estimator . . . . . . . . . . . . . 13
1.2.3 Maximum-likelihood estimator . . . . . . . . . . . . . 15
1.2.4 Bayesian estimation . . . . . . . . . . . . . . . . . . . 28
1.2.5 Resampling methods for obtaining point estimators . . 31

1.3 Further quality properties of point estimators . . . . . . . . . 36
1.3.1 Cramér-Rao inequality . . . . . . . . . . . . . . . . . . 36
1.3.2 Sufficiency . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.3.3 Completeness . . . . . . . . . . . . . . . . . . . . . . . 47
1.3.4 Best unbiased estimator . . . . . . . . . . . . . . . . . 49
1.3.5 δ–Method . . . . . . . . . . . . . . . . . . . . . . . . . 52

2 Confidence Intervals 58
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2 One-sample problems . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.1 Normal distribution . . . . . . . . . . . . . . . . . . . 60
2.2.2 Confidence intervals and stochastic inequalities . . . . 63
2.2.3 Asymptotic confidence intervals . . . . . . . . . . . . . 64

2.3 Two-sample problems . . . . . . . . . . . . . . . . . . . . . . 68
2.3.1 Normally distributed samples . . . . . . . . . . . . . . 68
2.3.2 Poisson distributed random samples . . . . . . . . . . 70

3 Testing Statistical Hypotheses 74
3.1 General philosophy of testing . . . . . . . . . . . . . . . . . . 74
3.2 Non-randomized tests . . . . . . . . . . . . . . . . . . . . . . 84

i



CONTENTS ii

3.2.1 Parametric significance tests . . . . . . . . . . . . . . 84
3.3 Randomized test . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.2 Neyman-Pearson test for simple hypotheses . . . . . . 90
3.3.3 One-sided Neyman-Pearson tests . . . . . . . . . . . . 96
3.3.4 Unbiased two-sided tests . . . . . . . . . . . . . . . . . 103

3.4 Goodness-of-fit tests . . . . . . . . . . . . . . . . . . . . . . . 108
3.4.1 χ2-goodness-of-fit test . . . . . . . . . . . . . . . . . . 109
3.4.2 χ2-goodness-of-fit test of Pearson-Fisher . . . . . . . . 115
3.4.3 Shapiros goodness-of-fit test . . . . . . . . . . . . . . . 121

3.5 More nonparametric tests . . . . . . . . . . . . . . . . . . . . 123
3.5.1 Binomial test . . . . . . . . . . . . . . . . . . . . . . . 123
3.5.2 Randomness iteration tests . . . . . . . . . . . . . . . 125

4 Linear Regression 128
4.1 Multivariate normal distribution . . . . . . . . . . . . . . . . 129

4.1.1 Properties of the multivariate normal distribution . . 132
4.1.2 Linear and quadratic forms of normally distributed

random variables . . . . . . . . . . . . . . . . . . . . . 133
4.2 Multivariate linear regression models with full rank . . . . . . 141

4.2.1 Method of least squares . . . . . . . . . . . . . . . . . 142
4.2.2 Estimator of the variance σ2 . . . . . . . . . . . . . . 147
4.2.3 Maximum likelihood estimator for β and σ2 . . . . . . 148
4.2.4 Tests for regression parameters . . . . . . . . . . . . . 151
4.2.5 Confidence region . . . . . . . . . . . . . . . . . . . . 155

4.3 Multivariate linear regression with rank(X) < m . . . . . . . 158
4.3.1 Generalized inverse . . . . . . . . . . . . . . . . . . . . 158
4.3.2 OLS estimator for β . . . . . . . . . . . . . . . . . . . 160
4.3.3 Functions that can be estimated without bias . . . . . 163
4.3.4 Normally distributed error terms . . . . . . . . . . . . 166
4.3.5 Hypothesis testing . . . . . . . . . . . . . . . . . . . . 169
4.3.6 Confidence regions . . . . . . . . . . . . . . . . . . . . 171
4.3.7 Introduction to variance analysis . . . . . . . . . . . . 174

5 Generalized linear models 177
5.1 Exponential family of distributions . . . . . . . . . . . . . . . 177
5.2 Link functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.3 Maximum likelihood estimator for β . . . . . . . . . . . . . . 183
5.4 Asymptotic tests for β . . . . . . . . . . . . . . . . . . . . . . 189
5.5 Criteria for model selection or model adjustment . . . . . . . 196



CONTENTS iii

6 Principal Component Analysis 199
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.2 PCA on model level . . . . . . . . . . . . . . . . . . . . . . . 200
6.3 PCA on data level . . . . . . . . . . . . . . . . . . . . . . . . 209
6.4 Asymptotic distributions of principal components for normal

distributed random samples . . . . . . . . . . . . . . . . . . . 212
6.5 Outlier detection . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.6 PCA and regression . . . . . . . . . . . . . . . . . . . . . . . 217
6.7 Numeric calculation of principal components . . . . . . . . . 222

Literature 225

Index 228



Chapter 1

Point Estimation

Let (x1, . . . , xn) be a given sample. Assume that it is a realization of a
random sample (X1, . . . , Xn), where X1, . . . , Xn are independent identically
distributed (i.i.d.) random variables with unknown distribution F . Further
assume that F is an element of a parametric family of distributions given
by {Fθ : θ ∈ Θ}. Here θ = (θ1, . . . , θm) ∈ Θ denotes the m-dimensional
parameter vector of the distribution Fθ, and Θ ⊂ Rm is the so called param-
eter space (a Borel subset of Rm, which is composed of all valid parameter
values). The parametrization θ 7→ Fθ is set to be identifiable, under the
assumption that Fθ1 /= Fθ2 for θ1 /= θ2.
An important task in statistics, discussed in this chapter, is the estimation
of the parameter vector θ (or a part of θ) on the basis of a given sample
(x1, . . . , xn). In this context, the described procedure is called point estima-
tion with respect to a point estimator θ̂ : Rn → Rm, which is a valid sample
function. Usually one assumes that

P
(
θ̂(X1, . . . , Xn) ∈ Θ

)
= 1 ,

even though exceptions exist. The probability space (Ω,F , P ) on which the
random sample is defined has yet to be specified thoroughly. Here, the so
called canonical probability space comes into play, which is defined by

Ω = R∞ , F = B∞
R = BR ⊗ BR ⊗ . . .

with probability measure P given by

P ({ω=(ω1, . . . , ωn, . . . )∈R∞ : ωi1 ≤ xi1 , . . . , ωik
≤ xik

})=
k∏

j=1
Fθ(xij )

for all k ∈ N and 1 ≤ i1 < · · · < ik. In order to emphasize that P depends
on θ, the notation Pθ, Eθ and Varθ is introduced for the measure P as well
as the expectation E and variance Var with respect to P .

1
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On the canonical probability space (Ω,F , Pθ) it holds that Xi(ω) = ωi (pro-
jection on the i’th coordinate), i = 1, . . . , n, with

Pθ(Xi ≤ xi) = Pθ

(
{ω ∈ Ω : ωi ≤ xi}

)
= Fθ(xi) , i = 1, . . . , n, xi ∈ R .

1.1 Parametric families of reference distributions
In the lecture “Elementary Probability Theory” some parametric families
have already been introduced. In this section, more parametric families of
distributions that play a special role (e.g. as reference distributions in esti-
mation theory, statistical tests and confidence intervals) will be presented.

1.1.1 Gamma distribution

First, consider the following special functions:

1. The Gamma function:

Γ(p) =
∫ ∞

0
xp−1e−xdx, for p > 0 .

The following properties hold:

• Γ(1) = 1
• Γ(1/2) =

√
π,

• Γ(p + 1) = pΓ(p) for all p > 0,
• Γ(n + 1) = n! for all n ∈ N.

2. The Beta function:

B(p, q) =
∫ 1

0
tp−1(1− t)q−1 dt , p, q > 0 .

The following properties hold:

• B(p, q) = B(q, p),
• B(p, q) = Γ(p)Γ(q)

Γ(p+q) for all p, q > 0,

Definition 1.1.1. The Gamma distribution with parameters λ > 0 and p >
0 is an absolutely continuous distribution with probability density function

fX(x) =


λpxp−1

Γ(p) e−λx , x ≥ 0 ,

0 , x < 0 .
(1.1)

Denote by X ∼ Γ(λ, p) a random variable X which is Gamma distributed
with parameters λ and p. Obviously X ≥ 0 almost surely (a.s.).

Exercise 1.1.2. Show that (1.1) is indeed a probability density function.
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Figure 1.1: Probability density function of the Gamma distribution with
various choices for the parameters λ > 0 and p > 0.

Example 1.1.3.

1. The Gamma distribution is often used for modeling small and medium
sized insurance claims.

2. If p = 1, then Γ(λ, 1) = Exp(λ), i.e. the Exponential distribution with
parameter λ > 0.

Theorem 1.1.4. Let X ∼ Γ(λ, p).

1. The moment generating function ΨX(s) of X is given by

ΨX(s) = EesX = 1
(1− s/λ)p

, s < λ .

The characteristic function φX(s) of X is given by

φX(s) = EeisX = 1
(1− is/λ)p

, s ∈ R .

2. The k-th moments of X are given by

EXk = p(p + 1) · · · · · (p + k − 1)
λk

, k ∈ N .

Proof
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1. Consider

ΨX(s) =
∫ ∞

0
esxfX(x) dx = λp

Γ(p)

∫ ∞

0
xp−1e

<0︷ ︸︸ ︷
(s− λ) x dx

=
−(s−λ)x=y

λp

Γ(p)

∫ ∞

0

yp−1(
− (s− λ)

)p e−y dy = λpΓ(p)
Γ(p)(λ− s)p

=
(

λ

λ− s

)p

= 1
(1− s/λ)p , λ > s .

If s ∈ C and Re (s) < λ, then ΨX(s) is holomorphic on D, where
D := {s = x + iy ∈ C : x < λ}. It holds that

ΨX(s) = φX(−is) ,

for s = it, 0 < λ, which implies that

φX(t) = ΨX(it) , t ∈ R.

Ultimately, this yields

φX(t) = 1
(1− it/λ)p

, t ∈ R .

2.

EXk = Ψ(k)(0) =⇒ EXk = p · (p + 1) · . . . · (p + k − 1)
λk

, k ∈ N .

Corollary 1.1.5 (Stability of the Gamma distribution). If X ∼ Γ(λ, p1),
Y ∼ Γ(λ, p2) and X and Y are independent, then X + Y ∼ Γ(λ, p1 + p2).

Proof It holds that

φX+Y (s) = φX(s) · φY (s)

= 1
(1− is/λ)p1

· 1
(1− is/λ)p2

=
( 1

1− is/λ

)p1+p2

= φΓ(λ,p1+p2)(s) .

Since the characteristic function uniquely determines the distribution of a
random variable, X + Y ∼ Γ(λ, p1 + p2) holds.
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Example 1.1.6. Let X1, . . . , Xn ∼ Exp(λ) be independent. By Corollary
1.1.5 it holds that X = X1 + . . . + Xn ∼ Γ(λ, 1 + . . . + 1︸ ︷︷ ︸

n

) = Γ(λ, n), since

Exp(λ) = Γ(λ, 1). This special case of the Gamma distribution is also
called Erlang distribution with parameters λ > 0 and n ∈ N. Notation:
X ∼ Erl(λ, n).

In summary: Erl(λ, n) = Γ(λ, n), λ > 0, n ∈ N.

Interpretation: In risk theory the random variables Xi represent interar-
rival times for the individual damages. Here X = ∑n

i=1 Xi represents the
occurrence time of the n-th loss with X ∼ Erl(λ, n).

Definition 1.1.7 (χ2 distribution). X is a χ2 distributed random variable
with k degrees of freedom (Notation: X ∼ χ2

k), if X
d= X2

1 + . . .+X2
k , where

X1, . . . , Xk ∼ N(0, 1) are i.i.d. random variables.

0,1

0,2

0,3

0,4

0,5

0 2 4 6

k=2

k=3

k=4

Figure 1.2: Probability density function of the χ2
k distribution with

k = 2, 3, 4 degrees of freedom.

Theorem 1.1.8 (χ2 distribution: Special case of the Gamma distribution
with λ = 1/2, p = k/2). If X ∼ χ2

k, then

1. X ∼ Γ(1/2, k/2), i.e.

fX(x) =


xk/2−1e−x/2

2k/2Γ(k/2)
, x ≥ 0

0, x < 0
. (1.2)

2. In particular EX = k, Var X = 2k.

Proof
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1. Let X = X2
1 + . . . + X2

k with Xi ∼ N(0, 1) i.i.d. random variables.
Calculating the distribution function of X2

i by [33, Satz 3.6.4] and
using

fX2
1
(x) = 1

2
√

x

(
fX1(
√

x) + fX1(−
√

x)
)

yields

P (X2
1 ≤ x) =

y2=t

∫ x

0

( 1√
2π

e
−t
2

1
2
√

t
dt + 1√

2π
e−t/2 1

2
√

t

)
dt

=
∫ x

0

(1/2)−1/2t1/2−1

Γ(1/2) e−t/2 dt , x ≥ 0 .

Thus X2
1 ∼ Γ(1/2, 1/2) =⇒ X ∼ Γ(1/2, 1/2 + . . . + 1/2︸ ︷︷ ︸

k times

) = Γ(1/2, k/2) and

therefore (1.2) with respect to the density holds.

2. Because of the additivity of the expected value and the independence
of the Xi, it holds that

EX = k·EX2
1 , Var X = kVar X2

1 , E(X2
1 ) = E

(
Γ(1/2, 1/2)

)
= 1 by Theorem 1.1.4, 2 .

Indeed,

E(X2
1 ) =

1/2
1/2

= 1 , E(X4
1 ) =

1/2(1/2 + 1)
(1/2)2 =

3/4
1/4

= 3,

Var X2
1 = E(X4

1 )−
(
E(X2

1 )
)2

= 3− 1 = 2.

1.1.2 Student’s1 t distribution

Definition 1.1.9. Let X and Y be independent random variables, where
X ∼ N(0, 1) and Y ∼ χ2

r . The random variable

U
d= X√

Y/r

is called Student or t distributed with r degrees of freedom. Notation: U ∼ tr.

Theorem 1.1.10 (Probability density function of the t distribution). If
X ∼ tr, then

1.
fX(x) = 1

√
rB

(
r
2 , 1

2

) · 1(
1 + x2

r

) r+1
2

, x ∈ R .

1Named after the mathematician William Sealy Gosset, who signed his work under the
pseudonym “Student”.
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2. EX = 0 , Var X = r
r−2 , r ≥ 3.

Remark 1.1.11.

1. Student’s t distribution is symmetric. In particular,

-2 -1 0 1 2 3 4

0.1

0.2

0.3

0.4
t(100)

t(2)

t(10)

Figure 1.3: Probability density function f of the t distribution for
r = 2, 10, 100

tr,α = −tr,1−α, α ∈ (0, 1),

where tr,α is the α quantile of the Student’s distribution with r degrees
of freedom.

2. For r →∞ it holds that fr(x)→ 1√
2π

e− x2
2 , x ∈ R. (Proof: Exercise)

3. For r = 1 the t distribution coincides with the standard Cauchy dis-
tribution, i.e. it holds that t1 = Cauchy(0, 1) with probability density
function f(x) = 1

π(1+x2) . The expected value of t1 doesn’t exist.

Proof of Theorem 1.1.10:

1. It holds that X := φ(Y, Z), where φ(x, y) = x√
y/r

and V = (Y, Z)
is a two dimensional random vector with Y ∼ N(0, 1) and Z ∼ χ2

r

independent of Y . The density transformation theorem [33, Theorem
3.6.6] states that

fφ(V )(x) = fV (φ−1(x))|J |,

where |J | = | det J |, where J =
(

∂φ−1
i (x)
∂xj

)n

i,j=1
denotes the Jacobi

matrix of the function φ = (φ1, . . . , φn) : Rn → Rn. Computing φ−1,
where φ : (x, y) 7→ (v, w) as above, with v = x√

y/r
, w = y yields

v = x√
y
r

⇒ x = v

√
y

r
= v

√
w

r
.

Thus,
φ−1 : (v, w) 7→

(
v

√
w

r
, w

)
,
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and the Jacobi matrix is given by

J =

∂φ−1
1

∂v
∂φ−1

1
∂w

∂φ−1
2

∂v
∂φ−1

2
∂w

 =

√w
r

v
2
√

wr

0 1

 .

For V = (Y, Z) with Y and Z independent it follows that

fV (x, y) = fY (x) · fZ(y) = 1√
2π

e− x2
2 · yr/2−1e−y/2

Γ(r/2)2r/2
= yr/2−1e− y+x2

2

2 r+1
2 Γ(1/2)Γ(r/2)

for all x ∈ R and y > 0. The density transformation theorem ulti-
mately yields

fX(v) =
∫ ∞

0
fφ(V )(u, w)dw =

∫ ∞

0
fV (φ−1(v, w))|J | dw

=
∫ ∞

0

e−(v2 w
r

+w)/2wr/2−1

2 r+1
2 Γ(1/2)Γ(r/2)

√
w/r dw

= 1
√

r2 r+1
2 Γ(1/2)Γ(r/2)

·
∫ ∞

0
w

r−1
2 e

−

=t︷ ︸︸ ︷
v2

r + 1
2 · w

dw

=
w= 2t

v2
/r+1

1
√

r2 r+1
2 Γ(1/2)Γ(r/2)

·
∫ ∞

0

2 r−1
2 +1t

r−1
2

(v2/r + 1) r−1
2 +1

e−tdt

=
2 r+1

2 Γ( r+1
2 )

(v2

r + 1) r+1
2
√

r2 r+1
2 Γ(1/2)Γ(r/2)

= 1
√

rB(r/2, 1/2)(1 + v2/r) r+1
2

2. Exercise.

1.1.3 Fisher-Snedecor distribution (F distribution)

Definition 1.1.12. Let X
d= Ur/r

Us/s , where Ur ∼ χ2
r , Us ∼ χ2

s, r, s ∈ N,
Ur, Us are independent. Then, X is Fisher or F distributed with r, s ∈ N
degrees of freedom. Notation: X ∼ Fr,s.
Lemma 1.1.13. Let X ∼ Fr,s, r, s ∈ N. Then, X is absolutely continuously
distributed with probability density function

fX(x) = xr/2−1

B(r/2, s/2)(r/s)−r/2(1 + (r/s) · x) r+s
2
· I(x > 0) ,

where IB(x) denotes the indicator function of the set B.
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Figure 1.4: Probability density function of the Fr,s distribution for various
choices of r and s.

Proof Note that for Ur ∼ χ2
r the probability density function is given by

fUr (x) = xr/2−1e−x/2

Γ(r/2)2r/2
, x > 0 , r ∈ N.

Consequently,

P (Ur/r ≤ x) = P (Ur ≤ rx) = FUr (rx),

and therefore

fUr/r(x) = (FUr (rx))′ = r · fUr (rx) = r(rx)r/2−1e
−rx

2

Γ(r/2)2r/2
· I(x > 0)

= rr/2xr/2−1e−r/2·x

Γ(r/2)2r/2
· I(x > 0) .

By the density transformation theorem for the ratio of two random variables
[33, Theorem 3.6.9., 2] it holds that

f Ur/r
Us/s

(x) =
∫ ∞

0
tfUr/r(xt) · fUs/s(t) dt · I(x > 0) .
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Hence,

fX(x) =
∫ ∞

0
t
rr/2(tx)r/2−1e− rtx

2

Γ(r/2)2r/2
· ss/2ts/2−1e−st/2

Γ(s/2)2s/2
dt

= rr/2ss/2xr/2−1

Γ(r/2)Γ(s/2)2 r+s
2
·
∫ ∞

0
t

r/2+s/2−1e
−

=y︷ ︸︸ ︷
rx + s

2 t
dt

= rr/2ss/2xr/2−1

Γ(r/2)Γ(s/2) ·
∫ ∞

0

y
r+s

2 −1

(rx + s)
r+s

2
· e−y dy

=
t= y

rx+s
2

rr/2ss/2xr/2−1

Γ(r/2)Γ(s/2)s r+s
2 (1 + r

s · x) r+s
2
· Γ
(

r + s

2

)

= (r/s)r/2xr/2−1

B(r/2, s/2)(1 + r
sx) r+s

2
· I(x > 0) .

Remark 1.1.14. Let X ∼ Fr,s, r, s ∈ N, with probability density function
fX .

1. Some graphs of the F distribution are shown in Figure 1.4.

2. Some properties of the F distribution:

Lemma 1.1.15. Let X ∼ Fr,s, r, s ∈ N. Then,

(a)
EX = s

s− 2 , s ≥ 3 .

(b)

Var X = 2s2(r + s− 2)
r(s− 4)(s− 2)2 , s ≥ 5 .

(c) Denote by Fr,s,α the α-quantile of the Fr,s distribution. Then,

Fr,s,α = 1
Fs,r,1−α

, α ∈ (0, 1).

Exercise 1.1.16. Prove Lemma 1.1.15.

3. The following approximation formula holds for quantiles Fr,s,α (cf.
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Abramowitz, Stegun (1972)): Fr,s,α ≈ eω, where

ω = 2
(

α(h + a)1/2

h
−
( 1

r − 1 −
1

s− 1

)
·
(

a + 5
6 −

2
3h

))
,

h = 2
( 1

r − 1 + 1
s− 1

)−1
,

a = z2
α − 3

6
and zα is the α quantile of the N(0, 1) distribution.

1.2 Methods for obtaining point estimators
The following introductory examples were given in the lecture ”Elementary
Probability Theory and Statistics”.

Definition 1.2.1.

1. The function F̂n(x) = #{xi : xi ≤ x , i = 1, . . . , n}/n for all x ∈ R is
called empirical distribution function of a realized sample (x1, . . . , xn).
Here F̂n : Rn+1 → [0, 1] holds, since F̂n(x) = φ(x1, . . . , xn, x).

2. The random variable F̂n : Ω×R→ [0, 1] which is indexed by x ∈ R is
called empirical distribution function of the random sample given by
(X1, . . . , Xn), if

F̂n(x, ω) = F̂n(x) = 1
n

#{Xi, i = 1, . . . , n : Xi(ω) ≤ x} , x ∈ R .

Equivalently to Definition 1.2.1 it can be shown that

F̂n(x) = 1
n

n∑
i=1

I(xi ≤ x) , x ∈ R,

where

I(x ∈ A) =
{

1, x ∈ A

0, otherwise.
It holds that

F̂n(x) =


1, x ≥ x(n) ,
i
n , x(i) ≤ x < x(i+1) , i = 1, . . . , n− 1 ,

0, x < x(1) .

for x(1) < x(2) < . . . < x(n).
The height of the jump at x(i) is equal to the relative frequency fi of x(i).
If x(i) = x(i+1) for a i ∈ {1, . . . , n}, the value i/n does not occur (cf. [33,
Section 6.3.2] ).
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1.2.1 Plug-In estimator

Based on the empirical distribution function F̂n, the Plug-in method yields
the class of Plug-in estimators. Let M := {F : F is a distribution function}.
Definition 1.2.2. Let the parameter θ of the distribution F be given as a
functional T : M → R of F , i.e θ = T (F ). Then, θ̂ = T (F̂n) is called the
Plug-in estimator for θ.
Definition 1.2.3. Let F be an arbitrary distribution function. The func-
tional T : M → R is called linear, if

T (aF1+bF2) = aT (F1)+bT (F2) for all a, b ∈ R+ , a+b = 1 , F1, F2 ∈M .

Consider a special class of linear functionals given by

T (F ) =
∫
R

r(x) dF (x) ,

where r(x) is an arbitrary continuous function with E (r(X)) < ∞. An
example for such T is given by

EXk =
∫
R

xk dF (x) , k ∈ N .

Lemma 1.2.4. The Plug-in estimator for θ =
∫
R r(x) dF (x) is given by

θ̂ =
∫
R

r(x) dF̂n(x) = 1
n

n∑
i=1

r(xi).

Exercise 1.2.5. Prove Lemma 1.2.4!
Example 1.2.6 (Plug-in estimator).

1. X̄n is a Plug-in estimator for the expected value µ.

2. Plug-in estimator for σ2 = Var X: It holds that Var X = EX2−(EX)2

and therefore

σ̂2 = 1
n

n∑
i=1

X2
i −

(
1
n

n∑
i=1

Xi

)2

= 1
n

n∑
i=1

(Xi − X̄n)2 = n− 1
n

S2
n .

3. Estimator for skewness and kurtosis γ̂1 and γ̂2 (cf. [33, Section 6.4.4])
are Plug-in estimators, since the coefficient of skewness is defined as

γ1 = E
(

X − µ

σ

)3

where µ = EX, σ2 = Var X, implies

γ̂1
µ 7→X̄n=
σ2 7→σ̂2

1
n

∑n
i=1(Xi − X̄n)3

(σ̂2
n)3/2

=
1
n

∑n
i=1(Xi − X̄n)3(

1
n

∑n
i=1(Xi − X̄n)2

)3/2
.

The construction of γ̂2 can be done in the same spirit.
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4. The empirical coefficient of correlation ϱXY is a Plug-in estimator,
since

ϱ̂XY = S2
XY√

S2
XX

√
S2

Y Y

=
∑n

i=1(Xi − X̄n)(Yi − Ȳn)√∑n
i=1(Xi − X̄n)2∑n

i=1(Yi − Ȳn)2
.

Indeed

ϱXY = E(X − EX)(Y − EY )√
Var X ·Var Y

= E(XY )− EX · EY√
(EX2 − (EX)2)(EY 2 − (EY )2)

and therefore, considering the linear functionals

T1(F ) =
∫

x dF (x), T2(F ) =
∫

x2 dF (x), T12(G) =
∫

xy dG(x, y)

ϱXY = T12(FXY )− T1(FX) · T1(FY )√
(T2(FX)− (T1(FX))2) (T2(FY )− (T1(FY ))2)

.

ϱ̂XY is obtained by replacing FX , FY and FXY in T1, T2 and T12 with
F̂n,X , F̂n,Y and F̂n,XY :

ϱ̂XY = T12(F̂n,XY )− T1(F̂n,X) · T1(F̂n,Y )√(
T2(F̂n,X)−

(
T1(F̂n,X)

)2
)(

T2(F̂n,Y )−
(
T1(F̂n,Y )

)2
) .

1.2.2 Method of moments estimator

In the following let (X1, . . . , Xn) be a sample of i.i.d. random variables
Xi with distribution function F ∈ {Fθ : θ ∈ Θ}, Θ ⊂ Rm (parametric
model). Assume that the parametrisation θ 7→ Fθ is distinguishable, i.e.
Fθ /= Fθ′ ⇐⇒ θ /= θ′.

Goal: Construction of an estimator θ̂(X1, . . . , Xn) for θ = (θ1, . . . , θm). [33,
Theorem 4.5.62] implies that under certain conditions on F (e.g. uniform
distribution on a compact interval) the underlying distribution can be deter-
mined, if the moments EXk , k ∈ N are known. The method of moments
estimation is based on the idea of estimating F by using the moments and
was introduced by Karl Pearson in the end of the 19th century.

Assumptions: There exists r ≥ m such that Eθ|Xi|r < ∞. Assume that
the moments EθXk

i = gk(θ), k = 1, . . . , r are given as functions of the pa-
rameter vector θ = (θ1, . . . , θm) ∈ Θ.

2Theorem 4.5.6. Let X be a random variable with values in C ⊂ R, i.e.

P (X ∈ C) = 1.

If C ⊂ [a, b], a < b, then {µk}k∈N defines PX uniquely.
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Moment equation system: µ̂k = gk(θ), k = 1, . . . , r, where µ̂k are the
k-th empirical moments defined by µ̂k = 1

n

∑n
i=1 Xk

i .

Definition 1.2.7. If the system above is uniquely solvable for θ, then its
solution θ̂(X1, . . . , Xn) is called moment estimator (M-estimator) of θ.

Lemma 1.2.8. Let g = (g1, . . . , gr) : Θ → C ⊂ Rr be a bijective function,
and let its inverse function g−1 : C → Θ be continuous. Then the moment
estimator θ̂(X1, . . . , Xn) of θ is strongly consistent.

Proof It holds that θ̂(X1, . . . , Xn) = g−1(µ̂1, . . . , µ̂r) a.s.−→
n→∞

θ, since µ̂k
a.s.−→

n→∞
gk(θ), k = 1, . . . , r (strong consistency of the empirical moments) and g−1

is continuous.

Remark 1.2.9.

1. Under certain conditions with respect to the regularity of Fθ the mo-
ment estimator θ̂(X1, . . . , Xn) for θ is asymptotically normally dis-
tributed: √

n
(
θ̂(X1, . . . , Xn)− θ

)
d−→

n→∞
N(0, Σ) ,

where N(0, Σ) is the multivariate normal distribution with covariance
matrix

Σ = GT E(Y Y T )G
with

Y = (X, X2, . . . , Xr)T , X
d= Xi ,

and
G =

(
∂g−1

i

∂θj

)
i=1...r ,
j=1...m

.

2. Other properties for the moment estimator do not hold in general (e.g.
not all moment estimators are unbiased (cf. Example 1.2.10, 1)).

3. Sometimes r > m equations in the moment equation system are neces-
sary in order to obtain a moment estimator. It can occur for example,
if some gi = const, i.e they do not provide additional information
about θ (cf. Example 1.2.10, 2)).

Example 1.2.10.

1. Normal distribution: Xi
d= X , i = 1, . . . , n , X ∼ N(µ, σ2); The

goal is to obtain a moment estimator for µ and σ2, so θ = (µ, σ2). It
holds that

g1(µ, σ2) = EθX = µ ,

g2(µ, σ2) = EθX2 = Varθ X + (EθX)2 = σ2 + µ2 .
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Consider the system of equations{ 1
n

∑n
i=1 Xi = µ ,

1
n

∑n
i=1 X2

i = µ2 + σ2 .

It follows that

µ̂ = 1
n

n∑
i=1

Xi = X̄n ,

σ̂2 = 1
n

n∑
i=1

X2
i − µ̂2 = 1

n

n∑
i=1

X2
i − X̄2

n = 1
n

n∑
i=1

(
X2

i − X̄2
n

)
= 1

n

n∑
i=1

(
Xi − X̄n

)2
= n− 1

n
S2

n ,

hence, the moment estimators are given by µ̂ = X̄n , σ̂2 = n−1
n S2

n.
Note that σ̂2 is not unbiased, since

Eθσ̂2 = n− 1
n
· EθS2

n = n− 1
n

σ2 .

2. Uniform distribution: Xi
d= X, i = 1, . . . , n, X ∼ U [−θ, θ], θ > 0.

The goal is to obtain a moment estimator for θ. It holds that

g1(θ) = EθX = 0 ,

g2(θ) = EθX2 = Varθ X = (θ − (−θ))2

12 = (2θ)2

12 = θ2

3 .

Thus, the following system of equations can be set up:{ 1
n

∑n
i=1 Xi = 0 (useless) ,

1
n

∑n
i=1 X2

i = θ2

3 .

Solving the above system of equations for θ yields the moment estima-
tor θ̂ =

√
3
n

∑n
i=1 X2

i . Here, two equations for the estimation of one
parameter θ were necessary, i.e. r = 2 > m = 1.

1.2.3 Maximum-likelihood estimator

Maximum-likelihood estimators were discovered by Carl Friedrich Gauss
(beginnig of the 19th century) and Sir Ronald Fisher (1922). Assume that
all distributions in the parametric family {Fθ : θ ∈ Θ} are either discrete or
continuous.

Definition 1.2.11. Consider the random sample X = (X1, . . . , Xn).
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1. Let Xi, i = 1, . . . , n, be absolutely continuous random variables with
probability density function fθ(x). Then,

L(x1, . . . , xn, θ) =
n∏

i=1
fθ(xi) , (x1, . . . , xn) ∈ Rn , θ ∈ Θ

is called likelihood funktion of the sample (x1, . . . , xn).

2. Let Xi, i = 1, . . . , n, be discrete random variables with probability
mass function pθ(x) = Pθ(Xi = x) , x ∈ C, where C is the range of
X. Then,

L(x1, . . . , xn, θ) =
n∏

i=1
pθ(xi) , (x1, . . . , xn) ∈ Cn , θ ∈ Θ

is called Likelihood function of the sample (x1, . . . , xn).

By this definition

• the discrete case yields L(x1, . . . , xn, θ) = Pθ(X1 = x1, . . . , Xn = xn)

• the continuous case yields

L(x1, . . . , xn, θ)
n∏

i=1
∆xi

= f(X1,...,Xn),θ(x1, . . . , xn)∆x1 · . . . ·∆xn

≈ Pθ(X1 ∈ [x1 , x1 + ∆x1], . . . , Xn ∈ [xn , xn + ∆xn])

for ∆xi → 0, i = 1, . . . , n.

The goal is to construct an estimator θ such that the probability

Pθ(X1 = x1, . . . , Xn = xn) resp. Pθ(Xi ∈ [xi, xi + ∆xi], i = 1, . . . , n)

is maximized. This procedure is called Maximum-likelihood method.

Definition 1.2.12. Assume that the maximization problem given by
L(x1, . . . , xn, θ) 7→ maxθ∈Θ is uniquely solvable. Then,

θ̂(x1, . . . , xn) = argmax
θ∈Θ

L(x1, . . . , xn, θ)

is called Maximum-Likelihood estimator of θ (ML estimator).

Remark 1.2.13.
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1. There are only very few cases in which the ML estimator θ̂ for θ is
explicitly expressible. In most cases, the constant factor of the likeli-
hood function is omitted. By taking the logarithm of the remaining
function

log L(x1, . . . , xn, θ)
the so called log-likelihood function is obtained.
Consequently

n∏
i=1

fθ(xi) resp.
n∏

i=1
pθ(xi)

turn into sums
n∑

i=1
log fθ(xi) resp.

n∑
i=1

log pθ(xi) ,

which are easier to differentiate with respect to θ. To compute the
maximum of the log-likelihood function, one considers the first order
conditions

∂ log L(x1, . . . , xn, θ)
∂θj

= 0 , j = 1, . . . , m ,

which are a necessary condition for an extremum of log L (and thus
of L, since the logarithm is monotonically increasing). If this sys-
tem is uniquely solvable and the obtained solution θ̂(X1, . . . , Xn) is a
maximum, it is also the ML estimator.

2. In most applied cases, the ML estimators need to be calculated by
numerical methods.

Example 1.2.14.

1. Bernoulli distribution: Let Xi ∼ Bernoulli(p) i.i.d., i = 1, . . . , n, with
p ∈ [0, 1]. Since

Xi =
{

1 , with probability p,

0 , else,

where the respective probability mass function is given by

pθ(x) = px(1− p)1−x , x ∈ {0, 1} .

The likelihood function of the random sample (X1, . . . , Xn) is given by

L(x1, . . . , xn, θ) =
n∏

i=1
pxi(1− p)1−xi

= p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi def.= h(p).
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(a) If ∑n
i=1 xi = 0 (⇐⇒ x1 = x2 = . . . = xn = 0), then

h(p) = (1−p)n is maximized at p = 0. The ML estimator is then
given by p̂(0, . . . , 0) = 0.

(b) If ∑n
i=1 xi = n (⇐⇒ x1 = x2 = . . . = xn = 1), then h(p) = pn

is maximized at p = 1. The ML estimator is then given by
p̂(1, 1, . . . , 1) = 1.

(c) If 0 <
∑n

i=1 xi < n, then

log L(x1, . . . , xn, p) = nx̄n log p + n(1− x̄n) log(1− p) = n · g(p) .

Since g(p) −→
p→0,1

−∞ and

∂g(p)
∂p

= x̄n

p
+ 1− x̄n

1− p
· (−1) = x̄n

p
+ x̄n − 1

1− p
= 0

⇐⇒ (1 − p)x̄n + (x̄n − 1)p = 0 ⇐⇒ p = x̄n, the continuity of g
implies that g attains exactly one argmaxp g(p) = x̄n.

Thus, the ML estimator is given by p̂(X1, . . . , Xn) = X̄n.

2. Uniform distribution: Let Xi ∼ U [0, θ], i = 1, . . . , n, i.i.d. with θ > 0.
The goal is to obtain a ML estimator for θ. It holds that

fXi(x) = 1/θ · I(x ∈ [0, θ]) , i = 1, . . . , n .

Thus, the likelihood function is given by

L(x1, . . . , xn, θ) =
{

(1/θ)n , 0 ≤ x1, . . . , xn ≤ θ

0 , else

=


(1/θ)n , if min{x1, . . . , xn} ≥ 0

and max{x1, . . . , xn} ≤ θ

0 , else
= g(θ) , θ > 0.

Therefore, θ̂ = argmaxθ>0 g(θ) = max{x1, . . . , xn} = x(n). So the ML
estimator is given by θ̂(X1, . . . , Xn) = X(n).

It can be shown that under certain conditions, the ML estimator is weakly
consistent and asymptotically normal distributed.

Definition 1.2.15. Let

L(x, θ) =
{

fθ(x) , if continuous,
pθ(x) , if discrete
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0

g(θ)

θX(n)

1
θn

Figure 1.5: Illustration of the function g.

be the likelihood function of X. For θ, θ′ ∈ Θ and X
d= Xi,

Pθ(L(X, θ′) = 0) = 0 define the Kullback-Leibler information (distance)
H(Pθ, Pθ′) in the continuous case as

H(Pθ, Pθ′) = Eθ log L(X, θ)− Eθ log L(X, θ′) =
∫
R

log L(x, θ)
L(x, θ′) · L(x, θ) dx.

If Pθ(L(X, θ′) = 0) > 0, then define H(Pθ, Pθ′) = ∞. In the discrete case
take the sum over all non-trivial pθ(x) instead of the integral.

The following lemma will show that H(· , ·) has the properties
H(Pθ, Pθ′) = 0 ⇐⇒ θ = θ′ and H(Pθ, Pθ′) ≥ 0 ∀ θ, θ′ ∈ Θ. It is, on the
other hand, easy to prove that H(Pθ, Pθ′) is not symmetric with respect to
θ and θ′. Thus, H(· , ·) is not a metric.

Lemma 1.2.16. It holds that

1. H(Pθ, Pθ′) is well-defined and ≥ 0.

2. If H(Pθ, Pθ′) = 0, then θ = θ′.

Proof Consider the continuous case Pθ , θ ∈ Θ (the discrete case can be
shown in the same spirit).

1. Define

f(x) =


L(x,θ)
L(x,θ′) , if L(x, θ′) > 0 ,

1 , else.

If Pθ(L(X, θ′) = 0) = 0, then Pθ(L(X, θ′) > 0) = 1. On the other
hand, if H(Pθ, Pθ′) = ∞ > 0, then H is well-defined and positive.
With probability 1 it holds that L(x, θ) = f(x) · L(x, θ′).
Let g(x) = 1− x + x log x , x > 0. It can be shown that g is convex
with g(x) ≥ 0. Indeed, it holds that

g′(x) = −1 + log x + 1 = log x , g′′(x) = 1/x > 0 .
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Thus, g admits exactly one zero at x = 1, which is a minimum. Con-
sider g(f(X)) , X ∼ L(x, θ′). Then,

0 ≤ Eθ′g(f(X)) = 1− Eθ′f(X) + Eθ′ (f(X) log f(X))

= 1−
∫

L(x, θ)
L(x, θ′) · L(x, θ′) dx +

∫
L(x, θ)
L(x, θ′) · log L(x, θ)

L(x, θ′) · L(x, θ′)dx

= H(Pθ, Pθ′) .

Therefore, H(Pθ, Pθ′) ≥ 0, which was to be shown.

2. If H(Pθ, Pθ′) = 0 =⇒ Eθ′g(f(X)) = 0 , g(f(X)) ≥ 0. Thus,
L(x, θ′)-almost surely g(f(X)) = 0 =⇒ f(X) θ′-a.s.= 1, which implies
either L(X, θ′) = 0 or L(x, θ) = L(x, θ′) for L(x, θ′)-almost all x and
therefore Pθ = Pθ′ .

Example 1.2.17.

1. Let Θ = R+ and {Pλ, λ > 0} be the family of exponential dis-
tributions with parameter λ > 0 and probability density functions
L(x, λ) = λe−λxI(x ≥ 0). Computing the Kullback-Leibler informa-
tion H(Pλ, P ′

λ) for any λ, λ′ > 0 yields

H(Pλ, P ′
λ) =

∫ ∞

0
log

(
λe−λx

λ′e−λ′x

)
λe−λxdx

= log
(

λ

λ′

)
·
∫ ∞

0
λe−λxdx︸ ︷︷ ︸
=1

−(λ− λ′)
∫ ∞

0
xλe−λxdx︸ ︷︷ ︸

= 1
λ

= log
(

λ

λ′

)
− λ− λ′

λ

= λ′

λ
− 1− log

(
λ′

λ

)
.

For λ = λ′ we get H(Pλ, Pλ) = 1− 1− log(1) = 0.

2. It may also happen that H(Pθ, Pθ′) = +∞ for absolutely continuous
distributions Pθ. As an example, consider the family {U [0, θ], θ > 0} of
uniform distributions on [0, θ] with the likelihood L(x, θ) = I(x∈[0,θ])

θ .
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Then,

H(Pθ, Pθ′) = 1
θ

∫ θ

0
log

( 1
θ

1
θ′ I(x ∈ [0, θ′])

)
dx

= 1
θ

∫ θ

0
log

(
θ′

θI(x ∈ [0, θ′])

)
dx

=

log
(

θ′

θ

)
, if θ′ ≥ θ,

+∞, if θ′ < θ.

Theorem 1.2.18 (Weak consistency of ML estimators). Let m = 1 and Θ
be an open interval in R. Furthermore, let L(x1, . . . , xn, θ) be unimodal, i.e.
for the ML estimator θ̂ of θ it holds that{

∀ θ < θ̂(x1, . . . , xn) =⇒ L(x1, . . . , xn, θ) is increasing
∀ θ > θ̂(x1, . . . , xn) =⇒ L(x1, . . . , xn, θ) is decreasing

(i.e. maxθ∈Θ L(x1, . . . , xn, θ) exists and is unique). Then,

θ̂(X1, . . . , Xn) P−→
n→∞

θ.

Proof For the weak consistency (the convergence in probability) of θ̂ to
hold, the following needs to be shown:

Pθ

(∣∣∣θ̂(X1, . . . , Xn)− θ
∣∣∣ > ε

)
−→

n→∞
0 , ε > 0 . (1.3)

Let ε > 0 : θ ± ε ∈ Θ be arbitrary. Then, the Kullback-Leibler informa-
tion satisfies H(Pθ, Pθ±ε) > σ > 0, because of the distinguishability of the
parametrization of Pθ and Lemma 1.2.16. Consider {|θ̂ − θ| ≤ ε}. In order
to show (1.3), it is sufficient to find a lower bound for Pθ(|θ̂− θ| ≤ ε), which
converges to 1 for n→∞. By unimodality it holds that{
|θ̂ − θ| < ε

}
unimod
⊇

{
L(X1, . . . , Xn, θ)∈

(
L(X1, . . . , Xn, θ − ε), L(X1, . . . , Xn, θ + ε)

)
3
}

=∪
{

L(X1, . . . , Xn, θ)
L(X1, . . . , Xn, θ ± ε) >1

}
σ>0⇒enδ>1
⊇ ∪

{
L(X1, . . . , Xn, θ)

L(X1, . . . , Xn, θ ± ε) > enδ
}

=∪
{ 1

n
log L(X1, . . . , Xn, θ)

L(X1, . . . , Xn, θ ± ε) > σ

}
= A+ ∪A− ,

where
A± =

{ 1
n

log L(X1, . . . , Xn, θ)
L(X1, . . . , Xn, θ ± ε) > σ

}
.

3This means an interval with these endpoints, even though we don’t immediately know
which one is larger.



CHAPTER 1. POINT ESTIMATION 22

Hence,
Pθ

(
|θ̂ − θ| < ε

)
≥ Pθ(A+ ∪A−) .

Showing that
lim

n→∞
Pθ(A±) = 1 (1.4)

then implies

1 ≥ lim
n→∞

Pθ(A+ ∪A−) ≥ lim
n→∞

Pθ(A±) = 1,

in particular this yields

lim
n→∞

Pθ(A+ ∪A−) = 1

and

1 ≥ lim
n→∞

Pθ

(
|θ̂ − θ| < ε

)
≥ 1.

which implies that

lim
n→∞

Pθ

(
|θ̂ − θ| > ε

)
≤ 1− lim

n→∞
Pθ

(
|θ̂ − θ| < ε

)
︸ ︷︷ ︸

=1

= 0,

i.e. θ̂
P−→

n→∞
θ.

In the following it will now be shown that Pθ(A+) −→
n→∞

1 (similar for
Pθ(A−) −→

n→∞
1):

1. Let H(Pθ, Pθ+ε) <∞ and

f(x) =


L(x, θ)

L(x, θ + ε) , if L(x, θ + ε) > 0 ,

1 , else.

By Definition 1.2.15, it holds that Pθ(L(X1, θ + ε) > 0) = 1. Further-
more, the strong law of large numbers implies

1
n

log L(X1, . . . , Xn, θ)
L(X1, . . . , Xn, θ + ε) = 1

n

n∑
i=1

log L(Xi, θ)
L(Xi, θ + ε) = 1

n

n∑
i=1

log f(Xi)

f.s.−→
n→∞

Eθ log f(X1)=
∫

L(x, θ)·log L(x, θ)
L(x, θ + ε) dx=H(Pθ, Pθ+ε) > σ > 0,

since log f(X1) ∈ L1(Ω,F , P ) and

Eθ log f(X1) = H(Pθ, Pθ+ε) <∞ =⇒ P (A+) −→
n→∞

1 .
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2. Let H(Pθ, Pθ+ε) =∞ and Pθ(L(X1, θ + ε) = 0) = 0, then

f(x) a.s.= L(x, θ)
L(x, θ + ε)

with respect to the distribution PX1 . Now, log min{f(X1), c} ∈ L1(Ω,F , P )
for all c > 0. Thus, similarly to 1 it holds that

1
n

n∑
i=1

log min{f(Xi), c} a.s.−→
n→∞

Eθ log min{f(X1), c} ∈ (0,∞)

−→
c→∞

H(Pθ, Pθ+ε) =∞

and therefore

A+ ⊃
{

1
n

n∑
i=1

log min{f(Xi), c} > σ

}

=⇒ P (A+) ≥ P

(
1
n

n∑
i=1

log min{f(Xi), c} > σ

)
−→

n→∞
1 .

3. Let H(Pθ, Pθ+ε) =∞ and Pθ(L(X1, θ + ε) = 0) = a > 0. Then,

Pθ

( 1
n

log L(X1, . . . , Xn, θ)
L(X1, . . . , Xn, θ + ε) =∞

)
= 1− P

( 1
n

log L(X1, . . . , Xn, θ)
L(X1, . . . , Xn, θ + ε) <∞

)
= 1− P

(
n⋂

i=1
{L(Xi, θ + ε) > 0}

)
Xi i.i.d.= 1− (1− a)n −→

n→∞
1.

In summary, P (A+) −→
n→∞

1.

Definition 1.2.19. Let X = (X1, . . . , Xn) be a random sample of i.i.d.
random variables Xi ∼ Fθ , θ ∈ Θ. Let L(x, θ) be the likelihood function
of Xi. Then,

I(θ) = Eθ

(
∂

∂θ
log L(X1, θ)

)2
, θ ∈ Θ (1.5)

is called the Fisher information of the sample (X1, . . . , Xn).

From now on it will be assumed that 0 < I(θ) < ∞. In the following some
necessary conditions with respect to the asymptotically normal distribution
of the ML estimator will be presented.
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1. Θ ⊂ R is an open interval (m = 1).

2. It holds that Pθ /= Pθ′ if and only if θ /= θ′.

3. The family {Pθ, θ ∈ Θ}, θ ∈ Θ consists only of discrete or continuous
distributions and no mixtures.

4. B = supp L(x, θ) = {x ∈ R : L(x, θ) > 0} does not depend on θ ∈ Θ.
Here supp f denotes the support of f , which is defined as

supp f = {x ∈ R : f(x) /= 0},

and the likelihood function L(x, θ) is given by

L(x, θ) =
{

p(x, θ) , in the discrete case,
f(x, θ) , in the continuous case,

(1.6)

where p(x, θ) resp. f(x, θ) denotes the probability mass or density
function of Pθ.

5. The mapping L(x, θ) is three times continuously differentiable and

0 = dk

dθk

∫
B

L(x, θ) dx =
∫

B

∂k

∂θk
L(x, θ) dx , k = 1, 2, θ ∈ Θ .

Since the integral of L(x, θ) is equal to 1, the above derivative is equal
to 0. In the discrete case, the integral is replaced by a sum over all
values x ∈ R with positive probability mass p(x, θ) > 0.

6. For all θ0 ∈ Θ there exists a constant σθ0 > 0 and a measurable
function gθ0 : B → [0,∞), such that∣∣∣∣∣∂3 log L(x, θ)

∂θ3

∣∣∣∣∣ ≤ gθ0(x) , ∀x ∈ B , |θ − θ0| < σθ0 ,

where Eθ0 gθ0(X1) <∞.

Remark 1.2.20. It holds that

n · I(θ) = Varθ

(
∂

∂θ
log L(X1, . . . , Xn, θ)

)
,

where
L(X1, . . . , Xn, θ) =

n∏
i=1

L(Xi, θ) (1.7)

is the likelihood function of the sample (X1, . . . , Xn) with L(Xi, θ) given in
(1.6).
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Proof Note that

∂

∂θ
log L(X1, . . . , Xn, θ) = ∂

∂θ

n∑
i=1

log L(Xi, θ) =
n∑

i=1

∂

∂θ
log L(Xi, θ)

=
n∑

i=1

L′(Xi, θ)
L(Xi, θ) .

Furthermore

Eθ

(
∂

∂θ
log L(X1, . . . , Xn, θ)

)
=

n∑
i=1

Eθ
L′(Xi, θ)
L(Xi, θ)

=
n∑

i=1

∫
B

L′(X, θ)
L(X, θ) · L(X, θ) dx

5)= 0 .

In summary

Varθ

(
∂

∂θ
log L(X1, . . . , Xn, θ)

)
= Varθ

(
n∑

i=1

∂

∂θ
log L(Xi, θ)

)
Xi i.i.d=

n∑
i=1

Varθ

(
∂

∂θ
log L(Xi, θ)

)
Xi i.i.d= n ·Varθ

(
∂

∂θ
log L(X1, θ)

)
= n · Eθ

(
∂

∂θ
log L(X1, θ)

)2
= n · I(θ).

Example 1.2.21. Let Xi ∼ N(µ, σ2), i = 1, . . . , n. For θ = µ the Fisher
information is given by I(µ) = 1

σ2 assuming that σ2 is known.
Indeed

L(X1, µ) = 1√
2πσ

exp
{
−(X1 − µ)2

2σ2

}
,

log L(X1, µ) = − log(
√

2πσ)− (X1 − µ)2

(2σ2) ,

∂ log L(X1, µ)
∂µ

= −2(X1 − µ)
2σ2 · (−1) = X1 − µ

σ2 ,

Hence,

I(µ) = Eµ

(
∂ log L(X1, µ)

∂µ

)2
= 1

σ4Eµ(X1 − µ)2 = 1
σ4 · σ2 = 1

σ2 .
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By Remark 1.2.20 and [33, Theorem 7.3.2., 4)] with µ̂ = Xn, it holds that
Varµ

(
∂

∂µ
log L(X1, . . . , Xn, µ)

)
= n

σ2 = 1
Varµ(µ̂) . This means that little infor-

mation about µ (small values of I(µ)) leads to an increasing variance when
estimating µ and vice versa.

Theorem 1.2.22. Let (X1, . . . , Xn) be a random sample of i.i.d. random
variables fulfilling conditions 1) to 6) and 0 < I(θ) < ∞ , θ ∈ Θ. Let
θ̂(X1, . . . , Xn) be a weakly consistent ML estimator for θ. Then, the ML
estimator θ̂(X1, . . . , Xn) is also asymptotically normally distributed, in par-
ticular √

n · I(θ)
(
θ̂(X1, . . . , Xn)− θ

)
d−→

n→∞
Y ∼ N(0, 1) .

Proof Denote by ln(θ) = log L(X1, . . . , Xn, θ) the log-likelihood function,
θ ∈ Θ. Let l

(k)
n denote the k-th derivative of ln with respect to θ, i.e.

l(k)
n (θ) = dk

dθk
ln(θ) , k = 1, 2, 3 .

Since θ̂ is a ML estimator l
(1)
n (θ̂) = 0 must hold. Considering the Taylor

expansion of l
(1)
n (θ̂) in a neighborhood of θ yields

0 = l(1)
n (θ̂) = l(1)

n (θ) + (θ̂ − θ) · l(2)
n (θ) + (θ̂ − θ)2 · l

(3)
n (θ∗)

2 ,

where θ∗ is between θ and θ̂. Note that

−(θ̂ − θ)
(

l(2)
n (θ) + (θ̂ − θ) l

(3)
n (θ∗)

2

)
= l(1)

n (θ),

and consequently

√
n(θ̂ − θ) =

l
(1)
n (θ)√

n

− l
(2)
n (θ)

n − (θ̂ − θ) l
(3)
n (θ∗)

2n

.

By showing

1.
l
(1)
n (θ)√

n
d−→

n→∞
N(0, I(θ)) ,

2.

− l
(2)
n (θ)

n
a.s.−→

n→∞
I(θ) ,
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3.

(θ̂ − θ) P−→
n→∞

0 and l
(3)
n (θ∗)

2n

is bounded, i.e.

there exists a c > 0 : lim
n→∞

Pθ

(∣∣∣∣∣ l
(3)
n (θ∗)

2n

∣∣∣∣∣ < c

)
= 1 ,

it can be followed that

(θ̂ − θ) · l
(3)
n (θ∗)

2n
P−→

n→∞
0 , since

∣∣∣∣∣ l
(3)
n (θ∗)

n

∣∣∣∣∣ ≤ c with high probability

and hence

√
n(θ̂ − θ) =

l
(1)
n (θ)√

n

− l
(2)
n (θ)

n − (θ̂ − θ) l
(3)
n (θ∗)

2n

d−→
n→∞

Z1 ∼ N

(
0,

1
I(θ)

)

by Slutskys Theorem. Ultimately this yields
√

n
√

I(θ)(θ̂ − θ) d−→
n→∞

Y ∼ N(0, 1).

1. The central limit Theorem implies

l
(1)
n (θ)√

n
=
∑n

i=1
∂
∂θ log L(Xi, θ)
√

n
d−→

n→∞
Y1 ∼ N

(
0, Varθ

( ∂

∂θ
L(Xi, θ)

)
︸ ︷︷ ︸

=I(θ)

)

since ∂
∂θ log L(Xi, θ) are i.i.d. random variables with expectation 0 (cf.

Remark 1.2.20).

2.

− 1
n

l(2)
n (θ) = − 1

n

n∑
i=1

∂2

∂θ2 log L(Xi, θ)

= 1
n

n∑
i=1

(
L(1)(Xi, θ)

)2
− L(Xi, θ) · L(2)(Xi, θ)

(L(Xi, θ))2

= 1
n

n∑
i=1

(
L(1)(Xi, θ)
L(Xi, θ)

)2

− 1
n

n∑
i=1

L(2)(Xi, θ)
L(Xi, θ)

a.s.−→
n→∞

Eθ

(
L(1)(X1, θ)
L(X1, θ)

)2

− Eθ

(
L(2)(X1, θ)
L(X1, θ)

)
= I(θ)

by the law of large numbers, where

L(k)(Xi, θ) = ∂k

∂θk
L(Xi, θ)
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is the k-th derivative of the likelihood function with respect to θ, and

Eθ

(
L(2)(X1, θ)
L(X1, θ)

)
=
∫

B

∂2

∂θ2 L(x, θ) dx
5)= d2

dθ2

∫
B

L(x, θ) dx = 0 .

3. By the weak consistency of θ̂ we have θ̂
P−→

n→∞
θ. Following this it can

be shown that
l
(3)
n (θ∗)

n
(θ̂ − θ) P−→

n→∞
0 .

Note that θ̂
P−→

n→∞
θ implies that for all ε > 0

P
(
|θ̂ − θ| ≤ ε

)
−→

n→∞
1 ,

which means that |θ̂ − θ| ≤ σθ , with high probability σθ > 0, as
required in Condition 6. Thus, for all θ with |θ̂ − θ| < σθ∣∣∣∣∣ l

(3)
n (θ)

n

∣∣∣∣∣ ≤ 1
n

n∑
i=1

∣∣∣∣∣ ∂3

∂θ3 log L(Xi, θ)
∣∣∣∣∣︸ ︷︷ ︸

≤gθ(Xi)

≤ 1
n

n∑
i=1

gθ(Xi) a.s.−→
n→∞

Eθ gθ(X1)<∞.

Consequently, there exists a constant c > 0 such that

Pθ

(∣∣∣∣∣ l
(3)
n (θ∗)

n

∣∣∣∣∣ < c

)
−→

n→∞
1,

and hence

l
(3)
n (θ∗)

n
(θ̂ − θ) P−→

n→∞
0 .

1.2.4 Bayesian estimation

Let (X1, . . . , Xn) be a random sample, where Xi are i.i.d. random variables
with distribution function Fθ, θ ∈ Θ. The distribution Fθ can be either
discrete or continuous. Additionally, let θ be a realization of a random
variable θ̃ with distribution Q(·) on the measurable space (Θ,BΘ), which is
either discrete with probability mass function q(·) on absolutely continuous
with probability density function q(·). As usual, both cases will be handled
simultaneously with integration being replaced by summation in the discrete
case.
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Definition 1.2.23. The distribution Q(·) is called prior or apriori dis-
tribution of the parameter θ (of θ̃) (prior means ”prior to the experiment
(X1, . . . , Xn)”).

Definition 1.2.24. The posterior distribution of the parameter θ (of θ̃)
is given by the probability mass/density function qX1,...,Xn(θ, X1, . . . , Xn),
which is defined by{

P (θ̃ = θ |X1 = x1, . . . , Xn = xn) , if Q is discrete,
fθ̃|X1,...,Xn

(θ, x1, . . . , xn) , if Q is continuous.

Here,

P (θ̃ = θ |X1 = x1, . . . , Xn = xn) = P (θ̃ = θ, X1 = x1, . . . , Xn = xn)
P (X1 = x1, . . . , Xn = xn)

= Pθ(Xi = xi , i = 1, . . . , n) · q(θ)∑
θ1∈Θ Pθ1(Xi = xi, i = 1, . . . , n) · q(θ1)

by the Bayes formula, resp.

fθ̃|X1,...,Xn
(θ, x1, . . . , xn) =

f(θ̃,X1,...,Xn)(θ, x1, . . . , xn)
fX1,...,Xn(x1, . . . , xn)

= L(x1, . . . , xn, θ) · q(θ)∫
Θ L(x1, . . . , xn, θ1) · q(θ1) dθ1

,

where L(x1, . . . , xn, θ) is the likelihood funtion defined in (1.7).

Definition 1.2.25. A loss function V : Θ2 → R+ is a Θ2 measurable
function.

Loss functions are used as follows: Denote by E∗V (θ̃, a) the expected loss
(mean risk), which occurs from estimating θ with a, where E∗ is the expec-
tation with respect to the posterior distribution of θ̃. Note that E∗V (θ̃, a)
is a function of a and x1, . . . , xn, since the sample (x1, . . . , xn) is an explicit
part of the posteriori distribution. In particular, it holds that

E∗V (θ̃, a) = φ(x1, . . . , xn, a) .

Definition 1.2.26. An estimator θ̂ is called a Bayes estimator of θ, if

θ̂(x1, . . . , xn) = argmin
a

E∗V (θ̃, a) (1.8)

exists and is unique.

Remark 1.2.27.

1. Sometimes θ̂ /∈ Θ, which is attributable to φ(x1, . . . , xn, a) attaining
its minimum outside of Θ.
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2. The name “Bayes approach” honors the English mathematician Thomas
Bayes (1702–1761), who only introduced the idea behind the Bayes
formula given by

P (Bi|A) = P (A|Bi) · P (Bi)∑
j P (A|Bj) · P (Bj) . (1.9)

The actual discovery of (1.9) was by Pierre-Simon Laplace (1749–
1827) (end of the 18th century). The formula was explicitly used in
the derivation of the posterior distribution of θ̃.

3. The approach in Definition 1.2.26 is usually only realizable by numeric
minimization. There are only very few cases where an analytic solution
of the minimization problem stated in (1.8) can be computed.

Example 1.2.28 (Quadratic loss function). If V (θ1, θ2) = (θ1 − θ2)2, then

argmin
a

(φ(x1, . . . , xn, a)) = argmin
a

(
E∗(θ̃ − a)2

)
= argmin

a

(
E∗θ̃2 − 2aE∗θ̃ + a2

)
= E∗θ̃.

The Bayes estimator of θ̂(x1, . . . , xn) for θ is thus given by E∗θ̃.

Example 1.2.29 (Bernoulli distribution). Let (X1, . . . , Xn) be an i.i.d. ran-
dom sample of random variables Xi ∼ Bernoulli(p), p ∈ (0, 1). Furthermore
let p̃ ∼ Beta(α, β), α, β > 0 be the prior distribution, with probability mass
function

q(p) = pα−1(1− p)β−1

B(α, β) · I[0,1](p) .

The posterior distribution of p̃ is then given by

q∗(p) = fp̃|X1=x1,...,Xn=xn
(p) = Pp(X1 = x1, . . . , Xn = xn) · q(p)∫ 1

0 Pp1(X1 = x1, . . . , Xn = xn) · q(p1) dp1
.

It is always possible to calculate the posterior distribution with respect to a
function g(X1, . . . , Xn) instead of the vector (X1, . . . , Xn).
Here, Y = g(X1, . . . , Xn) = ∑n

i=1 Xi denotes the number of successful trials
within n experiments, where

Xi =
{

1 , with probability p ,

0 , else.
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Therefore,

q∗(p) = fp̃|Y =k(p) = Pp(Y = k) · q(p)∫ 1
0 Pp1(Y = k)q(p1) dp1

Y ∼Bin(n,p),=
falls p̃=p

(n
k

)
pk(1− p)n−k · (B(α, β))−1 · pα−1(1− p)β−1

(n
k)

B(α,β) ·
∫ 1

0 pk+α−1
1 (1− p1)n−k+β−1 dp1

= pk+α−1(1− p)n−k+β−1

B(k + α, n− k + β) , p ∈ [0, 1] .

holds for the posterior distribution with respect to Y . Hence, the posterior
distribution of p̃ under the condition Y = k is given by

Beta(k + α, n− k + β).

For the Bayes estimator it holds that

p̂(x1, . . . , xn) = E∗p̃ =
∫ 1

0
p · q∗(p) dp =

∫ 1
0 pk+α(1− p)n−k+β−1 dp

B(k + α, n− k + β)

= B(k + α + 1, n− k + β)
B(k + α, n− k + β)

= . . . = k + α

α + β + n

=
∑n

i=1 xi + α

α + β + n

= α + nx̄n

α + β + n
.

Interpretation:

p̂(X1, . . . , Xn) = n

α + β + n︸ ︷︷ ︸
=:c1

X̄n + α + β

α + β + n︸ ︷︷ ︸
=:c2

· α

α + β
= c1 · X̄n + c2 · Eaprθ̃ ,

where c1 +c2 = 1. This means that the Bayes method is a middle ground be-
tween the estimator Eaprθ̃ (with no information about the sample (X1, . . . , Xn))
and the estimator X̄n (with no information about the prior distribution of
p̃) for p.

1.2.5 Resampling methods for obtaining point estimators

Let (X1, . . . , Xn) be a random sample in a parametric model. The goal is
to find an estimator θ̂ for the parameter θ. In order to construct this es-
timator, resampling methods will be applied, i.e. generating a new sample
(X∗

1 , . . . , X∗
n) by randomly drawing from the old random sample (X1, . . . , Xn)

independently with replacement. After resampling the sample mean, sample
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variance and other estimators with respect to the new sample can be com-
puted. In this case the dimension m of the parameter space Θ is arbitrary.

The following resampling methods are introduced:

1. Jackknife, which is supposed to imply its handiness in every situation

2. Bootstrap, which is supposed to imply its self-sufficiency

1. Jackknife methods for estimating the variance or the bias of estimators
As an introductory example, consider θ = EX = µ or θ = Var X = σ2

and the respective (unbiased) estimators µ̂ = X̄n or σ̂2 = S2
n.

It is already known that

Var µ̂ = σ2

n
, Var σ̂2 = 1

n

(
µ′

4 −
n− 3
n− 1σ4

)
.

Now an estimator of the variance of µ̂ resp. σ̂2 is desired. In order to
do so, the plug-in methods are useful:

V̂ar µ̂ = S2
n

n
, V̂ar σ̂2 = 1

n

(
µ̂′

4 −
n− 3
n− 1S4

n

)
,

where µ̂′
4 is the fourth centered empirical moment.

In general there are no explicit formulas for Var θ̂ known. That is
where the jackknife method comes into play.

• Let X[i] be the random sample given by (X1, . . . , Xi−1, Xi+1, . . . , Xn) ,
i = 1, . . . , n. Let

θ̂(X1, . . . , Xn) = φn(X1, . . . , Xn) ,

and set

θ̂[i] = φn−1(X[i]) , θ̄[·] = 1
n

n∑
i=1

θ̂[i]

V̂arjn(θ̂) def.= n− 1
n

n∑
i=1

(
θ̂[i] − θ̄[·]

)2
.

Definition 1.2.30. The estimator θ̄[·] resp. V̂arjn(θ̂) is called
a jackknife estimator for the expectation resp. variance of the
estimator θ̂ of θ.
Example 1.2.31. Let θ = µ , θ̂ = µ̂ = X̄n. Then

φn(x1, . . . , xn) = 1
n

n∑
i=1

xi ,
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which implies that

θ̂[i] = 1
n− 1

∑
j /=i

Xj = 1
n− 1

−Xi +
n∑

j=1
Xj


= n

n− 1X̄n −
1

n− 1Xi , ∀i = 1, . . . , n ,

θ̄[·] = 1
n

n∑
i=1

θ̂[i] = n

n− 1X̄n −
1

n(n− 1)

n∑
i=1

Xi

= n · X̄n

n− 1 −
X̄n

n− 1 = n− 1
n− 1X̄n = X̄n .

Thus, a jackknife estimator for µ is equal to X̄n.
Construction of a jackknife estimator for the variance:

V̂arjn(θ̂) = n− 1
n

n∑
i=1

(
n

n− 1X̄n −
1

n− 1Xi − X̄n

)2

= n− 1
n

n∑
i=1

( 1
n− 1(X̄n −Xi)

)2

= n− 1
n(n− 1)2

n∑
i=1

(Xi − X̄n)2,

= 1
n

S2
n ,

which is exactly the plug-in estimator for the variance of µ̂.

• jackknife for the bias of an estimator
Let θ̂(X1, . . . , Xn) be an estimator for θ. The bias of θ̂ given by
Eθθ̂ − θ = Bias(θ̂).
Definition 1.2.32. A jackknife estimator of the bias of θ̂ is given
by

B̂iasjn(θ̂) = (n− 1)(θ̄[·] − θ̂).

The following examples show that the procedure above leads to
a decreasing bias: The estimator

θ̃ = θ̂ − B̂iasjn(θ̂) = nθ̂ − (n− 1)θ̄[·] (1.10)

generally has a smaller bias than θ̂. Here

θ̂[i] = φn−1(X[i]) and θ̄[·] = 1
n

n∑
i=1

θ̂[i]

with
θ̂(X1, . . . , Xn) = φn(X1, . . . , Xn) .
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Example 1.2.33.
(a) Let θ = EXi = µ. Then θ̂ = X̄n is an unbiased estimator

for µ. Now the question for the corrected bias estimator µ̃
arises? (It is not supposed to be any worse!)
It holds that θ̄[·] = X̄n thus, the bias estimator of jackknife
B̂iasjn(θ̂) = (n−1)(X̄n− X̄n) = 0, and therefore θ̃ = θ̂−0 =
X̄n. Hence, the jackknife method does not (at least in this
example) add additional bias.

(b) θ = σ2 = VarXi, θ̂ = σ̂2 = 1
n

∑n
i=1(Xi − X̄n)2 is a biased

moment estimator of the variance. The question of how θ̃
looks like arises.
Exercise 1.2.34. Show that the bias corrected estimator θ̃
is an unbiased estimator of the variance:

θ̃ = S2
n = 1

n− 1

n∑
i=1

(Xi − X̄n)2 = n

n− 1 σ̂2

It follows that the bias of σ̂2 is completely removed by ap-
plying the jackknife method.
Idea of the proof: Show that

B̂iasjn(θ̂) = − 1
n(n− 1)

n∑
i=1

(Xi − X̄n)2 .

Remark 1.2.35. The examples 1.2.33 a), b), which provided a
jackknife estimator in analytic form are rather an exception. In
most cases, the reduction of the bias is achieved by using Monte-
Carlo methods on the basis of (1.10).

2. Bootstrap estimator
The bootstrap method draws a new random sample (X∗

1 , . . . , X∗
n) from

an approximate distribution F̂ of the random sample variables Xi,
i = 1, . . . , n. Let E∗ and Var∗ be the expectation and variance with
respect to the distribution P∗ of (X∗

1 , . . . , X∗
n). There are two possi-

bilities for the construction of F̂ :

i) F̂ (x) = F̂n(x), which is the empirical distribution of Xi, if Xi are
i.i.d.

ii) F̂ , which is a parametric estimator of the parametric distribution
F , of Xi. That means, if Xi ∼ Fθ , i = 1, . . . , n for a θ ∈ Θ
and θ̂ = θ̂(X1, . . . , Xn) an estimator for θ, then F̂ = Fθ̂ (plug-in
method).

Definition 1.2.36. A bootstrap estimator for the expectation (resp.
bias or variance) of the estimator θ̂(X1, . . . , Xn) is given by
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(a) Êboot(θ̂) = E∗θ̂(X∗
1 , . . . , X∗

n).
(b) B̂iasboot(θ̂) = Êbootθ̂ − θ̂.
(c) V̂arboot(θ̂) = Var∗(θ̂(X∗

1 , . . . , X∗
n)).

Example 1.2.37. Let θ = µ = EXi and F̂ = F̂n be the empirical
distribution function. How is a random sample X∗

1 , . . . , X∗
n with

X∗
i ∼ F̂n generated?

The empirical distribution function F̂n weighs every observation xi of
the original sample with a weight 1/n. As a consequence, it is sufficient
to select one of the entries in (x1, . . . , xn) (with probability 1/n, urn
model “drawing with replacement”), in order to generate X∗

j ,
j = 1, . . . , n.
Bootstrap estimator for the expectation µ̂ = X̄n:

Êbootµ̂ = E∗

(
1
n

n∑
i=1

X∗
i

)
X∗

i i.i.d.
= 1

n
· nE∗(X∗

1 )

=
∫

x dF̂n(x) = 1
n

n∑
i=1

Xi = X̄n .

It follows that B̂iasbootµ̂ = 0. Moreover,

V̂arboot(µ̂) = Var∗

(
1
n

n∑
i=1

X∗
i

)
X∗

i u.i.v.
= 1

n2 · n ·Var∗(X∗
1 )

= 1
n
· 1

n

n∑
i=1

(Xi − X̄n)2 = σ̂2

n
,

is a plug-in estimator for VarX̄n = σ2/n.

Monte-Carlo methods for constructing bootstrap estimators numeri-
cally:
What can be done, if there is no explicit expression of V̂arBoot(θ̂)
(which is usually the case in statistics)?
Generate M independent random samples (X∗

i1, . . . , X∗
in), i = 1, . . . , M

under i) or ii) by using Monte-Carlo simulation. Then,

θ̂i = θ̂(X∗
i1, . . . , X∗

in) , i = 1, . . . , M and set Êbootθ̂ ≈
1

M

M∑
i=1

θ̂i .

Similarily a bootstrap estimator for Bias θ̂ and Var θ̂ is obtained:

B̂iasbootθ̂ ≈ Êbootθ̂ − θ̂ , V̂arbootθ̂ ≈
1

M − 1

M∑
i=1

(
θ̂i − Êbootθ̂

)2
.
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Furthermore, the distribution function of X∗
ij can be determined by

the empirical distribution function, i.e.

F̂boot(x) = 1
M

M∑
i=1

1
n

n∑
j=1

I(X∗
ij ≤ x) , x ∈ R .

Using the methods above the Bootstrap confidence intervals for θ̂ can
be constructed:
The quantiles F̂ −1

θ̂
(α1) and F̂ −1

θ̂
(1−α2) of the distribution of θ̂(X∗

1 , . . . , X∗
n)

originating from the sample (θ̂1, . . . , θ̂M ) can be estimated empirically.
Then

P
(
F̂ −1

θ̂
(α1) ≤ θ̂(X∗

1 , . . . , X∗
n) ≤ F̂ −1

θ̂
(1− α2)

)
≈ 1− α1 − α2 = 1− α ,

where α = α1 + α2 is sufficiently small. Note that it is desired that
X∗

i are similarily distributed as the Xi, and hence

P
(
F̂ −1

θ̂
(α1) ≤ θ̂(X1, . . . , Xn) ≤ F̂ −1

θ̂
(1− α2)

)
≈ 1− α

holds.

1.3 Further quality properties of point estimators

1.3.1 Cramér-Rao inequality

Let (X1, . . . , Xn) be a random sample of i.i.d. random variables Xi with
distribution function Fθ, θ ∈ Θ ⊂ R , i.e. , m = 1. Let θ̂(X1, . . . , Xn) be an
estimator for θ. If θ̂ is unbiased, then the quality of another unbiased estima-
tor θ̃ of θ is determined by the its variance. That means, if Varθ θ̃ < Varθ θ̂
then θ̃ is in a sense better. This section strives to answer the question,
whether it is always possible to find a newer, better estimator θ̃ with de-
creasing variance. Under certain conditions this is not possible. The lower
bound for Varθ θ̂ is given by the Cramér-Rao Theorem.
Let L(x, θ) be the likelihood function of Xi, i.e.

L(x, θ) =
{

Pθ(x) , in the discrete case ,

fθ(x) , in the absolutely continuous case,

and L(x1, . . . , xn, θ) = ∏n
i=1 L(xi, θ) the likelihood function of the whole

random sample (X1, . . . , Xn). The conditions 1) to 5) for the asymptotically
normal distribution on page 24 hold, where 5) holds for k = 1.

Theorem 1.3.1 (Inequality of Cramér-Rao). Let θ̂(X1, . . . , Xn) be an es-
timator for θ with the following properties:
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1. Eθθ̂2(X1, . . . , Xn) <∞ ∀ θ ∈ Θ.

2. For all θ ∈ Θ exists d
dθ Eθθ̂(X1, . . . , Xn), given by{∫

Rn θ̂(x1, . . . , xn) ∂
∂θ L(x1, . . . , xn, θ)dx1 . . . dxn, in the abs. cont. case ,∑

x1,...,xn
θ̂(x1, . . . , xn) ∂

∂θ L(x1, . . . , xn, θ), in the discrete case

Then, a lower bound for the variance of θ̂ is attained, i.e.

Varθ θ̂(X1, . . . , Xn) ≥

(
d
dθ Eθ θ̂(X1, . . . , Xn)

)2

n · I(θ) , θ ∈ Θ ,

where I(θ) is the Fisher information defined in (1.5).
Proof Let

φθ(x1, . . . , xn) = ∂

∂θ
log L(x1, . . . , xn, θ).

In Remark 1.2.20 it has been shown that
Eθφθ(X1, . . . , Xn) = 0 , Varθ φθ(X1, . . . , Xn) = n · I(θ) .

Applying the Cauchy-Schwartz inequality to
Cov θ(φθ(X1, . . . , Xn), θ̂(X1, . . . , Xn))

yields

Cov θ

(
φθ(X1, . . . , Xn), θ̂(X1, . . . , Xn)

)
= Eθ

(
φθ(X1, . . . , Xn) · θ̂(X1, . . . , Xn)

)
− 0

≤
√

Varθ φθ(X1, . . . , Xn)
√

Varθ θ̂(X1, . . . , Xn)
Thus,

Varθ θ̂(X1, . . . , Xn) ≥

( =:A︷ ︸︸ ︷
Eθ

(
φθ(X1, . . . , Xn) · θ̂(X1, . . . , Xn)

) )2

Varθ φθ(X1, . . . , Xn) = A2

n · I(θ) .

Now it suffices to show

A = d

dθ
Eθ θ̂(X1, . . . , Xn) .

Only the absolutely continuous case will be shown (in the discrete case,
replace the integrals with sums):

A =
∫

∂

∂θ
log L(x1, . . . , xn, θ) · θ̂(x1, . . . , xn) · L(x1, . . . , xn, θ) dx1 . . . dxn

=
∫

∂

∂θ
L(x1, . . . , xn, θ) · θ̂(x1, . . . , xn) dx1 . . . dxn

Cond. 2)= d

dθ
Eθ θ̂(X1, . . . , Xn) .
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Corollary 1.3.2. If θ̂ is an unbiased estimator for θ and the conditions of
Theorem 1.3.1 are fulfilled, then

V arθ θ̂(X1, . . . , Xn) ≥ 1
n · I(θ) .

Proof Apply the Cramér-Rao inequality with
d

dθ

(
Eθ θ̂(X1, . . . , Xn)

)
= d

dθ
θ = 1.

The following examples will show, that the estimator X̄n of the expectation
µ has the smallest variance within the class of all estimators µ which fulfill
the conditions of Theorem 1.3.1. Hence, the sample mean X̄n is the best
unbiased estimator in this class for at least two families of distributions:

• Normal distribution and

• Poisson distribution.

Example 1.3.3.

1. Let Xi ∼ N(µ, σ2) and µ̂ = X̄n be an estimator for µ. Here, µ̂ is
unbiased with Varµ̂ = σ2/n. In the following it will be shown that the
Cramér-Rao boundary for the variance of an unbiased estimator θ̂ for
µ is also given by σ2/n. In an initial step, the conditions of Theorem
1.3.1 will be validated. In order to show that

0 = d

dµ

∫
R

L(x, µ) dx =
∫
R

∂

∂µ
L(x, µ) dx

with

L(x, µ) = 1√
2πσ

e− 1
2 ( x−µ

σ )2

consider
∂

∂µ
L(x, µ) = 2(x− µ)

2σ2 · 1√
2πσ

e− 1
2 ( x−µ

σ )2
= x− µ

σ2 · L(x, µ) ,∫
R

∂

∂µ
L(x, µ) dx = E

(
X − µ

σ2

)
= 0 .

For condition 2) in Theorem 1.3.1 it holds that
d

dµ
EX̄n = d

dµ
(µ) = 1

?= 1
n

∫
Rn

(x1 + . . . + xn) ∂

∂µ

(
n∏

i=1

1√
2πσ

e− 1
2

(
xi−µ

σ

)2
)

dx1 . . . dxn .

Induction with repsect to n:
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• Initial step n = 1:∫
R

x
∂

∂µ
L(x, µ) dx =

∫
R

x(x− µ)
σ2 L(x, µ) dx

= 1
σ2

(
Eµ X2 − µ2

)
= Varµ X

σ2 = 1 .

• Induction hypothesis: For n it holds that∫
Rn

(x1 + . . . + xn) · ∂

∂µ
L(x1, . . . , xn, µ) dx1 . . . dxn = n .

• Induction step n→ n + 1:

A =
∫
Rn+1

(x1 + . . . + xn+1) ∂

∂µ
L(x1, . . . , xn+1, µ)︸ ︷︷ ︸

=L(x1,...,xn,µ)·L(xn+1,µ)

dx1 . . . dxn+1

?= n + 1 .

For A it holds that

A =
∫
Rn+1

(x1 + . . . + xn) ·
(

∂

∂µ
L(x1, . . . , xn, µ) · L(xn+1, µ)

+ L(x1, . . . , xn, µ) · ∂

∂µ
L(xn+1, µ)

)
dx1 . . . dxndxn+1

+
∫
Rn+1

xn+1

(
∂

∂µ
L(x1, . . . , xn, µ) · L(xn+1, µ)

+ L(x1, . . . , xn, µ) · ∂

∂µ
L(xn+1, µ)

)
dx1 . . . dxndxn+1
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= n ·
∫
R

L(xn+1, µ) dxn+1︸ ︷︷ ︸
=1

+
∫
Rn

(x1 + . . . + xn) · L(x1, . . . , xn, µ) dx1 . . . dxn

·
∫

∂

∂µ
L(xn+1, µ) dxn+1︸ ︷︷ ︸

=0

+
∫
R

xn+1L(xn+1, µ) dxn+1

·
∫
Rn

∂

∂µ
L(x1, . . . , xn, µ) dx1 . . . dxn︸ ︷︷ ︸

=0

+
∫
R

xn+1
∂

∂µ
L(xn+1, µ) dxn+1︸ ︷︷ ︸

= d
dµ

EµX= d
dµ

µ=1

·
∫
Rn

L(x1, . . . , xn, µ) dx1 . . . dxn︸ ︷︷ ︸
=1

= n + 1 .

Since all conditions are fulfilled, the bound can be computed by
1

n · I(µ)
with

I(µ) = Eµ

(
∂

∂µ
log L(X, µ)

)2
.

Example 1.2.21 implies that

I(µ) = 1
σ2 =⇒ n · I(µ) = n

σ2 .

In summary:

Varµ θ̂ ≥ 1
n
σ2

= σ2

n
= Varµ X̄n

holds for an arbitrary estimator θ̂ for µ, which fulfills the conditions
of Theorem 1.3.1.

2. The second example will be an exercise.

Exercise 1.3.4. Let Xi ∼ Poisson(λ) , i = 1, . . . , n. Show that the
Cramér-Rao bound given by

1
n · I(λ) = λ

n
= Varλ X̄n,

which means that X̄n is also the best unbiased estimator fulfilling the
conditions of Theorem 1.3.1.
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The following example will show that it is possible to construct an estimator
with a smaller variance than the one provided by the Cramér-Rao bound, if
the conditions of Theorem 1.3.1 are not fulfilled.

Example 1.3.5. Let Xi ∼ U [0, θ], θ > 0. Then the condition
“supp fθ(x) = [0, θ] independent of θ” is not met. Additionally

0 /=
∫
R

∂

∂θ
L(x, θ) dx =

∫ θ

0

(1
θ

)′
dx = − 1

θ2 · θ = −1
θ

holds. Let θ̂ be an unbiased estimator of θ, then Cramér-Rao would imply
that Varθ θ̂ ≥ (n · I(θ))−1, where

I(θ) = E
(

∂

∂θ
log L(X, θ)

)2
=
∫ θ

0

1
θ

(
∂

∂θ
log

(1
θ

))2
dx

= 1
θ

∫ θ

0
dx ·

(
−1

θ

)2
= 1

θ2 .

Thus
Varθ θ̂ ≥ θ2

n

would hold. Consider

θ̂(X1, . . . , Xn) = n + 1
n

max{X1, . . . , Xn} = n + 1
n

X(n) .

In order to show that

Eθ θ̂(X1, . . . , Xn) = θ and Varθ θ̂(X1, . . . , Xn) <
θ2

n
,

compute the k-th moments EθXk
(n), k ∈ N.

It holds that

FX(n)(x) = F n
Xi

(x) =


xn

θn , x ∈ [0, θ] ,

1 , x ≥ θ ,

0 , x < 0 ,

fX(n)(x) = F ′
X(n)

(x) = nxn−1

θn
· I(x ∈ [0, θ]) ,

EθXk
(n) =

∫ θ

0
xk nxn−1

θn
dx = n

θn

∫ θ

0
xn+k−1 dx = n · θn+k

θn · (n + k) = nθk

n + k
.

Thus,

Eθ θ̂ = n + 1
n
· EθX(n) = n + 1

n
· nθ

n + 1 = θ ,
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which means that θ̂ is unbiased. Furthermore,

Varθ θ̂ =
(

n + 1
n

)2
·Varθ X(n) =

(
n + 1

n

)2
·
(

nθ2

n + 2 −
n2θ2

(n + 1)2

)

= (n + 1)2

n2 · n(n + 1)2 − n2(n + 2)
(n + 2)(n + 1)2 · θ2

= θ2

n(n + 2)(n2 + 2n + 1− n2 − 2n) = θ2

n(n + 2) .

Ultimately, it follows that

Varθ θ̂ = θ2

n(n + 2) <
θ2

n
.

1.3.2 Sufficiency

Let (X1, . . . , Xn) be a random sample of i.i.d. random variables Xi with
distribution function Fθ , θ ∈ Θ ⊆ Rm. If the whole information
{X1 = x1, . . . , Xn = xn} passes to the estimator θ̂(X1, . . . , Xn) of θ, then
the function

θ̂ : Rn → Rm , m≪ n4

causes a loss of information, since (X1, . . . , Xn) can (usually) not be recon-
structed from θ̂(X1, . . . , Xn). The class of so-called sufficient estimators
minimize the loss of information in a stochastic sense:

Definition 1.3.6.

1. Let the random variables X1, . . . , Xn and θ̂(X1, . . . , Xn) be discrete.
An estimator θ̂ of the parameter θ is called sufficient, if

Pθ

(
X1 = x1, . . . , Xn = xn

∣∣ θ̂(X1, . . . , Xn) = t
)

does not depend on θ, as long as x1, . . . , xn and t are in the support
of (X1, . . . , Xn) resp. θ̂(X1, . . . , Xn).

2. Let X1, . . . , Xn and θ̂(X1, . . . , Xn) be absolutely continuous. Then,
the estimator θ̂ is called sufficient for θ, if the probability

P
(
(X1, . . . , Xn) ∈ B

∣∣ θ̂(X1, . . . , Xn) = t
)

does not depend on θ ∈ Θ for arbitrary B ∈ BRn and t ∈ supp fθ̂ ,
where fθ̂ is the probability density function of θ̂.

Remark 1.3.7.
4in classical statistics
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1. In Definition 1.3.6, 2. it holds that

P
(
θ̂(X1, . . . , Xn) = t

)
= 0, ∀t,

because of the absolute continuity of θ̂. Therefore, the conditional
probability (in contrary to Definition 1.3.6, 1.) is not understood
in the classical sense, but as a conditional expectation. Conditional
expectations were introduced in the lecture “Probability Theory and
Stochastic Processes” (Section 1.1.4).

2. Consider the likelihood function

Lθ̂(x1, . . . , xn, θ) = Pθ

(
X1 = x1, . . . , Xn = xn

∣∣ θ̂(X1, . . . , Xn) = t
)

for discrete X1, . . . , Xn. Definition 1.3.6 implies that a new estima-
tor for θ cannot be obtained from this conditional likelihood function
Lθ(x1, . . . , xn, θ), since it does not depend on θ. That means, the esti-
mator θ̂ already provides all the information about θ obtainable from
(x1, . . . , xn).

3. Let g : Rm → Rm be a bijective Borel measurable function and
θ̂(X1, . . . , Xn) a sufficient estimator of θ ∈ Θ ⊂ Rm. Then g(θ̂(X1, . . . , Xn))
is also a sufficient estimator for θ. This is due to the fact that{

ω ∈ Ω : g
(
θ̂(X1, . . . , Xn)

)
=t
}

=
{

ω ∈ Ω : θ̂(X1, . . . , Xn)=g−1(t)
}

,

for all t ∈ Rm.

Lemma 1.3.8. Assume that the random variables X1, . . . , Xn and θ̂(X1, . . . , Xn)
are either all discrete or absolutely continuous with likelihood functions

L(x1, . . . , xn, θ) =
{

Pθ(X1 = x1, . . . , Xn = xn) , in the discrete case,
fX1,...,Xn(x1, . . . , xn, θ) , in the abs. cont. case,

Lθ̂(t, θ) =
{

Pθ(θ̂(X1, . . . , Xn) = t) , in the discrete case,
fθ̂(t, θ) , in the abs. cont, case.

Denote the support of L by

supp L = {(x1, . . . , xn) ∈ Rn : L(x1, . . . , xn, θ) > 0} .

Then, the estimator θ̂ is sufficient with respect to θ if and only if the ratio

L(x1, . . . , xn, θ)
Lθ̂(θ̂(x1, . . . , xn), θ)

(1.11)

does not depend on θ for all (x1, . . . , xn) ∈ supp L such that
θ̂(x1, . . . , xn) ∈ supp Lθ̂ .
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Proof Only the discrete case will be shown in the following.

“=⇒”
Let θ̂ be sufficient for θ. Then, it has to be verified that (1.11) does
not depend on θ for all (x1, . . . , xn) ∈ R, t ∈ R and θ ∈ Θ, such that
(x1, . . . , xn) ∈ suppL. It holds that:

Pθ(X1 = x1, . . . , Xn = xn | θ̂(X1, . . . , Xn) = t)

= Pθ(X1 = x1, . . . , Xn = xn, θ̂(X1, . . . , Xn) = t)
Pθ(θ̂(X1, . . . , Xn) = t)

=

0 , if θ̂(x1, . . . , xn) /= t
Pθ(X1=x1,...,Xn=xn)

Pθ(θ̂(X1,...,Xn)=θ̂(x1,...,xn)) , if θ̂(x1, . . . , xn) = t .

Thus (1.11) does not depend on θ.

“⇐=”
Can be done in the same spirit as the previous argument (backwards).

Example 1.3.9.

1. Bernoulli distribution: Let Xi ∼ Bernoulli(p), p ∈ [0, 1], i = 1, . . . , n,
p̂ = X̄n be an unbiased estimator for p. In the following, it will be
shown that p̂ is sufficient. It holds that

p̂ = X̄n = 1
n

n∑
i=1

Xi = 1
n

Y ,

where Y ∼ Bin(n, p). By Remark 1.3.7 3. it is sufficient to show, that
Y is a sufficient estimator for p. For xi ∈ {0, 1} i = 1, . . . , n compute

P (X1 =x1, . . . , Xn =xn)=
n∏

i=1
pxi(1−p)1−xi =p

∑n

i=1 xi(1−p)n−
∑n

i=1 xi .

Define the likelihood function LY by

LY (y, p) =
(

n

y

)
py(1− p)n−y , y = 0, . . . , n .

Replacing y with the sum ∑n
i=1 xi yields

L(x1, . . . , xn, p)
LY (∑n

i=1 xi, p) = p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi( n∑n

i=1 xi

)
p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi
= 1( n∑n

i=1 xi

) .

The term above obviously does not depend on p, thus Lemma 1.3.8
implies, that Y and therefore also p̂ are sufficient.
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2. Normal distribution with known variance: Let Xi ∼ N(µ, σ2),
i = 1, . . . , n, with known σ2. Then, µ̂ = X̄n is an unbiased estimator
for µ. In the following it will be shown, that µ̂ is sufficient: Considering

L(x1, . . . , xn, µ) =
n∏

i=1

1√
2πσ

exp
(
−1

2

(
xi − µ

σ

)2
)

= 1
(2πσ2)n/2

· exp
(
−
∑n

i=1(xi − µ)2

2σ2

)

and [33, Lemma 6.4.5] imply

= 1
(2πσ2)n/2

· exp
(
−
∑n

i=1(xi − x̄n)2 + n(x̄n − µ)2

2σ2

)
.

Furthermore, note that µ̂ ∼ N(µ, σ2/n), hence

Lµ̂(x, µ) =
√

n√
2πσ

· exp
(
−n

2

(
x− µ

σ

)2
)

,

L(x1, . . . , xn, µ)
Lµ̂(x̄n, µ) =

1
(2πσ2)n/2 · exp

(
−
∑n

i=1(xi−x̄n)2+n(x̄n−µ)2

2σ2

)
√

n√
2πσ
· exp

(
−n(x̄n−µ)2

2σ2

)
= 1√

n(2πσ2)n/2−1 · exp
(
− 1

2σ2

n∑
i=1

(xi − x̄n)
)

,

which is independent of µ. Lemma 1.3.8 implies that µ̂ = X̄n is an
sufficient estimator for µ.

The Neyman-Fisher factorization theorem, which will be introduced below,
implies that the estimator (X̄n, S2

n) for (µ, σ2) with unknown variance is
sufficient.

Theorem 1.3.10 (Neyman-Fisher Factorization Theorem). Under the con-
ditions of Lemma 1.3.8 it holds that θ̂(X1, . . . , Xn) is a sufficient estimator
for θ if and only if there exist two measurable functions g : Rm×Θ→ R and
h : Rn → R, such that the following factorization of the likelihood function
L(x1, . . . , xn, θ) of the random sample (X1, . . . , Xn) holds:

L(x1, . . . , xn, θ) = g
(
θ̂(x1, . . . , xn), θ

)
· h(x1, . . . , xn)

for (x1, . . . , xn) ∈ supp L , θ ∈ Θ.

Proof Only the discrete case will be shown.
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1. If θ̂ is sufficient, then Lemma 1.3.8 implies that

L(x1, . . . , xn, θ)
Lθ̂(θ̂(x1, . . . , xn), θ)︸ ︷︷ ︸

=g(θ̂(x1,...,xn),θ)

= h(x1, . . . , xn)

does not depend on θ. Thus, the factorization of Neyman-Fisher holds.

2. Let L(x1, . . . , xn, θ) = g(θ̂(x1, . . . , xn), θ) · h(x1, . . . , xn) for all
(x1, . . . , xn) ∈ supp L, θ ∈ Θ. Furthermore, define

C = {(y1, . . . , yn) ∈ Rn : θ̂(y1, . . . , yn) = θ̂(x1, . . . , xn)}

= θ̂−1
(
θ̂ (x1, . . . , xn)

)
,

then

Pθ(X1 = x1, . . . , Xn = xn)
Lθ(θ̂(x1, . . . , xn), θ)︸ ︷︷ ︸

=Pθ(θ̂(X1,...,Xn)=θ̂(x1,...,xn))

= g(θ̂(x1, . . . , xn), θ) · h(x1, . . . , xn)∑
(y1,...,yn)∈C Pθ(X1 = y1, . . . , Xn = yn)

= g(θ̂(x1, . . . , xn), θ) · h(x1, . . . , xn)∑
(y1,...,yn)∈C g(θ̂(y1, . . . , yn)︸ ︷︷ ︸

=θ̂(x1,...,xn)

, θ) · h(y1, . . . , yn)

= h(x1, . . . , xn)∑
(y1,...,yn)∈C h(y1, . . . , yn) ,

does not depend on θ. Thus, θ̂ is sufficient by Lemma 1.3.8.

Example 1.3.11.

1. Poisson distribution: Let Xi ∼ Poisson(λ) , λ > 0, λ̂ = X̄n be an
unbiased estimator for λ. In the following it will be shown that λ̂ is
sufficient. For xi ∈ {0, 1, 2, . . .}, i = 1, . . . , n it holds that

L(x1, . . . , xn, λ) =
n∏

i=1
e−λ λxi

xi!
= e−λn · λ

∑n

i=1 xi

x1! · . . . · xn! = e−nλλnx̄n

x1! · . . . · xn! ,

= g(x̄n, λ) · h(x1, . . . , xn) ,

where g(x̄n, λ) = e−nλ · λnx̄n , h(x1, . . . , xn) = 1
x1!·...·xn! .

Thus, λ̂ = X̄n is sufficient by Theorem 1.3.10.
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2. Exponential distribution Let Xi ∼ Exp(λ), λ > 0, λ̂ = X̄−1
n be a

moment estimator for λ, which is not unbiased but strongly consistent,
since the strong law of large numbers implies that
X̄n

a.s.−→
n→∞

EXi = 1
λ . In the following it will be shown, that λ̂ is sufficient.

For x1 ≥ 0, . . . , xn ≥ 0 it holds that

L(x1, . . . , xn, λ) =
n∏

i=1
λe−λxi = λne−λ

∑n

i=1 xi = λne−λnx̄n

= λne
− λn

λ̂ = g
(
λ̂, λ

)
· h(x1, . . . , xn)︸ ︷︷ ︸

=1

,

where g(λ̂, λ) = λne
− λn

λ̂ and h(x1, . . . , xn) ≡ 1. Thus, λ̂ is sufficient
by Theorem 1.3.10.

Exercise 1.3.12. Using Theorem 1.3.10 show that the estimator (X̄n, S2
n)

is sufficient for (µ, σ2) if the random sample (X1, . . . , Xn) is i.i.d. with
distribution Xi ∼ N(µ, σ2) for all i.

Remark 1.3.13. An advantage of the Neyman-Fisher Theorem is, that if
one wants to determine whether an estimator θ̂ is sufficient, the likelihood
function of θ̂ does not need to be known explicitly. This is particularly
important if the estimator θ̂ is rather complicated and the likelihood function
cannot be computed.

1.3.3 Completeness

Definition 1.3.14. An estimator θ̂(X1, . . . , Xn) of the parameter
θ ∈ Θ ⊂ Rm is called complete, if for an arbitrary measurable function
g : Rm → R with Eθg(θ̂(X1, . . . , Xn)) = 0 , θ ∈ Θ it holds that

g
(
θ̂ (X1, . . . , Xn)

)
≡ 0 . Pθ − a.s. for all θ ∈ Θ.

Remark 1.3.15.

1. Let g1, g2 : Rm → R be functions with

Eθ

∣∣∣gi

(
θ̂ (X1, . . . , Xn)

)∣∣∣ <∞

∀θ ∈ Θ and

Eθg1
(
θ̂ (X1, . . . , Xn)

)
= Eθg2

(
θ̂ (X1, . . . , Xn)

)
,

where θ̂ is complete. Definition 1.3.14 then implies

g1
(
θ̂ (X1, . . . , Xn)

)
= g2

(
θ̂(X1, . . . , Xn)

)
, a.s.
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(Take g = g1 − g2).
Conclusion: The completeness as characteristic allows a comparison
between the estimators g1(θ̂) and g2(θ̂) with respect to their almost
surely equality.

2. If θ̂ is a complete estimator for θ, then g(θ̂) is also a complete estimator
for θ for an arbitrary measurable function g : Rm → Rm.

Example 1.3.16.

1. Bernoulli distribution: Let Xi ∼ Bernoulli(p), p ∈ [0, 1]. In order
to show that p̂ = X̄n is complete, let g be an arbitrary real valued
function. It is sufficient to show that Y = ∑n

i=1 Xi is complete. It
holds that Y ∼ Bin(n, p), which implies that

Epg(Y ) =
n∑

k=0
g(k)

(
n

k

)
pk(1− p)n−k .

Furthermore, Epg(Y ) = 0 if and only if

n∑
k=0

g(k)
(

n

k

)(
p

1− p︸ ︷︷ ︸
=t

)k

= pn(t) = 0

for p ∈ (0, 1), so t ∈ (0,∞). The polynomial pn(t) is of degree n, hence

g(k)
(

n

k

)
= 0 for all k

=⇒ g(k) = 0, k = 0, . . . , n

=⇒ g(Y ) = 0 Pp-a.s..

Therefore, Y is complete and p̂ = X̄n as well.

2. Uniform distribution: Let Xi ∼ U [0, θ] , i = 1, . . . , n. It has already
been shown that the estimator θ̂(X1, . . . , Xn) = n+1

n X(n) is unbiased.
In order to show its completeness, it is sufficient to show that
X(n) = maxi=1,...,n Xi is complete, i.e. all measurable functions g :
R→ R with Eθg(X(n)) = 0 need to fulfill g(X(n)) = 0 almost surely.

The probability density function of X(n) is given by fX(n)(x) = nxn−1

θn ·
I[0,θ](x) by Example 1.3.5. Hence, we can compute

0 = d

dθ
Eθg(X(n)) = d

dθ

∫ θ

0
g(x)fX(n)(x) dx = d

dθ

1
θn

∫ θ

0
nxn−1g(x) dx

= −n
1

θn+1

∫ θ

0
g(x)nxn−1 dx + 1

θn
nθn−1g(θ) = −n

θ
Eθg(X(n))︸ ︷︷ ︸

=0

+n

θ
g(θ)

= n

θ
g(θ) = 0 for all θ > 0 =⇒ g(x) = 0 , x > 0.
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It follows that g(X(n)) = 0 holds almost surely.

1.3.4 Best unbiased estimator

Following [33, Definition 7.2.9.] note that for a random sample (X1, . . . , Xn)
with i.i.d. random variables Xi ∼ Fθ, θ ∈ Θ ⊂ R (m = 1), the estimator
θ̂(X1, . . . , Xn) is called best unbiased estimator, if

Eθθ̂2(X1, . . . , Xn) <∞ Eθθ̂(X1, . . . , Xn) = θ, θ ∈ Θ, and

the estimator θ̂ has the smallest variance among all unbiased estimators.

Lemma 1.3.17 (Uniqueness of the best unbiased estimator). If θ̂ is a best
unbiased estimator for θ, then it is unique.

Proof Let θ̂ = θ̂(X1, . . . , Xn) be a best unbiased estimator for θ and θ̃
another best unbiased estimator for θ. In the following it will be shown that
both estimators coincide, i.e. θ̂ = θ̃.
Ex adverso: Assume, that θ̂ /= θ̃ and consider θ∗ = 1/2(θ̂ + θ̃). Obviously θ∗

is unbiased and its variance is given by

Varθθ∗ = 1
4Varθ(θ̂ + θ̃) = 1

4Varθθ̂ + 1
4Varθθ̃ + 1

2Cov θ(θ̂, θ̃) .

The Cauchy-Schwartz inequality implies |Cov θ(θ̂, θ̃)| ≤
√

Varθθ̂ ·Varθθ̃ =
Varθθ̂ and therefore

Varθθ∗ ≤ 1
2Varθθ̂ + 1

2Varθθ̂ = Varθθ̂ .

Since θ̂ is a best unbiased estimator, it follows Varθθ∗ = Varθθ̂, and conse-
quently ϱ(θ̂, θ̃) = 1 implies that θ̂ and θ̃ are linearly dependent, i.e. there
exist some constants a and b, such that θ̂ = aθ̃ + b. It holds that a = 1 since
Varθθ̂ = a2Varθ̃ = Varθθ̂. Moreover, b = 0, because θ̂ and θ̃ are unbiased:
θ = Eθθ̂ = Eθθ̃+b = θ+b. Ultimately, θ̂ = θ̃, which completes the proof.

Lemma 1.3.18. A unbiased estimator θ̂ with finite second moment is the
best unbiased estimator for θ if and only if Cov θ(θ̂, φ) = 0 , θ ∈ Θ for an
arbitrary sample function φ : Rn → R with Eθφ(X1, . . . , Xn) = 0 , ∀θ ∈ Θ.

Proof

“⇒” Let θ̂ be the best unbiased estimator for θ and φ(X1, . . . , Xn) a sample
function with Eθφ(X1, . . . , Xn) = 0 , ∀θ ∈ Θ. It is sufficient to show
Cov θ(θ̂, φ) = Eθ(θ̂φ) = 0 , θ ∈ Θ.
Define θ̃ = θ̂ + aφ , a ∈ R. In order to compute

Varθθ̃ = Varθθ̂ + a2Varθφ + 2aCov θ(θ̂, φ)
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for a ∈ R, let g(a) = a2Varθφ + 2aCov θ(φ, θ̂). For Cov θ(φ, θ̂) /= 0
there exists an a ∈ R with g(a) < 0. Since θ̃ is an unbiased estimator
for θ (Eθθ̃ = Eθθ̂ + aEθφ = θ + 0 = θ) it holds that Varθθ̃ ≥ Varθθ̂
for all a ∈ R. This is a contradiction to g(a) < 0 for an a ∈ R. Thus,
Cov θ(φ, θ̂) = 0 , θ ∈ Θ.

“⇐” Let θ̂ be an unbiased estimator with Eθθ̂2 <∞, θ ∈ Θ and
Cov θ(φ, θ̂) = 0 , θ ∈ Θ if Eθφ = 0, θ ∈ Θ. Let θ̃ be another unbiased
estimator for θ. In order to show that Varθθ̃ ≥ Varθθ̂, consider

θ̃ = θ̂ + (θ̃ − θ̂︸ ︷︷ ︸
=:φ

) , Eθφ = Eθθ̃ − Eθθ̂ = θ − θ = 0 , ∀θ ∈ Θ .

It follows that

V arθθ̃ = Varθθ̂ + Varθφ︸ ︷︷ ︸
≥0

+2 Cov θ(θ̂, φ)︸ ︷︷ ︸
=0

≥ Varθθ̂ ,

which implies, that θ̂ is the best unbiased estimator for θ.

Theorem 1.3.19 (Lehmann-Scheffé). Let θ̂ be an unbiased, complete and
sufficient estimator for θ with Eθθ̂2 < ∞ for all θ ∈ Θ. Then, θ̂ is the best
unbiased estimator for θ.

Proof In order to make use of Lemma 1.3.18 it has to be shown that
Cov θ(θ̂, φ) = Eθ(θ̂φ) = 0 , θ ∈ Θ for Eθφ = 0 , θ ∈ Θ. It holds that

Eθ(θ̂φ) = Eθ(E(θ̂φ|θ̂)) θ̂ σ(θ̂)-measurable= Eθ(θ̂ · Eθ(φ|θ̂)) = Eθ(θ̂ · g(θ̂)) ?= 0 ,

for g(θ̂) = 0 almost surely. Since θ̂ is sufficient, g(t) = Eθ(φ | θ̂ = t) is
independent of θ.
Consider Eθg(θ̂). In order to show that g(θ̂) = 0 for all θ ∈ Θ, it has to be
shown that Eθg(θ̂) = 0 θ ∈ Θ since θ̂ is already assumed to be complete.

Eθg(θ̂) = Eθ(Eθ(φ|θ̂)) = Eθφ = 0

is assumed to hold, thus Eθ(φθ̂) = 0 and θ̂ is uncorrelated to
φ : Eθφ = 0 , θ ∈ Θ, which implies that θ̂ is the best unbiased estimator
by Lemma 1.3.18 .

Theorem 1.3.20. Let θ̂ be an unbiased estimator for θ and
Eθθ̂2 <∞, θ ∈ Θ. Let θ̃ be a complete and sufficient estimator for θ. Then,
the estimator θ∗ = E(θ̂ | θ̃) is the best unbiased estimator for θ.

Proof



CHAPTER 1. POINT ESTIMATION 51

1. It has to be shown that Eθθ∗2 <∞∀θ ∈ Θ. It holds that

Eθ

(
θ∗2
)

= Eθ

(
E
(
θ̂ | θ̃

))2
≤ Eθ

(
E
(
θ̂2 | θ̃

))
= Eθθ̂2 <∞ ,

by Jensen’s inequality for the conditional expectation, which states

f(E(X | B))
f.s.
≤ E(f(X) | B)

for any random variable X, σ-algebra B and convex function f .

2. It has to be shown that θ∗ is unbiased:
Eθθ∗ = Eθ(E(θ̂ | θ̃)) = Eθθ̂ = θ, θ ∈ Θ, since θ̂ is unbiased.

3. By Lemma 1.3.18, it is sufficient to show that
Eθ(θ∗φ) = 0 for θ ∈ Θ, if Eθφ = 0, θ ∈ Θ.

Eθ(θ∗φ) = Eθ

(
E
(
θ̂ | θ̃

)︸ ︷︷ ︸
=g(θ̃), θ̃ suf.

φ
)

= Eθ

(
g
(
θ̃
)
φ
)

= Eθ

(
E
(
g
(
θ̃
)
φ | θ̃

))
g(θ̃) θ̃-measurable= Eθ

(
g(θ̃) · E(φ | θ̃)︸ ︷︷ ︸

=g1(θ̃)

)
= 0 ,

if g1(θ̃) a.s.= 0, θ ∈ Θ. It needs to be shown that Eθg1(θ̃) = 0. Now,
Eθg1(θ̃) = Eθ(E(φ | θ̃)) = Eθφ = 0 and the completeness of θ̃ imply
(similarly to the proof of Theorem 1.3.19) that g1(θ̃) = 0 almost surely.

Lemma 1.3.21 (Blackwell-Rao inequality). Let θ̂ be an unbiased estimator
for θ and Eθθ̂2 <∞ , θ ∈ Θ. Furthermore, let θ̃ be a sufficient estimator for
θ. Then, the unbiased estimator θ∗ := Eθ(θ̂ | θ̃) attains a variance which is
smaller or equal to Varθθ̂.

Proof See proof of Theorem 1.3.20. Here, θ∗ is unbiased, due to 2) in
Theorem 1.3.20 and Varθθ∗ = Eθθ∗2 − θ2 ≤ Eθθ̂2 − θ2 = Varθθ̂ due to 1) in
Theorem 1.3.20.

Remark 1.3.22. The sufficiency of θ̃ is not mentioned explicitly in the
proof of Lemma 1.3.21. It is still necessary in order to assure that
θ∗ = Eθ(θ̂ | θ̃) = g(θ̃) does not depend on θ.

Corollary 1.3.23. If θ̂ is a complete and sufficient estimator for θ and there
exists a function g : R→ R such that Eθg(θ̂) = θ, ∀θ ∈ Θ, then g(θ̂) is the
best unbiased estimator for θ.

Proof g(θ̂) = E(g(θ̂) | θ̂), which is the best unbiased estimator by Theorem
1.3.20.
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1.3.5 δ–Method

Let θ̂n = θ̂n(X1, . . . , Xn) be an estimator of a parameter θ ∈ Θ ⊆ R (m = 1),
where (X1, . . . , Xn) is a random sample of i.i.d. random variables Xj for
j = 1, . . . , n , Xj ∼ Fθ. Suppose that θ̂n is asymptotically normal dis-
tributed, i.e. there exists a sequence of functions {σn(θ)}n∈N with σn(θ) > 0
and σn(θ) −→

n→∞
0, ∀n ∈ N, θ ∈ Θ such that

θ̂n − θ

σn(θ)
d−→ Y ∼ N(0, 1).

Let g : Θ→ R be a Borel measurable function. What can be said about the
asymptotic normality of g(θ̂n)? In other words, this section aims to identify
the sufficient conditions under which

g(θ̂n)− g(θ)
σ̃n(θ)

d−→ Y (1.12)

for another sequence {σ̃n(θ)}n∈N with σ̃n(θ) > 0, n ∈ N, and σ̃n(θ) −→
n→∞

0,
θ ∈ Θ. For linear g(θ) = a · θ + b, a, b ∈ R, relation (1.12) obviously
holds. When does (1.12) hold for more general functions g? There may
be multiple reasons for the consideration of functions g(θ̂n). One of those
lies in the variance stabilization which will be discussed at the end of this
section. There a function g is considered, such that σ̃n(θ) does not depend
on θ. This makes the construction of asymptotic confidence regions for θ
much easier (cf. Section 2.2.3 for examples).
The following method of proving the asymptotic normality for g(θ̂n) makes
use of the Taylor series decomposition of a sufficiently smooth function g.
It has been known since the early 19th century and first asymptotically de-
scribed by J. Doob [11]. The name “δ method” alludes to the differential or
increment dg(x) = g(x + δx) − g(x) which lies in the core of the method.
Due to its very general nature, the results can be formulated for any asymp-
totically normal sequence of random variables {Yn}n∈N, i.e. sequences with
Yn−µ

σn

d−→ Y ∼ N(0, 1) for some µ ∈ R and a normalizing sequence {σn}n∈N
with σn > 0 for all n ∈ N and σn −→

n→∞
0.

Theorem 1.3.24. Suppose that

Yn − µ

σn

d−→ Y ∼ N(0, 1) (1.13)

for a sequence {Yn}n∈N, µ and {σn}n∈N as above. Let g : R → R be differ-
entiable at x = µ with g′(µ) /= 0. Then,

g(Yn)− g(µ)
g′(µ)σn

d−→
n→∞

Y.
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Proof First, show that (1.13) implies with σn −→
n→∞

0 that

Yn
P−→

n→∞
µ. (1.14)

Indeed, Slutsky’s Theorem (cf. [32, Theorem 3.4.3.]) yields

Yn − µ

σn

d−→
n→∞

Y, σn
a.s.−→ 0 =⇒ Yn − µ = σn ·

Y − µ

σn

d−→
n→∞

0 · Y = 0

=⇒ Yn − µ
P−→

n→∞
0

by [32, Theorem 3.3.4.]. Introduce the function

h(x) =
{

g(x)−g(µ)
x−µ − g′(µ), x /= µ,

0, x = µ.

Since g(x) is differentiable at x = µ, h(x) is continuous at x = µ. The
Continuous Mapping Theorem (cf [32, Theorem 3.4.4.] implies

h(Yn) P−→
n→∞

h(µ) = 0,

i.e.
g(Yn)− g(µ)

Yn − µ
− g′(µ) P−→

n→∞
0.

Multiplying both sides by Yn−µ
σn

and using (1.13) in combination with Slut-
sky’s Theorem implies that

h(Yn)(Yn − µ)
σn

= g(Yn)− g(µ)
σn

− g′(µ) Yn − µ

σn︸ ︷︷ ︸
d−→Y ∼ N(0,1)

P−→
n→∞

0.

Hence g(Yn)−g(µ)
σn

d−→
n→∞

g′(µ) · Y as well and dividing by g′(µ) yields the
desired result.

Remark 1.3.25. If g ∈ C1(Bδ(µ)) for some δ > 0, where

Bδ(µ) = {x ∈ R : |x− µ| ≤ δ},

the proof above can be simplified by using the Mean Value Theorem

g(Yn) = g(µ) + g′(ξ)(Yn − µ),

where ξ lies between µ and Yn. In addition, the Continuous Mapping
Theorem together with (1.14) and the assumption g ∈ C1(Bδ(µ)) yield
g′(Yn) P−→

n→∞
g′(µ). By Slutsky’s Theorem a modified version of (1.13) holds:

g(Yn)− g(µ)
g′(Yn)σn

d−→
n→∞

Y.
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Example 1.3.26. By [33, Theorem 7.4.4, 2)], the sample variance

S2
n = 1

n− 1

n∑
i=1

(Xi − X̄)2

is an asymptotically normally distributed estimator of σ2 = VarXj > 0 :

√
n

S2
n − σ2√
µ′

4 − σ4
n

d−→
n→∞

Y ∼ N(0, 1),

where µ′
4 = E(Xj − EXj)4. One can show that the empirical standard

deviation Sn is an asymptotically normal estimate of σ. Here,

g(x) =
√

x,

g′(x) = 1
2
√

x
,

θ = σ2 > 0,

g′(σ2) = 1
2σ

> 0 and

σn =

√
µ′

n − σ4

n

Following Theorem 1.3.24 it holds that

2σ
√

n
Sn − σ√
µ′

4 − σ4

d−→
n→∞

Y.

What happens if g′(µ) = 0 in Theorem 1.3.24? In this case, a higher order
Taylor approximation should be used, as the following result shows.

Theorem 1.3.27. Assume that a sequence of random variables {Yn}n∈N
satisfies the conditions of Theorem 1.3.24. Let g : R → R be m ≥ 2 times
differentiable at µ with g(j)(µ) = 0, j < m and g(m)(µ) /= 0. Then,

m! · g(Yn)− g(µ)
g(m)(µ)σm

n

d−→
n→∞

Y m,

where Y ∼ N(0, 1).

Proof Use the function

h(x) =

m!g(x)− g(µ)
(x− µ)m

− g(m)(µ), x /= µ,

0, x = µ.

in the proof of Theorem 1.3.24.
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Example 1.3.28. Suppose that {Yn}n∈N is a sequence of random variables
with

Yn

σn

d−→
n→∞

Y ∼ N(0, 1)

for σn −→
n→∞

0 with σn > 0 for all n ∈ N. Apply Theorem 1.3.27 to
g(x) = log2(1 + x) and m = 2, µ = 0:

g′(x) = 2 log(1 + x)
1 + x

, g′(0) = 0,

g′′(x) =
2

1+x(1 + x)− 2 log(1 + x)
(1 + x)2 = 21− log(1 + x)

(1 + x)2 = 2
log

(
e

1+x

)
(1 + x)2 ,

g′′(0) = 2 > 0.

Then,

2 · log2(1 + Yn)
2σ2

n

= 1
σ2

n

log2(1 + Yn) d−→ Y 2 ∼ χ2
1.

As already mentioned above, it might be advantageous for some applica-
tions in the asymptotic theory of confidence intervals and statistical tests
to eliminate the dependence of the asymptotic variance σn(θ) from the pa-
rameter θ. In other words, find a transformation g of the estimate θ̂ such
that σ̃n(θ) in (1.12) does not depend on θ anymore. This device is known
as variance stabilization. By Theorem 1.3.24 a function g : R → R with
g′(θ) /= 0 such that g′(θ) · σn(θ) depends only on n ∈ N has to be found.
Let σn(θ) = σ(θ) · vn, with vn → 0. Then it suffices to solve the ordinary
differential equation

g′(θ) = c

σ(θ) , c constant. (1.15)

If g′(θ) = 0, Theorem 1.3.27 can be applied here accordingly.

Example 1.3.29.

1. Consider a random sample (X1, . . . , Xn) of centered i.i.d. random
variables with µ4 = EX4

j <∞ and σ2 = VarXj > 0. Since
µ = EXj = 0, consider the estimate S̃2

n = 1
n

∑n
j=1 X2

j of σ2. Assume
that µ4 is known. By [33, Theorem 7.4.4, 2)], it holds that

√
n

S̃2
n − σ2√
µ4 − σ4

d−→
n→∞

Y ∼ N(0, 1).

By stabilizing the asymptotic variance in this case,

g′(σ2) = 1√
µ4 − (σ2)2
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has to be solved. The solution is given by g(x) = arcsin
(

x√
µ4

)
and

thus

√
n

(
arcsin

(
S̃2

n√
µ4

)
− arcsin

(
σ2
√

µ4

))
d−→

n→∞
Y ∼ N(0, 1).

2. Let (X1, . . . , Xn) be a sample of i.i.d. random variables with Xj ∼Bernoulli(p),
for p ∈ (0, 1). By [33, Theorem 7.3.2, a)], it holds that

√
n(p̂n − p)√

p(1− p) d−→
n→∞

Y ∼ N(0, 1),

where p̂n = X̄n. Similarly to 1), the variance stabilising transform
g is given by g(p) = 2arcsin(√p), since g′(p) = 1√

p(1−p)
. Applying

Theorem 1.3.24 yields

2
√

n(arcsin(
√

p̂n)− arcsin(√p)) d−→
n→∞

Y ∼ N(0, 1) (1.16)

3. Let (X1, . . . , Xn) be a sample of i.i.d. Poisson(λ) distributed random
variables with λ > 0. For θ = λ, λ̂n = X̄n it holds that

√
n

λ̂n − λ√
λ

d−→
n→∞

Y ∼ N(0, 1).

The variance stabilizing transform g is then given by g(x) = 2
√

x

because of g′(λ) = 1√
λ

. In summary, we get

2
√

n

(√
λ̂n −

√
λ

)
d−→

n→∞
Y ∼ N(0, 1). (1.17)

Remark 1.3.30. The δ–method can be extended to the asymptotic nor-
mality of (functions g of) d-dimensional random vectors {Yn}n∈N, for d ≥ 2.
See [30, Section 3.3] for more details. It can be used to prove the asymptotic
normality of the empirical Bravais-Pearson correlation coefficient

ρXZ =
∑n

j=1 XjZj − nX̄nZ̄n

Sn,XSn,Z

of i.i.d. random samples (X1, . . . , Xn) and (Z1, . . . , Zn), where S2
n,X and S2

n,Z

are their sample variances. Similarly, the empirical coefficient of variation
Sn

X̄n
of one i.i.d. sample (X1, . . . , Xn) can be shown to be asymptotically

normal with
√

n

(
Sn

X̄n
− σ

µ

)
d−→

n→∞
Y ∼ N

(
0,

σ2
∗µ2

4σ2

)
,
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where X̄n is the sample mean and S2
n the sample variance, cf. [1]. Here

σ2
∗ = µ4

µ4 −
(

µ2
µ2

)2
+ 4

(
µ2
µ2

)3
− 4µ2µ3

µ5

is a function of the first four moments of Xj which are assumed to be finite.



Chapter 2

Confidence Intervals

2.1 Introduction
This chapter will focus on the formal definition of confidence intervals. We
will gain a deeper understanding of how they work and what they are used
for. In particular, this chapter will cover one-sample problems and two-
sample problems.
Recall the assumptions of parametric models: Let (X1, . . . , Xn) be a ran-
dom sample with Xi ∼ Fθ, i = 1, . . . , n, and Fθ ∈ {Fθ : θ ∈ Θ}, where
{Fθ : θ ∈ Θ} is some parametric family with Θ ⊂ R.
Each point estimator of θ provides a value for the parameter vector. It would
also be beneficial to have information about the accuracy of the estimator,
i.e., a neighborhood which contains θ with a certain probability 1−α. Here α
denotes a significance level, which indicates the probability of θ being outside
the predetermined neighborhood. Typical values are α = 0.01; 0.05; 0.1. For
m = 1 the neighborhood is an interval called confidence interval and the
probability 1−α is called coverage probability or confidence level. It is always
desired to achieve a high confidence level, e.g., 1 − α = 0, 99; 0, 95; 0, 9 are
typical values.

Definition 2.1.1. Let 1− α be a confidence probability and
θ : Rn → R = R ∪ {±∞}, θ : Rn → R be two measurable sample functions
with the property

θ(x1, . . . xn) ≤ θ(x1, . . . , xn) ∀(x1, . . . xn) ∈ Rn.

If

1. Pθ

(
θ ∈

[
θ(X1, . . . , Xn), θ(X1, . . . Xn)

])
≥ 1− α, θ ∈ Θ,

2. inf
θ∈Θ

Pθ

(
θ ∈

[
θ(X1, . . . , Xn), θ(X1, . . . , Xn)

])
= 1− α and

3. lim
n→∞

Pθ

(
θ ∈

[
θ(X1, . . . , Xn), θ(X1, . . . , Xn)

])
= 1− α, θ ∈ Θ,

58
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then I =
[
θ(X1, . . . , Xn), θ(X1, . . . Xn)

]
is called

1. confidence interval,

2. minimal confidence interval,

3. asymptotic confidence interval,
with confidence level 1−α. Here, lθ(X1, . . . Xn) = θ(X1, . . . Xn)−θ(X1, . . . Xn)
denotes the length of the confidence interval. It is desired to construct an
interval, which has a relatively short length but a high confidence level, i.e.,
1− α = .99.
In Example 1.2.14, the construction of a confidence interval was introduced.
This methodology can be generalized as follows.

1. Find a statistic T (X1, . . . , Xn, θ) which

• depends on θ and
• underlies a known (test) distribution F (possibly asymptotic as

n→∞).

2. Determine the quantiles F −1(α1) and F −1(1− α2) of the distribution
F for the niveaus α1 and 1− α2, such that α1 + α2 = α.

3. Solve (if possible) the inequality
F −1(α1) ≤ T (X1, . . . , Xn, θ) ≤ F −1(1 − α2) w.r.t. θ. The respec-
tive solution (if the statistic T in θ is monotonically increasing) I =[
T −1(F −1(α1)), T −1(F −1(1− α2))

]
is a confidence interval for θ with

confidence level 1− α, because

Pθ (θ ∈ I) = Pθ

(
T −1

θ (F −1(α1)) ≤ θ ≤ T −1(F −1(1− α2))
)

= Pθ

(
F −1(α1) ≤ Tθ(X1, . . . , Xn, θ) ≤ F −1(1− α2)

)
= F (F −1(1− α2))− F (F −1(α1))
= 1− α2 − α1

= 1− α for all θ ∈ Θ.

For asymptotic confidence intervals the notation lim
n→∞

is introduced:
lim

n→∞
Pθ(θ ∈ I) = . . . = 1−α. Here T −1

θ denotes the inverse of T (X1, . . . , Xn, θ)
w.r.t. θ. A corresponding picture can be found in Figure 2.1.
Definition 2.1.2.

1. If α1 = α2 = α/2, then the confidence interval given by

I =
[
T −1

(
F −1

(
α

2

))
, T −1

(
F −1

(
1− α

2

))]
is called symmetric.
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2. If α1 = 0, i.e., θ(X1, . . . , Xn) = −∞, then the confidence interval(
−∞, θ(X1, . . . , Xn)

]
is called one sided.

Analogously, if α2 = 0 i.e., θ(X1, . . . , Xn) = +∞, then the confidence
interval is given by [θ(X1, . . . , Xn), +∞).

From now on, mostly symmetric confidence intervals will be constructed.
More general, non symmetric confidence intervals can easily be constructed
similarly.

F −1(α1) F −1(1− α2)
[ ]

Figure 2.1: asymptotic confidence interval

Remark 2.1.3. One can observe, that the process of constructing a confi-
dence interval is similar to constructing a test. In Definition 2.1.2, T (X1, . . . , Xn)
is called test statistic. Generally, a statistical test for every confidence in-
terval can be constructed, but not the other way around.

2.2 One-sample problems
This section provides examples of confidence intervals for parameters of
known distributions using the algorithm above.

2.2.1 Normal distribution

Let X1, . . . , Xn be i.i.d. random sample with Xi ∼ N(µ, σ2), i = 1, . . . , n.

Confidence interval for the expectation µ

• Known variance σ2: Under the assumption that σ2 is known, [33,
Theorem 7.3.2] implies that an exact confidence interval for µ with
confidence level 1− α can be constructed. Since Xn ∼ N

(
µ, σ2/n

)
,

T (X1, . . . , Xn, µ) =
√

n
Xn − µ

σ
∼ N (0, 1)
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Let zα1 and z1−α2 be quantiles of the N (0, 1) distribution, such that
α1 + α2 = α. Then, 1− α is the given confidence level and

1− α = P (zα1 ≤ T (X1, . . . , Xn, µ) ≤ z1−α2)

= P

(
zα1 ≤

√
n

Xn − µ

σ
≤ z1−α2

)
(−zα1 =z1−α1 )

= P

(
Xn −

z1−α2σ√
n
≤ µ ≤ Xn + z1−α1σ√

n

)
.

Hence,
[
θ(X1, . . . , Xn), θ(X1, . . . , Xn)

]
with

θ(X1, . . . , Xn) = Xn − z1−α2
σ√
n

and

θ(X1, . . . , Xn) = Xn + z1−α1
σ√
n

,

is a confidence interval for µ with confidence level 1− α. Its length is
lµ(X1, . . . , Xn) = σ√

n
(z1−α2 + z1−α1).

If n −→ ∞, then lµ(X1, . . . , Xn) −→ 0 which means, that if the
amount of available information increases, i.e., n −→ ∞, the preci-
sion of the estimation also increases.
If the underlying distribution is symmetric i.e., α1 = α2 = α/2, then

θ(X1, . . . , Xn) = Xn − z1−α/2
σ√
n

,

θ(X1, . . . , Xn) = Xn + z1−α/2
σ√
n

,

and

lµ(X1, . . . , Xn) = 2σ√
n

z1−α/2.

If the length ε > 0 is predetermined, the number of necessary ob-
servations n for achieving the desired precision can be calculated by
solving

2σ√
n

z1−α/2 ≤ ε (2.1)

for n, which yields

n ≥
(2σz1−α/2

ε

)2
.

For α1 = 0 or α2 = 0 one sided intervals like
(
−∞, Xn + z1−α

σ√
n

]
,

resp.
[
Xn − z1−α

σ√
n

, +∞
)

can be constructed.
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• Unknown variance σ2: Using [33, Theorem 7.4.10.], the following
confidence interval with confidence level 1 − α ∈ (0, 1) for the expec-
tation µ of a normally distributed random sample (X1, . . . , Xn) with
unknown variance σ2 can be constructed.

P

(
µ ∈

[
X̄n −

tn−1,1−α/2√
n

Sn , X̄n +
tn−1,1−α/2√

n
Sn

])
= 1− α,

since

P

(
√

n
X̄n − µ

Sn
∈
[

tn−1,α/2︸ ︷︷ ︸
=−tn−1,1−α/2 bc. of the sym. of t dist.

, tn−1,1−α/2

])
= (2.2)

= Ftn−1(tn−1,1−α/2)− Ftn−1(tn−1,α/2)

= 1− α

2 −
α

2 = 1− α ,

where tn−1,α is the α quantile of the tn−1 distribution. By solving for
µ in (2.2) the remaining part can be shown.
Note that the length lµ(X1, . . . Xn) = 2Sn√

n
tn−1,1−α/2 of the confidence

interval is a random variable. Thus, the expected length

E lµ(X1, . . . Xn) = 2√
n
ESntn−1,1−α/2

yields an answer to the question about the required number of obser-
vations n for a predetermined precision ε > 0 (cf. Equation (2.1)).

Confidence interval for the variance σ2

• Known expectation µ: Consider the estimator S̃2
n = 1

n

n∑
i=1

(Xi − µ)2

for σ2. [33, Theorem 7.4.8 1.] implies nS̃2
n

σ2 ∼ χ2
n.

Define T (X1, . . . , Xn, σ2) := nS̃2
n

σ2 , then

P

(
χ2

n,α2 ≤
nS̃n

2

σ2 ≤ χ2
n,1−α1

)
= P

(
nS̃2

n

χ2
n,1−α1

≤ σ2 ≤ nS̃2
n

χ2
n,α2

)
= 1− α.

Thus,
[

nS̃2
n

χ2
n,1−α1

, nS̃2
n

χ2
n,α2

]
is a confidence interval for σ2 with level 1− α,

where α = α1 + α2. The expected length is given by

E lσ2 = nσ2
(

1
χ2

n,α2

− 1
χ2

n,1−α1

)
.
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• Unknown expectation µ: Similarly to the construction above, [33,
Theorem 7.4.8. 1.] implies that

[
(n−1)S2

n

χ2
n−1,1−α1

, (n−1)S2
n

χ2
n−1,α2

]
is a confidence

interval for σ2 with confidence level 1 − α, where α = α1 + α2. Note
that (n−1)S2

n
σ2 ∼ χ2

n−1 for the sample variance S2
n = 1

n−1
n∑

i=1

(
Xi −Xn

)2
.

The expected length is

E lσ2 = (n− 1)σ2
(

1
χ2

n−1,α2

− 1
χ2

n−1,1−α1

)
.

2.2.2 Confidence intervals and stochastic inequalities

An alternative approach for obtaining confidence intervals is applying stochas-
tic inequalities. Let, for example, (X1, . . . , Xn) be a random sample of
i.i.d. random variables with EXi = µ, Var Xi = σ2 ∈ (0,∞), then the
Tschebyschew inequality can be used to construct a simple confidence inter-
val for µ:

P
(
|Xn − µ| > ε

)
≤ Var Xn

ε2 = σ2

nε2 = α.

Then, for ε = σ√
nα

1− α ≤ P
(
|Xn − µ| ≤ ε

)
= P

(
− σ√

nα
≤ −Xn + µ ≤ σ√

nα

)
= P

(
Xn −

σ√
nα
≤ µ ≤ Xn + σ√

nα

)

holds. The confidence interval
[
Xn − σ√

nα
, Xn + σ√

nα

]
for µ with known

variance σ2 is independent of the underlying distribution of Xi since no
assumptions have been made.
More precise confidence intervals can be constructed by using the Hoeffding
inequality:

Theorem 2.2.1 (Hoeffding inequality). Let Y1, . . . , Yn be independent ran-
dom variables with EYi = 0, ai ≤ Yi ≤ bi a.s., i = 1, . . . , n. For all ε > 0,

P

(
n∑

i=1
Yi ≥ ε

)
≤ exp

− 2ε2

n∑
i=1

(bi − ai)2


holds.
(without proof)
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Assume that X1, . . . , Xn are i.i.d. with Xi ∼ Bernoulli(p), p ∈ (0, 1). Next,
we will show how to construct a confidence interval for p.

Corollary 2.2.2. Let X1, . . . , Xn be i.i.d. Bernoulli (p) random variables.
Then

P
(
|Xn − p| > ε

)
≤ 2e−2nε2

, ε > 0.

Proof

Xn − p = 1
n

n∑
i=1

(Xi − p)︸ ︷︷ ︸
Yi

, Yi ∈ [−p, 1− p],

holds, which means that ai = −p, bi = 1 − p, bi − ai = 1, i = 1, . . . , n,
EYi = p− p = 0. Then,

Pp

(
|Xn − p| > ε

)
= Pp

(∣∣∣∣∣
n∑

i=1
Yi

∣∣∣∣∣ ≥ εn

)

= Pp

(
n∑

i=1
Yi ≥ εn

)
+ Pp

(
n∑

i=1
(−Yi) ≥ εn

)
(Theorem 2.2.1)

≤ 2e− 2ε2n2
n = 2e−2ε2n,

where Theorem 2.2.1 is applied to {Yi} as well as {−Yi}.

Remark 2.2.3. Let α > 0 and εn =
√

1
2n log 2

α . Applying Corollary 2.2.2
with εn yields Pp

(
|Xn − p| > εn

)
≤ α, and thus Pp

(
|Xn − p| ≤ εn

)
≥ 1−α.

Hence, [
Xn −

√
1

2n
log 2

α
, Xn +

√
1

2n
log 2

α

]
is a confidence interval for p with level 1− α.

2.2.3 Asymptotic confidence intervals

The idea behind asymptotic confidence intervals is relatively simple, as it can
be explained by using the example of an asymptotically normal distributed
estimator θ̂ for a parameter θ. Let (X1, . . . , Xn) be an i.i.d. random sample
with Xi ∼ Fθ, θ ∈ Θ ⊆ R. Let θ̂n = θ̂(X1, . . . , Xn) be an estimator for θ,
that is asymptotically normal distributed. If θ̂n is unbiased for every n ∈ N,
then

θ̂n − θ

σ̂n

d−→ Y ∼ N (0, 1),
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where σ̂n is a consistent estimator for the asymptotic variance of θ̂n. Fur-
thermore,

lim
n→∞

Pθ

(
zα/2 ≤

θ̂n − θ

σ̂n
≤ z1−α/2

)
= lim

n→∞
Pθ

(
θ ∈

[
θ̂n − z1−α/2σ̂n, θ̂n + z1−α/2σ̂n

])
= 1− α.

Thus, [
θ̂n − z1−α/2σ̂n, θ̂n + z1−α/2σ̂n

]
is an asymptotic confidence interval for θ with level 1− α.
This approach can be applied to the following two examples:

• Bernoulli distribution
Let Xi ∼ Bernoulli(p), i = 1, . . . , n. Then θ = p and θ̂n = p̂n = Xn.

Moreover, Epp̂n = p, Varpp̂n = p(1−p)
n .

Let σ̂2 = 1
n p̂n(1 − p̂n) = Xn

n (1 − Xn) be the Plug-In estimator for
σ2. Then the central limit theorem [33, Theorem 5.2.2.] and Slutsky’s
theorem [32, Theorem 3.4.1] imply

√
n

Xn − p√
Xn(1−Xn)

d−→
n→∞

Y ∼ N (0, 1).

Thus,Xn − z1−α/2

√
Xn(1−Xn)

n
, Xn + z1−α/2

√
Xn(1−Xn)

n


is an asymptotic confidence interval for p with confidence level 1− α.
Since p ∈ [0, 1] is supposed to hold, one considers

p(X1, . . . , Xn) = max

0, Xn − z1−α/2

√
Xn(1−Xn)

n


and

p(X1, . . . , Xn) = min

1, Xn + z1−α/2

√
Xn(1−Xn)

n

 .

Remark 2.2.4.
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1. Another confidence interval for the parameter p of the Bernoulli
distribution can be obtained by considering an application of the
central limit theorem

lim
n→∞

Pp

(
−z1−α/2 ≤

√
n

Xn − p√
p(1− p)

≤ z1−α/2

)
= 1− α

and solving the quadratic inequality for p.
Exercise 2.2.5 Solve the inequality!

2. Using the variance stabilization from Example 1.3.29, 2., the re-
lation (1.16) can be used to construct a confidence interval for p
with sufficiently large n.

P

(
−z1− α

2
≤ 2
√

n(arcsin
√

X̄n − arcsin√p) ≤ z1− α
2

)
≈ 1− α

holds, hence

arcsin
√

X̄n −
z1− α

2

2
√

n
≤ arcsin√p ≤ arcsin

√
X̄n +

z1− α
2

2
√

n
.

With probability 1− α

√
p ∈

[
sin
(

arcsin
√

X̄n −
z1− α

2

2
√

n

)
, sin

(
arcsin

√
X̄n +

z1− α
2

2
√

n

)]
⇒

p ∈
[
sin2

(
arcsin

√
X̄n −

z1− α
2

2
√

n

)
, sin2

(
arcsin

√
X̄n +

z1− α
2

2
√

n

)]

holds. As
√

X̄n
a.s.−→

n→∞
√

p ∈ (0, 1),
z1− α

2√
n
−→

n→∞
0 and since

sin
(

arcsin
√

X̄n ±
z1− α

2

2
√

n

)
> 0

for sufficiently large n, the terms

max
{

0, arcsin
√

X̄n −
z1− α

2

2
√

n

}
and

min
{

π

2 , arcsin
√

X̄n +
z1− α

2

2
√

n

}
do not need to be considered here.

• Poisson distribution:
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Let Xi ∼ Poisson(λ), i = 1, . . . , n, then θ = λ, θ̂n = λ̂ = Xn. Since
EλXi = VarλXi = λ, the central limit theorem [33, Theorem 5.2.2.]
can be applied:

√
n

Xn − λ√
λ

d−→
n→∞

Y ∼ N (0, 1)

Since Xn is strongly consistent for λ, Slutsky’s theorem [32, Theorem
3.4.1] implies

√
n

Xn − λ√
Xn

d−→
n→∞

Y ∼ N (0, 1).

Thus, a asymptotic confidence intervalXn − z1−α/2

√
Xn

n
, Xn + z1−α/2

√
Xn

n


for the parameter λ with level 1− α can be obtained.

Remark 2.2.6.

1. Similarly to Remark 2.2.4, solving the quadratic inequality

lim
n→∞

Pλ

(
√

n
Xn − λ√

λ
∈ [−z1−α/2, z1−α/2]

)
= 1− α

for λ leads to an alternative asymptotic confidence interval for λ.
Exercise 2.2.7. Solve this quadratic inequality.

2. Since λ > 0, the lower bound can be adjusted to

λ(X1, . . . , Xn) = max

0, Xn − z1−α/2

√
Xn

n


3. Using the variance stabilization transformation from Example

1.3.29, 3.

P
(
−z1− α

2
≤
√

n(
√

x̄n −
√

λ) ≤ z1− α
2

)
−→

n→∞
1− α

holds. For n sufficiently large, the asymptotic confidence interval
for λ with confidence level 1− α is given by

λ ∈
[(√

X̄n −
z1− α

2

2
√

n

)2
,

(√
X̄n +

z1− α
2

2
√

n

)2
]

.
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Since
√

X̄n
a.s.−→

n→∞

√
λ by the strong law of large numbers and

z1− α
2√

n
−→

n→∞
0,

for sufficiently large n √
X̄n −

z1−α2
2
√

n
> 0

holds. Hence max
{

0,
√

X̄n −
z1− α

2
2
√

n

}
does not need to be taken

care of.

2.3 Two-sample problems
In this section, some characteristics or parameters of two different samples
will be compared by constructing confidence intervals for simple functions
of those parameters.
Consider two random samples Y1 = (X11, . . . , X1n1) and Y2 = (X21, . . . , X2n2)
of random variables Xi1, . . . , Xini , i = 1, 2, which are, within the sample Yi

i.i.d. with Xij
d= Xi, j = 1, . . . ni, i = 1, 2. Assume for the prototype random

variable Xi ∼ Fθi
, θi ∈ Θ ⊂ Rm. In general it will not be assumed that Y1

and Y2 are independent. If they are dependent, the random samples Y1 and
Y2 are called related samples. Consider a function g : R2m → R of the param-
eter vectors θ1 and θ2. In this lecture the cases m = 1, 2, g(θ1, θ2) = θ1j−θ2j

and g(θ1, θ2) = θ1j

θ2j
will mostly be covered, where θi = (θi1, . . . , θim), i = 1, 2.

The goal is to construct a (possibly asymptotic) confidence interval for
g(θ1, θ2) by using (Y1, Y2).
As it turns out, the approach will be similar to Section 2.2. A statistic
T (Y1, Y2, g(θ1, θ2)) is desired, that has a (possibly asymptotic) test distribu-
tion F and explicitly depends on g(θ1, θ2).
By solving the inequality F −1

α1 ≤ T (Y1, Y2, g(θ1, θ2)) ≤ F −1
1−α2 for g(θ1, θ2) a

(possibly asymptotic) confidence interval with level 1− α, α = α1 + α2 can
be obtained.

2.3.1 Normally distributed samples

Assume, that Xi ∼ N(µi, σ2
i ), i = 1, 2.
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Confidence interval for the difference µ1 − µ2 with known variance
σ2

1 and σ2
2 and independent random samples

Let Y1 and Y2 be independent and σ2
1, σ2

2 known. Consider the parameter
function g(µ1, µ2) = µ1 − µ2 and

Xini = 1
ni

ni∑
j=1

Xij , i = 1, 2

the sample mean of Y1 and Y2. Then, Xini ∼ N(µi,
σ2

i
ni

), i = 1, 2. [33,
Theorem 7.3.2, 4] implies that X1n1 and X2n2 are independent. The stability
of the normal distribution implies

X1n1 −X2n2 ∼ N

(
µ1 − µ2,

σ2
1

n1
+ σ2

2
n2

)

and normalizing yields

T (Y1, Y2, µ1 − µ2) = X1n1 −X2n2 − (µ1 − µ2)√
σ2

1
n1

+ σ2
2

n2

∼ N (0, 1).

The confidence intervalX1n1 −X2n2 − z1− α
2

√
σ2

1
n1

+ σ2
2

n2
, X1n1 −X2n2 + z1− α

2

√
σ2

1
n1

+ σ2
2

n2


for µ1 − µ2 with level 1− α then results.

Confidence interval for the quotient σ2
1/σ2

2 with unknown expected
values µ1 and µ2 and independent random samples

Let Y1 and Y2 be independent and g(σ1, σ2) = σ2
1

σ2
2
. Construct a statistic

T (Y1, Y2,
σ2

1
σ2

2
). Let

S2
ini

= 1
ni − 1

ni∑
j=1

(
Xij −Xini

)2
, i = 1, 2

be the sample variances of Y1 and Y2. Then, applying [33, Theorem 7.4.8.]
yields

(ni−1)S2
ini

σ2
i

∼ χ2
ni−1, i = 1, 2. Since S2

ini
, i = 1, 2 are independent, the

definition of the F distribution implies

T

(
Y1, Y2,

σ2
1

σ2
2

)
=

(n2−1)S2
2n2

(n2−1)σ2
2

(n1−1)S2
1n1

(n1−1)σ2
1

=
S2

2n2

S2
1n1

· σ2
1

σ2
2
∼ Fn2−1, n1−1.
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Thus, the confidence interval[
S2

1n1

S2
2n2

Fn2−1, n1−1, α1 ,
S2

1n1

S2
2n2

Fn2−1, n1−1, 1−α2

]

for σ2
1

σ2
2

with level 1− α is obtained.

Confidence interval for the difference µ1 − µ2 of expected values
with dependent samples

Let Y1 and Y2 be linked, i.e., X1 − X2 ∼ N(µ1 − µ2, σ2) for an unknown
σ2 > 0, n1 = n2 = n. Since Xij , j = 1, . . . , n are i.i.d.,
Zj = X1j −X2j ∼ N(µ1 − µ2, σ2), j = 1, . . . , n holds.
The goal is to construct a confidence interval for µ1−µ2. Consider the ran-
dom samples (Z1, . . . , Zn) and the results of Section 2.2, then the confidence
interval [

Zn − tn−1,1− α
2

Sn√
n

, Zn + tn−1,1− α
2

Sn√
n

]
for µ1 − µ2 with level 1− α

2 is obtained. Here,

Zn = 1
n

n∑
j=1

Zj = 1
n

n∑
j=1

(X1j −X2j) = X1n −X2n

and

S2
n = 1

n− 1

n∑
j=1

(
Zj − Zn

)2
= 1

n− 1

n∑
j=1

(
X1j −X2j −X1n + X2n

)2
.

2.3.2 Poisson distributed random samples

Assume that the random samples Y1 and Y2 are independent and
Xi ∼ Poisson(λi), i = 1, 2. The goals is to construct confidence intervals for

g(λ1, λ2) = λ1 − λ2,

g(λ1, λ2) = n2λ2
n1λ1 + n2λ2

= λ2
ρλ1 + λ2

,

where ρ = n1
n2

= const for n1, n2 →∞.

Asymptotic confidence interval for λ1 − λ2

In order to obtain an asymptotically N (0, 1) distributed statistic
T (Y1, Y2, λ1−λ2), the central limit theorem of Ljapunow (cf. [33, Theorem
4.2.13]) will be used.
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Lemma 2.3.1. For n1, n2 →∞ with 0 < c1 ≤ n1/n2 ≤ c2 <∞,

X1n1 −X2n2 − λ1 + λ2√
λ1
n1

+ λ2
n2

d−→
n1,n2→∞

Y ∼ N (0, 1)

holds.

Proof Define the random variable

Znk =


X1k−λ1

n1

√
λ1
n1

+ λ2
n2

, k = 1, . . . , n1

− X2k−n1 −λ2

n2

√
λ1
n1

+ λ2
n2

, k = n1 + 1, . . . , n1 + n2

where n = n1 + n2. Then, EZnk = 0 for all k = 1, . . . , n, and

0 < σ2
nk = Var Znk =


Var X1k

n2
1

(
λ1
n1

+ λ2
n2

) = λ1

n2
1

(
λ1
n1

+ λ2
n2

) , k = 1, . . . , n1,

λ2

n2
2

(
λ1
n1

+ λ2
n2

) , k = n1 + 1, . . . , n,

Thus,
n∑

k=1
σ2

nk =
(

λ1
n2

1
n1 + λ2

n2
2
n2

) 1
λ1
n1

+ λ2
n2

= 1.

Furthermore, for δ > 0 and n1, n2 →∞

lim
n→∞

n∑
k=1

E (|Znk|)2+δ = lim
n1,n2→∞

 E (|X11 − λ1|2+δ)

n1+δ
1

(
λ1
n1

+ λ2
n2

)(2+δ)/2
+ E (|X21 − λ2|)2+δ

n1+δ
2

(
λ1
n1

+ λ2
n2

)(2+δ)/2


= 0

holds. The Ljapunow condition is therefore met and [33, Theorem 4.2.13]
implies

n∑
k=1

Znk
d−→

n1,n2→∞
Y ∼ N (0, 1).

Finally,
n∑

k=1
Znk = X1n1 −X2n2 −λ1+λ2√

λ1
n1

+ λ2
n2

, which completes the proof.

The strong law of large numbers implies Xini

f.s.−→ λi, i = 1, 2 and using
Slutskys theorem then yields

T (Y1, Y2, λ1 − λ2) = X1n1 −X2n2 − λ1 + λ2√
X1n1/n1 + Xn2/n2

d−→
n1,n2→∞

Y ∼ N (0, 1).
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The asymptotic confidence interval for λ1−λ2 with level 1−α is thus given
byX1n1−X2n2−z1−α/2

√
X1n1

n1
+ X2n2

n2
, X1n1−X2n2 +z1−α/2

√
X1n1

n1
+ X2n2

n2


Asymptotic confidence interval for n2λ2

n1λ1+n2λ2

Let ρ be some constant, n1/n2 = ρ and
g(λ1, λ2) = n2λ2

n1λ1+n2λ2
= λ2

ρλ1+λ2

Def.= p. The goal is to construct an asymp-
totic confidence interval for p. Consider the statistic

T (Y1, Y2, p) = S2n2 − p(S1n1 + S2n2)√
p̂(1− p̂)(S1n1 + S2n2))

,

where Sini =
ni∑

j=1
Xij , i = 1, 2 and

p̂ = S2n2

S1n1 + S2n2
= n2X2n2

n1X1n1 + n2X2n2

f.s.−→
n1,n2→∞

p

is a consistent estimator for p (by the strong law of large numbers). If it can
be shown that T (Y1, Y2, p) d−→

n1,n2→∞
Y ∼ N (0, 1), then

lim
n1,n2→∞

P

−z1−α/2 ≤
S2n2

S1n1 +S2n2
− p√

S1n1 · S2n2

· (S1n1 + S2n2)3/2 ≤ z1−α/2

 = 1− α,

which yields the asymptotic confidence interval[
θ(Y1, Y2), θ(Y1, Y2),

]
for p with level 1− α, where

θ(λ1, λ2) = S2n2

S1n1 + S2n2
− z1−α/2 ·

√
S1n1 · S2n2

(S1n1 + S2n2)3

and

θ(λ1, λ2) = S2n2

S1n1 + S2n2
+ z1−α/2 ·

√
S1n1 · S2n2

(S1n1 + S2n2)3 .

Since 0 < p < 1, the boundaries can be adjusted as follows:

θ∗(Y1, Y2) = max{0, θ(Y1, Y2)},
θ

∗(Y1, Y2) = min{1, θ(Y1, Y2)}.

Now the asymptotically normal distribution of T (Y1, Y2, p) will be shown.
It results from Slutskys theorem and the following Lemma:
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Lemma 2.3.2. One has the following property

S2n2 − p(S1n1 + S2n2)√
p(1− p)(S1n1 + S2n2)

d−→
n1→∞

Y ∼ N (0, 1)

Proof In order to show the assertion, a version of the central limit theorem
for sums of random variables with random numbers as sum limits (cf. [33,
Theorem 4.2.2]) is used. Let Nn = S1n1 + S2n2 be a sequence of non-
negative random variables, then the sum is monotonically increasing. Let
then an2 = n1λ1 + n2λ2. Obviously

Nn

an2
= S1n1

n1λ1 + n2λ2
+ S2n2

n1λ1 + n2λ2

= X1n1

λ1 + ρ−1λ2
+ X2n2

ρλ1 + λ2
f.s.−→

n1,n2→∞
λ1

λ1 + ρ−1λ2
+ λ2

ρλ1 + λ2

= ρλ1
ρλ1 + λ2

+ λ2
ρλ1 + λ2

= 1

holds. Furthermore:

P (S2n2 = k | Nn = m) = P (S2n2 = k, S1n1 + S2n2 = m)
P (S1n1 + S2n2 = m)

= P (S2n2 = k, S1n1 = m− k)
P
(
S1n1 + S2n−2 = m

)
=

e−n2λ2 (λ2n2)k

k! · e−n1λ1 (n1λ1)m−k

(m−k)!

e−n1λ1−n2λ2 (n1λ1+n2λ2)m

m!

= m!
(m− k)!k!

(
n2λ2

n1λ1 + n2λ2

)m ( n1λ1
n1λ1 + n2λ2

)m−k

=
(

m

k

)
pk(1− p)m−k

which means that S2n2 | {Nn = m} ∼ Bin(m, p). Then, S2n2 −mp√
mp(1−p)

| {Nn =

m} d= Sm−mp√
mp(1−p)

, where Sm =
m∑

i=1
Zi is a sum of identically distributed

Zi ∼ Bernoulli(p). [33, Theorem 4.2.2] implies

SNn −Nnp√
Nnp(1− p)

d−→ Y ∼ N (0, 1)⇐⇒ S2n2 −Nnp√
Nnp(1− p)

d−→ Y ∼ N (0, 1).



Chapter 3

Testing Statistical
Hypotheses

In [33, Chapter 7], some tests like the Kolmogorow-Smironow test were in-
troduced. This chapter, however, focuses on introducing tests for statistical
significance formally.

3.1 General philosophy of testing
Let (X1, . . . , Xn) be a random sample of i.i.d. random variables Xi with
distribution function F ∈ Λ, where Λ is some class of distributions. Let
(x1, . . . , xn) be a realization of the random sample (X1, . . . , Xn). In statis-
tical testing, hypotheses with respect to the nature of a (unknown) distri-
bution F are posed and tested. Generally, two concepts are distinguished:

Statistical tests

Parametric test
if Λ = {Fθ, θ ∈ Θ}

where Θ ⊆ Rm

Nonparametric test
else

Parametric tests check, whether a parameter θ attains certain values (e.g.
θ = 0). Popular nonparametric tests are the so-called “goodness-of-fit tests”,
which check whether the distribution F is equal to a predetermined distri-
bution F0.
In an initial step, the term Hypotheses needs to be formalized. The set Λ
of admissible distributions F is divided into two disjoint sets Λ0 and Λ1 ,
Λ0 ∪ Λ1 = Λ. The assertion

74



CHAPTER 3. TESTING STATISTICAL HYPOTHESES 75

“The null hypothesis H0 : F ∈ Λ0

is tested against the alternative H1 : F ∈ Λ1”

means, that we aim to assign the distribution function of the random variable
Xi to Λ0 or Λ1, based on the explicit realization (x1, . . . , xn). The process
of assigning the distribution of Xi involves a decision rule

φ : Rn → [0, 1],

which is a statistic with the following interpretation:
The sample space Rn is divided into 3 disjoint sets K0, K01 K1, such that
Rn = K0 ∪K01 ∪K1, where

K0 = φ−1({0}) = {x ∈ Rn : φ(x) = 0} ,

K1 = φ−1({1}) = {x ∈ Rn : φ(x) = 1} ,

K01 = φ−1((0, 1)) = {x ∈ Rn : 0 < φ(x) < 1} .

Thus H0 : F ∈ Λ0 is

• rejected, if φ(x) = 1, i.e., x ∈ K1,

• not rejected, if φ(x) = 0, i.e., x ∈ K0.

If φ(x) ∈ (0, 1), i.e., x ∈ K01, then φ(x) is interpreted as a Bernoulli proba-
bility and a random variable Y ∼ Bernoulli(φ(x)) is generated with

Y =

 1 =⇒ H0 is rejected
0 =⇒ H0 is not rejected

If K01 /= ∅, the decision rule is called randomized. If K01 = ∅, i.e., Rn = K0∪
K1 the tests are called non-randomized. K0 and K1 are called acceptance
region and rejection region (critical region) of H0 respectively. K01 is called
randomization region.

Remark 3.1.1.

1. One deliberately says “H0 is not rejected”, instead of “H0 is accepted”,
since statistical inference can generally not make positive decisions
rather than negative decisions. The issue above is a general philo-
sophical problem with respect to the falsifiability of hypotheses or
scientific theories, which can generally not be at odds with the truth.
(cf. wissenschaftliche Erkenntnistheorie by Karl Popper (1902-1994)).
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2. Randomized tests are generally of a more theoretic nature (cf. Section
3.3). In practice, most non-randomized rules are used, which leads to
a decision with respect to H0 based on the explicit sample (x1, . . . , xn)
alone. Here, φ(x) = IK1 , x = (x1, . . . , xn) ∈ Rn holds.

In the following paragraph, non-randomized tests are considered in order to
return to the more general approach in Section 3.3.

Definition 3.1.2. The non-randomized test rule φ : Rn → {0, 1} provides
a (non-randomized) statistical test with significance level α, if for F ∈ Λ0

PF (φ(X1, . . . , Xn) = 1) = P (H0 reject | H0 true ) ≤ α.

Definition 3.1.3.

1. If H0 is rejected, even though H0 is correct, then a type I error has
occurred. The probability

αn(F ) = PF (φ(x1, . . . , xn) = 1) , F ∈ Λ0,

is called Probability of a type I error. This probability is supposed to
be lower than the significance level α.

2. A type II error occurs, if a wrong hypothesis H0 is not rejected. Here

βn(F ) = PF (φ(x1, . . . , xn) = 0) , F ∈ Λ1,

is called Probability of a type II error.

A summary of all possible errors can be found in the following matrix, which
is called confusion matrix:

H0 true H0 false

reject H0 Error of type I with proba-
bility αn(F ) ≤ α

right decision

not rejecting H0 right decision Error of type II with prob-
ability βn(F )

Here αn and βn are aimed to be small, which is contrary to the fact that a
decreasing value of α increases the probability of mistakes of type II.

Definition 3.1.4.

1. The function

Gn(F ) = PF (φ(X1, . . . , Xn) = 1) , F ∈ Λ

is called performance function (or power function) of a test φ.
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2. The constraint Gn on Λ1 is called power of the test φ.
With respect to the constraint it holds Gn(F ) = αn(F ) ≤ α, F ∈ Λ0,

Gn(F ) = 1− βn(F ), F ∈ Λ1.

Example 3.1.5. Parametric tests.
What does a parametric test look like? The parameter space Θ is given by
Θ0 ∪Θ1, where Θ0 ∩Θ1 = ∅. Then

Λ0 = {Fθ : θ ∈ Θ0},
Λ1 = {Fθ : θ ∈ Θ1}.

PF is replaced by Pθ. Furthermore αn, Gn and βn are defined on Θ instead
of Λ.

Which hypotheses H0 and H1 are popular among parametric tests? The
case Θ = R is discussed below, but it should be noted that a more general
choice of Θ is also possible.

1. H0 : θ = θ0 vs. H1 : θ /= θ0

2. H0 : θ ≥ θ0 vs. H1 : θ < θ0

3. H0 : θ ≤ θ0 vs. H1 : θ > θ0

4. H0 : θ ∈ [a, b] vs. H1 : θ /∈ [a, b]

In the first case the, parametric test is called two-sided and in the second
and third case one-sided (right- resp. left-sided). The fourth case is called
interval hypothesis H0.
Considering a one-sided or two-sided test, the power function may look like
the one displayed in Figure 3.1 (a) or 3.1 (b), resp.

1

α

θ0

Gn(θ)

θ

θ0

α

1
Gn(θ)

θ

Figure 3.1: Performance function

In general models (not necessarily parametric), the ideal power function can
be illustrated schematically, as in Figure 3.2.
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·
H0

Λ0

H1

Λ1

Gn(F )

Figure 3.2: Schematic illustration of an ideal power function

• Definition 3.1.3, errors of type I and II and the rejection rule imply
that the hypotheses H0 and H1 can not be treated symmetrically,
since only the probability of errors of type I is controlled. That is the
reason why statisticians mostly formulate the hypothesis of interest
as H1 instead of H0, because if one decides that H0 can be rejected,
it can be assured that the probability of a false decision is below the
significance level α.

• How is a statistical, non-randomized test constructed in practice? The
construction of the rejection rule φ is very similar to constructing
confidence intervals:

1. Find a test statistic T : Rn → R, which has a certain test distri-
bution (perhaps asymptotically for n→∞) under H0.

2. Define B0 = [tα1 , t1−α2 ], where tα1 and t1−α2 are quantiles of the
test distribution of T with α1 + α2 = α ∈ [0, 1].

3. If T (X1, . . . , Xn) ∈ R \B0 = B1, then set φ(X1, . . . , Xn) = 1 and
reject H0. Else, set φ(X1, . . . , Xn) = 0.

• If the distribution of T can only be determined asymptotically, then
φ is called asymptotic test.

• Most of the times, even the asymptotic distribution of T is unknown.
In this case, the so called Monte-Carlo tests come into play. In those
tests the quantiles tα are determined approximatively by conducting
a large number of Monte-Carlo simulations of T (under H0):
If ti, i = 1, . . . , m takes the values of T in m independent simulations,
i.e. ti = T (xi

1, . . . , xi
n), where xi

j are independent realizations of Xj ∼
F ∈ Λ0 for j = 1, . . . , n, i = 1, . . . , m, then tα ≈ t(⌊α·m⌋),1 with
t(1), . . . , t(m) the order statistics and α ∈ [0, 1] .

1set t(0) = −∞
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Remark 3.1.6. It is easy to see that by using an arbitrary confidence
interval

Iθ =
[
Iθ

1 (X1, . . . , Xn), Iθ
2 (X1, . . . , Xn)

]
with confidence level 1 − α for a parameter θ ∈ R, a test for θ can be
constructed. The hypotheses H0 : θ = θ0 vs. H1 : θ /= θ0 are tested under
the following decision rule:

φ(X1, . . . , Xn) = 1, if θ0 /∈
[
Iθ0

1 (X1, . . . , Xn), Iθ0
2 (X1, . . . , Xn)

]
.

The significance level of the test is α.
Example 3.1.7. Normal distribution, testing the expected value with known
variance. Let

X1, . . . , Xn ∼ N (µ, σ2)
with known variance σ2. A confidence interval for µ is given by

Iµ = [Iµ
1 (X1, . . . , Xn), Iµ

2 (X1, . . . , Xn)]=
[
Xn−

z1−α/2 · σ√
n

, Xn+
z1−α/2 · σ√

n

]
(cf. Section 2.2.1). Hence, H0 : µ = µ0 (versus the alternative H1 : µ /= µ0),
is rejected, if

|µ0 −Xn| >
z1−α/2 · σ√

n
.

In the language of testing, the above can be rewritten as
φ(x1, . . . , xn) = I ((x1, . . . xn) ∈ K1) ,

where

K1 =
{

(x1, . . . , xn) ∈ Rn : |µ0 − xn| >
z1−α/2 · σ√

n

}
is the rejection region. For the test statistic T (X1, . . . , Xn)

T (X1, . . . , Xn) = Xn − µ0
σ

√
n ∼ N (0, 1)

under H0 it holds αn(µ) = α.
The power function (cf. Figure 3.3) can be calculated as follows

Gn(µ) = Pµ

(
|µ0 −Xn| >

z1−α/2√
n

)
= 1−Pµ

(∣∣∣Xn − µ0
∣∣∣ ≤ σz1−α/2√

n

)
= 1−Pµ

(∣∣∣∣∣√n
Xn − µ

σ
+ µ− µ0

σ

√
n

∣∣∣∣∣ ≤ z1−α/2

)

= 1−Pµ

(
−z1−α/2−

µ− µ0
σ

√
n≤
√

n
Xn − µ

σ
≤z1−α/2−

µ− µ0
σ

√
n

)

= 1−Φ
(

z1−α/2 −
µ− µ0

σ

√
n

)
+ Φ

(
−z1−α/2 −

µ− µ0
σ

√
n

)
= Φ

(
−z1−α/2 + µ− µ0

σ

√
n

)
+ Φ

(
−z1−α/2 −

µ− µ0
σ

√
n

)
.
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1

α

µ0

Gn(µ)

µ

Figure 3.3: Performance function of a two-sided test of the expected value
of a normal distribution with known variance.

The “yes-no” decision of tests is mainly viewed as too rough. That is why
it is desirable to obtain a finer measure for the data with respect to the
hypotheses H0 and H1. The so-called p-value solves the problem above and
it is luckily included in most statistic software.

Definition 3.1.8. Let (x1, . . . , xn) be an explicit sample, i.e., a realiza-
tion of (X1, . . . , Xn) and T (X1, . . . , Xn) the test statistic which was used
to construct the decision rule φ. The p-value of the test φ is the smallest
significance level to the value t = T (x1, . . . , xn) which leads to a rejection of
H0.
In the example of a one-sided test with rejection region B1 = (t,∞), the
rule of thumb for p is given by

p = “ P (T (X1, . . . , Xn) ≥ t | H0) ”,

where the quotation marks imply that the term is not a probability in the
classical sense, rather than a conditional probability, which will be defined
more precisely later.

Using the p-value, the rejection rule changes: The hypothesis H0 is rejected
with a significance level α, if α ≥ p. Previously, the significance of a test
(rejection of H0) was determined with respect to the following table:

p-value interpretation

p ≤ 0, 001 very strongly significant
0, 001 < p ≤ 0, 01 strongly significant
0, 01 < p ≤ 0, 05 weakly significant

p > 0, 05 not significant
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Since the p-value can be calculated with ease nowadays, one can use the p-
value directly to decide which significance level is sufficient for the underlying
test.

Remark 3.1.9.

1. The significance level must not depend on p. By doing so, the general
philosophy of testing is jeopardized!

2. The p-value is not a probability rather than a random variable since
it depends on (X1, . . . , Xn). The expression

p = P (T (X1, . . . , Xn) ≥ t | H0) ,

in Definition 3.1.8 for the p-value of an one-sided test with test statis-
tic T can be interpreted as an exceedance probability. The exceedance
probability is defined with respect to t = T (x1, . . . , xn) or more ex-
treme values in order to be close to the hypothesis H1 while repeating
the random experiment under H0:

p = P
(
T (X ′

1, . . . , X ′
n) ≥ T (x1, . . . , xn) | H0

)
,

where (X ′
1, . . . , X ′

n) d= (X1, . . . , Xn). If instead of the explicit sample
(x1, . . . , xn) the random sample (X1, . . . , Xn) is used, then

p = p(X1, . . . , Xn) = P
(
T (X ′

1, . . . , X ′
n) ≥ T (X1, . . . , Xn) | H0, X1, . . . , Xn

)
.

3. For other hypotheses H0, the p-values may look different. For example:

(a) A symmetric two-sided test has an acceptance region

B0 =
[
−t1−α/2, t1−α/2

]
for H0. Therefore

p = P
(
|T (X ′

1, . . . , X ′
n)| ≥ T (X1, . . . Xn) | H0, X1, . . . , Xn

)
.

(b) A left-sided test with B0 = [tα,∞] results in

p = P (T (X ′
1, . . . , X ′

n) ≤ T (X1, . . . Xn)|H0, X1, . . . , Xn).

4. The behavior of the p-value can be evaluated using the following lemma

Lemma 3.1.10. If the distribution function F of T is continuous
and monotonically increasing (e.g., the distribution T is absolutely
continuous with continuous probability density function for example),
then p ∼ U [0, 1].
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Proof The result will be shown for right-sided tests only.

P (p ≤ α | H0) = P
(
F T (T (X1, . . . , Xn)) ≤ α | H0

)
= P (FT (T (X1, . . . , Xn)) ≥ 1− α | H0)
= P (U ≥ 1− α) = 1− (1− α) = α, α ∈ [0, 1],

since FT (T (X1, . . . , Xn)) d= U ∼ U [0, 1], and FT is absolutely continu-
ous.

Exercise 3.1.11. Show that for an arbitrary random variable X with
continuous and monotonically increasing distribution function FX

FX(X) ∼ U [0, 1]

holds.

If the distribution of T with domain {t1, . . . , tn}, ti < tj , is discrete for
i < j, then the distribution of p is also discrete. In particular, it does
not hold that p ∼ U [0, 1]. In this case Fp(x) is a step function which

touches the line y = u at the points uk =
k∑

i=1
P (T (X1, . . . , Xn) = ti),

k = 1, . . . , n (cf. Figure 4).

1

FP

u

y

Figure 3.4: Distribution of p for discrete T

Definition 3.1.12.

1. If the power Gn(·) of a test φ with significance level α satisfies the
inequality

Gn(F ) ≥ α, F ∈ Λ1,

then the test is called unbiased.



CHAPTER 3. TESTING STATISTICAL HYPOTHESES 83

2. Let φ and φ∗ be two tests with significance level α and power functions
Gn(·) and G∗

n(·). The test φ is said to be more powerful than φ∗ if its
power is larger:

Gn(F ) ≥ G∗
n(F ) ∀F ∈ Λ1.

3. The test φ is called consistent, if Gn(F ) −→
n→∞

1 for all F ∈ Λ1.

Remark 3.1.13.

1. The power of a one-sided test is mostly larger than the two-sided
version:

Example 3.1.14. Consider the Gauss-test for the expected value of
the normal distribution if the variance is known. The two-sided test

H0 : µ = µ0 vs. H1 : µ /= µ0.

implies that the power function is given by

Gn(µ) = Φ
(
−z1−α/2 +

√
n

µ− µ0
σ

)
+ Φ

(
−z1−α/2 −

√
n

µ− µ0
σ

)
.

The one-sided test φ∗ of the hypotheses

H∗
0 : µ ≤ µ0 vs. H∗

1 : µ > µ0

attains a power function given by

G∗
n(µ) = Φ

(
−z1−α +

√
n

µ− µ0
σ

)
.

Since Gn(µ) −→
n→∞

1, G∗
n(µ) −→

n→∞
1 both tests are consistent. In the

case above, φ∗ is more powerful than φ. Moreover, both tests are
unbiased (cf. Figure 3.1.14).

2. For testing interval hypotheses H0 : θ ∈ [a, b] vs. H1 : θ /∈ [a, b] with
confidence level α the following methodology can be used: Test

(a) Ha
0 : θ ≥ a vs. Ha

1 : θ < a with significance level α/2,

(b) Hb
0 : θ ≤ b vs. Hb

1 : θ > b with significance level α/2.

H0 is not rejected if Ha
0 and Hb

0 are not rejected. The probability for
a type I error is α. The power of those tests is generally low.

3. As a rule of thumb, it holds that an increase in parameters that need
to be estimated with respect to the test statistic leads to a decrease in
power.
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µ0

α

1
G∗

n

Gn

µ

Figure 3.5: Power function of an one-sided and two-sided test for the ex-
pected value of a normal distribution.

3.2 Non-randomized tests

3.2.1 Parametric significance tests

This section provides examples of tests that can mostly be obtained from
their corresponding confidence intervals for the parameters of distributions.

1. Tests for the parameters of a normal distribution N (µ, σ2)

(a) Test of µ with unknown variance
• Hypotheses: H0 : µ = µ0 vs. H1 : µ /= µ0.
• Test statistic:

T (X1, . . . , Xn) = Xn − µ0
Sn

∼ tn−1 | H0

• Decision rule:

φ(X1, . . . , Xn) = 1, if |T (X1, . . . , Xn)| > tn−1,1−α/2.

(b) Test of σ2 with known µ

• Hypotheses: H0 : σ2 = σ2
0 vs. H1 : σ2 /= σ2

0.
• Test statistic:

T (X1, . . . , Xn) = nS̃2
n

σ2
0
∼ χ2

n | H0

with S̃2
n = 1

n

n∑
i=1

(Xi − µ)2.

• Decision rule:

φ(X1, . . . , Xn)=1, if T (X1, . . . , Xn)/∈
[
χ2

n,α/2, χ2
n,1−α/2

]
.
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• Performance function:

Gn(σ2) = 1− Pσ2

(
χ2

n,α/2 ≤
nS̃2

n

σ2
0
≤ χ2

n,1−α/2

)

= 1− Pσ2

(
χ2

n,α/2σ2
0

σ2 ≤ nS̃2
n

σ2 ≤
χ2

n,1−α/2σ2
0

σ2

)

= 1− Fχ2
n

(
χ2

n,1−α/2
σ2

0
σ2

)
+ Fχ2

n

(
χ2

n,α/2
σ2

0
σ2

)

(c) Test for σ2 with unknown µ

• Hypotheses: H0 : σ2 = σ2
0 vs. H1 : σ2 /= σ2

0.
• Test statistic:

T (X1, . . . , Xn) = (n− 1)S2
n

σ2
0

∼ χ2
n−1 | H0,

where S2
n = 1

n−1
n∑

i=1

(
Xi −Xn

)2
.

• Decision rule:

φ(X1, . . . , Xn)=1, if T (X1, . . . , Xn)/∈
[
χ2

n−1,α/2, χ2
n−1,1−α/2

]
.

Exercise 3.2.1.
i. Find Gn(·) for the one-sided versions of the tests above.
ii. Show that the one-sided tests are unbiased, contrary to

the two-sided tests being biased.

2. Asymptotic tests
Considering asymptotic tests, the test statistic distribution can only
be estimated (for large n). In the same spirit, the confidence level α
is obtained. Its construction is mostly based on limit theorems.
The general methodology is introduced via the Wald test (named after
the statistician Abraham Wald (1902-1980)):

• Let (X1, . . . , Xn) be a random sample and Xi be i.i.d. for i =
1, . . . , n, with Xi ∼ Fθ, θ ∈ Θ ⊆ R.

• H0 : θ = θ0 vs. H1 : θ /= θ0 is tested. Let θ̂n = θ̂(X1, . . . , Xn) be
an asymptotically normal distributed estimator for θ. Let

θ̂n − θ0
σ̂n

d−→
n→∞

Y ∼ N (0, 1) | H0,

where σ̂2
n is a consistent estimator for the variance of θ̂n.

The test statistic is given by

T (X1, . . . , Xn) = θ̂n(X1, . . . , Xn)− θ0
σ̂n

.
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• The decision rule is: H0 is rejected, if

|T (X1, . . . , Xn)| > z1−α/2, where z1−α/2 = Φ−1(1− α/2).

This decision rule should only be applied for large n. The prob-
ability of a type I error is equal to α, since P (|T (X1, . . . , Xn)| >
z1−α/2 | H0) −→

n→∞
α because of the asymptotically normal distri-

bution of T .
The power function of the test is asymptotically given by

lim
n→∞

Gn(θ) = 1− Φ
(

z1−α/2 + θ0 − θ

σ

)
+ Φ

(
−z1−α/2 + θ0 − θ

σ

)
,

where σ̂2
n

P−→
n→∞

σ2.
Special cases of the Wald test are asymptotic tests for the ex-
pected value of Poisson or Bernoulli distributed random samples.

Example 3.2.2.

(a) Bernoulli distribution
Let Xi ∼ Bernoulli(p), p ∈ (0, 1) be i.i.d. random variables.

• Hypotheses: H0 : p = p0 vs. H1 : p /= p0.
• Test statistic:

T (X1, . . . , Xn) =


√

n Xn−p0√
Xn(1−Xn)

, if Xn /= 0, 1,

0, otherwise.

Under H0, T (X1, . . . , Xn) d−→
n→∞

Y ∼ N (0, 1) holds.
(b) Poisson distribution

Let Xi ∼ Poisson(λ), λ > 0 be i.i.d. random variables.
• Hypotheses: H0 : λ = λ0 vs. H1 : λ /= λ0.
• Test statistic:

T (X1, . . . , Xn) =


√

nXn−λ0√
Xn

, if Xn > 0,

0, otherwise.

Under H0, T (X1, . . . , Xn) d−→
n→∞

Y ∼ N(0, 1) holds.

3. Two sample problems
Let

Y1 = (X11, . . . , X1n1), Y2 = (X21, . . . , X2n2), n = max{n1, n2}

be two random samples. Assume that Xij are independent for j =
1, . . . , ni, Xij ∼ Fθi

, i = 1, 2.
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(a) Test for the equality of two expected values for normal
distributed random samples

• with known variance
Let Xij ∼ N (µi, σ2

i ), i = 1, 2, j = 1, . . . , ni. Here, σ2
1, σ2

2 are
known and Xij are independent for all i, j.
The hypotheses are given by H0 : µ1 = µ2 vs. H1 : µ1 /= µ2.
Consider the test statistic

T (Y1, Y2) = X1n1 −X2n2√
σ2

1
n1

+ σ2
2

n2

.

Under H0, T (Y1, Y2) ∼ N (0, 1) holds. The decision rule is
given by: H0 is rejected if |T (Y1, Y2)| > z1−α/2.

• with unknown but equal variances
Let Xij ∼ N (µi, σ2

i ), i = 1, 2, j = 1, . . . , ni. Here, σ2
1, σ2

2 are
unknown, σ2

1 = σ2
2 and Xij are independent for all i, j.

The hypotheses are given by H0 : µ1 = µ2 vs. H1 : µ1 /= µ2.
Consider the test statistic

T (Y1, Y2) = X1n1 −X2n2

Sn1n2

√
n1n2

n1 + n2
,

where S2
n1n2 is given by

1
n1 + n2 − 2 ·

 n1∑
j=1

(
X1j −X1n1

)2
+

n2∑
j=1

(
X2j −X2n2

)2
.

It can be shown that under H0 T (Y1, Y2) ∼ tn1+n2−2 holds.
The decision rule is then given by: H0 is rejected if |T (Y1, Y2)| >
tn1+n2−2,1−α/2.

(b) Test for the equality of the expected value for linked
random samples
Let Y1 = (X11, . . . , X1n) and Y2 = (X21, . . . , X2n), n1 = n2 = n,

Zj = X1j −X2j ∼ N (µ1 − µ2, σ2), j = 1, . . . , n,

be i.i.d. with µi = EXij , i = 1, 2. The hypotheses are given by:
H0 : µ1 = µ2 vs. H1 : µ1 /= µ2 with unknown variance σ2. The
test statistic is given by

T (Z1, . . . , Zn) =
√

n
Zn

Sn
,
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where

S2
n = 1

n− 1

n∑
j=1

(
Zj − Zn

)2
.

Under H0, T (Z1, . . . , Zn) ∼ tn−1 holds. The decision rule is given
by: H0 is rejected, if |T (Z1, . . . , Zn)| > tn−1,1−α/2.

(c) Test for the equality of variances for independent Gaus-
sian random samples
Let Y1 = (X11, . . . , X1n1) and Y2 = (X21, . . . , X2n2) be i.i.d. with
Xij ∼ N (µi, σ2

i ), where µi and σ2
i are both unknown. The hy-

potheses are H0 : σ2
1 = σ2

2 vs. H1 : σ2
1 /= σ2

2. The test statistic is
given by

T (Y1, Y2) =
S2

2n2

S2
1n1

,

where

S2
ini

= 1
ni − 1

n∑
j=1

(
Xij −Xini

)2
, i = 1, 2.

Under H0, T (Y1, Y2) ∼ Fn2−1,n1−1 holds. The decision rule is
then given by: H0 is rejected, if

T (Y1, Y2) /∈
[
Fn2−1,n1−1,α/2, Fn2−1,n1−1,1−α/2

]
.

(d) Asymptotic two sample tests
• for Bernoulli distributed random samples

Let Xij ∼ Bernoulli(pi), j = 1, . . . , ni, pi ∈ (0, 1), i = 1, 2.
The hypotheses are given by H0 : p1 = p2 vs. H1 : p1 /= p2.
The test statistic is then given by

T (Y1, Y2) =


X1n1 −X2n2√

X1n1 (1−X1n1 )
n1

+
X2n2 (1−X2n2 )

n2

0, X1n1 = X2n2 ∈ {0, 1}

Under H0, T (Y1, Y2) d−→
n1,n2→∞

Y ∼ N (0, 1) holds. The de-
cision rule is then given by: H0 is rejected if |T (Y1, Y2)| >
z1−α/2. This is a test with asymptotic confidence level α.

• for Poisson distributed random samples
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Let Xij be independent, Xij ∼ Poisson(λi), λi > 0, i = 1, 2.
The hypotheses are: H0 : λ1 = λ2 vs. H1 : λ1 /= λ2 and the
test statistic is given by:

T (Y1, Y2) =


X1n1 −X2n2√

X1n1
n1

+
X2n2

n2

0, X1n1 = X2n2 = 0

The decision rule is then given by: H0 is rejected, if |T (Y1, Y2)| >
z1−α/2. This is a test with asymptotic confidence level α.

Remark 3.2.3. Asymptotic tests must only be used for large samples,
since for small samples the, asymptotic significance level can not be
assured.

3.3 Randomized test
In this section, classical results of Neyman-Pearson with respect to the ter-
minology of most powerful tests are presented. Here, randomized tests play
a considerably important role.

3.3.1 Fundamentals

Let (X1, . . . , Xn) be a random sample of i.i.d. random variables Xi and
(x1, . . . , xn) a realization of (X1, . . . , Xn). Assume that that the sample
space (B,B) is either given by (Rn,BRn) or (Nn

0 ,BNn
0
) depending on whether

the distribution of Xi, i = 1, . . . , n is either absolutely continuous or discrete.
If the random variables Xi are discrete, the domain is assumed to be N0 =
N ∪ {0}. The domain is equipped with a measure µ, where

µ =

 Lebesgue measure on R, if B = Rn,

Counting measure on N0, if B = Nn
0 .

Thus∫
g(x)µ(dx) =

{∫
R g(x)dx, in the absolutely continuous case,∑

x∈N0 g(x), in the discrete case,

holds. Moreover, assume that Xi ∼ Fθ, θ ∈ Θ ⊆ Rm, i = 1, . . . , n (paramet-
ric model). For Θ = Θ0 ∪Θ1, Θ0 ∩Θ1 = ∅ the hypotheses are H0 : θ ∈ Θ0
vs. H1 : θ ∈ Θ1, which are tested via the randomized test

φ(x) =


1, x ∈ K1,

γ ∈ (0, 1), x ∈ K01, x = (x1, . . . , xn),
0, x ∈ K0.
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If x ∈ K01, then a random variable Y ∼ Bernoulli(γ) can be used in order
to decide whether H0 is rejected (Y = 1) or not (Y = 0).

Definition 3.3.1.

1. The power (or performance) function of a randomized test φ is given
by

Gn(θ) = Gn(φ, θ) = Eθ φ(X1, . . . , Xn), θ ∈ Θ.

2. The test φ has the significance level α ∈ [0, 1] if Gn(φ, θ) ≤ α, for all
θ ∈ Θ0. The number

sup
θ∈Θ0

Gn(φ, θ)

is called scope of the test φ. It obviously holds that the scope of an α
confidence level test is smaller than or equal to α.

3. Let Ψ(α) be the set of all test with confidence level α. The test
φ1 ∈ Ψ(α) is called (uniformly) more powerful than the test φ2 ∈ Ψ(α)
if Gn(φ1, θ) ≥ Gn(φ2, θ), θ ∈ Θ1, i.e., if φ1 has a larger power.

4. A test φ∗ ∈ Ψ(α) is called (uniform) most powerful test in Ψ(α) if

Gn(φ∗, θ) ≥ Gn(φ, θ), for all tests φ ∈ Ψ(α), θ ∈ Θ1.

Remark 3.3.2.

1. Definition 3.3.1 1. is a generalization of Definition 3.1.4, since for
φ(x) = I(x ∈ K1),

Gn(φ, θ) = Eθ φ(X1, . . . , Xn)
= Pθ ((X1, . . . , Xn) ∈ K1)
= Pθ (reject H0) , θ ∈ Θ

holds.

2. A most powerful test φ∗ in Ψ(α) does not always exist. It only exists
under certain conditions on Pθ, Θ0, Θ1 and Ψ(α).

3.3.2 Neyman-Pearson test for simple hypotheses

In this section, simple hypotheses of the form

H0 : θ = θ0 vs. H1 : θ = θ1, (3.1)

where θ0, θ1 ∈ Θ, θ1 /= θ0 are considered.



CHAPTER 3. TESTING STATISTICAL HYPOTHESES 91

Therefore, Θ0 = {θ0}, Θ1 = {θ1}. Assume that Fθi
has a probability density

function gi(x) with respect to µ for i = 0, 1. From now on the notation P0 =
Pθ0 , P1 = Pθ1 , E0 = Eθ0 , E1 = Eθ1 will be used. Let fi(x) = ∏n

j=1 gi(xj),
x = (x1, . . . , xn), i = 0, 1 be the density of the random sample under H0
resp. H1.

Definition 3.3.3. A Neyman-Pearson test (NP test) of simple hypotheses
as in (3.1) is given by the rule

φ(x) = φK(x) =


1, if f1(x) > Kf0(x),
γ, if f1(x) = Kf0(x),
0, if f1(x) < Kf0(x),

(3.2)

for constants K > 0 and γ ∈ [0, 1].

Remark 3.3.4.

1. Sometimes K = K(x) and γ = γ(x) are seen as functions of x and not
as constants.

2. The rejection region of the Neyman-Pearson tests φK is

K1 = {x ∈ B : f1(x) > Kf0(x)}.

3. The scope of the Neyman-Pearson tests φK is given by

E0 φK(X1, . . . , Xn) = P0
(
f1(X1, . . . , Xn)

> Kf0(X1, . . . Xn)
)

+ γP0
(
f1(X1, . . . , Xn) = Kf0(X1, . . . , Xn)

)
.

4. Definition 3.3.3 can be given equivalently by defining the test statistic

T (x) =


f1(x)
f0(x) , x ∈ B : f0(x) > 0,

∞, x ∈ B : f0(x) = 0.

Then the new test given by

φ̃K(x) =


1, if T (x) > K,

γ, if T (x) = K,

0, if T (x) < K,

can be introduced, which is for P0- and P1-almost all x ∈ B equivalent
to φk. φK(x) = φ̃K(x) ∀x ∈ B \C holds, where C = {x ∈ B : f0(x) =
f1(x) = 0} has P0- resp. P1- measure zero.
Using this new formulation, the scope of φ resp. φ̃K is given by

E0 φ̃K = P0(T (X1, . . . , Xn) > K) + γ · P0 (T (X1, . . . , Xn) = K) .
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Theorem 3.3.5. (Optimality theorem) Let φK be a Neyman-Pearson
test for a K > 0 and γ ∈ [0, 1], then φK is the most powerful test with
confidence level α = E0 φK of its scope.

Proof Let φ ∈ Ψ(α), i.e., E0 (φ(X1, . . . , Xn)) ≤ α. In order to show that
φK is more powerful than φ, it is sufficient to show for simple hypotheses
H0 and H1, that E1 φK(X1, . . . , Xn) ≥ E1 φ(X1, . . . , Xn). Define the sets:

M+ := {x ∈ B : φK(x) > φ(x)}
M− := {x ∈ B : φK(x) < φ(x)}
M= := {x ∈ B : φK(x) = φ(x)}

It obviously holds that

x ∈M+ ⇒ φK(x) > 0⇒ f1(x) ≥ Kf0(x),
x ∈M− ⇒ φK(x) < 1⇒ f1(x) ≤ Kf0(x)
B = M+ ∪M− ∪M=.

Hence

E1 (φK(X1, . . . , Xn)− φ(X1, . . . , Xn)) =
∫

B
(φK(x)− φ(x))f1(x)µ(dx)

=
(∫

M+
+
∫

M−
+
∫

M=

)
(φK(x)− φ(x))f1(x)µ(dx)

≥
∫

M+
(φK(x)− φ(x))Kf0(x)µ(dx)

+
∫

M−
(φK(x)− φ(x))Kf0(x)µ(dx)

=
∫

B
(φK(x)− φ(x))Kf0(x)µ(dx)

= K

(
E0 φK(X1, . . . , Xn)− E0 φ(X1, . . . , Xn)

)
≥ K(α− α) = 0,

since both tests obtain confidence level α.

Remark 3.3.6.

1. As γ does not appear in the proof, the same result holds for γ(x) /=
const.

2. The proof implies the inequality given by∫
B

(φK(x)− φ(x)) (f1(x)−Kf0(x)) µ(dx) ≥ 0
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if K is constant, resp.

E1 (φK(X1, . . . , Xn)− φ(X1, . . . , Xn)) ≥∫
B

(φK(x)− φ(x)) K(x)f0(x)µ(dx)

in the general case.

Theorem 3.3.7. (Fundamental lemma of Neyman-Pearson)

1. For an arbitrary α ∈ (0, 1), there exists a Neyman-Pearson test φK

with scope α, which is by Theorem 3.3.5 the most powerful α confi-
dence level test.

2. If φ is also a most powerful test with confidence level α, then φ(x) =
φK(x) for µ-almost all x ∈ K0 ∪K1 = {x ∈ B : f1(x) /= Kf0(x)} and
φK of part 1.

Proof 1. For φK(x) it holds that

φK(x) =


1, if x ∈ K1 = {x : f1(x) > K · f0(x)} ,

γ, if x ∈ K01 = {x : f1(x) = K · f0(x)} ,

0, if x ∈ K0 = {x : f1(x) < K · f0(x)} .

The scope of φK is given by

P0 (T (X1, . . . , Xn) > K) + γP0 (T (X1, . . . , Xn) = K) = α, (3.3)

where

T (x1, . . . , xn) =


f1(x1,...,xn)
f0(x1,...,xn) , if f0(x1, . . . , xn) > 0,

∞, otherwise.

The goal is to find a K > 0 and a γ ∈ [0, 1], such that equation
(3.3) holds. Let F̃0(x) = P0(T (X1, . . . , Xn) ≤ x), x ∈ R be the dis-
tribution function of T . Since T ≥ 0, it holds that F̃0(x) = 0, if
x < 0. Furthermore, P0(T (X1, . . . , Xn) < ∞) = 1, which means that
F̃ −1(α) ∈ [0,∞), α ∈ (0, 1). Equation (3.3) can then be rewritten as

1− F̃0(K) + γ
(
F̃0(K)− F̃0(K−)

)
= α, (3.4)

where F̃0(K−) = lim
x↗K

F̃0(x).

Let K = F̃ −1
0 (1− α), then:



CHAPTER 3. TESTING STATISTICAL HYPOTHESES 94

(a) If K is a point of continuity of F̃0, then Equation (3.4) is satisfied
for all γ ∈ [0, 1], for example for γ = 0.

(b) If K is not a point of continuity of F̃0, then F̃0(K)−F̃0(K−) > 0,
which implies that

γ = α− 1 + F̃0(K)
F̃0(K)− F̃0(K−)

.

Therefore, a Neyman-Pearson test with confidence level α exists.

2. Define M /= := {x ∈ B : φ(x) /= φK(x)}. It has to be shown that

µ
(
(K0 ∪K1) ∩M /=

)
= 0.

Consider

E1 φ(X1, . . . , Xn)− E1 φK(X1, . . . , Xn) = 0 (φ and φK are most powerful tests)
E0 φ(X1, . . . , Xn)− E0 φK(X1, . . . , Xn) ≤ 0 (φ and φK are α-tests

with scope φK = α)

⇒
∫

B
(φ− φK) · (f1 −K · f0) dµ ≥ 0.

In Remark 3.3.6 it has been shown, that∫
B

(φ− φK)(f1 −K · f0)dµ ≤ 0

⇒
∫

B
(φ− φK)(f1 −K · f0)dµ = 0 =

∫
M /= ∩ (K0 ∪ K1)

(φ− φK)(f1 −K · f0)dµ.

µ(M /=∩(K0∪K1)) = 0 holds if the integrand (φ−φK)(f1−K ·f0) > 0
on (K0 ∪K1) ∩M /=. We need to show that

(φK − φ)(f1 −Kf0) > 0 für x ∈ (K0 ∪K1) ∩M /=. (3.5)

Now,

f1 −Kf0 > 0⇒ φK − φ > 0,

f1 −Kf0 < 0⇒ φK − φ < 0,

holds, since

f1(x) > Kf0(x)⇒ φK(x) = 1
and with φ(x) < 1 we get φK(x)− φ(x) > 0 on M /=.

f1(x) < Kf0(x)⇒ φK(x) = 0
and with φ(x) > 0 we get φK(x)− φ(x) < 0 on M /=.
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Thus inequality (3.5) holds and finally

µ
(
(K0 ∪K1) ∩M /=

)
= 0.

Remark 3.3.8. If φ and φK are most powerful α-tests, then they are P0-
resp. P1- almost surely equal.

Example 3.3.9. (Neyman-Pearson test for the parameter of the
Poisson distribution)
Let (X1, . . . , Xn) be a random sample with Xi ∼ Poisson(λ), λ > 0, where
Xi are i.i.d. for i = 1, . . . , n. The hypotheses H0 : λ = λ0 vs. H1 : λ = λ1
need to be tested. Here

gi(x) = e−λi
λx

i

x! , x ∈ N0, i = 0, 1,

fi(x) = fi(x1, . . . , xn) =
n∏

j=1
gi(xj) =

n∏
j=1

e−λi
λ

xj

i

xj ! = e−nλi · λ

∑n

j=1 xj

i

(x1! · . . . · xn!) , i = 0, 1.

The Neyman-Pearson test statistic is given by

T (x1, . . . , xn) =


f1(x)
f0(x) = e−n(λ1−λ0) · (λ1/λ0)

∑n

j=1 xj , if x1, . . . , xn ∈ N0,

∞, otherwise.

The Neyman-Pearson decision rule is given by

φK(x1, . . . , xn) =


1, if T (x1, . . . , xn) > K,

γ, if T (x1, . . . , xn) = K,

0, if T (x1, . . . , xn) < K.

Choose K > 0, γ ∈ [0, 1], such that φK has scope α. In order to do so, solve

α = P0(T (X1, . . . , Xn) > K) + γP0(T (X1, . . . , Xn) = K)

for γ and K.

P0(T (X1, . . . , Xn) > K) = P0(log T (X1, . . . , Xn) > log K)

= P0

−n(λ1 − λ0) + log
(

λ1
λ0

) n∑
j=1

Xj > log K


= P0

 n∑
j=1

Xj > AK

 ,
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where
AK :=

⌊
log K + n · (λ1 − λ0)

log λ1
λ0

⌋
,

if for example λ1 > λ0. If λ1 < λ0 then replace > with < in the argument
above.
Due to the stability of the Poisson distribution

n∑
j=1

Xj ∼ Poisson(nλ0),

holds under H0. Thus choose K as the smallest nonnegative number with

P0

 n∑
j=1

Xj > AK

 ≤ α,

and set

γ =
α− P0(∑n

j=1 Xj > AK)
P0(∑n

j=1 Xj = AK) ,

where

P0

 n∑
j=1

Xj > AK

 = 1−
AK∑
j=0

e−λ0n (λ0n)j

j! ,

P0

 n∑
j=1

Xj = AK

 = e−λ0n (λ0n)AK

AK ! .

Hence, the parameters K and γ have been found and a Neyman-Pearson
test φK has been constructed.

3.3.3 One-sided Neyman-Pearson tests

So far Neyman-Pearson tests for simple hypotheses like Hi : θ = θi, i = 0, 1
have been considered. This section aims to introduce one-sided Neyman-
Pearson tests for hypotheses of the form H0 : θ ≤ θ0 vs. H1 : θ > θ0.
In an initial step, a test for the following hypotheses is constructed: Let
(X1, . . . , Xn) be a random sample, Xi i.i.d. with

Xi ∼ Fθ ∈ Λ = {Fθ : θ ∈ Θ},

where Θ ⊂ R is open and Λ uniquely parameterized, i.e.,

θ /= θ′ ⇒ Fθ /= Fθ′ .
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Furthermore, assume that Fθ has a density gθ w.r.t. the Lebesgue measure
(resp. counting measure) µ on R (resp. N0). Then

fθ(x) =
n∏

j=1
gθ(xj), x = (x1, . . . , xn)

is a density of (X1, . . . , Xn) with respect to µn on B.

Definition 3.3.10. A distribution on B with density fθ is a member of the
class of distributions with monotone likelihood ratio in T , if for all θ < θ′

exist a monotonically increasing function h : R × Θ2 → R ∪ ∞ on Rand a
statistic T : B → R with the property

fθ′(x)
fθ(x) = h(T (x), θ, θ′),

where

h(T (x), θ, θ′) =∞, for all x ∈ B : fθ(x) = 0 and fθ′(x) > 0.

The case fθ(x) = fθ′(x) = 0 occurs with probability PΘ- resp. PΘ′ zero.

Definition 3.3.11. Let Qθ be a distribution on (B,B) with probability den-
sity function fθ w.r.t. µ. Qθ is an element of the one-parametric exponential
family (θ ∈ Θ ⊂ R open), if the density is given by:

fθ(x) = exp {c(θ) · T (x) + a(θ)} · l(x), x = (x1, . . . , xn) ∈ B,

where c(θ) is a monotonically increasing function and Varθ T (X1, . . . , Xn) >
0, θ ∈ Θ.

Lemma 3.3.12. Distributions of the one-parametric exponential family
have a monotone likelihood ratio.

Proof Let Qθ be in the one-parametric exponential family with probability
density function

fθ(x) = exp {c(θ) · T (x) + a(θ)} · l(x).

For θ < θ′

fθ′(x)
fθ(x) = exp

{
(c(θ′)− c(θ)) · T (x) + a(θ′)− a(θ)

}
is monotone with respect to T , since c(θ′)− c(θ) > 0 because of the mono-
tonicity of c(θ). Thus fθ has a monotone likelihood ratio.

Example 3.3.13.
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1. Normal distributed random samples
Let Xi ∼ N (µ, σ2

0), i = 1, . . . , n be i.i.d. random variables, with
unknown µ ∈ R and known variance σ2

0 > 0 (here µ denotes the
expected value of Xi and not a measure on R). The probability density
function of the vector X = (X1, . . . , Xn)⊤ is given by

fµ(x) =
n∏

i=1
gµ(xi) =

n∏
i=1

1√
2πσ2

0

e
− (xi−µ)2

2σ2
0

= 1
(2πσ2

0)n/2 exp
{
− 1

2σ2
0

n∑
i=1

(xi − µ)2
}

= 1
(2πσ2

0)n/2 exp
{
− 1

2σ2
0

(
n∑

i=1
x2

i − 2µ
n∑

i=1
xi + µ2n

)}

= exp
( µ

σ2
0︸︷︷︸

c(µ)

·
n∑

i=1
xi︸ ︷︷ ︸

T (x)

− µ2n

2σ2
0︸︷︷︸

a(µ)

)
· 1

(2πσ2
0)n/2 exp

−
n∑

i=1
x2

i

2σ2
0


︸ ︷︷ ︸

l(x)

.

Thus N (µ, σ2
0) is a member of the one-parametric exponential family

with c(µ) = µ
σ2

0
and T (x) =

n∑
i=1

xi.

2. Binomial distributed random samples
Let Xi ∼ Bin(k, p) be i.i.d., i = 1, . . . , n. The parameter p ∈ (0, 1)
is assumed to be unknown. The probability mass function of X =
(X1, . . . , Xn)⊤ is given by

fp(x) = Pp (Xi = xi, i = 1, . . . , n)

=
n∏

i=1

(
k

xi

)
pxi(1− p)k−xi = p

n∑
i=1

xi

· (1− p)nk

(1− p)

n∑
i=1

xi

·
n∏

i=1

(
k

xi

)

= exp
{( n∑

i=1
xi︸ ︷︷ ︸

T (x)

)
· log

(
p

1− p

)
︸ ︷︷ ︸

c(p)

+ nk · log(1− p)︸ ︷︷ ︸
a(p)

}
·

n∏
i=1

(
k

xi

)
︸ ︷︷ ︸

l(x)

,

thus Bin(n, p) is a member of the one-parametric exponential family
with

c(p) = log
(

p

1− p

)
and

T (x) =
n∑

i=1
xi.
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Lemma 3.3.14. If φK is the Neyman-Pearson test of the hypotheses H0 :
θ = θ0 vs. H1 : θ = θ1, then

µn(K0 ∪K1) = µn({x ∈ B : f1(x) /= Kf0(x)}) > 0.

Proof Since θ0 /= θ1 and because of the unique parametrization it holds
that f0 /= f1 on a set with µ-measure greater than 0.
Assume that µ(K0∪K1) = 0. Then f1(x) = K ·f0(x) µ-almost surely, which
means that

1 =
∫

B
f1(x)dx = K ·

∫
B

f0(x)dx.

This yields K = 1 and f1(x) = f0(x) µ-almost surely, which is a contradic-
tion to the unique parametrization.

Assume that (X1, . . . , Xn) is an i.i.d. random sample, where Xi have the
density gθ, i = 1, . . . , n and (X1, . . . , Xn) has the density fθ(x) = ∏n

i=1 gθ(xi)
from the class of distributions with monotone likelihood ratio and a statistic
T (x1, . . . , xn).
Consider the hypotheses H0 : θ ≤ θ0 vs. H1 : θ > θ0 and the Neyman-
Pearson test:

φ∗
K∗(x) =


1, if T (x) > K∗,

γ∗, if T (x) = K∗,

0, if T (x) < K∗

(3.6)

for K∗ ∈ R and γ∗ ∈ [0, 1]. The power function of φ∗
K∗ at θ0 is given by

Gn(θ0) = E0 φ∗
K∗ = P0 (T (X1, . . . , Xn) > K∗) + γ∗ · P0 (T (X1, . . . , Xn) = K∗) .

Theorem 3.3.15.

1. If α = E0 φ∗
K∗(X1, . . . , Xn) > 0, then the defined test is a most pow-

erful test of the one-sided hypotheses H0 vs. H1 with confidence level
α.

2. For every confidence level α ∈ (0, 1) exists a K∗ ∈ R and γ∗ ∈ [0, 1],
such that φ∗

K∗ is a most powerful test with scope α.

3. The power function Gn(θ) of φ∗
K∗(θ) is monotonically nondecreasing

in θ. If 0 < Gn(θ) < 1, then Gn is even monotonically increasing.

Proof
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1. Assume θ1 > θ0 and consider the simple hypotheses H ′
0 : θ = θ0 and

H ′
1 : θ = θ1. Let

φK(x) =


1, f1(x) > Kf0(x),
γ, f1(x) = Kf0(x),
0, f1(x) < Kf0(x),

be the Neyman-Pearson test for H ′
0, H ′

1 with K > 0. Since fθ has the
monotone likelihood ratio with statistic T , i.e.,

f1(x)
f0(x) = h(T (x), θ0, θ1),

there exists K > 0, such thatx : f1(x)/f0(x)
> K

< K

 ⊂
T (x)

> K∗

< K∗

 with K = h(K∗, θ0, θ1).

φK is a most powerful Neyman-Pearson test with confidence level α =
E0 φK = E0 φ∗

K∗ .
α > 0 implies that K <∞, since K =∞ would yield

0 < α = E0 φK ≤ P0 (T (X1, . . . , Xn) ≥ K∗)

≤ P0

(
f1(X1, . . . , Xn)
f0(X1, . . . , Xn) =∞

)
= P0 (f1(X1, . . . , Xn) > 0, f0(X1, . . . , Xn) = 0)

=
∫

B
I (f1(x) > 0, f0(x) = 0) · f0(x)µ(dx)

= 0.

For the test φ∗
K∗ in (3.6) it holds that

φ∗
K∗(x) =


1, if f1(x)/f0(x) > K,

γ∗(x), if f1(x)/f0(x) = K,

0, if f1(x)/f0(x) < K,

where γ∗(x) ∈ {γ∗, 0, 1}. Thus φ∗
K∗ is a most powerful Neyman-

Pearson test for H ′
0 vs. H ′

1 (cf. Remark 3.3.4, 1. and Remark 3.3.6)
for an arbitrary θ1 > θ0. That is why φ∗

K∗ is a most powerful Neyman-
Pearson test for H ′′

0 : θ = θ0 vs. H ′′
1 : θ > θ0.

The same assertion is obtained by part 3. of the theorem for H0 : θ ≤
θ0 vs. H1 : θ > θ0, since then Gn(θ) ≤ Gn(θ0) = α for all θ < θ0.
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2. See proof of Theorem 3.3.7, 1.).

3. It has to be shown that Gn(θ) is monotone. In order to do so, let θ1 <
θ2 and show that α1 = Gn(θ1) ≤ Gn(θ2). Consider the new, simple
hypotheses H ′′

0 : θ = θ1 vs. H ′′
1 : θ = θ2. The test φ∗

K∗ can similarly
to 1. be stated as a Neyman-Pearson test (for the hypotheses H ′′

0 and
H ′′

1 ), which is a most powerful test with confidence level α1. Consider
another constant test φ(x) = α1. Then α1 = Eθ2 φ ≤ Eθ2 φ∗

K∗ =
Gn(θ2). This implies that Gn(θ1) ≤ Gn(θ2).
It is now to be shown that for Gn(θ) ∈ (0, 1) it holds that Gn(θ1) <
Gn(θ2). Assume that α1 = Gn(θ1) = Gn(θ2) and θ1 < θ2 for α1 ∈
(0, 1). Then φ(x) = α1 is also a most powerful test for H ′′

0 and H ′′
1 .

Theorem 3.3.7, 2. implies

µn({x ∈ K0 ∪K1 : φ(x)︸ ︷︷ ︸
=α1

/= φ∗
K∗(x)}) = 0

which is a contradiction to the construction of the test φ∗
K∗ . This test

can not be equal to α1 ∈ (0, 1) on K0 ∪K1.

Remark 3.3.16.

1. Theorem 3.3.15 can be applied to the Neyman-Pearson tests of the
one-sided hypotheses

H0 : θ ≥ θ0 vs. H1 : θ < θ0,

with the corresponding difference

θ 7→ −θ

T 7→ −T.

Thus the most powerful α test also exists in that case.

2. It can be shown that the power function Gn(φ∗
K∗ , θ) of the most pow-

erful Neyman-Pearson tests on Θ0 = (−∞, θ0) attains the following
minimization property:

Gn(φ∗
K∗ , θ) ≤ Gn(φ, θ) ∀φ ∈ Ψ(α), θ ≤ θ0.

Example 3.3.17. Consider a normally distributed random sample (X1, . . . , Xn)
of i.i.d. random variables Xi with Xi ∼ N (µ, σ2

0) and known σ2
0 > 0. The

hypotheses

H0 : µ ≤ µ0 vs. H1 : µ > µ0
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are tested. Example 3.1.7 provides the test statistic

T (X1, . . . , Xn) =
√

n
Xn − µ0

σ0
,

where under H0 it holds that T (X1, . . . , Xn) ∼ N (0, 1). H0 is rejected, if

T (X1, . . . , Xn) > z1−α, with α ∈ (0, 1).

It will be shown that this test is the most powerful Neyman-Pearson test
with confidence level α. Example 3.3.13 implies that the probability density
function fn of (X1, . . . , Xn) is a member of the one-parametric exponential
family with

T̃ (X1, . . . , Xn) =
n∑

i=1
Xi.

Then fµ of (x1, . . . , xn) is also a member of the one-parametric exponential
family with respect to the statistic

T (X1, . . . , Xn) =
√

n
Xn − µ

σ0
,

since it holds that

fµ(x) = exp
( µ

σ2
0︸︷︷︸

c̃(µ)

·
n∑

i=1
xi︸ ︷︷ ︸

T̃

−µ2n

2σ2
0︸ ︷︷ ︸

ã(µ)

)
· l(x)

= exp
( µ
√

n

σ0︸ ︷︷ ︸
c(µ)

·
√

n
xn − µ

σ0︸ ︷︷ ︸
T

+ µ2n

2σ2
0︸︷︷︸

a(µ)

)
· l(x).

The statistic T can be used in the construction of the Neyman-Pearson tests
(cf. Equation (3.6)):

φ∗
K∗(x) =


1, if T (x) > z1−α,

0, if T (x) = z1−α,

0, if T (x) < z1−α

(with K∗ = z1−α and γ∗ = 0). Theorem 3.3.15 implies that this test is
the most powerful Neyman-Pearson test with confidence level α for our
hypotheses:

Gn(φK∗ , µ0) = P0 (T (X1, . . . , Xn) > z1−α) + 0 · P0 (T (X1, . . . , Xn) ≤ z1−α)
= 1− Φ(z1−α) = 1− (1− α) = α.
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3.3.4 Unbiased two-sided tests

Let (X1, . . . , Xn) be a random sample of i.i.d. random variables with prob-
ability density function

fθ(x) =
n∏

i=1
gθ(xi).

In the following, a two-sided test of the hypotheses

H0 : θ = θ0 vs. H1 : θ /= θ0

is considered. There cannot be a most powerful test φ with confidence level
α for all α ∈ (0, 1). Assume that φ is the most powerful with confidence level
α for H0 vs. H1, then φ would be the most powerful test for the hypotheses

1. H ′
0 : θ = θ0 vs. H ′

1 : θ > θ0

2. H ′′
0 : θ = θ0 vs. H ′′

1 : θ < θ0.

By Theorem 3.3.15, 3. the power function would then be given by

1. Gn(φ, θ) < α on θ < θ0, resp.

2. Gn(φ, θ) > α on θ < θ0,

which is a contradiction!
That is why the class of all possible tests is reduced to the class of unbiased
tests (cf. Definition 3.1.12). The test φ is unbiased if and only if

Gn(φ, θ) ≤ α for θ ∈ Θ0 and
Gn(φ, θ) ≥ α for θ ∈ Θ1.

Example 3.3.18.

1. φ(x) ≡ α is unbiased.

2. The two-sided Gauss test is unbiased, (cf. Example 3.1.7): Gn(φ, µ) ≥
α for all µ ∈ R.

Assume that Xi are i.i.d. The probability density function fθ of (X1, . . . , Xn)
is assumed to be a member of the one-parametric exponential family

fθ(x) = exp {c(θ) · T (x) + a(θ)} · l(x), (3.7)

where c(θ) and a(θ) are continuously differentiable on Θ with

c′(θ) > 0 and Varθ T (X1, . . . , Xn) > 0

for all θ ∈ Θ. Let fθ(x) be continuous in (x, θ) on B ×Θ.



CHAPTER 3. TESTING STATISTICAL HYPOTHESES 104

Exercise 3.3.19. Show that the following relation holds:

a′(θ) = −c′(θ)Eθ T (X1, . . . , Xn).

Lemma 3.3.20. Let φ be an unbiased test with confidence level α for

H0 : θ = θ0 vs. H1 : θ /= θ0.

Then

1. α = E0 φ(X1, . . . , Xn) = Gn(φ, θ0),

2. E0 [T (X1, . . . , Xn)φ(X1, . . . , Xn)] = α · E0 T (X1, . . . , Xn),

Proof

1. The power function of φ is given by

Gn(φ, θ) =
∫

B
φ(x)fθ(x)µn(dx).

Since fθ is in the one-parametric exponential family, Gn(φ, θ) is differ-
entiable (under the integral) with respect to θ and hence continuous
in θ. Since φ is unbiased, it holds that

Gn(φ, θ0) ≤ α, Gn(φ, θ) ≥ α, θ /= θ0

Thus Gn(φ, θ0) = α and θ0 minimizes Gn, which proves 1.

2. Since θ0 minimizes Gn, it holds that

0 = G′
n(φ, θ0) =

∫
B

φ(x)(c′(θ0)T (x) + a′(θ0))f0(x)µ(dx)

= c′(θ0) · E0 [φ(X1, . . . Xn)T (X1, . . . , Xn)] + a′(θ0) ·Gn(φ, θ0)
= c′(θ0) · E0 [φ(X1, . . . , Xn)T (X1, . . . , Xn)] + αa′(θ0)
(Exerc. 3.3.19)= c′(θ0) (E0 (φ · T )− αE0 T )

Therefore, E0 (φT ) = αE0 T .

In the following paragraph, a modification of the Neyman-Pearson test for
simple hypotheses of the form

H0 : θ = θ0 vs. H ′
1 : θ = θ1, θ1 /= θ0,

is introduced. For λ, K ∈ R, γ : B → [0, 1], define

φK,λ(x) =


1, if f1(x) > (K + λT (x))f0(x),

γ(x), if f1(x) = (K + λT (x))f0(x),
0, if f1(x) < (K + λT (x))f0(x),

(3.8)
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where T (x) is the statistic in (3.7).
Let Ψ̃(α) be the class of all tests that satisfy the conditions 1. and 2. of
Lemma 3.3.20. Lemma 3.3.20 implies that the set of unbiased tests with
confidence level α is a subset of Ψ̃(α).

Theorem 3.3.21. The modified Neyman-Pearson test φK,λ is the most
powerful α test in Ψ̃(α) for the hypotheses H0 vs. H ′

1 with confidence level
α = E0 φK,λ, if φK,λ ∈ Ψ̃(α).

Proof It has to be shown that E1 φK,λ ≥ E1 φ for all φ ∈ Ψ̃(α), resp.
E1 (φK,λ − φ) ≥ 0. It holds that

E1 (φK,λ − φ) =
∫

B
(φK,λ(x)− φ(x))f1(x)µ(dx)

(Rem. 3.3.6, 2.))
≥

∫
B

(φK,λ(x)− φ(x))(K + λT (x))f0(x)µ(dx)

= K
(
E0 φK,λ︸ ︷︷ ︸

=α

−E0 φ︸ ︷︷ ︸
=α

)
+ λ

(
E0 (φK,λ · T )︸ ︷︷ ︸

αE0 T

−E0 (φ · T )︸ ︷︷ ︸
=α·E0 T

)
= 0,

since φ, φK,λ ∈ Ψ̃(α).

Consider the following decision rule, which will later be used in testing two-
sided hypotheses given by

H0 : θ = θ0 vs. H1 : θ /= θ0,

φc(x) =



1, if T (x) /∈ (c1, c2),
γ1, if T (x) = c1,

γ2, if T (x) = c2,

0, if T (x) ∈ (c1, c2),

(3.9)

for c1 ≤ c2 ∈ R, γ1, γ2 ∈ [0, 1] and the statistic T (x), x = (x1, . . . , xn) ∈ B,
which is in the density (3.7). In the following it is shown that φc can be
rewritten as a Neyman-Pearson test.
For the density

fθ(x) = exp{c(θ)T (x) + a(θ)} · l(x)

assume that l(x) > 0, c′(x) > 0, and a′(x) exists for θ ∈ Θ.
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Lemma 3.3.22. Let (X1, . . . , Xn) be a random sample of i.i.d. random
variables with probability density function fθ(x), x ∈ B, which is a member
of the one-parametric exponential family. Let T (x) be the respective statistic
in the exponent of the density fθ. For arbitrary real numbers c1 ≤ c2,
γ1, γ2 ∈ [0, 1] and parameters θ0, θ1 ∈ Θ : θ0 /= θ1 the test φc in (3.9) can be
rewritten as a modified Neyman-Pearson test φK,λ as in (3.8) with K, λ ∈ R,
γ(x) ∈ [0, 1].

Proof If the notation

fθi
(x) = fi(x), i = 0, 1,

is used then
f1(x)
f0(x) = exp

{
(c(θ1)− c(θ0))︸ ︷︷ ︸

c

T (x) + a(θ1)− a(θ0)︸ ︷︷ ︸
a

}
,

and therefore

{x ∈ B : f1(x) > (K + λT (x)) f0(x)} = {x ∈ B : exp (cT (x) + a) > K + λT (x)} .

Can one find such K and λ in R for the line K + λt, t ∈ R, which
intersects or touches the convex curve exp(ct + a) exactly in c1 and c2 (if
c1 /= c2) or in t = c1 (if c1 = c2) resp.? As it turns out, such K and λ can
always be found (cf. Figure 3.6).

c1 c2

y = K + λt

y = ect+a

Figure 3.6: Intersection of a line with a convex curve

Let γ(x) = γi for {x ∈ B : T (x) = ci}. Then

{x : exp (cT (x) + a) > K + λT (x)} = {x : T (x) /∈ [c1, c2]}

and

{x : exp (cT (x) + a) < K + λT (x)} = {x : T (x) ∈ (c1, c2)} .
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Remark 3.3.23.

1. The inversion of Lemma 3.3.22 does not hold, since for given curves
y = K +λt and y = exp(ct+a) the intersections c1 and c2 do not have
to exist. The line can be underneath the curve y = exp(ct + a).

2. The test φc does not explicitly use the parameters θ0 and θ1, which
makes it different from φK,λ, since it uses the densities f0 and f1.

In the following, the fundamental theorem for two-sided tests for the
hypotheses

H0 : θ = θ0 vs. H1 : θ /= θ0

will be presented.

Theorem 3.3.24. Fundamental theorem for two-sided tests
Under the conditions of Lemma 3.3.22, let φc be a test as in (3.9), for which
φc ∈ Ψ̃(α) holds. Then φc is the most powerful unbiased test with confidence
level α (and thus most powerful test in Ψ̃(α)) for the hypotheses

H0 : θ = θ0 vs. H1 : θ /= θ0.

Proof Let θ1 ∈ Θ, θ1 /= θ0 be arbitrary. By Lemma 3.3.22, φc is a modified
Neyman-Pearson test φK,λ for a specific choice of K and λ ∈ R, but φK,λ

is a most powerful test in Ψ̃(α) by Theorem 3.3.21 for H0 : θ = θ0 vs. H ′
1 :

θ = θ1. Since φc does not depend on θ1, it is the most powerful test in Ψ̃(α)
for H1 : θ /= θ0. Since unbiased tests with confidence level α are in Ψ̃(α) it
only has to be shown that φc is unbiased. φc is the most powerful test and
thus not worse than the constant unbiased test φ = α, i.e.

Gn(φc, θ) ≥ Gn(φ, θ) = α, θ /= θ0.

Thus φc is also unbiased.

Remark 3.3.25. It has been shown that φc is the most powerful test within
its scope. It should still be shown that for arbitrary α ∈ (0, 1) constants
c1, c2, γ1, γ2 can be found, which satisfy E0 φc = α. The proof is rather
technical and will thus be omitted here. The following example shows how
c1, c2, γ1, γ2 have to be chosen.

Example 3.3.26. Two-sided-Gauss-test
Example 3.1.7 considers the following test for the expectation of a normally
distributed random sample X = (X1, . . . , Xn) with i.i.d. Xi and Xi ∼
N (µ, σ2

0) where σ2
0 is known. The hypotheses

H0 : µ = µ0 vs. H1 : µ /= µ0
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are tested. The test φ(x) is given by

φ(x) = I
(
x ∈ Rn : |T (x)| > z1−α/2

)
,

where

T (x) =
√

n
xn − µ0

σ0
.

It has to be shown that φ is the most powerful test with confidence level
α in Ψ̃(α) (and thus the most powerful unbiased test). By Theorem 3.3.24
it has to be shown that φ can be rewritten as φc with (3.9), since the n-
dimensional Normal distribution with probability density function fµ (cf.
example 3.3.17) is a member of the one-parametric exponential family with
statistic

T (x) =
√

n
xn − µ

σ0
.

Let c1 = −z1−α/2, c2 = z1−α/2, γ1 = γ2 = 0. Then

φ(x) = φc(x) =

 1, if |T (x)| > z1−α/2,

0, if |T (x)| ≤ z1−α/2.

The assertion is thus proven, since the power function Gn(φ, θ) of φ as in
Example 3.1.7 implies, that φ is an unbiased test with confidence level α
(and therefore φ ∈ Ψ̃(α)).

Remark 3.3.27. So far, we only assumed that one parameter of the dis-
tribution of the random sample (X1, . . . , Xn) is unknown. This has been
necessary in order to be able to introduce the above theory of most powerful
(Neyman-Pearson) tests for one–parametric exponential families. In order
to consider the case with more unknown parameters (as in the example of
two-sided tests for the expected value of a normally distributed random sam-
ple with unknown variance), a deeper understanding of randomized tests is
needed. If one is interested, the theory can be found in [26].

3.4 Goodness-of-fit tests
Let (X1, . . . , Xn) be a random sample of i.i.d. random variables with Xi ∼ F
for i = 1, . . . , n. Goodness-of-fit testing tests the hypotheses

H0 : F = F0 vs. H1 : F /= F0,

where F0 is a given distribution function.
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A goodness-of-fit test has already been introduced in the lecture “Elemen-
tary probability theory”. The Kolmogorow-Smirnov test can be found in
Remark 7.6.8.
In this section, further non-parametric goodness-of-fit tests are introduced.
The first one, namely the χ2-goodness-of-fit test, was introduced by K. Pear-
son.

3.4.1 χ2-goodness-of-fit test

The Kolmogorov-Smirnov test is based on the distance

Dn = sup
x∈R
| F̂n(x)− F0(x) |

between the empirical distribution function of the random sample (X1, . . . , Xn)
and the distribution function F0. In practice this test is usually too sensi-
tive, since irregularities in the random samples might lead to an unjustified
rejection of H0. A solution to this problem is a test which coarsens the null
hypothesis H0 and is based on the χ2-goodness-of-fit statistic.
Partition the domain of Xi into r classes (aj , bj ], j = 1, . . . , r with the
property

−∞ ≤ a1 < b1 = a2 < b2 = . . . = ar < br ≤ ∞.

Instead of Xi, i = 1, . . . , n, consider the so-called class sizes Zj , j = 1, . . . , r,
where

Zj = #{i : aj < Xi ≤ bj , 1 ≤ i ≤ n}.

Lemma 3.4.1. The random vector Z = (Z1, . . . , Zr)⊤ is multinomial dis-
tributed with parameter vector

p = (p1, . . . , pr−1)⊤ ∈ [0, 1]r−1,

where

pj = P (aj < X1 ≤ bj) = F (bj)− F (aj), j = 1, . . . , r − 1, pr = 1−
r−1∑
j=1

pj .

Notation:

Z ∼Mr−1(n, p).

Proof We show that for all numbers k1, . . . kr ∈ N0 with k1 + . . . + kr = n

P (Zi = ki, i = 1, . . . , r) = n!
k1! · . . . · kr!p

k1
1 · . . . · pkr

r (3.10)
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holds. Since Xi are i.i.d. it holds that

P
(
Xj ∈ (aij , bij ], j = 1, . . . , n

)
=

n∏
j=1

P
(
aij < X1 ≤ bij

)
= pk1

1 · . . . · pkr
r ,

if the sequence of intervals (aij , bij ]j=1,...,n contains the interval (ai, bi] ki

times, i = 1, . . . , r. The formula (3.10) results from the law of total proba-
bility as a sum over all permutations of sequences (aij , bij ]j=1,...,n.

In the sense of Lemma 3.4.1 new hypotheses w.r.t. the nature of F are
tested:

H0 : p = p0 vs. H1 : p /= p0,

where p = (p1, . . . , pr−1)⊤ is the parameter vector of Z, and p0 = (p01, . . . , p0,r−1)⊤ ∈

(0, 1)r−1 with
r−1∑
i=1

p0i < 1. In this case,

Λ0 = {F ∈ Λ : F (bj)− F (aj) = p0j , j = 1, . . . , r − 1}

and Λ1 = Λ \ Λ0 holds, where Λ is the set of all distribution functions. In
order to test H0 vs. H1, the Pearson test statistic

Tn(x) =
r∑

j=1

(zj − np0j)2

np0j
,

where x = (x1, . . . , xn) is an explicit sample and zj , j = 1, . . . , r the corre-
sponding class sizes. Under H0,

EZj = np0j , j = 1, . . . , r,

holds and thus H0 is rejected, if Tn(X) attains higher values than expected.
The following theorem shows that T (X1, . . . , Xn) is asymptotically (for n→
∞) χ2

r−1-distributed, which leads to the following goodness-of-fit test (χ2

goodness-of-fit test):

H0 is rejected, if Tn(x1, . . . , xn) > χ2
r−1,1−α.

This test is named after its inventor Karl Pearson (1857-1936).

Theorem 3.4.2. Under H0,

lim
n→∞

Pp0

(
Tn(X1, . . . , Xn) > χ2

r−1,1−α

)
= α, α ∈ (0, 1),

holds, which means the χ2-Pearson test is an asymptotic test with confidence
level α.
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Proof Denote by Znj = Zj(X1, . . . , Xn) the class sizes of the random sam-
ples (X1, . . . , Xn). By Lemma 3.4.1

Zn = (Zn1, . . . , Znr) ∼Mr−1(n, p0) under H0

holds. Moreover, EZnj = np0j and

Cov(Zni, Znj) =

 np0j(1− p0j), i = j,

−np0ip0j , i /= j

should hold for all i, j = 1, . . . , r. Since

Znj =
n∑

i=1
I(aj < Xi ≤ bj), j = 1, . . . , r,

it holds that Zn = (Zn1, . . . , Zn,r−1) is the sum of n i.i.d. random vectors
with Yi ∈ Rr−1 with coordinates Yij = I(aj < Xi ≤ bj), j = 1, . . . , r − 1.
Thus, the multivariate limit theorem (which is proven in Lemma 3.4.3) yields

Z ′
n = Zn − EZn√

n
=

n∑
i=1

Yi − nEY1
√

n
d−→

n→∞
Y ∼ N (0, K),

with N (0, K) a (r − 1) dimensional multivariate normal distribution (cf.
[33, Example 3.4.5.3.] with expectation vector 0 and covariance matrix
K = (σ2

ij), where

σ2
ij =

 −p0ip0j , i /= j,

p0i(1− p0j), i = j

for i, j = 1, . . . , r − 1. This matrix K is invertible with K−1 = A = (aij),

aij =


1

p0r
, i /= j,

1
p0i

+ 1
p0r

, i = j.

Moreover, K (as a covariance matrix) is symmetric and positive semi-definite.
Results from Linear Algebra ensure the existence of an invertible (r − 1)×
(r − 1) matrix A1/2, with A = A1/2(A1/2)⊤. Thus,

K = A−1 = ((A1/2)⊤)−1 · (A1/2)−1.

If (A1/2)⊤ is applied to Z ′
n, we get

(A1/2)⊤ · Z ′
n

d−→
n→∞

(A1/2)⊤ · Y,
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where

(A1/2)⊤ · Y ∼ N
(
0, (A1/2)⊤ ·K ·A1/2

)
= N (0, Ir−1)

by the properties of the multivariate normal distribution. Furthermore, the
continuous mapping theorem, which has been introduced in [32, Theorem
3.4.4.], implies that

Yn
d−→

n→∞
Y =⇒ φ(Yn) d−→

n→∞
φ(Y )

for random variables {Yn}, Y ∈ Rm, and continuous mappings φ : R → R.
Repeatedly applying the continuous mapping theorem implies that∣∣∣(A1/2)⊤Z ′

n

∣∣∣2 d−→
n→∞

∣∣∣(A1/2)⊤Y
∣∣∣2 = R ∼ χ2

r−1.

It needs to be shown that

Tn(X1, . . . , Xn) =
∣∣∣(A1/2)⊤Z ′

n

∣∣∣2 .

Now,∣∣∣(A1/2)⊤Z ′
n

∣∣∣2 = ((A1/2)⊤Z ′
n)⊤((A1/2)⊤Z ′

n)

= Z ′⊤
n ·A1/2 · (A1/2)⊤︸ ︷︷ ︸

A

Z ′
n = Z ′⊤

n AZ ′
n

= n
r−1∑
j=1

1
p0j

(
Znj

n
−p0j

)2
+ n

p0r

r−1∑
i=1

r−1∑
j=1

(
Zni

n
−p0i

)(
Znj

n
− p0j

)

=
r−1∑
j=1

(Znj − np0j)2

np0j
+ n

p0r

r−1∑
j=1

(
Znj

n
− p0j

)2

=
r−1∑
j=1

(Znj−np0j )2

np0j
+ n

p0r

(
Znr

n
− p0r

)2

=
r∑

j=1

(Znj − np0j)2

np0j
= Tn(X1, . . . , Xn),

since
r−1∑
j=1

Znj = n− Znr,

r−1∑
j=1

p0j = 1− p0r.
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Lemma 3.4.3. Multivariate central limit theorem
Let {Yn}n∈N be a sequence of i.i.d. random vectors with EY1 = µ ∈ Rm

and covariance matrix K ∈ Rm×m. Then
n∑

i=1
Yi − nµ

√
n

d−→
n→∞

Y ∼ N(0, K). (3.11)

Proof Let Yj = (Yj1, . . . , Yjm)⊤. By the continuous mapping theorem for
characteristic functions the convergence in (3.11) is equivalent to

φn(t) −→
n→∞

φ(t), t ∈ Rm, (3.12)

where

φn(t) = E eitSn = E exp

i
m∑

j=1
tj

Y1j + . . . + Ynj − nµj√
n

 ,

is the characteristic function of the random vector

Sn =

n∑
i=1

Yi − nµ

√
n

,

and

φ(t) = e−t⊤Kt/2

is the characteristic function of theN (0, K) distribution. The function φn(t)
can be rewritten as

φn(t) = E exp

i
n∑

i=1

m∑
i=1

tj(Yij − µj)
√

n

 , t = (t1, . . . , tm)⊤ ∈ Rm,

where

Li :=
m∑

j=1
tj(Yij − µj)

is a random variable with

ELi = 0,

Var Li = E

 m∑
k,j=1

tj(Yij − µj)(Yik−µk
)tk

 = t⊤Kt, i ∈ N.
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If t⊤Kt = 0, then Li = 0 almost surely for all i ∈ N, which implies φn(t) =
φ(t) = 1. Thus the convergence in (3.11) holds.
If t⊤Kt > 0, then φn(t) is the characteristic function of a random variable

n∑
i=1

Li/
√

n

evaluated at 1, and φ(t) is the characteristic function of a one-dimensional
normal distribution N (0, t⊤Kt) evaluated at 1. The central limit theorem
for one-dimensional random variables then implies (cf. [33, Theorem 5.2.2.]
)

n∑
i=1

Li√
n

d−→
n→∞

L ∼ N (0, t⊤Kt)

and thus

φn(t) = φ(∑n

i=1 Li/
√

n)(1) −→
n→∞

φL(1) = φ(t),

which proves the convergence in (3.11).

Remark 3.4.4.

1. The method of reducing a multidimensional convergence to a one-
dimensional convergence, using linear combinations of random vari-
ables, as in the proof above is called Cramér-Wold device.

2. The χ2-Pearson test works asymptotically for large random samples.
Naturally the question of how big n is arises. In this case, the “rule
of thumb” is given by: np0j should be larger or equal to a, with
a ∈ (2,∞). For a larger class number, i.e., r ≥ 10, even a = 1 is
sufficient. In the following, it is shown that the χ2 goodness-of-fit test
is consistent.

Lemma 3.4.5. The χ2-Pearson test is consistent, i.e., for all p ∈ [0, 1]r−1, p /=
p0

lim
n→∞

Pp

(
Tn(X1, . . . , Xn) > χ2

r−1,1−α

)
= 1

holds.

Proof Under H1, the strong law of large numbers implies

Znj

n
=

n∑
i=1

I(aj < Xi ≤ bj)

n
a.s.−→

n→∞
E I(aj < X1 ≤ bj)︸ ︷︷ ︸

=pj

.
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Choose j such that pj /= p0j . Then

Tn(X1, . . . , Xn) ≥ (Znj − np0j)2

np0j
≥ n

(
Znj

n
− p0j

)2

︸ ︷︷ ︸
∼n(pj−p0j)2

a.s.−→
n→∞

∞,

and thus

Pp

(
Tn(X1, . . . , Xn) > χ2

r−1,1−α

)
f.s.−→

n→∞
1.

3.4.2 χ2-goodness-of-fit test of Pearson-Fisher

Let (X1, . . . , Xn) be a random sample of i.i.d. random variables Xi, i =
1, . . . , n. The goal is to test whether the distribution function F of Xi is an
element of a given parametric family

Λ0 = {Fθ : θ ∈ Θ}, Θ ⊂ Rm.

Let ai, bi, i = 1, . . . , r be given with m < r,

−∞ ≤ a1 < b1 = a2 < b2 = . . . = ar < br ≤ ∞

and

Znj = #{Xi, i = 1, . . . , n : aj < Xi ≤ bj}, j = 1, . . . , r,

Zn = (Zn1, . . . , Znr)⊤.

Lemma 3.4.1 implies Z ∼Mr−1(n, p), p = (p0, . . . , pr−1)⊤ ∈ [0, 1]r−1. Under
H0 : F ∈ Λ0, p = p(θ), θ ∈ Θ ⊂ Rm holds. Presume p ∈ C(Θ). By
coarsening the hypothesis H0 the new hypotheses:

H0 : p ∈ {p(θ) : θ ∈ Θ} vs. H1 : p /∈ {p(θ) : θ ∈ Θ}

are to be tested. In order to test these hypotheses, the χ2-Pearson-Fisher
test is constructed as follows:

1. Find a maximum-likelihood estimator θ̂n = θ̂(X1, . . . , Xn) (weakly
consistent) for θ, such that θ̂n

P→
n→∞

θ. Here, {θ̂n}n∈N is asymptotically
normal distributed.

2. Construct the plug-in estimator p(θ̂n) for p(θ).

3. For the test statistic

T̂n(X1, . . . , Xn) =
r∑

j=1

(
Znj − npj(θ̂)

)2

npj(θ̂)
d−→

n→∞
η ∼ χ2

r−m−1

holds under H0 and certain assumptions.
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4. H0 is rejected, if T̂n(X1, . . . , Xn) > χ2
r−m−1,1−α. This is an asymptotic

test with confidence level α.

Remark 3.4.6.

1. The χ2-Pearson-Fisher test assumes that the function p(θ) can be
stated explicitly, but θ is unknown. That means for every class of
distributions Λ0, the function p(·) has to be calculated.

2. Why is T̂n able to discriminate between the hypotheses H0 and H1?
The strong law of large numbers implies

1
n

Znj − pj(θ̂n) = 1
n

Znj − pj(θ)︸ ︷︷ ︸
P→0

− (pj(θ̂n)− pj(θ))︸ ︷︷ ︸
P→0

P−→
n→∞

0,

if θ̂n is weakly consistent and pj(·) a continuous function for all j =
1, . . . , r.
Thus, under H0 T̂n(X1, . . . , Xn) is supposed to take relatively small
values. A significant deviation of this behavior is is supposed to lead
to the rejection of H0.

For the distribution Fθ of Xi the following regularity properties are assumed
to hold ( cf. Theorem 1.2.22).

1. The distribution function Fθ is either absolutely continuous or discrete
for all θ ∈ Θ.

2. The parametrization is unique, i.e. θ /= θ1 ⇔ Fθ /= Fθ1 .

3. The support supp L(x, θ) = {x ∈ R : L(x, θ) > 0} of the likelihood
function given by

L(x, θ) =

 Pθ(X1 = x), in case of discrete Fθ,

fθ(x), in the absolutely continuous case,

does not depend on θ.

4. L(x, θ) is assumed to be three times continuously differentiable and
for k = 1, . . . , 3 and i1, . . . , ik ∈ {1, . . . , m},

3∑
k=1

∫
∂kL(x, θ)

∂θi1 · . . . · ∂θik

dx = ∂k

∂θi1 · . . . · ∂θik

3∑
k=1

∫
L(x, θ)dx = 0

holds.
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5. For all θ0 ∈ Θ there exist a constant cθ0 and a measurable function
gθ0 : supp L→ R+, such that∣∣∣∣∣∂3 log L(x, θ)

∂θi1∂θi2∂θi3

∣∣∣∣∣ ≤ gθ0(x), |θ − θ0| < cθ0 ,

and

Eθ0 gθ0(X1) <∞.

Define the Fisher information matrix by

I(θ) =
(
E
[

∂ log L(X1, θ)
∂θi

∂ log L(X1, θ)
∂θj

])
i,j=1,...,m

. (3.13)

Theorem 3.4.7. Asymptotical normal distribution of consistent
maximum likelihood estimator θ̂n, multivariate case m > 1
Let X1, . . . , Xn be i.i.d. with likelihood function L, which satisfies the regu-
larity assumptions 1.-5. Let I(θ) be positive definite for all θ ∈ Θ ⊂ Rm and
θ̂n = θ̂(X1, . . . , Xn) be a sequence of weakly consistent maximum likelihood
estimators for θ. Then

√
n(θ̂n − θ) d−→

n→∞
N(0, I−1(θ)).

Without proof (cf. proof of Theorem 1.2.22).

For the coarsed hypothesis H0 : p ∈ {p(θ), θ ∈ Θ} construct the piecewise
constant likelihood function

L(x, θ) = pj(θ), if x ∈ (aj , bj ].

Then, the likelihood function of the random sample (x1, . . . , xn) is given by

L(x1, . . . , xn, θ) =
r∏

j=1
pj(θ)Zj(x1,...,xn)

⇒ log L(x1, . . . , xn, θ) =
r∑

j=1
Zj(x1, . . . , xn) · log pj(θ).

For the maximum likelihood estimator, we get

θ̂n = θ̂(x1, . . . , xn) = argmax
θ∈Θ

log L(x1, . . . , xn, θ)

⇒
r∑

j=1
Zj(x1, . . . , xn)∂pj(θ)

∂θi
· 1

pj(θ) = 0, i = 1, . . . , m.

Furthermore, the property ∑r
j=1 pj(θ) = 1 implies

r∑
j=1

∂pj(θ)
∂θi

= 0⇒
r∑

j=1

Zj(x1, . . . , xn)− npj(θ)
pj(θ) · ∂pj(θ)

∂θi
= 0, i = 1, . . . , m.
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Lemma 3.4.8. In the case above, I(θ) = C⊤(θ) ·C(θ) holds, where C(θ) is
a (r ×m)-matrix with elements

cij(θ) = ∂pi(θ)
∂θj

· 1√
pi(θ)

.

Proof

E0

[
∂ log L(X1, θ)

∂θi
· ∂ log L(X1, θ)

∂θj

]
=

r∑
k=1

∂ log pk(θ)
∂θi

· ∂ log pk(θ)
∂θj

· pk(θ)

=
r∑

k=1

∂pk(θ)
∂θi

1
pk(θ) ·

∂pk(θ)
∂θj

· 1
pk(θ) · pk(θ)

=
(
C⊤(θ) · C(θ)

)
ij

,

since

log L(X1, θ) =
r∑

i=1
log pj(θ) · I (x ∈ (aj , bj ]) .

Theorem 3.4.7 implies

Corollary 3.4.9. Let θ̂n = θ̂(X1, . . . , Xn) be a weakly consistent maxi-
mum likelihood estimator of θ in the coarsened model, which satisfies the
regularity assumptions 1.-5. Assume that the Fisher information matrix
I(θ) = C⊤(θ) · C(θ) is positive definite for all θ ∈ Θ. Then, θ̂ is asymptoti-
cally normal distributed

√
n
(
θ̂n − θ

)
d−→

n→∞
Y ∼ N

(
0, I−1(θ)

)
.

Theorem 3.4.10. Let θ̂n be a maximum likelihood estimator in the coarsed
model for θ, which satisfies all assumptions of Corollary 3.4.9. The test
statistic

T̂n(X1, . . . , Xn) =
r∑

j=1

(Zj(X1, . . . , Xn)− npj(θ̂n))2

npj(θ̂n)

is asymptotically χ2
r−m−1-distributed under H0:

lim
n→∞

Pθ

(
T̂n(X1, . . . , Xn) > χ2

r−m−1,1−α

)
= α.

Without proof (cf. [27]).

This theorem implies that the χ2-Pearson-Fisher test is an asymptotic test
with confidence level α.
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Example 3.4.11.
1. χ2-Pearson-Fisher test of the normal distribution

Let (X1, . . . , Xn) be a random sample. We test, whether Xi ∼ N (µ, σ2).
Define

θ := (µ, σ2) ∈ Θ = R× R+.

Let {(aj , bj ]}j=1,...,r be an arbitrary partition of R in r disjoint inter-
vals. Recall that density of the one-dimensional N (µ, σ2)-distribution
is given by

fθ(x) = 1√
2πσ2

e− 1
2 ( x−µ

σ )2

and define

pj(θ) := P0 (X1 ∈ (aj , bj ]) =
∫ bj

aj

fθ(x)dx, j = 1, . . . , r

with class sizes

Zj = # {i : Xi ∈ (aj , bj ]} .

The goal is to find the maximum-likelihood estimator in the coarsed
model

∂pj(θ)
∂µ

=
∫ bj

aj

∂

∂µ
fθ(x)dx = 1√

2πσ2
·
∫ bj

aj

x− µ

σ2 · e− 1
2 ( x−µ

σ )2
dx,

∂pj(θ)
∂σ2 =

∫ bj

aj

∂

∂σ2 fθ(x)dx

= 1√
2π

∫ bj

aj

[
−1

2 ·
1

(σ2)3/2 e− 1
2 ( x−µ

σ )2

+ 1√
σ2

e− 1
2 ( x−µ

σ )2
·
(

(x− µ)2

2(σ2)2

)]
dx

= −1
2

1
σ2

∫ bj

aj

fθ(x)dx + 1
2(σ2)2

∫ bj

aj

(x− µ)2fθ(x)dx.

The necessary conditions for a maximum are

r∑
i=1

Zj

bj∫
aj

xfθ(x)dx

bj∫
aj

fθ(x)dx

− µ
r∑

j=1
Zj︸ ︷︷ ︸

=n

= 0,

1
σ2

r∑
j=1

Zj

bj∫
aj

(x− µ)2fθ(x)dx

bj∫
aj

fθ(x)dx

−
r∑

j=1
Zj︸ ︷︷ ︸

=n

= 0,
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which results in the maximum likelihood estimators µ̂ and σ̂2 for µ
and σ2

µ̂ = 1
n

r∑
j=1

Zj

bj∫
aj

xfθ(x)dx

bj∫
aj

fθ(x)dx

, σ̂2 = 1
n

r∑
j=1

Zj

bj∫
aj

(x− µ)2fθ(x)dx

bj∫
aj

fθ(x)dx

.

Construct an approximation of µ̂ and σ̂2 for r → ∞ as follows: If
r → ∞ (and thus n → ∞), then bj − aj is small and by the simple
quadratic rule ∫ bj

aj

xfθ(x)dx ≈ (bj − aj) yjfθ(yj),∫ bj

aj

fθ(x)dx ≈ (bj − aj) fθ(yj),

holds, where y1 = b1, yr = br−1 = ar, and

yj = (bj+1 + bj)/2, j = 2, . . . , r − 1.

Thus, for the maximum likelihood estimators µ̂ and σ̂2

µ̂ ≈ 1
n

r∑
j=1

yj · Zj = µ̃

σ̂2 ≈ 1
n

r∑
j=1

(yj − µ̃)2 Zj = σ̃2

and

θ̃ =
(
µ̃, σ̃2

)
holds. In the χ2-Pearson-Fisher test H0 is rejected if

T̂n =

r∑
j=1

(
Zj − npj(θ̃)

)2

npj(θ̃)
> χ2

r−3,1−α.

2. χ2-Pearson-Fisher test for the Poisson distribution
Let (X1, . . . , Xn) be a random sample of i.i.d. random variables. We
aim to test, whether Xi ∼ Poisson(λ), λ > 0. Set θ = λ and Θ =
(0, +∞). Coarsing Θ leads to

−∞ = a1 < b1︸︷︷︸
=0

= a2 < b2︸︷︷︸
=1

= a3 < . . . < br−1︸︷︷︸
=r−2

= ar < br = +∞.
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Then,

pj(λ) = Pλ (X1 = j − 1) = e−λ λj−1

(j − 1)! , j = 1, . . . , r − 1,

pr(λ) =
∞∑

i=r−1
e−λ λi

i! ,

dpj(λ)
dλ

= −e−λ λj−1

(j − 1)! + (j − 1) λj−2

(j − 1)!e
−λ = e−λ λj−1

(j − 1)!

(
j − 1

λ
− 1

)
= pj(λ) ·

(
j − 1

λ
− 1

)
, j = 1, . . . , r − 1,

dpr(λ)
dλ

=
∑

i≥r−1
pi(λ)

(
i− 1

λ
− 1

)
.

Next, we have to solve the maximum likelihood equation

0 =
r−1∑
j=1

Zj ·
(

j − 1
λ
− 1

)
+ Zr

∑
i≥r−1

pi(λ)
(

i−1
λ − 1

)
pr(λ) .

If r −→ ∞, then r(n) exists for every n with Zr(n) = 0. Thus, for
r > r(n)

r−1∑
j=1

(j − 1)Zj − λ
r∑

j=1
Zj︸ ︷︷ ︸

=n

= 0

holds, which yields the maximum likelihood estimator

1
n

r−1∑
j=1

(j − 1)Zj = 1
n

n∑
j=1

Xj = Xn.

Hence, the χ2-Pearson-Fisher test rejects H0, if

T̂n =
r∑

j=1

(
Zj − npλ(Xn)

)2

(
npj(Xn)

)2 > χ2
r−2,1−α.

3.4.3 Shapiros goodness-of-fit test

Let (X1, . . . , Xn) be a random sample of i.i.d. random variables Xi ∼ F .
The hypotheses

H0 : F ∈ {N(µ, σ2) : µ ∈ R, σ2 > 0} vs.
H1 : F /∈ {N(µ, σ2), µ ∈ R, σ2 > 0}
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are to be tested. The χ2-tests of sections 3.4.1 - 3.4.2 are asymptotic, which
makes them impractical for small sample sizes.
The following test is more suitable for testing H0, if only a small sample is
available.
Consider the order statistic X(1), . . . , X(n), i.e., X(1) ≤ X(2) ≤ . . . ≤ X(n)
and compare their correlation to the mean of the corresponding order statis-
tic of a N (0, 1)-distribution. Let (Y1, . . . , Yn) be a random sample of i.i.d.
random variables with Y1 ∼ N (0, 1). Define ai := EY(i), i = 1, . . . , n. If the
empirical correlation coefficient ρaX between (a1, . . . , an) and (X(1), . . . , X(n))
is close to 1, the random sample is normally distributed. In the following,
the approach above will be formalized.
Let bi be the expected value of the i-th order statistic of aN (µ, σ2)-distributed
random sample of i.i.d. random variables Zi, with bi = EZ(i), i = 1, . . . , n.
It holds bi = µ + σai, i = 1, . . . , n and considering the correlation coefficient
yields

ρbX =

n∑
i=1

(
bi − bn

) (
X(i) −Xn

)
√

n∑
i=1

(
bi − bn

)2 n∑
i=1

(
X(i) −Xn

)2
. (3.14)

Since ρ is invariant with respect to linear transformations and
n∑

i=1
ai =

n∑
i=1

EYi = E
(

n∑
i=1

Yi

)
= 0,

ρbX = ρaX =

n∑
i=1

ai

(
X(i) −Xn

)
√

n∑
i=1

a2
i

n∑
i=1

(
Xi −Xn

)2
=

n∑
i=1

aiX(i) −Xn

=0︷ ︸︸ ︷
n∑

i=1
ai√

n∑
i=1

a2
i

n∑
i=1

(
Xi −Xn

)2

=

n∑
i=1

aiX(i)√
n∑

i=1
a2

i ·
n∑

i=1

(
Xi −Xn

)2

holds.
The test statistic is then given by

Tn =

n∑
i=1

aiX(i)√
n∑

i=1
a2

i

n∑
i=1

(
Xi −Xn

)2
(Shapiro-Francia test)
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The values ai are known and can be found in tables or by using statistic
software. Note that |Tn| ≤ 1.
H0 is rejected if Tn ≤ qn,α, where qn,α is the α-quantile of the distribution
of Tn. Those quantiles can also be found in tables or by using Monte-Carlo-
Simulations.

Remark 3.4.12. Another famous test of this kind is obtained by replacing
the linear transformation bi = µ + σai with another linear transformation
given by (

a′
1, . . . , a′

n

)⊤ = K−1 · (a1, . . . , an) ,

where K = (kij)n
j=1 is the covariance matrix of

(
Y(1), . . . , Y(n)

)
with

kij = E
(
Y(i) − ai

) (
Y(j) − aj

)
, i, j = 1, . . . , n.

The constructed test is called Shapiro-Wilk test.

3.5 More nonparametric tests

3.5.1 Binomial test

Let (X1, . . . , Xn) be a random sample of i.i.d random variables with Xi ∼
Bernoulli(p), where p ∈ [0, 1]. We want to test the hypotheses

H0 : p = p0 vs. H1 : p /= p0

The test statistic is given by

Tn =
n∑

i=1
Xi ∼

H0
Bin(n, p0),

and H0 is rejected if

Tn /∈ [Bin(n, p0)α/2, Bin(n, p0)1−α/2],

where Bin(n, p)α is the α quantile of the Bin(n, p) distribution
For different H0, like p ≤ p0 (p ≥ p0) the rejection region has to be adjusted.
The quantiles Bin(n, p)α can also be found in tables or by using Monte-Carlo
simulations. If n is sufficiently large, the quantiles can be approximated
using the central limit theorem of DeMoivre-Laplace:

P (Tn ≤ x) = P

(
Tn − np0√
np0(1− p0)

≤ x− np0√
np0(1− p0)

)
≈

n→∞
Φ
(

x− np0√
np0(1− p0)

)
.
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This yields

zα ≈
Bin(n, p0)α − np0√

np0(1− p0)

⇒ Bin(n, p0)α ≈
√

np0(1− p0) · zα + np0

Using Poisson approximation (for n→∞, np0 → λ0)

Bin(n, p0)α/2 ≈ Poisson(λ0)α/2,

Bin(n, p0)1−α/2 ≈ Poisson(λ0)1−α/2,

holds if λ0 = np0.
Question: Can the symmetry of a distribution be tested by using the bi-
nomial test?
Let (Y1, . . . , Yn) be a random sample of i.i.d. random variables with distri-
bution function F . The hypotheses are

H0 : F is symmetric vs. H1 : F is not symmetric.

A symmetric distributions median is around 0. Thus the hypothesis H0 is
coarsed, and

H ′
0 : F −1(0, 5) = 0 vs. H ′

1 : F −1(0, 5) /= 0

is tested instead. More generally, for β ∈ [0, 1] we consider

H ′′
0 : F −1(β) = γβ vs. H ′′

1 : F −1(β) /= γβ.

H ′′
0 vs. H ′′

1 is tested by using the binomial test: Define Xi := I (Yi ≤ γβ).
Under H ′′

0

Xi ∼ Bernoulli(F (γβ)) = Bernoulli(β).

holds. For a1 = −∞, b1 = γα, a2 = b1, b2 = +∞ define two disjoint classes
(a1, b1], (a2, b2] in the sense of the χ2-Pearson test. The test statistic is given
by

Tn =
n∑

i=1
Xi = # {Yi : Yi ≤ γβ} ∼ Bin(n, β), p = F (γβ),

and the hypothesis F −1(β) = γβ is equivalent to H ′′′
0 : p = β. In this case,

the decision rule states that H ′′′
0 is rejected, if

Tn /∈
[
Bin(n, β)α/2, Bin(n, β)1−α/2]

]
.

This is a test with confidence level α.
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3.5.2 Randomness iteration tests

Sometimes in biological research a sequence of 0s and 1s is tested for its
randomness or the existence of bigger clusters within those numbers. This
hypothesis can be tested statistically by using the so-called iteration tests .
Let (X1, ..., Xn) be a random sample, Xi ∈ {0, 1},

n∑
i=1

Xi = n1 the total
number of ones, n2 = n − n1 the total number of zeroes and n1, n2 prede-
termined. An exemplary realization of (X1, . . . , Xn) with n = 18, n1 = 12
could be

x = (0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1).

The following hypotheses are to be tested:

H0 : every sequence x is equally likely vs.
H1 : There are preferred sequences (clustering).

Let

Ω =
{

x = (x1, . . . , xn) : xi ∈ {0, 1}, i = 1, . . . , n,
n∑

i=1
xi = n1

}

be the sample space. Then, the space (Ω,F , P ) with F = P(Ω),

P (x) = 1
|Ω| = 1( n

n1

)
is a Laplace space.
Let

Tn(X) = #{Iterations in X} = #{Subsequences of zeros or ones}
= #{Change spots from 0 to 1 or from 1 to 0}+ 1.

For x = (0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0), Tn(x) = 7 = 6 + 1 holds.
Tn(X) is used as a test statistic for H0 vs. H1 as follows. H0 is rejected, if
T (x) is small, i.e. Tn(x) < F −1

Tn
(α). This is a test with confidence level α.

The question arises, how the quantiles F −1
Tn

can be calculated?

Theorem 3.5.1. Under H0

1.

P (Tn = k) =


2(n1−1

i−1 )(n2−1
i−1 )

( n
n1

) , if k = 2i,

(n1−1
i )(n2−1

i−1 )+(n1−1
i−1 )(n2−1

i )
( n

n1
) , if k = 2i + 1,
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2.

ETn = 1 + 2n1n2
n

,

3.

Var (Tn) = 2n1n2(2n1n2 − n)
n2(n− 1) .

holds.

Proof

1. Assume that k = 2i (the uneven case works analogously). How can i
clusters of ones be selected? The number of those possibilities is equal
to the number of ways, how n1 particles can be distributed to i classes.

0|00| . . . |0| (n1).

This is the number of possibilities, how i − 1 partitions can be dis-
tributed on n1− 1 positions, which is equal to

(n1−1
i−1

)
. The same holds

for the zeroes.

2. Let Yj = I {Xj−1 /= Xj}j=2,...,n. Then,

ETn(X) = 1 +
n∑

j=2
EYj = 1 +

n∑
j=2

P (Xj−1 /= Xj)

and the probabilities can be rewritten as

P (Xj−1 /= Xj) =
2
( n−2

n1−1
)( n

n1

) = 2 ·
(n−2)!

(n−2−(n1−1))!(n1−1)!
n!

(n−n1)!n1!

= 2n1(n− n1)
(n− 1)n

= 2n1n2
n(n− 1) .

Hence,

ETn = 1 + (n− 1) 2n1n2
n(n− 1) = 1 + 2n1n2

n
.

Exercise 3.5.2. Proof the third assertion.
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Example 3.5.3 (Wald-Wolfowitz test). Let Y = (Y1, . . . , Yn1), Z = (Z1, . . . , Zn2)
be two independent random samples of i.i.d. random variables, Yi ∼ F ,
Zi ∼ G.

H0 : F = G vs. H1 : F /= G.

is to be tested. Define (Y, Z) := (Y1, . . . , Yn1 , Z1, . . . , Zn2) and let X ′
i be the

sample variables of (Y, Z), i = 1, . . . , n, n = n1 + n2. Consider the order
statistic X ′

(i), i = 1, . . . , n and set

Xi =

 1, if X ′
(i) = Yj for a j = 1, . . . , n1,

0, if X ′
(i) = Zj for a j = 1, . . . , n2.

Under H0, the sample values in (Y, Z) are well distributed, i.e., every com-
bination of 0 and 1 in (X1, . . . , Xn) is equally likely. Thus, the random-
ness iteration test can be applied to test H0 vs. H1. H0 is rejected if
Tn(x) ≤ F −1

Tn
(α), x = (x1, . . . , xn).

The quantiles of FTn can be calculated directly if n is sufficiently large, since
n1

n1 + n2
−→

n→∞
p ∈ (0, 1)

implies that Tn is asymptotically normal distributed.

Theorem 3.5.4. Under the assumptions above

lim
n→∞

ETn

n
= 2p(1− p),

lim
n→∞

1
n

Var Tn = 4p2(1− p)2,

Tn − 2p(1− p)
2
√

np(1− p)
d−→

n→∞
Y ∼ N (0, 1), if n1

n1 + n2
−→ p ∈ (0, 1)

holds. Thus, the quantiles for Tn can be approximated for large n by

α = P
(
Tn ≤ F −1

Tn
(α)
)

= P

(
Tn − 2np(1− p)

2
√

np(1− p) ≤ x− 2np(1− p)
2
√

np(1− p)

) ∣∣∣∣
x=F −1

Tn
(α)

≈ Φ
(

F −1
Tn

(α)− 2np(1− p)
2
√

np(1− p)

)

⇒ zα ≈
F −1

Tn
(α)− 2np(1− p)
2
√

np(1− p) ,

which implies

F −1
Tn

(α) ≈ 2np(1− p) + 2
√

np(1− p) · zα

In practice p̂ = n1
n1+n2

is used for p.



Chapter 4

Linear Regression

In Section 6.7.3 of the lecture “Elementary probability theory and statistics”,
(cf. [33]) a simple form of linear regression was introduced via

Yi = β0 + β1xi + εi, i = 1, . . . , n.

Using matrix notation, this can be rewritten as Y = Xβ + ε, where Y =
(Y1, . . . , Yn)⊤ is a random vector and

X =



1 x1

1 x2
...

...
1 xn


is a n × 2 matrix, which contains the so-called predictor variables xi, i =
1, . . . , n and is called design matrix. Further, β = (β0, β1)⊤ resp. ε =
(ε1, . . . , εn)⊤ is the so-called parameter resp. error vector. With respect to
the error vector, we assume that ε ∼ N (0, I · σ2) is multivariate normally
distributed.
In multivariate linear regression, i.e. not simple simple linear regression, an
arbitrary (n×m) design matrix

X = (xij) i=1,...,n
j=1,...,m

and a m-dimensional parameter vector β = (β1, . . . , βm)⊤ are permissible
for m ≥ 2. That means we consider

Y = Xβ + ε, (4.1)

where ε ∼ N (0, K) and K an arbitrary covariance matrix. In general, this
choice of K can result in the errors not being independent which means that
K /= diag

(
σ2

1, . . . , σ2
n

)
.

128



CHAPTER 4. LINEAR REGRESSION 129

The goal of this chapter is to construct estimators and tests for β. But
before getting into detail about this, properties of the multivaritate normal
distribution need to be discussed.

4.1 Multivariate normal distribution
In the lecture notes of “Elementary probability theory and statistics” (cf.
[33]) the multivariate normal distribution was introduced in example 3.4.5
as follows:

Definition 4.1.1. Let X = (X1, . . . , Xn)⊤ be a n-dimensional random vec-
tor, µ ∈ Rn, K a symmetric positive definite (n × n) matrix. X is multi-
variate normal distribution with parameters µ and K (X ∼ N (µ, K)), if X
is absolutely continuous distributed with probability density function

fX(x) = 1
(2π)n/2

1√
det(K)

exp
{
−1

2 (x− µ)⊤ K−1(x− µ)
}

,

where x = (x1, . . . , xn)⊤ ∈ Rn.

However, this is not the only way to define the multivariate normal distri-
bution. Thus, let us discuss three more definitions of N (µ, K).

Definition 4.1.2. The random vector X = (X1, . . . , Xn)⊤ is multivariate
normally distributed (X ∼ N (µ, K)) with mean vector µ ∈ Rn and covari-
ance matrix K, if the characteristic function φX(t) = E ei(t,X), t ∈ Rn, is
given by

φX(t) = exp
{

it⊤µ− 1
2 t⊤Kt

}
, t ∈ Rn.

Definition 4.1.3. The random vector X = (X1, . . . , Xn)⊤ is multivariate
normally distributed (X ∼ N (µ, K)) with mean vector µ ∈ Rn and covari-
ance matrix K, if

for all a ∈ Rn : the random variable (a, X) = a⊤X ∼ N (a⊤µ, a⊤Ka)

is a one-dimensional normally distributed random variable.

Definition 4.1.4. Let µ ∈ Rn and K be a covariance matrix. A random
vector X = (X1, . . . , Xn)⊤ is multivariate normally distributed with mean
vector µ and covariance matrix K (X ∼ N (µ, K)), if

X
d= µ + C · Y,

where C is a n×m matrix with rank(C) = m, K = C ·C⊤ and Y ∼ N (0, I)
is an m-dimensional random vector with i.i.d.∼ N (0, 1) coordinates.
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Remark 4.1.5. Definition 4.1.4 is an analogue to the one-dimensional case
where we know that Y ∼ N (µ, σ2) if and only if Y

d= µ + σX with X ∼
N (0, 1).

Exercise 4.1.6. Show that the function

fX(x) = 1
(2π)n/2

1√
det(K)

exp
{
−1

2 (x− µ)⊤ K−1(x− µ)
}

, x ∈ Rn

from Definition 4.1.1 is indeed a probability density function.

Lemma 4.1.7. Let X and Y be two n-dimensional random vectors with
characteristic functions

φX(t) = E ei(t,X) = E eit⊤X

φY (t) = E ei(t,Y ) = E eit⊤Y

for t ∈ Rn. Then, it holds

1. Uniqueness theorem:

X
d= Y ⇔ φX(t) = φY (t), t ∈ Rn

2. If X and Y are independent, then:

φX+Y (t) = φX(t) · φY (t), t ∈ Rn.

without proof (cf. proof of Theorem 2.1.4 (5), [32, Corollary 2.1.10].

Theorem 4.1.8.

1. The definitions 4.1.2 - 4.1.4 of the multivariate normal distribution are
equivalent.

2. The definition 4.1.1 and 4.1.4 are equivalent for n = m.

Remark 4.1.9.

1. If the matrix K in Definition 4.1.4 has full rank n, then X’s probability
density function is given as in Definition 4.1.1. In this case it is called
regular.

2. If rank(K) = m < n, then the distribution N (µ, K) is concentrated
on the m-dimensional subspace

{y ∈ Rn : y = µ + Cx, x ∈ Rm}

by Definition 4.1.4. In this case, N (µ, K) is obviously not absolutely
continuous distributed and is thus called singular.
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Proof In an initial step, Definition 4.1.3 ⇔ 4.1.2 ⇔ 4.1.4 is proven.

1. (a) First, we show that Definitions 4.1.2 and 4.1.3 are equivalent,
i.e., for the random variable X with characteristic function φX it
holds that

φX(t) = exp{it⊤µ− 1
2 t⊤Kt}

⇔ for all a ∈ Rn : a⊤X ∼ N (a⊤µ, a⊤Ka).

Simple calculations yield

φt⊤X(1) = E eit⊤X·1 φN (µ,σ2)= exp{it⊤µ− 1
2 t⊤Kt} = φX(t),

for all t ∈ R. (This is called the Procedure of Cramér-Wold, cf.
multivariate central limit theorem).

(b) Next, we show that Definitions 4.1.3 and 4.1.4 are equivalent.
Using the notation y = C⊤t we compute

φµ+CY (t) = E ei(t,µ+CY ) = E eit⊤µ+it⊤CY = eit⊤µ · E ei(C⊤t,Y )

Y ∼N (0,I)= eit⊤µ · exp
(
−1

2y⊤ · y
)

= exp
{

it⊤µ− 1
2 t⊤C · C⊤t

}
= exp

{
it⊤µ− 1

2 t⊤Kt

}
, t ∈ Rn.

2. It needs to be shown that for X ∼ N (µ, K) in the sense of Definition
4.1.4 and Y ∼ N (µ, K) in the sense of Definition 4.1.1 the relation
rank(K) = n implies that φX = φY .
Definition 4.1.2 (which is equivalent to Definition 4.1.4) implies, that

φX(t) = exp
{

it⊤µ− 1
2 t⊤Kt

}
, t ∈ Rn,

φY (t) = E eit⊤Y

=
∫
Rn

eit⊤y 1
(2π)n/2

√
det K

·exp
{
− 1

2

x︷ ︸︸ ︷
(y − µ) ⊤K−1

x︷ ︸︸ ︷
(y − µ)

}
dy

= eit⊤µ ·
∫
Rn

1
(2π)n/2

√
det K

· exp
{

it⊤x− 1
2x⊤K−1x

}
dx

Diagonalising K : ∃ orthogonal (n × n) matrix V : V ⊤ = V −1 and
V ⊤KV = diag (λ1, . . . , λn), where λi > 0, i = 1, . . . , n. By applying
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the substitution x = V z, t = V s it holds that

φY (t) = eit⊤µ

(2π)n/2
√

det K
·
∫
Rn

exp
{

is⊤V ⊤V z − 1
2z⊤V ⊤K−1V z

}
dz

= eit⊤µ√
(2π)nλ1 · . . . · λn

·
∫
R

. . .

∫
R

exp
{

is⊤z − 1
2

n∑
i=1

z2
i

λi

}
dz1 . . . dzn

= eit⊤µ
n∏

i=1

∫
R

1√
2πλi

e
isizi−

z2
i

(2λi) dzi

= eit⊤µ ·
n∏

i=1
φN (0,λi)(si) = eit⊤µ

n∏
i=1

e
−s2

i
λi

2

= exp
{

it⊤µ− 1
2s⊤diag (λ1, . . . , λn)s

}
= exp

{
it⊤µ− 1

2(V ⊤t)⊤V ⊤KV V ⊤t

}

= exp

it⊤µ− 1
2 t⊤ V V ⊤︸ ︷︷ ︸

I

K V V ⊤︸ ︷︷ ︸
I

t


= exp

{
it⊤µ− 1

2 t⊤Kt

}
, t ∈ Rn.

4.1.1 Properties of the multivariate normal distribution

Theorem 4.1.10. Let X = (X1, . . . , Xn) ∼ N (µ, K), µ ∈ Rn, K symmetric
and positive semidefinite. Then the following properties hold:

1. µ is the vector of expectations of X:

EX = µ, that means EXi = µi, i = 1, . . . , n.

K is the covariance matrix of X:

K = (kij), with kij = Cov (Xi, Xj).

2. Every partial vector X ′ = (Xi1 , . . . , Xik
)⊤ (1 ≤ i1 < . . . < ik ≤ n)

of X is also multivariate normally distributed, X ′ ∼ N (µ′, K ′), where
µ′ = (µi1 , . . . , µik

)⊤, K ′ = (k′
jl) = (Cov(Xij , Xil

)), j, l = 1, . . . , k.
In particular it holds that Xi ∼ N (µi, kii), where kii = Var Xi, i =
1, . . . , n.

3. Two partial vectors of X are independent if and only if the corre-
sponding elements kij of K, which represent the cross covariances, are
zero, i.e. X ′ = (X1, . . . , Xk)⊤, X ′′ = (Xk+1, . . . , Xn) are independent
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(where the given order is chosen for the sake of simplicity) if and only
if kij = 0 for 1 ≤ i ≤ k, j > k or i > k, 1 ≤ j ≤ k, i.e.

K =

 K ′ 0

0 K ′′


where K ′ and K ′′ are covariance matrices of X ′ resp. X ′′.

4. Conclusion stability: If X and Y are independent, n-dimensional ran-
dom vectors with X ∼ N (µ1, K1) and Y ∼ N (µ2, K2), then

X + Y ∼ N (µ1 + µ2, K1 + K2).

Exercise 4.1.11. Prove Theorem 4.1.10.

Theorem 4.1.12 (Linear transformation of N (µ, K)). Let X ∼ N (µ, K)
be an n-dimensional random vector and A an (m×n) matrix with rank(A) =
m ≤ n, b ∈ Rm. Then the random vector Y = AX + b is multivariate
normally distributed with

Y ∼ N (Aµ + b, AKA⊤).

Proof Without loss of generality assume µ = 0 and b = 0, since φY −a(t) =
e−it⊤a · φY (t), for a = Aµ + b. It has to be shown that:

Y = AX, X ∼ N (0, K)⇒ Y ∼ N (0, AKA⊤).

This can be done by calculation as follows.

φY (t) = φAX(t) = E eit⊤AX = E ei(X,

:=s︷︸︸︷
A⊤t)

(Def. 4.1.2)= exp
{
−1

2s⊤Ks

}
= exp

{
−1

2 t⊤AKA⊤t

}
, t ∈ Rn

⇒ Y ∼ N
(
0, AKA⊤

)
.

4.1.2 Linear and quadratic forms of normally distributed
random variables

Definition 4.1.13. Let X = (X1, . . . , Xn)⊤, Y = (Y1, . . . , Yn)⊤ be two
random vectors on (Ω,F , P ) and A be a symmetric, real-valued (n × n)
matrix.

1. Z = AX is called linear form of X with matrix A.
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2. Z = Y ⊤AX is called bilinear form of X and Y with matrix A. Fur-
thermore, rewriting the vector notation yields

Z =
n∑

i=1

n∑
j=1

aijXjYi.

3. The random variable Z = X⊤AX (which is a bilinear form X with
itself) is called quadratic form of X with matrix A.

Theorem 4.1.14. Let Z = Y ⊤AX be a bilinear form of random vectors
X, Y ∈ Rn with respect to the symmetric matrix A. If µX = EX, µY = EY
and KXY = (Cov(Xi, Yj))i,j=1,...,n the cross covariance matrix of X and Y ,
then

EZ = µ⊤
Y AµX + trace(AKXY ).

Proof

EZ = E trace(Z) = E trace(Y ⊤AX) (since trace(AB) = trace(BA))
= E trace(AXY ⊤) = trace(AE (XY ⊤))

= trace
(
AE

(
(X − µX) · (Y − µY )⊤ + µXY ⊤ + Xµ⊤

Y − µXµ⊤
Y

))
= trace

(
A(KXY + µXµ⊤

Y + µXµ⊤
Y − µXµ⊤

Y )
)

= trace
(
AKXY + AµXµ⊤

Y

)
= trace(AKXY ) + trace

(
AµX · µ⊤

Y

)
= trace

(
µ⊤

Y AµX

)
+ trace (AKXY ) = µ⊤

Y AµX + trace (AKXY ) .

Corollary 4.1.15. For quadratic forms it holds that

E (X⊤AX) = µ⊤
XAµX + trace(A ·K),

where µX = EX and K is the covariance matrix of X.
Theorem 4.1.16 (Covariance of quadratic forms). Let X ∼ N (µ, K) be
an n-dimensional random vector and A, B ∈ Rn×n two symmetric matrices.
Then

Cov
(
X⊤AX, X⊤BX

)
= 4µ⊤AKBµ + 2 · trace(AKBK).

Lemma 4.1.17 (mixed moments). Let Y = (Y1, . . . , Yn)⊤ ∼ N (0, K) be a
random vector. Then

E (YiYjYk) = 0,

E (YiYjYkYl) = kij · kkl + kik · kjl + kjk · kil, 1 ≤ i, j, k, l ≤ n,

where K = (kij)i,j=1,...,n is the covariance matrix of Y .
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Exercise 4.1.18. Prove the Lemma.

Proof of Theorem 4.1.16.

Cov (X⊤AX, X⊤BX) = E
(
X⊤AX ·X⊤BX

)
− E

(
X⊤AX

)
· E

(
X⊤BX

)
(Corollary 4.1.15)= E

(
(

:=Y︷ ︸︸ ︷
X − µ +µ)⊤A(

=Y︷ ︸︸ ︷
X − µ +µ)·(

=Y︷ ︸︸ ︷
X − µ +µ)⊤B(

=Y︷ ︸︸ ︷
X − µ +µ)

)
−
(
µ⊤Aµ + trace(AK)

) (
µ⊤Bµ + trace(BK)

)
= E

[(
Y ⊤AY + 2µ⊤AY + µ⊤Aµ

) (
Y ⊤BY + 2µ⊤BY + µ⊤Bµ

)]
− µ⊤Aµ · µ⊤Bµ− µ⊤Aµ · trace(BK)− µ⊤Bµ · trace(AK)
− trace(AK) · trace(BK)

= E
(
Y ⊤AY ·Y ⊤BY

)
+ 2E

(
Y ⊤AY · µ⊤BY

)
+ E

(
Y ⊤AY

)
· µ⊤Bµ

+ 2E
(
µ⊤AY ·Y ⊤BY

)
+4E

(
µ⊤AY ·µ⊤BY

)
+2E

(
µ⊤AY

)
︸ ︷︷ ︸

=0

µ⊤Bµ

+ µ⊤Aµ · E
(
Y ⊤BY

)
+ 2µ⊤Aµ · Eµ⊤BY +︸ ︷︷ ︸

=0

µ⊤Aµ · µ⊤Bµ

− µ⊤Aµ · µ⊤Bµ− µ⊤Aµ · trace(BK)− µ⊤Bµ · trace(AK)
− trace(AK) · trace(BK)

= E
(
Y ⊤AY · Y ⊤BY

)
+ 2µ⊤B

=0 (Lemma 4.1.17)︷ ︸︸ ︷
E
(
Y · Y ⊤AY

)
+µ⊤Bµ · trace(AK)

+ 2µ⊤A

=0︷ ︸︸ ︷
E
(
Y · Y ⊤BY

)
+4µ⊤A

=K︷ ︸︸ ︷
E
(
Y Y ⊤

)
Bµ + µ⊤Aµ · trace(BK)

− µ⊤Aµ · trace(BK)− µ⊤Bµ · trace(AK)− trace(AK)trace(BK)

= E
(
Y ⊤AY · Y ⊤BY

)
+ 4µ⊤AKBµ− trace(AK) · trace(BK).

Since

E
(
Y ⊤AY · Y ⊤BY

)
= E

 n∑
i,j=1

aijYiYj ·
n∑

k,l=1
bklYkYl


=

n∑
i,j,k,l=1

aijbklE (YiYjYkYl)

(Lemma 4.1.17)=
n∑

i,j,k,l=1
aijbkl (kij · kkl + kik · kjl + kjk · kil)
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=
n∑

i,j=1
aijkij ·

n∑
k,l=1

bkl ·kkl + 2
n∑

i,j,k,l=1
aij ·kjl ·blk ·kki

= 2 · trace (AKBK) + trace (AK) · trace (BK)

it holds that

Cov
(
X⊤AX, X⊤BX

)
= 2 · trace (AKBK) + trace (AK) · trace (BK) + 4µ⊤AKBµ

− trace (AK) · trace (BK) = 4µ⊤AKBµ + 2 · trace(AKBK).

Corollary 4.1.19.

Var
(
X⊤AX

)
= 4µ⊤AKAµ + 2 · trace

(
(AK)2

)
Theorem 4.1.20. Let X ∼ N (µ, K) and A, B ∈ Rn×n be two symmetric
matrices. Then

Cov (BX, X⊤AX) = 2BKAµ

Proof

Cov (BX, X⊤AX) =
(Folgerung 4.1.15)= E

[
(BX −Bµ)(X⊤AX − µ⊤Aµ− trace(AK))

]
= E

[
B(X − µ)

(
(X − µ)⊤A(X − µ)

+2µ⊤AX − 2µ⊤Aµ− trace(AK)
)]

,

Since

(X − µ)⊤A(X − µ) = X⊤AX − µ⊤AX −X⊤Aµ + µ⊤Aµ

and by substituting Z = X − µ (which implies EZ = 0)

Cov (BX, X⊤AX) = E
[
BZ(Z⊤AZ + 2µ⊤AZ − trace(AK))

]
= E (BZ · Z⊤AZ) + 2E (BZ · µ⊤AZ)

− trace(AK) ·
=BEZ=0︷ ︸︸ ︷
E (BZ)

= 2E (BZ · Z⊤Aµ) + E (BZZ⊤AZ)
= 2B E (ZZ⊤)︸ ︷︷ ︸

Cov X=K

Aµ + B · E (ZZ⊤AZ)︸ ︷︷ ︸
=0

= 2BKAµ,

since Z ∼ N (0, K) and Lemma 4.1.17 and the proof of Theorem 4.1.16.
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Definition 4.1.21. Let Xi ∼ N (µi, 1), i = 1, . . . , n be independent. Then
the random variable

Y = X2
1 + . . . + X2

n

is non-centered χ2
n,µ distributed with n degrees of freedom and the non-

centrality parameter

µ =
n∑

i=1
µ2

i .

In Remark 2.2.6, WT&SP (cf. [32]), the moment generating function of
random variables were introduced. For the proof of Theorem 4.1.23 the
following uniqueness theorem will be used:

Lemma 4.1.22 (Uniqueness theorem for moment generating functions).
Let X1 and X2 be two absolutely continuous random variables with moment
generating functions

MXi(t) = E etXi , i = 1, 2,

which are defined on the interval (a, b). If f1 and f2 are the probability
density functions of the distributions of X1 and X2, then

f1(x) = f2(x) for almost all x ∈ R⇔MX1(t) = MX2(t), t ∈ (a, b).

Without proof.

Theorem 4.1.23. The probability density function of a χ2
n,µ distributed

random variable X (with n ∈ N and µ > 0) is given by the mixture
function of the density of a χ2

n+2J distribution with mixture variable J ∼
Poisson(µ/2):

fX(x) =


∞∑

j=0
e−µ/2 (µ/2)j

j! · e−x/2x
n+2j

2 −1

Γ( n+2j
2 )·2

n+2j
2

, x ≥ 0,

0, x < 0.

(4.2)

Proof

1. First, calculate MX(t), X ∼ χ2
n,µ:

MX(t) = E (etX) = E exp
{

t
n∑

i=1
X2

i

}

=
n∏

i=1

1√
2π
·

∞∫
−∞

etx2
i · e− (xi−µi)2

2 dxi

(
t <

1
2 , Xi ∼ N (µi, 1)

)
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It holds that

tx2
i −

(xi − µi)2

2 = 1
2(2tx2

i − x2
i + 2xiµi − µ2

i )

= −1
2

(
x2

i (1− 2t)− 2xiµi + µ2
i

(1− 2t) −
µ2

i

(1− 2t) + µ2
i

)

= −1
2

((
xi ·
√

1− 2t− µi√
1− 2t

)2
+ µ2

i

(
1− 1

1− 2t

))

= −1
2

(
(xi(1− 2t)− µi)2

1− 2t
− µ2

i ·
2t

1− 2t

)
Substituting

yi = (xi · (1− 2t)− µi)√
1− 2t

yields

MX(t) = (1− 2t)− n
2

n∏
i=1

exp
{

µ2
i ·
(

t

1− 2t

)}
· 1√

2π

∞∫
−∞

e−
y2

i
2 dyi

︸ ︷︷ ︸
=1

= (1− 2t)− n
2 · exp

{
t

1− 2t
·

n∑
i=1

µ2
i

}

= 1
(1− 2t)n/2 · exp

{
µt

1− 2t

}
, t <

1
2 .

2. Let Y be a random variable with probability density function (4.2).
Calculating MY (t) yields

MY (t) =
∞∑

j=0
e− µ

2
(µ/2)j

j! ·
∞∫

0

ext · e− x
2 · x

n+2j
2 −1

Γ
(

n+2j
2

)
· n+2j

2

dx

︸ ︷︷ ︸
=M

χ2
n+2j

(t)= 1
(1−2t)(n+2j)/2 Satz 1.1.4

= e− µ
2

(1− 2t) n
2
·

∞∑
j=1

(
µ

2(1− 2t)

)j

· 1
j!

= 1
(1− 2t) n

2
· exp

{
−µ

2 + µ

2(1− 2t)

}
= 1

(1− 2t) n
2
· exp

{
µ · (1− (1− 2t))

2 · (1− 2t)

}
= (1− 2t)− n

2 · exp
{

µt

1− 2t

}
=⇒ MX(t) = MY (t), t <

1
2
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Using Lemma 4.1.22 implies fX(x) = fY (x) for almost all x ∈ R.

Remark 4.1.24.

1. Definition 4.1.21 can be rewritten as:
If X ∼ N (µ⃗, I), µ⃗ = (µ1, . . . , µn)⊤, then |X|2 = X⊤X ∼ χ2

n,µ, where
µ = |µ⃗|2.

2. The property above can be generalized for X ∼ N (µ⃗, K), with a sym-
metric, positive definite (n× n) matrix K:

X⊤K−1X ∼ χ2
n,µ̃, where µ̃ = µ⃗⊤K−1µ⃗,

and since K is positive definite, there exists a K
1
2 , such that K =

K
1
2 K

1
2 ⊤. Then

Y = K− 1
2 X ∼ N (K− 1

2 µ, I),

since

K− 1
2 KK− 1

2 ⊤ = K− 1
2 ·K

1
2 ·K

1
2 ⊤ ·K− 1

2 ⊤ = I

and thus Y ⊤Y
1.∼ χ2

n,µ̃, with

µ̃ =
(
K− 1

2 µ⃗
)⊤

K− 1
2 µ⃗ = µ⃗⊤K− 1

2 ⊤K− 1
2 µ⃗ = µ⃗⊤K−1µ⃗.

Theorem 4.1.25. Let X ∼ N (µ, K), where K is a symmetric, positive
definite (n×n) matrix and let A be another symmetric (n×n) matrix with
the property AK = (AK)2 (idempotence) and rank(A) = r ≤ n. Then:

X⊤AX ∼ χ2
r,µ̃, where µ̃ = µ⊤Aµ.

Proof A is positive semidefinite since

AK = (AK)2 = AK ·AK | K−1

=⇒ A = AKA⇒ ∀x ∈ Rn : x⊤Ax = x⊤AKAx

= ( Ax︸︷︷︸
=y

)⊤K( Ax︸︷︷︸
=y

) ≥ 0 because of the positive definiteness of K.

=⇒ ∃H : a (n× r) matrix with rank (H) = r : A = HH⊤

Thus it holds that

X⊤AX = X⊤H ·H⊤X = (H⊤X︸ ︷︷ ︸
=Y

)⊤ ·H⊤X = Y ⊤Y
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Further, Y ∼ N (H⊤µ, Ir), since by Theorem 4.1.12 Y ∼ N (H⊤µ, H⊤KH)
and rank (H) = r. Consequently, H⊤H is a regular (r × r) matrix and

H⊤KH = (H⊤H)−1(H⊤ H ·H⊤KH · (H⊤︸ ︷︷ ︸
=AKA=A

H)(H⊤H)−1

= (H⊤H)−1H⊤ · A︸︷︷︸
=HHT

·H(H⊤H)−1

= Ir

Then

X⊤AX =| Y |2∼ χ2
r,µ̃ with µ̃ = (H⊤µ)2 = µ⊤H ·H⊤µ = µ⊤Aµ.

Theorem 4.1.26 (Independence). Let X ∼ N (µ, K) and K be a symmet-
ric, positive semidefinite (n× n) matrix.

1. Let A, B be (r1×n) resp. (r2×n) matrices, r1, r2 ≤ n with AKB⊤ = 0.
Then the vectors AX and BX are independent.

2. Furthermore, let C be a symmetric, positive semidefinite (n×n) matrix
with the property AKC = 0. Then AX and X⊤CX are independent.

Proof

1. By theorem 4.1.10, 3) it holds that AX and BX are independent, if
and only if φ(AX,BX)(t) = φAX(t) · φBX(t), t = (t1, t2)⊤ ∈ Rr1+r2 ,
t1 ∈ Rr1 , t2 ∈ Rr2 . It has to be shown that:

φ(AX,BX)(t) = E e(it⊤
1 A+t⊤

2 B)·X != E eit⊤
1 AX · E eit⊤

2 BX .

It holds that

φ(AX,BX)(t) = Eei(t⊤
1 A+t⊤

2 B)·X

(Def.4.1.2)= ei(t⊤
1 A+t⊤

2 B)·µ− 1
2 ·(t⊤

1 A+t⊤
2 B)·K·(t⊤

1 A+t⊤
2 B)⊤

,

and with(
t⊤
1 A + t⊤

2 B
)
·K ·

(
t⊤
1 A + t⊤

2 B
)⊤

=
(
t⊤
1 A
)

K
(
t⊤
1 A
)⊤

+
(
t⊤
1 A
)⊤

K
(
t⊤
2 B

)
+
(
t⊤
2 B

)
K
(
t⊤
1 A
)⊤

+
(
t⊤
2 B

)
K
(
t⊤
2 B

)⊤

= t⊤
1 AKA⊤t1 + t⊤

1 ·AKB⊤︸ ︷︷ ︸
=0

·t2 + t⊤
2 · BKA⊤︸ ︷︷ ︸

=(AKB⊤)⊤=0

·t1 + t⊤
2 BKB⊤t2
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we get

φ(AX,BX)(t) = eit⊤
1 A− 1

2 t⊤
1 AKA⊤t1 · eit⊤

2 B− 1
2 t⊤

2 BKB⊤t2

= φAX(t1) · φBX(t2), t1 ∈ Rr1 , t2 ∈ Rr2

2. C is symmetric, positive semidefinite =⇒ There exists a (n×r) matrix
H with rank (H) = r ≤ n and C = HH⊤, =⇒ H⊤H has rank r and
is thus invertible. Then

X⊤CX = X⊤HH⊤X = (H⊤X)⊤ ·H⊤X = |H⊤X|2.

If AX and H⊤X are independent, then AX and X⊤CX = |H⊤X|2
are independent by the transformation theorem for random vectors.
By 1) AX and H⊤X are independent, if AK(H⊤)⊤ = AKH = 0. By
assumption

AKC = AKH ·H⊤ = 0 =⇒ AKH ·H⊤H = 0,

since ∃(H⊤H)−1, it holds that

0 = AKH ·H⊤H · (H⊤H)−1 = AKH =⇒ AKH = 0
=⇒ AX and H⊤X are independent
=⇒ AX and X⊤CX are independent.

4.2 Multivariate linear regression models with full
rank

Multivariate linear regression has the form

Y = Xβ + ε,

where Y = (Y1, . . . , Yn)⊤ is the random vector of the so-called response
variables, the design matrix

X = (xij) i=1,...,n
j=1,...,m

is deterministic and has full rank, i.e., rank (X) = r = m ≤ n, β =
(β1, . . . , βm)⊤ is the parameter vector and ε = (ε1, . . . , εn)⊤ is the random
vector of the error terms. In our setting, the error terms fulfill E εi = 0,
Var εi = σ2 > 0, i ∈ {1, . . . , n}. The goal of this section is to estimate β and
σ2.
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4.2.1 Method of least squares

Let the design matrix X = (X1, . . . , Xm) be defined by deterministic vectors
Xj = (x1j , x2j , . . . , xnj)⊤, j = 1, . . . , m, which generate the m-dimensional
linear subspace LX = ⟨X1, . . . , Xm⟩. Further, define the mean squared
deviation between Y and Xβ via

e(β) = 1
n
|Y −Xβ|2 = 1

n

n∑
i=1

(Yi − xi1β1 − . . .− ximβm)2 .

Then, the ordinary least squares estimator, or OLS estimator for short, β̂
of β is defined as

β̂ = argmin
β

(e(β)). (4.3)

Why does a solution β ∈ Rm of the quadratic optimisation (4.3) exist?
Geometrically, Xβ̂ can be interpreted as the orthogonal projection of the
data vector Y on the linear subvector LX as depicted in Figure 4.1. Formally,
the existence of the solution will be shown by using the following theorem.

Figure 4.1: Projection on the linear subspace LX

·

Y

LX

Xβ

Theorem 4.2.1. Under the above conditions, there exists an unique OLS
estimator β̂, which solves the so-called normal equation

X⊤Xβ = X⊤Y. (4.4)

Thus, it holds that

β̂ =
(
X⊤X

)−1
X⊤Y.

Proof The necessary condition for the existence of the minimum is e′(β) =
0, that means

e′(β) =
(

∂e(β)
∂β1

, . . . ,
∂e(β)
∂βm

)⊤
= 0.



CHAPTER 4. LINEAR REGRESSION 143

It holds that

e′(β) = 2
n

(
X⊤Xβ −X⊤Y

)
=⇒ β̂ is a solution of the normal equation X⊤Xβ = X⊤Y . Sufficient
conditions for a minimum are given, since

e′′(β) =
(

∂2e(β)
∂βi∂βj

)
i,j=1,...,m

= 2
n

X⊤X.

X⊤X is symmetric and positive definite, since X has full rank:

∀y /= 0, y ∈ Rm : y⊤X⊤Xy = (Xy)⊤Xy = |Xy|2 > 0

and y /= 0 =⇒ Xy /= 0 implies that e′′(β) is positive definite. Thus
X⊤X is invertible. That means, β̂ minimizes e(β). The estimator β̂ =(
X⊤X

)−1
X⊤Y can be obtained, by multiplying

(
X⊤X

)−1
to the left of

the normal equation X⊤Xβ = X⊤Y .

Example 4.2.2.

1. Ordinary least squares

X =



1 x1

1 x2
...

...
1 xn


m = 2, β = (β1, β2)⊤ , Y = Xβ + ε

β̂ =
(
β̂1, β̂2

)
yields the OLS estimator from [33].

β̂2 = S2
XY

S2
XX

, β̂1 = Y n −Xnβ̂2,

where

Xn = 1
n

n∑
i=1

Xi, Y n = 1
n

n∑
i=1

Yi

S2
XY = 1

n− 1

n∑
i=1

(
Xi −Xn

) (
Yi − Y n

)
S2

XX = 1
n− 1

n∑
i=1

(
Xi −Xn

)2
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Exercise 4.2.3. Prove that!

2. Multiple linear regression
Y = Xβ + ε with design matrix

X =


1 x11 · · · x1m

...
...

...
...

1 xn1 · · · xnm

 for β = (β0, β1, . . . , βm)⊤ .

The OLS estimator β̂ = (X⊤X)−1X⊤Y is obviously a linear estimator with
respect to Y .
Next, let us show that β̂ is the best linear, unbiased estimator of β (BLUE)
in the class

L =
{

β̃ = AY + b : E β̃ = β
}

of all linear unbiased estimators.

Theorem 4.2.4 (Properties of the OLS estimator β̂). Let Y = Xβ + ε
be a multivariate linear regression model with full rank m and error terms
ε = (ε1, . . . , εn)⊤, which satisfy the following conditions:

E ε = 0, Cov (εi, εj) = σ2δij , i, j = 1, . . . , n for a σ2 ∈ (0,∞).

Then,

1. the OLS estimator β̂ =
(
X⊤X

)−1
X⊤Y is unbiased: E β̂ = β.

2. Cov (β̂) = σ2
(
X⊤X

)−1

3. β̂ has minimal variance among the estimators from L, i.e.,

∀β̃ ∈ L : Var β̃j ≥ Var β̂j , j = 1, . . . , m.

Proof 1. Let us compute

E β̂ = E
[(

X⊤X
)−1

X⊤ (Xβ + ε)
]

=
(
X⊤X

)−1
·X⊤X · β +

(
X⊤X

)−1
X⊤ · E ε︸︷︷︸

=0

= β ∀β ∈ Rm.
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2. For all β̃ = AY + b ∈ L it holds that

β = E β̃ = AEY + b = AXβ + b ∀β ∈ Rm.

=⇒ b = 0, AX = I.

=⇒ β̃ = AY = A (Xβ + ε) = AXβ + Aε

= β + Aε.

For

β̂ =
(
X⊤X

)−1
X⊤︸ ︷︷ ︸

=A

Y

it holds that

Cov β̂ =
(
E
((

β̂i − βi

) (
β̂j − βj

)))
i,j=1,...,m

= E
(
Aε · (Aε)⊤

)
= E

(
Aεε⊤A⊤

)
= AE

(
εε⊤

)
·A⊤

= A · σ2IA⊤ = σ2AA⊤ = σ2
(
X⊤X

)−1
X⊤

((
X⊤X

)−1
X⊤

)⊤

= σ2
(
X⊤X

)−1
X⊤X

(
X⊤X

)−1
= σ2

(
X⊤X

)−1
.

3. Let β̃ ∈ L, β̃ = β + Aε. It has to be shown that(
Cov (β̃)

)
ii

= σ2(AA⊤)ii ≥
(
Cov (β̂)

)
ii

= σ2(X⊤X)−1
ii ,

for i = 1, . . . , m.
Let D = A− (X⊤X)−1X⊤, then A = D + (X⊤X)−1X⊤,

AA⊤ =
(

D +
(
X⊤X

)−1
X⊤

)(
D⊤ + X

(
X⊤X

)−1⊤
)

= DD⊤ +
(
X⊤X

)−1
,

since

DX
(
X⊤X

)−1
=
(

AX︸︷︷︸
=I

−
(
X⊤X

)−1
X⊤X︸ ︷︷ ︸

=I

) (
X⊤X

)−1

= 0

and (
X⊤X

)−1
X⊤D⊤ =

(
X⊤X

)−1
X⊤

(
A⊤ −X

(
X⊤X

)−1⊤
)

=
(
X⊤X

)−1 (
(AX)⊤︸ ︷︷ ︸

=I

−X⊤X
(
X⊤X

)−1

︸ ︷︷ ︸
=I

)
= 0.
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=⇒
(
AA⊤

)
ii

=
(
DD⊤

)
ii︸ ︷︷ ︸

≥0

+
(
X⊤X

)−1

ii
≥
(
X⊤X

)−1

ii

=⇒ Var β̂i ≤ Var β̃i, i = 1, . . . , m.

Theorem 4.2.5. Let β̂n be the OLS estimator of the linear regression model
from above and {an}n∈N be a sequence with an /= 0, n ∈ N, an → 0 (n→∞).
Additionally, assume that there exists a regular (m×m) matrix Q with

Q = lim
n→∞

an

(
X⊤

n Xn

)
.

Then, β̂n is weakly consistent, i.e.,

β̂n
p−→

n→∞
β.

Proof

β̂n
p−→

n→∞
β ⇐⇒ P

(∣∣∣β̂n − β
∣∣∣ > ε

)
−→

n→∞
0 ∀ε > 0.

P
(∣∣∣β̂n − β

∣∣∣ > ε
)

= P

(∣∣∣β̂n − β
∣∣∣2 > ε2

)
= P

(
m∑

i=1

∣∣∣β̂in − βi

∣∣∣2 > ε2
)

≤ P

(
m⋃

i=1

{∣∣∣β̂in − βi

∣∣∣2 >
ε2

m

})

≤
m∑

i=1
P

(∣∣∣β̂in − βi

∣∣∣ >
ε√
m

)
Tschebyschew
≤ m

m∑
i=1

Var β̂in

ε2 −→
n→∞

0

if Var β̂in −→
n→∞

0, i = 1, . . . , m.

Var β̂in is a diagonal element of the matrix

Cov β̂n
(Satz4.2.4)= σ2

(
X⊤

n Xn

)−1
.

If Cov β̂n −→
n→∞

0 is true, then so is the theorem. Thus, let us show this
convergence.
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Since there exists a matrix

Q−1 = lim
n→∞

1
an

(
X⊤

n Xn

)−1

we can show that

lim
n→∞

Cov β̂n = σ2 lim
n→∞

(
X⊤

n Xn

)−1
= σ2 lim

n→∞
an ·

1
an

(
X⊤

n Xn

)−1

= 0 ·Q−1 · σ2 = 0.

4.2.2 Estimator of the variance σ2

Introduce the estimator σ̂2 for the variance σ2 of the error terms εi as follows:

σ̂2 = 1
n−m

∣∣∣Y −Xβ̂
∣∣∣2 . (4.5)

This is a generalized version of the variance estimator from the simple linear
regression, which has already been introduced in [33].
Theorem 4.2.6 (Expectation). The variance estimator

σ̂2 = 1
n−m

∣∣∣Y −Xβ̂
∣∣∣2

is unbiased. That means,
E σ̂2 = σ2.

Proof

σ̂2 = 1
n−m

(
Y −Xβ̂

)⊤ (
Y −Xβ̂

)
= 1

n−m

(
Y −X(X⊤X)−1XT Y

)⊤
(

Y −X
(
X⊤X

)−1
X⊤Y

)
= 1

n−m
(DY )⊤ DY

where D = I −X(X⊤X)−1X⊤ is a (n× n) matrix. Then,

σ̂2 = 1
n−m

Y ⊤D⊤DY = 1
n−m

Y ⊤D2Y = 1
n−m

Y ⊤DY,

if D⊤ = D and D2 = D, i.e. D is symmetric and idempotent. Indeed, it
holds that:

D⊤ = I −
(
X⊤

)⊤ (
X⊤X

)⊤−1
X⊤ = I −X

(
X⊤X

)−1
X⊤ = D.

D2 =
(
I −X(X⊤X)−1XT

)(
I −X

(
X⊤X

)−1
X⊤

)
= I − 2X

(
X⊤X

)−1
X⊤ + X

(
X⊤X

)−1
X⊤X

(
X⊤X

)−1
X⊤

= I −X
(
X⊤X

)−1
X⊤ = D.
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Furthermore it holds that

σ̂2 = 1
n−m

· trace
(
Y ⊤DY

)
= 1

n−m
· trace

(
DY Y ⊤

)
=⇒E σ̂2 = 1

n−m
· trace

(
DE

(
Y Y ⊤

))
= σ2

n−m
· trace (D) ,

since

trace
(
D · E

(
Y Y ⊤

))
=

= trace
(
D(Xβ)(Xβ)⊤ + DXβ E ε⊤︸ ︷︷ ︸

=0
+D E ε︸︷︷︸

=0
(Xβ)⊤ + D · E εε⊤︸ ︷︷ ︸

= Cov ε = σ2 · I

)
and

DX =
(
I −X

(
X⊤X

)−1
XT

)
X

= X −X
(
X⊤X

)−1
X⊤X = X −X = 0.

Now it needs to be shown that trace(D) = n−m:

trace(D) = trace
(
I −X

(
X⊤X

)−1
X⊤

)
= trace(I)− trace

(
X
(
X⊤X

)−1
X⊤

)
= n− trace

(
X⊤X ·

(
X⊤X

)−1

︸ ︷︷ ︸
eine (m × m)-Matrix

)
= n−m.

4.2.3 Maximum likelihood estimator for β and σ2

In order to construct a maximum likelihood estimator for β and σ2 resp. the
distributional properties of the OLS estimators β̂ and σ̂2, the distribution
of ε resp. Y has to be specified. In the following, normally distributed
i.i.d error terms are assumed, i.e.,

ε ∼ N
(
0, σ2I

)
, σ2 > 0.

Clearly, this implies

Y ∼ N
(
Xβ, σ2I

)
.

What do the distributions of the OLS estimators β̂ and σ̂2 look like? Since
β̂ is linearly dependent of Y , unbiased and Cov β̂ = σ̂2

(
X⊤X

)−1
, simple

calculations yield

β̂ ∼ N

(
β, σ2

(
X⊤X

)−1
)

.
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In the following, the maximum likelihood estimator for β and σ2, namely β̃
and σ̃2 are calculated. Once they have been calculated, it can be seen that
they are closely related to the OLE estimator.

β̃ = β̂,

σ̃2 = n−m

n
σ̂2.

Consider the Likelihood function of Y :

L(y, β, σ2) = fY (y) = 1(√
2πσ

)n · exp
{
− 1

2σ2 (y −Xβ)⊤ (y −Xβ)
}

and the Log likelihood function

log L(y, β, σ2) = −n

2 log (2π)−n

2 log
(
σ2
)
− 1

2σ2 |y −Xβ|2︸ ︷︷ ︸
:=g

.

The maximum likelihood estimators are then given by(
β̃, σ̃2

)
= argmax

β∈Rm, σ2>0
log L(y, β, σ2),

if they exist.

Theorem 4.2.7 (Maximum likelihood estimation of β̃ and σ̃2). There exist
unique maximum likelihood estimators for β and σ2 which are given by

β̃ = β̂ =
(
X⊤X

)−1
X⊤Y

σ̃2 = n−m

n
σ̂2 = 1

n

∣∣∣Y −Xβ̃
∣∣∣2 .

Proof Fix σ2 > 0 and find

β̃ = argmax
β∈Rm

log L(Y, β, σ2) = argmin
β∈Rm

|Y −Xβ|2 ,

which implies that β̃ coincides with the known OLS estimator β̂ =
(
X⊤X

)−1
X⊤Y

and does not depend on σ2. Therefore, we can compute

σ̃2 = argmax
σ2>0

log L
(
Y, β̃, σ2

)
= argmax

σ2>0
g(σ2).

It holds that

g
(
σ2
)
−→

σ2→+∞
−∞, g

(
σ2
)
−→
σ2→0

−∞,
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since |Y −Xβ|2 /= 0 because Y ∼ N
(
Xβ, σ2I

)
∈ {Xy : y ∈ Rm} with

probability zero. Since

g′(σ2) = −n

2
1
σ2 + |Y −Xβ|

2 (σ2)2 = 0, σ̃2 = 1
n

∣∣∣Y −Xβ̃
∣∣∣2

maximizes g(σ2), that means σ̃2 is a maximum likelihood estimator for σ2.

Theorem 4.2.8. Under the assumptions above it holds that

1. E σ̃2 = n−m
n σ2, that means σ̃2 is biased; but it is asymptotically unbi-

ased.

2. n
σ2 σ̃2 ∼ χ2

n−m, n−m
σ2 σ̂2 ∼ χ2

n−m.

Proof

1. Trivial (similar to the proof of Theorem 4.2.6)

2. Only the assertion for σ̂2 is shown:

n−m

σ2 σ̂2 = 1
σ2

∣∣∣Y −Xβ̂
∣∣∣2

= 1
σ2 Y ⊤ D︸︷︷︸

=D2

Y (by the proof of Theorem 4.2.6)

= 1
σ2 (DY )⊤DY = 1

σ2
(

D(X︸ ︷︷ ︸
=0

β + ε)
)⊤ ·D(X︸ ︷︷ ︸

=0

β + ε)

= 1
σ2 (Dε)⊤Dε =

(
ε

σ

⊤)
D

(
ε

σ

)
,

where (
ε

σ

)
∼ N (0, I) .

By Theorem 4.1.25 it holds that

ε⊤

σ
D

ε

σ
∼ χ2

r ,

where r = rank (D), since DI = D is idempotent. If r = n−m, then
(n−m)σ̂2 ∼ χ2

n−m. It needs to be shown that rank (D) = r = n−m.
From linear algebra it is known that rank (D) = n− dim(Kern (D)).
Now Kern (D) = {Xx : x ∈ Rm} and thus dim(Kern (D)) = m, since
rank (X) = m. It holds that {Xx : x ∈ Rn} ⊆ Kern (D), since

DX = (I −X(X⊤X)−1X⊤)X = X − (X⊤X)−1X⊤X = 0.



CHAPTER 4. LINEAR REGRESSION 151

and Kern (D) ⊆ {Xx : x ∈ Rm}, since

∀y ∈ Kern (D) : Dy = 0⇐⇒ (I −X(X⊤X)−1X⊤)y = 0
⇐⇒ y = X · (X⊤X)−1X⊤y︸ ︷︷ ︸

x

= Xx ∈ {Xx : x ∈ Rm} .

Theorem 4.2.9. Let Y = Xβ + ε be a multivariate regression model with
Y = (Y1, . . . , Yn)⊤, design matrix X with rank (X) = m, β = (β1, . . . , βm)⊤,
ε ∼ N (0, σ2I). Then, the estimators β̂ = (X⊤X)−1X⊤Y for β resp. σ̂2 =

1
n−m |Y −Xβ̂|2 for σ2 are independent.

Proof In this proof Theorem 4.1.26 is used. In order to do so, β̂ has to be
expressed as a linear and σ̂2 as quadratic form of ε. It has been shown in
the proofs of Theorem 4.2.4 and 4.2.8 that

β̂ = β + (X⊤X)−1X⊤︸ ︷︷ ︸
=A

ε,

σ̂2 = 1
n−m

ε⊤Dε, where D = I −X(X⊤X)−1X⊤.

Moreover it holds that AD = 0, by the proof of Theorem 4.2.6

(AD)⊤ = D⊤A⊤ = D ·X︸ ︷︷ ︸
=0

((X⊤X)−1)⊤ = 0.

Since ε ∼ N (0, σ2I), it holds that

Aσ2ID = 0.

Thus, the assumptions of Theorem 4.1.26 are satisfied and β̂ and σ̂2 are
independent.

4.2.4 Tests for regression parameters

In this section the hypotheses

H0 : β = β0 vs. H1 : β /= β0

are tested for a β0 ∈ Rm. In order to do so, define the test statistic

T =

(
β̂ − β0

)⊤
X⊤X

(
β̂ − β0

)
mσ̂2 .

Theorem 4.2.11 implies that under H0

T ∼ Fm,n−m.
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Thus, H0 is rejected, if T > Fm,n−m,1−α, where Fm,n−m,1−α is the (1 − α)
quantile of the Fm,n−m distribution. This is a test with confidence level
α ∈ (0, 1).
Special case: The case β0 = 0 describes test for connectivity ; that means it
is tested, whether β1, . . . , βm are relevant for describing the data Y .
Remark 4.2.10.

1. How can we test that the test statistic T can actually distinguish H0
from H1? Introduce

Ỹ = Y −Xβ̂ =: Y − Ŷ .

Then,

σ̂2 = 1
n−m

∣∣∣Ỹ ∣∣∣2
and Ỹ is the vector of residuals.
Without loss of generality assume β0 = 0. If H0 is false, then β /= 0,
and

|Xβ|2 = (Xβ)⊤Xβ = β⊤X⊤Xβ > 0,

since X has full rank. This implies that H0 has to be rejected, if∣∣∣Ŷ ∣∣∣2 =
∣∣∣Xβ̂

∣∣∣2 = β̂⊤X⊤Xβ̂ ≫ 0.

In the test statistic |Xβ̂|2 the variation of the estimation of β is not
considered. In order to do so, a new test statistic T can be defined by
dividing |Xβ̂|2 by σ̂2, i.e.

T = β̂⊤X⊤Xβ̂

m · σ̂2 =

∣∣∣Ŷ ∣∣∣2
m

n−m

∣∣∣Y − Ŷ
∣∣∣2 .

The Pythagorean theorem implies

|Y |2 =
∣∣∣Ỹ ∣∣∣2 +

∣∣∣Ŷ ∣∣∣2 .

Then, under H0

E |Ŷ |2 = E |Y |2 − E |Y − Ŷ |2 = nσ2 − E |Ỹ |2

holds and thus
E |Ŷ |2

E
(

m
n−m

∣∣∣Ỹ ∣∣∣2)
(H0)= nσ2 − E |Ỹ |2

m
n−mE |Ỹ |2

= n−m

m

(
nσ2

E |Ỹ |2
− 1

)
,

where we have used that E |Y |2 = E
(
Y ⊤Y

)
= σ2n and Y ∼ N (0, σ2I).

Consequently, the test statistic T is sensible with respect to variations
of H0.
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2. The term ∣∣∣Ỹ ∣∣∣2 =
∣∣∣Y − Ŷ

∣∣∣2
is called residual distribution. Now the coefficient of determination R2

as introduced in [33] can be generalized as

R2 = 1− |Ỹ |2∣∣∣Y − Y n · e
∣∣∣2 ,

where e = (1, . . . , 1)⊤, Y n = 1
n

n∑
i=1

Yi.

Theorem 4.2.11. Under H0 : β = β0 it holds that

T =

(
β̂ − β0

)⊤
X⊤X

(
β̂ − β0

)
mσ̂2 ∼ Fm,n−m.

Proof It holds that

β̂ ∼ N

(
β0, σ2

(
X⊤X

)−1
)

=⇒ β̂ − β0 ∼ N
(
0, σ2(X⊤X)−1︸ ︷︷ ︸

:=K

)
.

If A = X⊤X
σ2 , then AK = I is idempotent. Then by Theorem 4.1.25(

β̂ − β0
)⊤

A
(
β̂ − β0

)
H0∼ χ2

m.

Note that under H1 the distribution of (β̂ − β0)⊤A(β̂ − β0) does not follow
a centered χ2 distribution.
Furthermore, it holds that

n−m

σ2 σ̂2 ∼ χ2
n−m.

Also, Theorem 4.2.9 implies the independence of (β̂ − β0)⊤A(β̂ − β0) and
n−m

σ2 σ̂2. Therefore,

T = (β̂ − β0)⊤(X⊤X)(β̂ − β0)/m

(n−m)σ̂2/(n−m) ∼ Fm,n−m

by definition of the F distribution.

Now, let us test the relevance of the parameters βj , i.e., we test

H0 : βj = β0j vs. H1 : βj /= β0j .
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Theorem 4.2.12. Under H0 : βj = β0j it holds that

Tj = β̂j − β0j

σ̂
√

xjj
∼ tn−m,

where xjj is the j-th diagonal entry of the matrix (X⊤X)−1.

Proof β̂
H0∼ N (β0, σ2(X⊤X)−1) implies β̂j

H0∼ N (β0j , σ2xjj) and thus β̂j −
β0j ∼ N (0, σ2xjj). Consequently, A := β̂j−β0j

σ
√

xjj
∼ N (0, 1). Furthermore, it

holds that B := (n−m)σ̂2

σ2
H0∼ χ2

n−m, and by Theorem 4.2.9 the statistics A
and B are independent which implies that

Tj =
β̂j−β0j

σ
√

xjj√
(n−m)σ̂2

(n−m)σ2

∼ tn−m.

Thus, a test for H0 : βj = βj0 vs. H1 : not H0, with confidence level α
can be constructed using test statistic T by rejected the null hypothesis, if
|T | > tn−m,1−α/2.
Next, let us test the hypothesis

H0 : βj1 = β0j1 , . . . , βjl
= β0jl

vs. H1 : ∃i ∈ {1, . . . , l} : βji /= β0ji .

Exercise 4.2.13. Show that under H0 the following assertion holds:

T = (β̂′ − β′
0)⊤K ′(β̂′ − β′

0)
lσ̂2 ∼ Fl,n−m,

where

β̂′ = (β̂j1 , . . . , β̂jl
),

β′
0 = (β0j1 , . . . , β0jl

),

K ′ =


xj1j1 · · · xj1jl

...
...

...
xjlj1 · · · xjljl


−1

.

Construct the corresponding F test!

Test for linear combinations of parameters

Let us consider

H0 : Hβ = c vs. H1 : Hβ /= c,

where H is a (r ×m) matrix and c ∈ Rr.
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Theorem 4.2.14. Under H0 it holds that

T = (Hβ̂ − c)⊤(H(X⊤X)−1H⊤)−1(Hβ̂ − c)
rσ̂2

∼ Fr,n−m.

Thus H0 : Hβ = c is rejected, if T > Fr,n−m,1−α.

Exercise 4.2.15. Prove Theorem 4.2.14!

4.2.5 Confidence region

1. Confidence interval for βj

In Theorem 4.2.12 it has been shown that

β̂j − βj

σ̂ ·
√

xjj
∼ tn−m,

where (X⊤X)−1 = (xij)i,j=1,...,m. By using the standard methodology,
the following confidence interval for βj with confidence level 1−α can
be constructed as follows

P
(
β̂j − tn−m,1−α/2 · σ̂

√
xjj ≤ βj ≤ β̂j + tn−m,1−α/2 · σ̂

√
xjj
)

= 1− α.

2. Simultaneous confidence region for β = (β1, . . . , βm)⊤

From the Bonferroni inequality it is known that

P

 m⋂
j=1

Aj

 ≥ m∑
j=1

P (Aj)− (m− 1),

for sets A1, . . . , Am. Now, using the sets

Aj :=
{

βj∈
[
β̂j − tn−m,1−α/(2m) ·σ̂

√
xjj , β̂j + tn−m,1−α/(2m) ·σ̂

√
xjj
]}

yields

P

(
Aj , j = 1, . . . , m

)
≥

m∑
j=1

P (Aj)− (m− 1) = m ·
(

1− α

m

)
−m + 1 = 1− α.

This implies that {
β = (β1, . . . , βm)⊤ : βj ∈ Aj

}
is a simultaneous confidence region for β with confidence level 1− α.
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3. Confidence ellipsoid for β.
In Theorem 4.2.11 it has been shown that

T = (β̂ − β)⊤(X⊤X)(β̂ − β)
mσ̂2 ∼ Fm,n−m.

This implies that

P (T ≤ Fm,n−m,1−α) = 1− α and

E =
{

β ∈ Rm : (β̂ − β)⊤(X⊤X)(β̂ − β)
mσ̂2 ≤ Fm,n−m,1−α

}

is a confidence ellipsoid with confidence level 1− α (see Figure 4.2).

Figure 4.2: Confidence ellipsoid

P

E

Since an ellipsoid can be embedded in the minimal parallelepiped P ,
such that the length of the sides of P are 2× length of the half-axes of
E , the following simultaneous confidence region for β = (β1, . . . , βm)⊤

can be constructed:

P =
{

β : β̂j − σ̂
√

mxjjFm,n−m,1−α ≤ βj ≤ β̂j + σ̂
√

mxjjFm,n−m,1−α

}
j = 1, . . . , m

4. Confidence interval for the expected target value x01β1 + . . . + x0mβm.
Let Y0 = x01β1 + . . .+x0mβm +ε0 be a new target value with E ε0 = 0.
Then

EY0 =
n∑

i=1
x0iβi.

In the following, a confidence interval for EY0 is constructed. In oder
to do so, the proof idea of Theorem 4.2.12 combined with Theorem
4.2.14 with H = (x01, . . . , x0m) = x⊤

0 , r = 1 is used. Then

T =

m∑
i=1

β̂ix0i −
m∑

i=1
βix0i

σ̂
√

x⊤
0 (X⊤X)−1x0

∼ tn−m.
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Thus{
β = (β1, . . . , βm)⊤ :

m∑
i=1

x0iβ̂i − σ̂
√

x⊤
0 (X⊤X)−1x0 · tn−m,1−α/2

≤
m∑

i=1
x0iβi ≤

m∑
i=1

x0iβ̂i + σ̂
√

x⊤
0 (X⊤X)−1x0 · tn−m,1−α/2

}

is a confidence interval
m∑

i=1
x0iβi with confidence level 1− α.

5. Forecast interval for the target variable Y0.

For Y0 =
m∑

i=1
x0iβi + ε0 with ε0 ∼ N (0, σ2) independent of ε1, . . . , εn,

it holds that

x⊤
0 β̂ − Y0 ∼ N (0, σ2(1 + x⊤

0 (X⊤X)−1x0))

=⇒ x⊤
0 β̂ − Y0

σ
√

1 + x⊤
0 (X⊤X)−1x0

∼ N (0, 1)

=⇒ x⊤
0 β̂ − Y0

σ̂
√

1 + x⊤
0 (X⊤X)−1x0

∼ tn−m,

Thus, (
x⊤

0 β̂ − c, x⊤
0 β̂ + c

)
with c = σ̂

√
1 + x⊤

0 (X⊤X)−1 · x0 · tn−m,1−α/2

is a forecast interval for the target variable Y0 with confidence level
1− α.

6. Confidence band for the regression plane y = β1 +
m∑

i=2
xiβi in the mul-

tiple regression model.
Let Y = Xβ + ε, where

X =



1 x12 · · · x1m

1 x22 · · · x2m

...
... . . . ...

1 xn2 · · · xnm


and ε ∼ N (0, σ2 · I).

The goal is to construct a confidence band B(x) for y. It holds that

P

(
y = β1 +

m∑
i=2

βixi ∈ B(x)
)

= 1− α ∀x ∈ Rm−1
1 ,

where Rm−1
1 =

{
(1, x2, . . . , xm)⊤ ∈ Rm

}
.
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Theorem 4.2.16. Furthermore,

P

(
max

x∈Rm−1
1

(
xT β̂ −

=y︷ ︸︸ ︷(
β1 +

m∑
i=2

βixi

) )2

σ̂2x⊤(X⊤X)−1x
≤ m · Fm,n−m,1−α

)
= 1− α

holds. Without proof.

4.3 Multivariate linear regression with rank(X) <
m

Let Y = Xβ + ε, Y ∈ Rn, where X is a (n ×m) matrix with rank (X) =
r < m, β = (β1, . . . , βm)⊤, ε ∈ Rn, E ε = 0, E (εiεj) = δijσ2, i, j = 1, . . . , n,
σ2 > 0.
Even though the rank of the matrix is not full anymore, the OLS estimator
β̂ is still a solution to the normal equation(

X⊤X
)

β = X⊤Y.

However, X⊤X is not invertible, since

rank (X⊤X) ≤ min
{

rank (X), rank (X⊤)
}

= r < m.

Consequently, in order to obtain β̂ from the normal equation, both sides of
the equations are multiplied with the generalized inverse of X⊤X.

4.3.1 Generalized inverse

Definition 4.3.1. Let A be a (n × m) matrix. A (m × n) matrix A− is
called generalized inverse of A, if

AA−A = A.

The matrix A− is not unique, which is shown in the following lemmas.

Lemma 4.3.2. Let A be a (n×m) matrix, m ≤ n with rank (A) = r ≤ m.
There exist invertible matrices P (n× n) and Q (m×m), such that

PAQ =

 Ir 0
0 0

 , where Ir = diag(1, . . . , 1︸ ︷︷ ︸
r times

). (4.6)
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Corollary 4.3.3. For an arbitrary (n×m) matrix A with n ≥ m, rank (A)
r ≤ m it holds that

A− = Q

 Ir A2

A1 A3

P, (4.7)

where P and Q are matrices as in (4.6), Ir = diag (
r times︷ ︸︸ ︷

1, . . . , 1), and A1, A2
resp. A3 are arbitrary ((m− r)× r), (r× (n− r)) resp. ((m− r)× (n− r))
matrices.
In particular

A1 = 0,

A2 = 0,

A3 = diag (1, . . . , 1︸ ︷︷ ︸
s−r times

, 0, . . . , 0),

s ∈ {r, . . . , m}

can be chosen, which means rank (A−) = s ∈ {r, . . . , m} for

A− = Q

 Is 0
0 0

P.

Proof In the following it is shown that for A− as in (4.7), it holds that
AA−A = A. Lemma 4.3.2 implies that

A = P −1 · diag (1, . . . , 1, 0, . . . , 0) ·Q−1 and thus

AA−A = P −1

 Ir 0
0 0

Q−1Q ·

 Ir A2

A1 A3

PP −1

 Ir 0
0 0

Q−1

= P −1

 Ir 0
0 0

 Ir A2

A1 A3

 Ir 0
0 0

Q−1

= P −1

 Ir 0
0 0

Q−1 = A.

Lemma 4.3.4. Let A be an arbitrary (n×m) matrix with rank (A) = r ≤
m, m ≤ n.

1. If (A⊤A)− is a generalized inverse of an (m ×m) matrix A⊤A, then(
(A⊤A)−

)⊤
is also a generalized inverse of A⊤A.
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2. It holds that

(A⊤A)(A⊤A)−A⊤ = A⊤ resp.
A(A⊤A)−(A⊤A) = A.

Proof

1. A⊤A is symmetric, i.e.(
A⊤A(A⊤A)−A⊤A

)⊤

︸ ︷︷ ︸
=A⊤A((A⊤A)−)⊤

A⊤A

=
(
A⊤A

)⊤
= A⊤A.

Thus
(
(A⊤A)−

)⊤
is a generalized inverse of A⊤A.

2. Let B = (A⊤A)(A⊤A)−A⊤ − A⊤. In the following it is shown that
B = 0 by proving that BB⊤ = 0.

BB⊤ =
(
(A⊤A)(A⊤A)−A⊤ −A⊤

)(
A
(
(A⊤A)−

)⊤
A⊤A−A

)
= A⊤A(A⊤A)−A⊤A

(
(A⊤A)−

)⊤
A⊤A−A⊤A(A⊤A)−A⊤A︸ ︷︷ ︸

=A⊤A

−A⊤A
(
(A⊤A)−

)⊤
·A⊤A︸ ︷︷ ︸

=A⊤A

+A⊤A

= A⊤A− 2A⊤A + A⊤A = 0.

The assertion A(A⊤A)−A⊤A = A can be shown, by transposing the
matrices on both sides of the equation A⊤A(A⊤A)−A⊤ = A⊤.

4.3.2 OLS estimator for β

Theorem 4.3.5. Let X be a (n×m) design matrix with rank (X) = r < m
in the linear regression model Y = Xβ + ε. The generalized solution of the
normal equation (

X⊤X
)

β = X⊤Y

is given by

β =
(
X⊤X

)−
X⊤Y +

(
Im −

(
X⊤X

)−
X⊤X

)
z, z ∈ Rm. (4.8)

Proof
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1. In the following it is shown that β as in (4.8) is a solution of the normal
equation.

X⊤Xβ = (X⊤X)(X⊤X)−X⊤︸ ︷︷ ︸
=X⊤(Lemma 4.3.4, 2.))

Y +
(

X⊤X −X⊤X(X⊤X)−X⊤X︸ ︷︷ ︸
=X⊤X

)
z

= X⊤Y

2. Let us show that an arbitrary solution β′ of the normal equation can be
written as (4.8). Let β be the solution (4.8). Calculating the difference
of the equations yields

(X⊤X)β′ = X⊤Y

− (X⊤X)β = X⊤Y

(X⊤X)(β′ − β) = 0

β′ = (β′ − β) + β

= β′ − β + (X⊤X)−X⊤Y +
(
Im − (X⊤X)−X⊤X

)
z

= (X⊤X)−X⊤Y +
(
Im − (X⊤X)−X⊤X

)
z + (β′ − β)

− (X⊤X)−X⊤X(β′ − β)︸ ︷︷ ︸
=0

= (X⊤X)−X⊤Y +
(
Im − (X⊤X)−X⊤X

) (
z + β′ − β︸ ︷︷ ︸

=z0

)
=⇒ β′ can be rewritten as (4.8).

Remark 4.3.6. Theorem 4.3.5 yields the set of all extreme points of the
OLS minimization problem

e(β) = 1
n
|Y −Xβ|2 −→ min

β
.

Thus, the set of all OLS estimators of β in (4.8) should satisfy additional
conditions.

Theorem 4.3.7.

1. All OLS estimators of β can be written as

β =
(
X⊤X

)−
X⊤Y,

where (X⊤X)− is an arbitrary generalized inverse of X⊤X.
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2. β is not unbiased, since

Eβ =
(
X⊤X

)−
X⊤Xβ.

3. It holds that

Cov β = σ2
(
X⊤X

)− (
X⊤X

) (
(X⊤X)−

)⊤
.

Proof

1. We show that e(β) ≥ e(β) ∀β ∈ Rm.

n · e(β) = |Y −Xβ|2 = (Y −Xβ + X(β − β))⊤(Y −Xβ + X(β − β))

= (Y −Xβ)⊤(Y −Xβ) +
(
X(β − β)

)⊤ (
X(β − β)

)
+ 2(β − β)⊤X⊤(Y −Xβ)

= n · e(β) + 2 · (β − β)⊤(X⊤Y − (X⊤Xβ))︸ ︷︷ ︸
=0

+
∣∣∣X(β − β)

∣∣∣2
≥ n · e(β) + 0 = n · e(β), since

β can be rewritten as in (4.8) with z = 0 and is thus a solution to the
normal equation.

2. It holds that

Eβ = E
(
(X⊤X)−X⊤Y

)
=
(
X⊤X

)−
X⊤EY

= (X⊤X)−X⊤Xβ,

Y = Xβ + ε, E ε = 0.

Note that this implies EY = Xβ. Why is β not unbiased, i.e. (X⊤X)−X⊤Xβ /=
β, β ∈ Rm?
Since rank (X) = r < m, rank (X⊤X) < m and rank ((X⊤X)−X⊤X) <
m. Thus, there exists a β /= 0, for which it holds that(

X⊤X
)−

X⊤Xβ = 0 /= β,

so β is not unbiased. Furthermore it holds that all solutions of (4.8)
are not unbiased estimators. Applying the expectation on (4.8) yields
the following in the case of unbiasedness

∀β ∈ Rm : β = (X⊤X)−X⊤Xβ +
(
Im − (X⊤X)−(X⊤X)

)
z, z ∈ Rm.

=⇒
(
Im − (X⊤X)−(X⊤X)

)
(z − β) = 0 ∀z, β ∈ Rm

=⇒ (X⊤X)−(X⊤X)(β − z) = β − z, ∀z, β ∈ Rm.

Since this equation can’t hold for all β ∈ Rm, the assumption leads to
a contradiction.
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3. It holds that

Cov
(
βi, βj

)
= Cov

((
(X⊤X)−X⊤︸ ︷︷ ︸

:=A=(akl)

Y
)

i
,
(
(X⊤X)−X⊤Y

)
j

)

= Cov
(

n∑
k=1

aikYk,
n∑

l=1
ajlYl

)

=
n∑

k,l=1
aikajl Cov

(
Yk, Yl

)
︸ ︷︷ ︸

=σ2·δkl

= σ2
n∑

k=1
aikajk =

(
σ2AA⊤

)
i,j

=
(

σ2(X⊤X)−X⊤X
(
(X⊤X)−

)⊤
)

i,j.

4.3.3 Functions that can be estimated without bias

Definition 4.3.8. A linear combination a⊤β of β1, . . . , βm, a ∈ Rm is called
estimable without bias, if

∃ c ∈ Rn : E
(
c⊤Y

)
= a⊤β,

i.e. if a linear unbiased estimator c⊤Y for a⊤β exists.

Theorem 4.3.9. The function a⊤β, a ∈ Rm is estimable without bias if
and only if one of the following conditions is satisfied:

1. ∃ c ∈ Rn : a⊤ = c⊤X.

2. a fulfills the equation

a⊤
(
X⊤X

)−
X⊤X = a⊤. (4.9)

Proof

1. „=⇒ “: If a⊤β is estimable, then there exists a vector d ∈ Rn with
E (d⊤Y ) = a⊤β ∀β ∈ Rm. So

a⊤β = d⊤EY = d⊤Xβ ⇒
(
a⊤ − d⊤X

)
β = 0, ∀β ∈ Rm

=⇒ a⊤ = d⊤X,

Finally, setting c = d proves this implication.
„⇐= “: We can easily compute E (c⊤Y ) = c⊤EY = c⊤Xβ = a⊤β.
Therefore, a⊤β is estimable without bias.
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2. „=⇒ “: If a⊤β is estimable without bias, then

a⊤(X⊤X)−X⊤X
1.= c⊤ X · (X⊤X)−X⊤X︸ ︷︷ ︸

=X (Lemma 4.3.4)

= c⊤X
(1.)= a⊤.

Thus, relation (4.9) is satisfied.
„⇐= “: If a⊤(X⊤X)−X⊤X = a⊤, then c = (a⊤(X⊤X)−X⊤)⊤ and
the first assertion imply that a⊤β is estimable.

Remark 4.3.10. In case of a regression with rank (X) = m the equa-
tion (4.9) is always satisfied since (X⊤X)− = (X⊤X)−1 and thus a⊤β is
estimable for all a ∈ Rm.

Theorem 4.3.11 (Examples of estimable functions). If rank (X) = r < m,
then the following linear combinations of β are estimable:

1. The coordinates
m∑

j=1
xijβj , i = 1, . . . , n of the vector of expectations

EY = Xβ.

2. Arbitrary linear combinations of estimable functions.

Proof

1. Set x̃i = (xi1, . . . , xim), i = 1, . . . , n. Then
m∑

j=1
xijβj

= x̃⊤
i β ∀i = 1, . . . , n,

Xβ = (x̃1, x̃2, . . . , x̃n)⊤ β.

x̃iβ is estimable, if x̃i satisfies (4.9), which can be expressed in matrices
for all i = 1, . . . , n as follows:

X
(
X⊤X

)−
X⊤X = X.

By Lemma 4.3.4 this is valid.

2. For a1, . . . , ak ∈ Rm let a⊤
1 β, . . . , a⊤

k β be estimable functions. For all

λ = (λ1, . . . , λk)⊤ ∈ Rk show that
k∑

i=1
λi · a⊤

i β = λ⊤Aβ is estimable,

where A = (a1, . . . , ak)⊤. It needs to be shown that b = (λ⊤A)⊤

satisfies (4.9), i.e.

λ⊤A
(
X⊤X

)−
X⊤X = λ⊤A.

This equation is satisfied, since a⊤
i (X⊤X)−X⊤X = a⊤

i , i = 1, . . . , k.
By Theorem 4.3.9, 2.) λ⊤Aβ is estimable.
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Theorem 4.3.12 (Gauß-Markov). Let a⊤β be an estimable function, a ∈
Rm in the linear regression model Y = Xβ + ε with rank (X) ≤ m.

1. The best linear unbiased estimator of a⊤β is given by a⊤β, where

β =
(
X⊤X

)−
X⊤Y

is an OLS estimator for β.

2. Var (a⊤β) = σ2a⊤(X⊤X)−a.
Proof The linearity of a⊤β = a⊤(X⊤X)−X⊤Y as a function of Y is clear.
For the unbiasedness it holds that

E (a⊤β) = a⊤Eβ = a⊤(X⊤X)−X⊤Xβ

= c⊤ X(X⊤X)−X⊤X︸ ︷︷ ︸
=X (Lemma 4.3.4)

β = c⊤X︸ ︷︷ ︸
=a⊤

β = a⊤β ∀β ∈ Rm.

First, calculate Var (a⊤β) (i.e. prove the second assertion) and show
that it is minimal:

Var (a⊤β) = Var
(

m∑
i=1

aiβi

)
=

m∑
i,j=1

aiaj · Cov
(
βi, βj

)
= a⊤Cov

(
β
)

a
(Satz 4.3.7)= a⊤σ2

(
(X⊤X)−X⊤X(X⊤X)−

)⊤
a

= σ2 · a⊤
(
(X⊤X)−

)⊤

︸ ︷︷ ︸
=(X⊤X)−

X⊤X
(
(X⊤X)−

)⊤

︸ ︷︷ ︸
(X⊤X)−

a

Lemma 4.3.4, 1.)= σ2a⊤(X⊤X)−X⊤X(X⊤X)−a

Theorem 4.3.9, 1.)= σ2 · c⊤ X · (X⊤X)X⊤X︸ ︷︷ ︸
=X

(X⊤X)−X⊤c

= σ2 c⊤X︸ ︷︷ ︸
=a⊤

(X⊤X)− X⊤c︸ ︷︷ ︸
=a

= σ2a⊤(X⊤X)−a.

Now it is shown that for an arbitrary linear unbiased estimator b⊤Y of
a⊤β it holds that Var (b⊤Y ) ≥ Var (a⊤β). Since b⊤Y is unbiased, it holds
that E (b⊤Y ) = a⊤β. Using Theorem 4.3.9 it holds that a⊤ = b⊤X. Now,
consider

0 ≤ Var
(
b⊤Y − a⊤β

)
= Var

(
b⊤Y

)
− 2Cov

(
b⊤Y, a⊤β

)
+ Var

(
a⊤β

)
= Var (b⊤Y )− 2σ2a⊤(X⊤X)−a + σ2a⊤(X⊤X)−a

= Var (b⊤Y )−Var
(
a⊤β

)
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with

Cov
(
b⊤Y, a⊤β

)
= Cov

(
b⊤Y, a⊤(X⊤X)−X⊤Y

)
= σ2a⊤(X⊤X)− X⊤b︸ ︷︷ ︸

=a

= σ2a⊤(X⊤X)−a.

Thus, Var
(
b⊤Y

)
≥ Var

(
a⊤β

)
and a⊤β is a best linear unbiased estimator

for a⊤β.

Remark 4.3.13.

1. If rank (X) = m, then a⊤β̂ is the best linear unbiased estimator for
a⊤β, a ∈ Rm.

2. The estimator a⊤β = a⊤(X⊤X)−X⊤Y does not depend on the choice
of the generalized inverse as is shown in the following theorem.

Theorem 4.3.14. The best linear unbiased estimator a⊤β for a⊤β is uniquely
determined.

Proof

a⊤β = a⊤(X⊤X)−X⊤Y
Theorem 4.3.9, 1.)= c⊤X(X⊤X)−X⊤Y.

In order to show that X(X⊤X)−X⊤ does not depend on (X⊤X)−, we prove
that for arbitrary generalized inverses A1 and A2 of (X⊤X) it holds that
XA1X⊤ = XA2X⊤. By Lemma 4.3.4, 2.) it holds that

XA1X⊤X = X = XA2X⊤X.

Multiplying all parts of the equation with A1X⊤ on the right yields

XA1 X⊤XA1X⊤︸ ︷︷ ︸
=X⊤

= XA1X⊤ = XA2 X⊤XA1X⊤︸ ︷︷ ︸
=X⊤

Thus, XA1X⊤ = XA2X⊤.

4.3.4 Normally distributed error terms

Let Y = Xβ + ε be a linear regression model with rank (X) = r < m and
ε ∼ N (0, σ2I). As in Section 4.2.3 the maximum likelihood estimator β̃ and
σ̃2 can be derived for β and σ2. Exactly as in Theorem 4.2.7 it can be shown
that

β̃ = β = (X⊤X)−X⊤Y and

σ̃2 = 1
n

∣∣∣Y −Xβ
∣∣∣2 .
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Now the distributional properties of β and σ̃2 are discussed. First the unbi-
asedness of σ̃2 is discussed. σ̃2 is not unbiased but, the corrected estimator

σ2 = 1
n− r

|Y −Xβ|2 = n

n− r
σ̃2

is unbiased.

Theorem 4.3.15. The estimator σ2 is unbiased for σ2.

The proof of Theorem 4.3.15 is similar to the proof of Theorem 4.2.6 in which
β̂ = (X⊤X)−1X⊤Y and σ̂2 = 1

n−m |Y − Xβ|2 are considered for the case
rank (X) = m. Thus, Theorem 4.2.6 is a special case of Theorem 4.3.15.
Define D := I −X(X⊤X)−X⊤.

Lemma 4.3.16. For D it holds that

1. D⊤ = D (symmetry),

2. D2 = D (idempotence),

3. DX = 0,

4. trace(D) = n− r.

Proof

1. It holds that

D⊤ =
(
I −X(X⊤X)−X⊤

)⊤
= I −X

(
(X⊤X)−

)⊤
X⊤

= I −X(X⊤X)−X⊤ = D,

since
(
(X⊤X)−

)⊤
is also a generalized inverse of X⊤X (cf. Lemma

4.3.4, 1.)).

2. It holds that

D2 =
(
I −X(X⊤X)−X⊤

)2

= I − 2X(X⊤X)−X⊤ + X(X⊤X)−X⊤X︸ ︷︷ ︸
=X (Lemma 4.3.4, 2.))

(X⊤X)−X⊤

= I −X(X⊤X)−X⊤ = D.

3. DX = X − X(X⊤X)−X⊤X︸ ︷︷ ︸
=X (Lemma 4.3.4, 2.))

= X −X = 0.
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4. It holds that

trace(D) = trace(I)− trace
(
X(X⊤X)−X⊤

)
= n− trace

(
X(X⊤X)−X⊤

)
.

The symmetry and idempotence of the matrix A imply trace(A) =
rank (A) as is known from linear algebra. Since X(X⊤X)−X⊤ is sym-
metric and idempotent, it is sufficient to show rank (X(X⊤X)−X⊤) =
r. By Lemma 4.3.4 2.) it holds that

rank (X) = r = rank (X(X⊤X)−X⊤X)

≤ min
{

rank (X(X⊤X)−X⊤), rank (X)︸ ︷︷ ︸
=r

}
≤ rank

(
X(X⊤X)−X⊤

)
≤ rank (X) = r

=⇒ rank
(
X(X⊤X)−X⊤

)
= r

=⇒ trace
(
X(X⊤X)−X⊤

)
= r.

Proof of Theorem 4.3.15 By using Lemma 4.3.16 it can be shown that

σ2 = 1
n− r

∣∣∣Y −Xβ
∣∣∣2 = 1

n− r

∣∣∣Y −X(X⊤X)−X⊤Y
∣∣∣2 = 1

n− r

∣∣DY
∣∣2

= 1
n− r

∣∣∣DX︸︷︷︸
=0

β + Dε
∣∣∣2 = 1

n− r
|Dε|2 = 1

n− r
ε⊤ D⊤D︸ ︷︷ ︸

=D2=D

ε = 1
n− r

ε⊤Dε.

Thus

Eσ2 = 1
n− r

E
(
ε⊤Dε

)
= 1

n− r
E trace

(
ε⊤Dε

)
= 1

n− r
trace

(
D · E

(
εε⊤︸︷︷︸
σ2I

))

= σ2

n− r
· trace(D) = σ2

by Lemma 4.3.16, 4.), because E εε⊤ = σ2I and ε ∼ N (0, σ2I)

Theorem 4.3.17. The following distributional properties hold

1. β ∼ N

(
(X⊤X)−X⊤Xβ, σ2(X⊤X)−(X⊤X)

(
(X⊤X)−

)⊤
)

,

2. (n−r)σ2

σ2 ∼ χ2
n−r,

3. β and σ2 are independent.
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Proof

1. It holds that

β = (X⊤X)−X⊤Y = (X⊤X)−X⊤(Xβ + ε)
= (X⊤X)−X⊤Xβ︸ ︷︷ ︸

=µ

+ (X⊤X)−X⊤︸ ︷︷ ︸
=A

ε.

Consequently,

β ∼ N
(
µ, σ2AA⊤

)
= N

(
(X⊤X)−X⊤Xβ, σ2(X⊤X)−X⊤X((X⊤X)−)⊤

)
with AA⊤ = (X⊤X)−X⊤X((X⊤X)−)⊤.

2. It holds that σ2 = 1
n−r ε⊤Dε by the proof of Theorem 4.3.15. Thus,

(n− r)σ2

σ2 =
(

ε

σ

)⊤

︸ ︷︷ ︸
∼N (0,I)

D

(
ε

σ

)
(Satz 4.1.25)∼ χ2

n−r.

3. Consider Aε and ε⊤Dε. It is sufficient to show that they are indepen-
dent in order to show the independence of β and σ2, since β = µ+Aε,
σ2 = 1

n−r ε⊤Dε. It holds that A · σ2I ·D = 0. By Theorem 4.1.26 Aε

and ε⊤Dε are independent.

4.3.5 Hypothesis testing

Consider the hypothesis test H0 : Hβ = d vs. H1 : Hβ /= d, where H is an
(s×m) matrix (s ≤ m) with rank (H) = s and d ∈ Rs.
In Theorem 4.2.14 for the case rank (X) = r = m the following test statistic
was considered

T = (Hβ̂ − d)⊤(H(X⊤X)−1H⊤)−1(Hβ̂ − d)
sσ̂2

(H0)∼ Fs,n−m.

In general, we may consider

T = (Hβ − d)⊤(H(X⊤X)−H⊤)−1(Hβ − d)
sσ2 . (4.10)

We will show that T
(H0)∼ Fs,n−r. Then, a test with confidence level α ∈ (0, 1)

can be constructed by rejecting H0, if T > Fs,n−r,1−α.
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Definition 4.3.18. The hypothesis H0 : Hβ = d is called testable, if all
coordinates of the vector Hβ are estimable functions.

Theorem 4.3.9 provides conditions for H, under which H0 : Hβ = d is
testable. They are formulated in the following Lemma

Lemma 4.3.19. The hypothesis H0 : Hβ = d is testable if and only if

1. There exists an (s× n) matrix C such that H = CX, or

2. H(X⊤X)−X⊤X = H.

First, show that the test statistic T in (4.10) is well defined, i.e. the (s× s)
matrix H(X⊤X)−H⊤ is positive definite and thus invertible. Corollary 4.3.3
implies

X⊤X = P −1

 Ir 0
0 0

P −1 (4.11)

for an (m×m) matrix P , which is symmetric and invertible. Thus,

(X⊤X)− = P ·

 Ir 0
0 Im−r

P = P · P,

holds, i.e. there exists a unique generalized inverse X⊤X with this represen-
tation. This implies that the (s× s) matrix HPPH⊤ = (PH⊤)⊤ · PH⊤ is
positive definite because rank (PH⊤) = s. Let now (X⊤X)− be an arbitrary
generalized inverse of X⊤X. Then, Lemma 4.3.19 implies

H(X⊤X)−H⊤ = CX(X⊤X)−X⊤C⊤ = CXPPX⊤C⊤ = HPPH⊤,

because X(X⊤X)−X⊤ is invariant with respect to the choice (X⊤X)− by
the proof of Theorem 4.3.14. Thus, H

(
X⊤X

)−
H⊤ is positive definite for

an arbitrary generalized inverse
(
X⊤X

)−
and the test statistic T is well

defined.

Theorem 4.3.20. If H0 : Hβ = d is testable, then T
(H0)∼ Fs,n−r.

Proof This proof is similar to the proof of Theorem 4.2.14. First, we com-
pute

Hβ − d = H(X⊤X)−X⊤(Xβ + ε)− d

= H(X⊤X)−X⊤Xβ − d︸ ︷︷ ︸
=µ

+ H(X⊤X)−X⊤︸ ︷︷ ︸
=B

ε.
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Show that µ
(H0)= 0.

µ
(Lemma 4.3.19)= C · X(X⊤X)−X⊤X︸ ︷︷ ︸

=X (Lemma 4.3.4, 2.))

·β − d = CXβ − d = Hβ − d
(H0)= 0.

Using Theorem 4.3.17 yields (Hβ − d)⊤
(
H(X⊤X)−H⊤

)−1 (
Hβ − d

)
and

s · σ2 are independent and (n−r)σ2

σ2 ∼ χ2
n−r. It remains to show(

Hβ − d︸ ︷︷ ︸
=ε⊤B⊤

)⊤ (
H(X⊤X)−H⊤

)−1 (
Hβ − d︸ ︷︷ ︸

=Bε

) (H0)∼ χ2
s.

It holds that

ε⊤B⊤
(
H(X⊤X)−H⊤

)−1
Bε

= ε⊤ X
(
(X⊤X)−

)⊤
H⊤

(
H(X⊤X)−H⊤

)−1
H(X⊤X)−X⊤︸ ︷︷ ︸

A

ε

It can be shown that A is symmetric, idempotent and rank (A) = s. The
idempotence can be shown as follows

A2 = X
(
(X⊤X)−

)⊤
H⊤

(
H(X⊤X)−H⊤

)−1
H(X⊤X)−X⊤X︸ ︷︷ ︸

H (Lemma 4.3.19, 2.))

(
(X⊤X)−

)T
H⊤·

·
(
H(X⊤X)−H⊤

)−1
H(X⊤X)−X⊤

= X
(
(X⊤X)−

)⊤
H⊤

(
H(X⊤X)−H⊤

)−1
H(X⊤X)−X⊤ = A,

since
(
(X⊤X)−

)⊤
is also a generalized inverse of X⊤X (by Lemma 4.3.4).

Thus, H(X⊤X)−H⊤ = CX(X⊤X)−X⊤C⊤ does not depend on the choice
of (X⊤X)−, cf. proof of Theorem 4.3.14. Using Theorem 4.1.25 yields
ε⊤

σ A ε
σ ∼ χ2

s, because ε ∼ N (0, σ2I) and thus T
H0∼ Fs,n−r.

4.3.6 Confidence regions

Similar to Section 4.2.5, confidence regions for different functions of the pa-
rameter vector β can be found. Theorem 4.3.20 directly yields the following
confidence region with confidence level 1− α ∈ (0, 1):
Corollary 4.3.21. Let Y = Xβ +ε be a multivariate regression model with
rank (X) = r < m, H an (s×m) matrix with rank (H) = s, s ∈ {1, . . . , m}
and H0 : Hβ = d testable ∀d ∈ Rs. Then,d ∈ Rs :

(
Hβ − d

)⊤ (
H(X⊤X)−H⊤

)−1 (
Hβ − d

)
s · σ2 ≤ Fs, n−r, 1−α


is a confidence region for Hβ with confidence level 1− α.
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Corollary 4.3.22. Let h⊤β be an estimable linear function of β, h ∈ Rm.
Then,(

h⊤β − tn−r, 1−α/2 · σ
√

h⊤(X⊤X)−h, h⊤β + tn−r, 1−α/2 · σ
√

h⊤(X⊤X)−h

)
is a confidence interval for h⊤β with confidence level 1− α.

Proof Set s = 1 and H = h⊤. Theorem 4.3.20 implies

T =

(
h⊤β − d

)⊤ (
h⊤(X⊤X)−h

)−1 (
h⊤β − d

)
σ2 =

(
h⊤β − d

) (
h⊤β − d

)
σ2 (h⊤(X⊤X)−h)

=

(
h⊤β − d

)2

σ2 (h⊤(X⊤X)−h) ∼ F1, n−r

under the condition h⊤β = d, since h⊤
(
X⊤X

)−
h is one-dimensional. Thus,

it holds that
√

T = h⊤β − h⊤β

σ
√

h⊤(X⊤X)−h
∼ tn−r.

Therefore,

P
(
−tn−r,1−α/2 ≤

√
T ≤ tn−r,1−α/2

)
= 1− α.

This implies the confidence interval above.

An even stronger version of Corollary 4.3.22 can be proven which holds for
all h of a linear subspace:

Theorem 4.3.23 (Confidence band of Scheffé). Let H = (h1, . . . , hs)⊤

where h1, . . . , hs ∈ Rm, 1 ≤ s ≤ m and H0 : Hβ = d testable ∀d ∈ Rs.
Let rank (H) = s and L =< h1, . . . , hs > the linear subspace with span
{h1, . . . , hs}. Then

P

max
h∈L


(
h⊤β − h⊤β

)2

σ2h⊤(X⊤X)−h

 ≤ sFs, n−r, 1−α

 = 1− α

Thus, [
h⊤β ±

√
sFs, n−r, 1−α · σ

√
h⊤(X⊤X)−h

]
is a (uniform with respect to h ∈ L) confidence band for h⊤β.
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Proof Set

T1 :=
(
Hβ −Hβ

)⊤ (
H(X⊤X)−H⊤

)−1 (
Hβ −Hβ

)
.

Then, Theorem 4.3.20 implies

P
(
T1 ≤ s · σ2Fs, n−r, 1−α

)
= 1− α

for all α ∈ (0, 1). If it can be shown that

T1 = max
x∈Rs, x /=0


(
x⊤
(
Hβ −Hβ

))2

x⊤ (H(X⊤X)−H⊤) x

 , (4.12)

then the proof is concluded, since

1− α = P
(
T1 ≤ sσ2Fs, n−r, 1−α︸ ︷︷ ︸

t

)

= P

 max
x∈Rs, x /=0


(
x⊤
(
Hβ −Hβ

))2

x⊤ (H(X⊤X)−H⊤) x

 ≤ t


= P

 max
x∈Rs, x /=0


(
(H⊤x)⊤β − (H⊤x)⊤β

)2

(H⊤x)⊤(X⊤X)−(H⊤x)

 ≤ t


H⊤x=h∈L= P

max
h∈L


(
h⊤β − h⊤β

)2

h⊤(X⊤X)−h

 ≤ sσ2Fs, n−r, 1−α

 .

In order to prove the validity of (4.12) it is sufficient to show that T1 is an
upper bound of (

x⊤(Hβ −Hβ)
)2

x⊤ (H(X⊤X)−H⊤) x
,

which is also a maximum. Since H(X⊤X)−H⊤ is positive definite and
invertible, there exists an invertible (s × s) matrix B with the property
BB⊤ = H(X⊤X)−H⊤. Then,(

x⊤(Hβ −Hβ)
)2

=
(

x⊤B︸ ︷︷ ︸
(B⊤x)⊤

·B−1(Hβ −Hβ)
)2

C.S.
≤ |B⊤x|2 · |B−1(Hβ −Hβ)|2

= x⊤BB⊤x
(
Hβ −Hβ

)⊤
· (B−1)⊤B−1︸ ︷︷ ︸

= (B⊤)−1B−1 = (BB⊤)−1

(Hβ −Hβ)

= x⊤H(X⊤X)−H⊤x ·
(
Hβ −Hβ

)⊤ (
H(X⊤X)−H⊤

)−1
(Hβ −Hβ).
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Thus, it holds that(
x⊤(Hβ −Hβ)

)2

x⊤ (H(X⊤X)−H⊤) x
≤
(
Hβ −Hβ

)⊤(
H(X⊤X)−H⊤

)−1(
Hβ −Hβ

)
= T1.

For x =
(
H(X⊤X)−H⊤

)−1 (
Hβ −Hβ

)
it can be shown that it actually is

a maximum.

4.3.7 Introduction to variance analysis

In this section we discuss an example for the application of linear models
with a design matrix that doesn’t have full rank. It is the assertion of the
variability of the expected values in the random sample Y = (Y1, . . . , Yn)⊤

in short ANOVA(analysis of variance).
First, consider the single factor variance analysis, in which it is assumed,
that the random sample (Y1, . . . , Yn) can be partitioned in k homogeneous
subclasses (Yij , j = 1, . . . , ni), i = 1, . . . , k with

1. E (Yij) = µi = µ + αi, j = 1, . . . , ni, i = 1, . . . , k.

2. ni > 1, i = 1, . . . , k,
k∑

i=1
ni = n,

k∑
i=1

niαi = 0.

Here µ is a factor, which is equal in all classes and αi ∈ R are the class specific
differences between the expected values µ1, . . . , µk. The number i = 1, . . . , k
of the classes are called levels of the influencing factor (e.g. the doses of
a drug in a clinical trial) and αi, i = 1, . . . , k can be interpreted as the

effect of the i-th level. The constraint
k∑

i=1
niαi = 0 causes that the conver-

sion (µ1, . . . , µk) ←→ (µ, α1, . . . , αk) is unique and that µ = 1
n

k∑
i=1

ni∑
j=1

EYij .

Furter, it is assumed that µi can be measured with uncorrelated measure-
ment errors εij , i.e.

Yij = µi + εij = µ + αi + εij , i = 1, . . . , k, j = 1, . . . , ni (4.13)
E εij = 0, Var εij = σ2, εij uncorrelated, i = 1, . . . , k, j = 1, . . . , ni.

(4.14)

Here, we want to test the classical ANOVA hypothesis that no variability in
the expected values µi can be found, i.e.

H0 : µ1 = µ2 = . . . = µk,

which means, that

H0 : α1 = α2 = . . . = αk.
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The constraint

k∑
i=1

niαi = 0.

implies αi = 0.
The problem (4.13) can be rewritten in terms of multivariate linear regres-
sion as follows:

Y = Xβ + ε, where Y = (Y11, . . . , Y1n1 , Y21, . . . , Y2n2 , . . . , Yk1, . . . , Yknk
)⊤ ,

β = (µ, α1, . . . , αk)⊤,

ε = (ε11, . . . , ε1n1 , . . . , εk1, . . . , εknk
)⊤ ,

X =



1 1 0 . . . . . . 0
1 1 0 . . . . . . 0
...
1 1 0 . . . . . . 0
1 0 1 0 . . . 0
...
1 0 1 0 . . . 0
...
1 0 . . . . . . 0 1
...
1 0 . . . . . . 0 1



 n1

 n2

... nk

The (n × (k + 1)) matrix X has rank k < m = k + 1; thus the theory of
section 4.3 can be applied to this model.

Exercise 4.3.24. Show that the ANOVA hypothesis

H0 : αi = 0, ∀i = 1, . . . , k

is not testable!

In order to consider an equivalent but testable hypothesis

H0 : α1 − α2 = 0, . . . , α1 − αk = 0 resp. H0 : Hβ = 0,
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we construct a (k − 1)× (k + 1) matrix

H =



0 1 −1 0 . . . 0
0 1 0 −1 . . . 0
...
0 1 0 . . . −1 0
0 1 0 . . . 0 −1


which we can use as part of our hypothesis test. (Show that!)

In the two factor variance analysis the random sample (Y1, . . . , Yn) is divided
in k1 · k2 homogeneous groups depending on two factors

Yi1i2j , j = 1, . . . , ni1i2

for i1 = 1, . . . , k1, i2 = 1, . . . , k2, such that

k1∑
i1=1

k2∑
i2=1

ni1i2 = n.

Here it is assumed that

EYi1i2j = µi1i2 = µ + αi1 + βi2 + γi1i2 , i1 = 1, . . . , k1, i2 = 1, . . . , k2,

thus the following linear model is constructed:

Yi1i2j = µi1i2 + εi1i2j = µ + αi1 + βi2 + γi1i2 + εi1i2j ,

j = 1, . . . , ni1i2 , i1 = 1, . . . , k1, i2 = 1, . . . , k2.

Exercise 4.3.25. Write down the design matrix X for this case explicitly
and show that it also doesn’t have full rank.



Chapter 5

Generalized linear models

Another class of regression models usually allows for an arbitrary functional
connection g between the mean of the goal variable EYi and the linear
part Xβ, which is a linear combinations of the entries of the design ma-
trix X = (xij) and the parameter vector β = (β1, . . . , βm)⊤. On the other
hand it allows distributions of Yi, which are not necessarily based on the
normal distribution (and functions of those). Thus it is possible to consider
data Yi that has a finite number of characteristics (e.g. “yes” and “no” in
economic surveys). The class of all possible distributions is bounded by the
Exponential family.
Let Y1, . . . , Yn be a random sample of the goal variable of the model and let

X = (xij) i=1,...,n
j=1,...,m

the design matrix of the output variables, which are not random.

Definition 5.0.1. The generalized linear model is given by(
g(EY1), . . . , g(EYn)

)⊤ = Xβ with β = (β1, . . . , βm)⊤ (5.1)

where g : G ⊂ R → R is the so called link function with domain G. The
rank is given by rank(X) = m.

Under the assumption that g is known explicitly, the parameter vector β is
desired to be estimated using (Y1, . . . , Yn). Here it is assumed that Yi , i =
1, . . . , n are independent but not necessarily identically distributed. But
their distribution is a member of the following family of distributions.

5.1 Exponential family of distributions
Definition 5.1.1. The distribution of a random variable Y is a member of
the exponential family, if the functions a : R×R+ → R and b : Θ→ R exist,
such that

177
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• in the absolutely continuous case the probability density function of Y
is given by

fθ(y) = exp
{ 1

τ2
(
yθ + a(y, τ)− b(θ)

)}
, y ∈ R (5.2)

• in the discrete case the probability mass function of Y is given by

Pθ(Y = y) = exp
{ 1

τ2
(
yθ + a(y, τ)− b(θ)

)}
, y ∈ C (5.3)

where C is the (at most) countable domain of Y , τ2 the so called error
term, θ ∈ Θ ⊂ R a parameter and

Θ =
{

θ ∈ R :
∫
R

exp
{yθ + a(y, τ)

τ2

}
dy <∞

}
respectively in the discrete case:

Θ =
{

θ ∈ R :
∑
y∈C

exp
{yθ + a(y, τ)

τ2

}
<∞

}
which is the natural parameter space with at least two different ele-
ments.

Lemma 5.1.2. Θ is an interval.

Proof Show that Θ ⊂ R is convex. It is then (possibly an infinite) interval.
For arbitrary θ1, θ2 ∈ Θ (at least one pair exists by Definition 5.1.1) it holds
that αθ1 +(1−α)θ2 ∈ Θ for all α ∈ (0, 1). In order show that the statement
above holds, suppose that the distribution of Y is absolutely continuous.
Since θi ∈ Θ, it holds that∫

R
exp

{ 1
τ2

(
yθi + a(y, τ)

)}
dy <∞, i = 1, 2.

The inequality

αx1 + (1− α)x2 ≤ max{x1, x2}, x1, x2 ∈ R, α ∈ (0, 1),

implies

exp
{ 1

τ2

(
y
(
αθ1 + (1− α)θ2

)
+ a(y, τ)

)}
= exp

{
α

1
τ2

(
yθ1 + a(y, τ)

)
+ (1− α) 1

τ2

(
yθ2 + a(y, τ)

)}
≤ max

i=1,2
exp

{ 1
τ2

(
yθi + a(y, τ)

)}
≤ exp

{ 1
τ2

(
yθ1 + a(y, τ)

)}
+ exp

{ 1
τ2

(
yθ2 + a(y, τ)

)}
,
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and thus ∫
R

exp
{ 1

τ2

(
y
(
αθ1 + (1− α)θ2

)
+ a(y, τ)

)}
dy

≤
2∑

i=1

∫
R

exp
{ 1

τ2

(
yθi + a(y, τ)

)}
dy <∞

by the assumptions of the lemma. In summary

αθ1 + (1− α)θ2 ∈ Θ,

and Θ is a interval.

Example 5.1.3. Which distributions belong to the exponential family?
1. Normal distribution: If Y ∼ N (µ, σ2), then µ is the parameter of

interest and σ2 the error term. It holds that

fµ(y) = 1√
2πσ2

· e− (y−µ)2

2σ2

= exp
{1

2 log(2πσ2)− 1
2

(
y2

σ2 −
2yµ

σ2 + µ2

σ2

)}

= exp
{ 1

σ2

(
yµ− y2

2 −
(

µ2

2 + σ2

2 log(2πσ2)
))}

and setting θ = µ, τ = σ,

a(y, τ) = −y2

2 −
σ2

2 log(2πσ2) and b(µ) = b(θ) = µ2

2
satisfies Equation (5.2)

2. Bernoulli distribution: Y ∼ Bernoulli(p), p ∈ [0; 1]
The Bernoulli distribution is usually used in surveys in market research
where

Y =
{

1, if the answer is “yes”
0, if the answer is “no”

for a given question in the respective survey.
Here the probabilities are given by P (Y = 1) = p, P (Y = 0) = 1− p.
Then for y ∈ {0, 1} it holds that:

Pθ(Y = y) = py(1− p)1−y = ey log p+(1−y) log(1−p)

= e
y log p

1−p
−(− log(1−p))

.

Thus the Bernoulli distribution is a member of the exponential family
with θ = log p

1−p , τ = 1,

a(y, τ) = 0, b(θ) = − log(1− p) = log(1 + eθ).
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3. Poisson distribution: If Y ∼ Poisson (λ), λ > 0, then for y ∈ N0

Pθ(Y = y) = e−λ · λy

y! = ey log λ−log(y!)−λ.

Thus the Poisson distribution is a member of the exponential family
with θ = log λ, τ = 1,

a(y, τ) = − log(y!), b(θ) = λ = eθ .

Lemma 5.1.4. If the distribution of a random variable Y is a member of
the exponential family, EY 2 < ∞ and b : Θ → R is two times continuously
differentiable with b′′(θ) > 0 for all θ ∈ Θ, then

EY = b′(θ), VarY = τ2b′′(θ).

Proof

1. Only the case for absolutely continuous distributions is discussed be-
low. The discrete case can be handled simultaneously by replacing the∫

with ∑. It holds that

EY =
∫
R

yfθ(y)dy =
∫
R

y exp
{ 1

τ2

(
yθ + a(y, τ)− b(θ)

)}
dy

= e− b(θ)
τ2 · τ2

∫
R

∂

∂θ
exp

{ 1
τ2

(
yθ + a(y, τ)

)}
dy

= e− b(θ)
τ2 · τ2 ∂

∂θ

∫
R

exp
{ 1

τ2

(
yθ + a(y, τ)

)}
dy

= e− b(θ)
τ2 · τ2 ∂

∂θ

e
b(θ)
τ2

∫
R

exp
{ 1

τ2

(
yθ + a(y, τ)− b(θ)

)}
dy︸ ︷︷ ︸∫

R fθ(y)dy=1


= e− b(θ)

τ2 τ2 ∂

∂θ

(
e

b(θ)
τ2

)
= e− b(θ)

τ2 · τ2 b′(θ)
τ2 e

b(θ)
τ2 = b′(θ).

2. Show (analogously to 1) that

Exercise 5.1.5.
VarY = τ2b′′(θ).
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5.2 Link functions
The goal variables Yi, i = 1, . . . , n are i.i.d. with a distribution which
is a member of the exponential family and a probability (density or) mass
function as in (5.3) resp. (5.2). Assume that b : Θ → R is two times
continuously differentiable with b′′(θ) > 0 for all θ ∈ Θ. Additionally assume
a generalized linear model as in (5.1).

Definition 5.2.1. (Natural link functions) The link function g : G → R
is called natural, if g = (b′)−1, G = {b′(θ) : θ ∈ Θ} and g is two times
continuously differentiable with g′(x) /= 0 for all x ∈ G.

The question why the link function is called “natural” is answered in the
following Lemma.

Lemma 5.2.2. If the generalized linear model (5.1) has the natural link
function, then (θ1, . . . , θn)⊤ = Xβ

Proof Since b′′(θ) > 0, it holds that b′(θ) is monotonically increasing and
thus invertible. Define

µi = EYi, ηi = x⊤
i β, xi = (xi1, . . . , xim)⊤, i = 1, . . . , n.

Since g is invertible it holds that

µi = g−1(x⊤
i β) = g−1(ηi), i = 1, . . . , n.

On the other hand, it holds that µi = b′(θi) by Lemma 5.1.4, so

b′(θi) = g−1(ηi)
Def. 5.2.1= b′(ηi), i = 1, . . . , n.

Because of the monotonicity of b′ the assertion θi = ηi, i = 1, . . . , n holds.

Example 5.2.3. In the following the natural link function for the distribu-
tions of Example 5.1.3.

1. Normal distribution: Since b(µ) = µ2

2 , it holds that

b′(x) = 2x

2 = x and thus g(x) = (b′)−1(x) = x

The natural link function is given by g(x) = x, thus it holds that

(µ1, . . . , µn)⊤ = (EY1, . . . ,EYn)⊤ = Xβ

This is exactly the case of linear regression.
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2. Bernoulli distribution: Since b(θ) = log(1 + eθ), it holds that

b′(x) = 1
1 + ex

· ex = y

⇔ 1
e−x + 1 = y

⇔ 1
y
− 1 = e−x

⇔ x = − log 1− y

y
= log y

1− y

⇒ g(x) = (b′)−1(x) = log x

1− x

The generalized linear regression model in the case of the Bernoulli
distribution is called binary (categorical) regression. If it is used with
the natural link function, it is called logistic regression. In this case it
holds that

(p1, . . . , pn)⊤ = (EY1, . . . ,EYn)⊤,

θi = log pi

1− pi
= x⊤

i β, i = 1, . . . , n

⇔ eθi = pi

1− pi

⇔ pi = eθi

1 + eθi

⇔ pi = ex⊤
i β

1 + ex⊤
i β

, i = 1, . . . , n.

The ratio
pi

1− pi
= P (Yi = 1)

P (Yi = 0) , i = 1, . . . , n

is called Odds. The logarithm of the Odds is called Logit:

log pi

1− pi
, i = 1, . . . , n.

Logits are thus “new goal variables”, which are estimated by using the
linear combinations x⊤

i β.
An alternative link function which is often used is defined by g(x) =
Φ−1(x), which is the Quantile function of the normal distribution . It
is however, not a natural link function. By using them, the so called
Probit model:

pi = Φ(x⊤
i β), i = 1, . . . , n

can be obtained.
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3. Poisson distribution: Since b(θ) = eθ, in this case

g(x) = (b′)−1(x) = log x, x > 0

is the natural link function. Thus the generalized linear model with
natural link function has the representation

(log λ1, . . . , log λn)⊤ = Xβ or λi = ex⊤
i β, i = 1, . . . , n.

5.3 Maximum likelihood estimator for β

Since the probability mass (or density) function of Yi is given by

exp
{

1
τ2
(
yθi + a(y, τ)− b(θi)

)}
and the Yi are independent, the log-likelihood function of the random sample
Y = (Y1, . . . , Yn) can be written as follows

log L(Y, θ) = log
n∏

i=1
fθi

(Yi) = 1
τ2

n∑
i=1

(
Yiθi + a(Yi, τ)− b(θi)

)
. (5.4)

The proof of Lemma 5.2.2 implies that

θi = (b′)−1(g−1(x⊤
i β)), i = 1, . . . , n , (5.5)

which implies that log L(Y, θ) is a function of the parameter β. From now
on the notation log L(Y, β) is used to emphasize this fact.

The maximum likelihood estimator β̂ for β is desired:

β̂ = argmax
β

log L(Y, β)

The necessary condition for an extrema

∂ log L(Y, β)
∂βi

= 0, i = 1, . . . , m,

needs to be checked. Introduce the following notation

Ui(β) = ∂ log L(Y, β)
∂βi

, i = 1, . . . , m,

U(β) = (U1(β), . . . , Um(β))⊤,

Iij(β) = E[Ui(β)Uj(β)], i, j = 1, . . . , m,

Definition 5.3.1.
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1. The matrix I(β) = (Iij(β))m
i,j=1 is called Fisher information matrix.

2. Introduce the Hesse matrix W (β) as a random matrix

W (β) = (Wij(β))m
i,j=1 with Wij(β) = ∂2

∂βi∂βj
log L(Y, β).

This (m × m) matrix contains the 2nd order derivative of the log-
likelihood function, which will be relevant for solving the maximisation
problem

log L(Y, β)→ max
β

.

Theorem 5.3.2. It can be shown that U(β) and I(β) have the following
explicit form.

1.

Uj(β) =
n∑

i=1
xij (Yi − µi(β)) ∂g−1(ηi)

∂ηi

1
σ2

i (β) , j = 1, . . . , m

2.

Ijk(β) =
n∑

i=1
xijxik

(
∂g−1(ηi)

∂ηi

)2 1
σ2

i (β) , j, k = 1, . . . , m ,

where ηi = x⊤
i β , µi(β) = g−1(x⊤

i β) is the expectation of Yi and

σ2
i (β) Lemma 5.1.4= τ2b′′(θi)

(5.5)= τ2b′′((b′)−1(g−1(x⊤
i β))), i = 1, . . . , n,

is the variance of Yi.

Proof

1. Introduce the notation

li(β) = 1
τ2 (Yiθi + a (Yi, τ)− b(θi)) , i = 1, . . . , n .

Then,

Uj(β) =
n∑

i=1

∂li(β)
∂βj

, j = 1, . . . , m.

Applying the chain rule several times yields

∂li(β)
∂βj

= ∂li(β)
∂θi

· ∂θi

∂µi
· ∂µi

∂ηi
· ∂ηi

∂βj
, i = 1, . . . , n, j = 1, . . . , m.
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Since

∂li(β)
∂θi

= 1
τ2

(
Yi − b′(θi)

) Lemma 5.1.4= 1
τ2

(
Yi − µi(β)

)
,

∂θi

∂µi
=
(

∂µi

∂θi

)−1
=
((

b′(θi)
)′)−1

=
(
b′′(θi)

)−1 Lemma 5.1.4=
(

σ2
i (β)
τ2

)−1

= τ2

σ2
i (β)

∂µi

∂ηi
= ∂g−1(ηi)

∂ηi

because µi = EYi = g−1(ηi),

∂ηi

∂βj
= ∂(x⊤

i β)
∂βj

= xij , i = 1, . . . , n, j = 1, . . . , m,

we have

Uj(β) = 1
τ2

n∑
i=1

xij (Yi − µi(β)) · τ2

σ2
i (β) ·

∂g−1(ηi)
∂ηi

=
n∑

i=1
xij(Yi − µi(β))∂g−1(ηi)

∂ηi
· 1

σ2
i (β) , j = 1, . . . , m.

2. For all i, j = 1, . . . , m it holds that

Iij(β) = E(Ui(β)Uj(β))

=
n∑

k,l=1
xkixlj Cov (Yk, Yl)︸ ︷︷ ︸

δkl
σ2

k
(β)

·∂g−1(ηk)
∂ηk

∂g−1(ηl)
∂ηl

1
σ2

k(β)σ2
l (β)

=
n∑

k=1
xkixkj

(
∂g−1(ηk)

∂ηk

)2 1
σ2

k(β) .

Remark 5.3.3. In case of the natural link function, simplify the equation
above so that the log-likelihood function is given by

log L(Y, β) = 1
τ2

n∑
i=1

(
Yix

⊤
i β + a(Yi, τ)− b(x⊤

i β)
)
.

Since in this case g−1(ηi) = b′(ηi), ηi = x⊤
i β = θi holds,

∂g−1(ηi)
∂ηi

= b′′(θi)
Lemma 5.1.4= 1

τ2 σ2
i (β),



CHAPTER 5. GENERALIZED LINEAR MODELS 186

and thus

Uj(β) = 1
τ2

n∑
i=1

xij (Yi − µi(β)), j = 1, . . . , m,

Ijk(β) = 1
τ4

n∑
i=1

xijxikσ2
i (β), j, k = 1, . . . , m.

Theorem 5.3.4.

Wjk(β) =
n∑

i=1
xijxik

((
Yi − µi(β)

)
νi −

u2
i

σ2
i (β)

)
, j, k = 1, . . . , m

where

ui = ∂g−1(ηi)
∂ηi

νi = 1
τ2 ·

∂2((b′)−1 ◦ g−1(ηi))
∂η2

i

µi(β) = EYi, σ2
i (β) = VarYi,

ηi = x⊤
i β

for i = 1, . . . , n.

Proof For arbitrary j, k = 1, . . . , m it holds that

Wjk(β) = ∂

∂βk
Uj(β) Theorem 5.3.2= ∂

∂βk

n∑
i=1

xij (Yi − µi(β))∂g−1(ηi)
∂ηi

1
σ2

i (β)

=
n∑

i=1
xij

(
(Yi − µi(β)) ∂

∂βk

(
∂g−1(ηi)

∂ηi

1
σ2

i (β)

)
−

−∂g−1(ηi)
∂ηi

1
σ2

i (β)
∂µi(β)

∂βk

)

=
n∑

i=1

(
xij(Yi − µi(β)) ∂

∂βk

( 1
τ2

∂θi

∂ηi

)

−
(

∂g−1(ηi)
∂ηi

)2 1
σ2

i (β)xik

)

=
n∑

i=1
xijxik

(
(Yi − µi(β))νi − u2

i

1
σ2

i (β)

)
,
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where

∂g−1(ηi)
∂ηi

· 1
σ2

i (β)
Lemma 5.1.4=

and Theorem 5.3.2

∂b′(θi)
∂ηi

· 1
τ2 ·

1
b′′(θi)

= ∂b′(θi)
∂θi

· ∂θi

∂ηi

1
τ2

1
b′′(θi)

= 1
τ2

∂θi

∂ηi

and

∂

∂βk

(
∂g−1(ηi)

∂ηi
· 1

σ2
i (β)

)
= 1

τ2
∂2θi

∂η2
i

· ∂ηi

∂βk

ηi=x⊤
i β

= 1
τ2

∂2θi

∂η2
i

· xik,

with

∂

µi(β)︷ ︸︸ ︷
g−1(ηi)
∂βk

= ∂g−1(ηi)
∂ηi

· ∂ηi

∂βk
= ∂g−1(ηi)

∂ηi
· xik

and θi = (b′)−1 ◦ g−1(ηi), i = 1, . . . , n.

Moreover for generalized linear models with natural link function

W (β) = −I(β) =
(
− 1

τ4

n∑
i=1

xijxikσ2
i (β)

)m

j,k=1
(5.6)

holds, since in this case νi = 0 for all i = 1, . . . , n. W (β) is therefore
deterministic. Indeed, by Lemma 5.2.2 θi = x⊤

i β = ηi and thus ∂2θi

∂η2
i

= 0,
i = 1, . . . , n.
Remark 5.3.3 implies u2

i = 1
τ4 σ4

i (β).

Example 5.3.5. What do U(β), I(β) and W (β) look like for the models
introduced in Example 5.2.3 (natural link function)?

1. Normal distribution: this case corresponds to the usual multivari-
ate linear regression with normally distributed error terms. In this
case it holds that µ = Xβ, τ2 = σ2.

Remark 5.3.3 implies

U(β) = 1
σ2 X⊤(Y −Xβ),

I(β) = (E (Ui(β) · Uj(β)))i,j=1,...,m = 1
σ2 X⊤X,

W (β) = −I(β).
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2. Logistic regression: It holds that τ2 = 1, µi = pi, σ2
i = pi(1− pi),

i = 1, . . . , n, pi ∈ (0, 1) and thus

U(β) = X⊤(Y − p)
I(β) = X⊤diag(pi(1− pi))X
W (β) = −I(β)

where p = (p1, . . . , pn)⊤.

3. Poisson regression: It holds that τ2 = 1, µi = λi = σ2
i , i = 1, . . . , n

and thus

U(β) = X⊤(Y − λ),
I(β) = X⊤diag(λi)X,

W (β) = −I(β),

where λ = (λ1, . . . , λn)⊤

When is the solution to the equation U(β) = 0 maximizing the function
log L(Y, β)?

In other words: When does an unique MLE β̂ of β exist?

β̂ = argmax
β

log L(Y, β).

The sufficient condition of a maximum implies that the Hesse matrix W (β)
is negative definite.
Consider the case of the natural link function. Then Remark 5.3.3 implies
that

• The system of equations U(β) = 0 can be rewritten as U(β) = 1
τ2 X⊤(Y−

µ(β)) = 0

• The matrix W (β) = − 1
τ4 X⊤diag(σ2

i (β))X is negative definite, has
rank(X) = m and 0 < σ2

i (β) < ∞ for all i = 1, . . . , n. Under those
conditions there exists an unique MLE β̂ for β.

In the following, two numerical algorithms for solving the system of (in
general nonlinear) equations U(β) = 0 are introduced. These approaches
are iterative, i.e. they approximate the MLE β̂ incrementally.

1. Newton’s method
Choose a suitable starting value β̂0 ∈ Rm.
In step k + 1, calculate β̂k+1 from β̂k, k = 0, 1, . . . as follows:

• Take the first order Taylor expansion of U(β) at β̂k : U(β) ≈
U(β̂k) + W (β̂k)(β − β̂k).
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• Solving for 0: U(β̂k) + W (β̂k)(β − β̂k) = 0
• The solution for this system of equations is β̂k+1 :

β̂k+1 = β̂k −W −1(β̂k) · U(β̂k), k = 0, 1, 2, . . .

assuming that W (β̂k) is invertible.

Stop the iteration process once |β̂k+1 − β̂k| < δ for a
predetermined boundary δ > 0.

The convergence of this method heavily depends on the choice of β̂0, since
β̂0 has to be close enough to β̂. Another disadvantage of this method is
that the random matrix W (β) might not be invertible. That is why a
modification of the Newton method is presented in which W (β) is replaced
by the expectation

EW (β) = −I(β). (5.7)

It can be shown that the identity (5.7) holds by using Theorem 5.3.4 and
the fact that EYi = µi, i = 1, . . . , n. If it is assumed that rank(X) = m and
ui /= 0, i = 1, . . . , n, then by Theorem 5.3.2, I(β) is invertible. This method
is called Fisher’s scoring method.
The only difference of Newton’s method compared to Fisher’s Scoring is that
in the second step the iterative equation

β̂k+1 = β̂k + I−1(β̂k)U(β̂k), k = 0, 1, . . .

is used.
In the case of the natural link function (cf. Remark 5.3.3)

β̂k+1 = β̂k + τ4
(
X⊤diag(σ2

i (β̂k))X
)−1 1

τ2

(
X⊤(Y − µ(β̂k))

)
= β̂k + τ2

(
X⊤diag(σ2

i (β̂k))X
)−1(

X⊤(Y − µ(β̂k))
)
.

5.4 Asymptotic tests for β

The goal of this section is to construct a test for the hypotheses

H0 : β = β0 vs.
H1 : β /= β0

with β = (β1, . . . , βm)⊤ and β0 = (β01, . . . , β0m)⊤. In particular, the hy-
potheses H0 : β = 0 resp. H0 : βj = 0 are of interest, because they imply
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that the test variables Y = (Y1, . . . , Yn)⊤ does not depend on several output
variables (e.g. (x1j , . . . , xnj)⊤ in case of the hypothesis βj = 0).
In order to test these kinds of hypotheses, the test statistics Tn are used,
which have an asymptotic (for n→∞) reference distribution (e.g. multivari-
ate normal or χ2 distribution). Some groundwork has to be done beforehand
though. Let

g(EYi) = Xiβ, i = 1, . . . , n

be a generalized linear model with natural link function g. Let L(Y, β) be
the likelihood function, U(β) the partial derivatives of log L(Y, β) and I(β)
the Fisher information matrix in this model.
β̂n = β̂(Y1, . . . , Yn, X) denotes a sequence of maximum likelihood estimators
for β.
Assume that

1. ∃ compact subspace K ⊂ Rm, such that all rows Xi, i = 1, . . . , n,
n ∈ N, of X are in K. Here θ = x⊤β ∈ Θ for all β ∈ Rm and x ∈ K.

2. There exists a sequence {Γn}n∈N of diagonal (m ×m) matrices Γn =
Γn(β) with the properties

(a) γn
i,i > 0, i ∈ {1, . . . , m}

(b) lim
n→∞

Γn = 0,

(c) lim
n→∞

Γ⊤
n In(β)Γn = K−1(β), where K(β) is a symmetric positive

definite (m×m) matrix for all β ∈ Rm.

Theorem 5.4.1. Under the conditions above, there exists a Γn consistent
sequence of MLE {β̂n} for β,
(i.e. P

(
Γ−1

n |β̂n − β| ≤ ε, U(β̂n) = 0
)
→ 1 for n→∞), such that

1. T ∗
n = Γ−1

n (β̂n − β) d−−−→
n→∞

N (0, K(β)),

2. Tn = 2(log L(Y, β̂n)− log L(Y, β)) d−−−→
n→∞

χ2
m,

where m = dim β.

Remark 5.4.2. (cf. [27], p.288-292)

1. Usually Γn = diag
(

1√
n

, . . . , 1√
n

)
is used.

2. Until now we always assumed that the dispersion term τ2 is known.
If that is not the case, then τ2 can be estimated by

τ̂2 = 1
n−m

n∑
i=1

(
Yi − µi(β̂n)

)2

b′′(θ̂ni)
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where θ̂ni = (b′)−1(µi(β̂n)), i = 1, . . . , n. This estimator is an empirical
analogue to the equation τ2 = VarYi

b′′(θi) of Lemma 5.1.4.

3. The second assertion of Theorem 5.4.1 also holds, if the unknown
parameter τ2 can be replaced by a consistent estimator τ2

n.

How can Theorem 5.4.1 be used to test the hypothesis

H0 : β = β0 vs.
H1 : β /= β0

or component wise

H0 : βj = βj0 , j = 1, . . . , m vs.
H1 : ∃j1 : βj1 /= βj10 ?

Let
g(EYi) =

m∑
j=1

xijβj , i = 1, . . . , n

be a generalized linear model with natural link function g.
Using Remark 5.3.3, it holds that

log L(Y, β) = 1
τ2

n∑
i=1

(
Yix

⊤
i β + a(Yi, τ)− b(x⊤

i β)
)

where Y = (Y1, . . . , Yn)⊤ and xi = (xi1, . . . , xim)⊤. Thus is holds that

Tn = 2
τ2

n∑
i=1

(
Yix

⊤
i (β̂n − β0)− b(x⊤

i β̂n) + b(x⊤
i β0)

)
By specifying an exponential model (τ, b are known), with respect to the
random sample of the goal variable Y and the design matrix X, H0 is rejected
if Tn > χ2

m,1−α, where m is the number of parameters in the model, χ2
m,1−α

the (1−α) quantile of the χ2
m- distribution and α ∈ (0, 1) is the significance

level of the asymptotic test. This test can only be applied for relatively
large n. Type I errors have the (for n→∞) asymptotic probability α. If a
simple hypothesis

H0 : βj = 0 vs.
H1 : βj /= 0

is tested, the test statistic T 1
n is used which can be derived from T ∗

n :
H0 is rejected, if

|T 1
n | =

|β̂nj |
(Γn(β̂n))jj

> z1− α
2
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where z1− α
2

is the (1− α
2 ) quantile of the N(0, 1) distribution. Here {Γn} is

chosen in a way that K(β) = Id, for all β ∈ Rm. This is an asymptotic test
with confidence level α, since

PH0(|T 1
n | > z1− α

2
) = 1− PH0(|T 1

n | ≤ z1− α
2
) −−−→

n→∞
1− Φ(z1− α

2
) + Φ(−z1− α

2
)︸ ︷︷ ︸

1−Φ(z1− α
2

)

= 1−
(

1− α

2

)
+ 1−

(
1− α

2

)
= α,

where

Φ(x) = 1√
2π

x∫
−∞

e− t2
2 dt

is the cumulative distribution function of the N(0, 1) distribution.

Example 5.4.3. (Credit risk assessment)1

The following data is provided by a southern German bank from the 90’s:
Results from credit risk assessment for n = 1000 credit applications (ca. 700
good credits and 300 bad credits) analysed:

Goal variable Yi =
{

0, if the credit of customer i has been paid
1, if the credit of customer i has not been paid

.

The design matrix X contains the following additional information about
the customer:

xi1 - Account management with the bank =
{

1, no account
0, else

xi2 - Assessment of account management =
{

1, good account
0, no- or bad account

xi3 - Term of credit in months
xi4 - Value of Credit in DM

xi5 - Payment history of customer =
{

1, good
0, else

xi6 - Reference =
{

1, private
0, business

Question: How should β̂ be estimated?

As a model, the logit model is used with pi = P (Yi = 1), i = 1, . . . , n:

log pi

1− pi
= β0 + xi1β1 + xi2β2 + xi3β3 + xi4β4 + xi5β5 + xi6β6

for i = 1, . . . , n, where β = (β0, . . . , β6)⊤, m = 7.

1cf. Fahrmeir, L., Kneib, T., Lang, S. - Regression, p.208
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Y = 1 Y = 0

x1 no account 45.0 20.0
x2 good 15.3 49.8

bad 39.7 30.2

x4 Credit value Y = 1 Y = 0

0 < . . . ≤ 500 1.00 2.14
500 < . . . ≤ 1000 11.33 9.14

1000 < . . . ≤ 1500 17.00 19.86
1500 < . . . ≤ 2500 19.67 24.57
2500 < . . . ≤ 5000 25.00 28.57
5000 < . . . ≤ 7500 11.33 9.71
7500 < . . . ≤ 10000 6.67 3.71

10000 < . . . ≤ 15000 7.00 2.00
15000 < . . . ≤ 20000 1.00 0.29

x5 Credit history Y = 1 Y = 0

good 82.33 94.95
bad 17.66 5.15

x6 Reference Y = 1 Y = 0

private 57.53 69.29
business 42.47 30.71

Table 5.1: Abstract of the data

Goal: Estimate β0, . . . , β6 and check, which factors are important for future
credit risk assessment.

H0 : βi = 0 (feature xi does not affect the credit risk assessment) is rejected,
if the p-value ≤ α. It can also be noticed that β4 is not relevant for credit
risk assessment, contrary to belief. A refinement of the model is necessary:

New model:

g(EYi) = β0 + β1xi1 + β2xi2 + β1
3xi3 + β2

3x2
i3 + β1

4xi4 + β2
4x2

i4 + β5xi5 + β6xi6

Question: Which model is better?
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x1 x2 x3 x4 x5 x6

0.274 0.393 20.903 3271 0.911 0.657

Table 5.2: Means xj of xij in the data

Value
√

(I−1
n (β̂))ii T 1

n p-value

β0 0.281 0.303 -0.94 0.347
β1 0.618 0.175 3.53 < 0.001
β2 -1.338 0.201 -6.65 < 0.001
β3 0.033 0.008 4.29 < 0.001
β4 0.023 0.033 0.72 0.474
β5 -0.986 0.251 -3.93 < 0.001
β6 -0.426 0.266 -2.69 0.007

Table 5.3: Results of the ML estimation by using the Fisher Scoring method,
where

√
(I−1

n (β̂))ii is used as an asymptotic standard deviation of β̂i. Sig-
nificance level : α = 0.001.

In other words, the following hypotheses are tested:

H0 : β2
3 = 0 (linear model) vs. H1 : β2

3 /= 0 (quadratic model) resp.
H0 : β2

4 = 0 (linear model) vs. H1 : β2
4 /= 0 (quadratic model)

Here the type of statistical hypothesis is generalized as follows:

H0 : Cβ = d vs. H1 : Cβ /= d

is tested, where C is a (r ×m) - matrix with rank C = r ≤ m and d ∈ Rr.
For comparison, the hypothesis

H0 : β = β0 vs. H1 : β /= β0, β, β0 ∈ Rm

was tested before. Obviously β = β0 is a special case of Cβ = d with C =
Id, d = β0. The new hypotheses include assertions about the linear combi-
nations of the parameters. How should H0 vs. H1 be tested?

Let β̃n be the MLE of β under H0, i.e. β̃n = argmax
β ∈ Rm: Cβ=d

log L(Y, β)

Let β̂n be the MLE of β unrestricted, i.e. β̂n = argmax
β ∈ Rm

log L(Y, β).

The idea behind the following tests is to compare β̃n with β̂n.
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Value
√

(I−1
n (β̂))ii T 1

n p-Wert

β0 -0.488 0.390 -1.25 0.211
β1 0.618 0.176 3.51 < 0.001
β2 -1.337 0.202 -6.61 < 0.001
β1

3 0.092 0.025 3.64 < 0.001
β2

3 -0.001 < 0.001 -2.20 0.028
β1

4 -0.264 0.099 -2.68 0.007
β1

4 0.023 0.007 3.07 0.002
β5 -0.995 0.255 -3.90 < 0.001
β6 -0.404 0.160 -2.52 0.012

Table 5.4: p-values for the regression coefficients of the new model

If the deviation β̂n − β̃n is big, H0 should be rejected.

Theorem 5.4.4. Let log L(Y, β) be the log-likelihood function of the ran-
dom sample of the goal variable Y = (Y1, . . . , Yn)⊤, In(β) be the fisher
information matrix, U(β) be the score function of the generalized linear
model with natural link function g:

g(EYi) = Xiβ, i = 1, . . . , n.

Consider the following test statistics

1. likelihood-ratio test statistic:

T̃n = 2(log L(Y, β̂n)− log L(Y, β̃n))

2. Wald statistic:

T̃ ∗
n = (Cβ̂n − d)⊤(CI−1

n (β̂n)C⊤)−1(Cβ̂n − d)

3. Score statistic:

T
∗
n = U(β̃n)⊤I−1

n (β̃n)U(β̃n)

Under certain conditions for the estimators β̂ and β̃ (cf. Theorem 5.4.1) the
test statistics 1 - 3 are asymptotically χ2

m distributed, e.g. for the likelihood-
ratio-test statistic it holds that

T̃n
d−−−→

n→∞
χ2

m.
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Corollary 5.4.5. Theorem 5.4.4 provides the following decision rule: H0 is
rejected, if

T̃n(T̃ ∗
n , T n) > χ2

m,1−α.

This is an asymptotic test with confidence level α.

Example 5.4.6 (Continued). The following values for the test statistics are
obtained:

• T̃n = 12.44 p-value: 0.0020

• T̃ ∗
n = 11.47 p-value: 0.0032

for α = 0.005 it holds that the p-value ≤ α, thus H0 : β2
4 = 0 is rejected ⇒

the quadratic generalized linear model is preferred.

5.5 Criteria for model selection or model adjust-
ment

It is known that the goodness of fit of a parametric model to the data rises, if
the number of parameters increases. A goal of a statistician is to find a well
fitted model with as little variables as possible in order to avoid overfitting.
The Akaike information criterion can help achieving this goal by comparing
models with (possibly) different parameter estimators.
Akaike information coefficient:

AIC = −2 log L(Y, β̂) + 2m

where Y = (Y1, . . . , Yn) is the random sample of the goal variable in the
generalized linear model and β̂ the corresponding MLE. The value of the
AIC takes the required maximality of the log-likelihood function log L(Y, β̂)
into account and punishes models with a large number of parameters m. The
models with the smallest AIC is considered the better model. Sometimes
instead of the AIC, the standardized AIC given by AIC

n is used.

Example 5.5.1 (Continued). Calculate the AIC for the linear and quadratic
Logit model in the example of credit risk assessment:

Linear model : AIC = 1043.815
Quadratic model : AIC = 1035.371

By considering the AIC, it can be noticed that the quadratic model seems
to be better.

A disadvantage of making a decision based on the AIC alone is, that the
final decision is up to the statistician. Thus it is desirable to construct a
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statistical test which can asses the goodness of fit for the model. The χ2-test
aims to solve this issue.
Let

g(EYi) = Xiβ, i = 1, . . . , n

be a generalized linear model with link function g and parameter vector
β = (β1, . . . , βm)⊤. Split the goal variables Y1, . . . , Yn in k groups, such
that they are as homogeneous as possible with respect to the parameters
that need to be estimated. A said partition can be achieved by splitting the
domain of the goal variable Yi „skillfully“ in k > m2 intervals (al, bl]:

−∞ ≤ a1 < b1 = a2 < b2 = a3 < . . . < bk−1 = ak < bk ≤ +∞

Group l contains all observations Yi, which are in (al, bl]. Here (al, bl] need
to be chosen in a way, such that µ̂j = g−1(Xj β̂) are constant within the
respective groups: µ̂j ≡ µ̂l ∀ j of group l.3 Let

• nl = # {Yj : Yj ∈ (al, bl]} be class size of class l.

• Y l = 1
nl

∑
Yj be the arithmetic mean of class l.

• β̂ be the MLE of β, which was obtained by using Y .

• ll(β) = ∑ log fθ(Yj) be the log-likelihood function of the goal variables
Yi within the group l.

• µ̂l = g−1(Xlβ̂) and v(µ̂l) be the expectation estimator resp. variance
estimator µl = EYl, which are obtained by using the MLE β̂.

Here v(µ̂l) = τ2b′′(b′−1(µ̂l)), where b(·) is the corresponding coefficient in
the probability density function fθ in the exponential family. The following
test statistic is obtained:

χ2 =
k∑

l=1

(Y l − µ̂l)2

v(µ̂l)/nl
,

D = −2τ2
k∑

l=1

(
ll(µ̂l)− ll(Y l)

)
.

Theorem 5.5.2. If n→∞ and nl →∞ ∀ l, then under certain conditions
it holds that

χ2 d−−−→
n→∞

χ2
k−m−1

D
d−−−→

n→∞
χ2

k−m−1

2k ≤ m ⇒ D
d−−−−→

n→∞
χ2

k − m − 1︸ ︷︷ ︸
<0

3This is an informal description of the methodology, in which for each Yi, ni indepen-
dent copies of Yi are created, which compose the i-th class.
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Corollary 5.5.3. The hypotheses

H0 : Y = (Y1, . . . , Yn) is from the model g(EYi) = Xi

vs.

H1 : Y = (Y1, . . . , Yn) is not from the model g(EYi) = Xiβ

for i = 1, . . . , n can be tested as follows:
H0 is rejected (for large n) at significance level α, if

χ2 > χ2
k−m−1,1−α resp. D > χ2

k−m−1,1−α.

Those tests should not be used if the class sizes nl are small.

Example 5.5.4. What do the tests described above look like in the Logit-
resp. Poisson regression?

1. logit model: yi ∼ Bernoulli(pi), i = 1, . . . , n

⇒ generalized linear model log pi

1− pi
= xiβ

for i = 1, . . . , n. Divide y1, . . . , yn in k classes, such that the probability
of occurring 1 in each class is estimated as good as possible by yl =
1
nl

∑
yi. Thus it holds that

• µ̂l = p̂l = g−1(Xlβ̂) = e
X⊤

l
β̂

1+e
X⊤

l
β̂

,

• v(p̂l) = p̂l(1− p̂l),

• χ2 = ∑k
l=1

(Y l−p̂l)2

p̂l(1−p̂l)/nl
.

2. Poisson model: Yi ∼ Poisson(λ),

⇒ generalized linear model log λi = Xiβ

for i = 1, . . . , n. Thus it holds that µ̂l = λ̂l = eXlβ̂, v(λ̂l) = λ̂l and

χ2 =
k∑

l=1

(Y l − λ̂l)2

λ̂l/nl

.



Chapter 6

Principal Component
Analysis

In this chapter, methods for reducing the complexity of big statistical data
is presented in form of the principal component analysis (PCA). PCA aims
to reduce a high dimensional datasets X = (X1, . . . , Xn)⊤ ∈ Rn to very few
but important components φ = AX ∈ Rd with d ≪ n. Those components
should then explain most of the variability of the original dataset X. Here,
A is a (d×n) matrix which can be found if some restrictions (given in (6.1))
are fulfilled. Another applications of PCA is the visualization of complex
datasets, outlier detection, cluster analysis and so on. For an overview see
[18].

6.1 Introduction
In order to motivate the following problem, consider the example of text
mining in automotive:

Example 6.1.1. A car manufacturer is interested in minimizing its losses
which are due to fraud and incompetence in warranty repairs in one of the
subsidiaries. That’s why he wants to introduce a conspicuousness analysis
of repair visits in said warranty subsidiary, which is supposed to find sus-
picious reports with the help of a computer that can be manually checked
afterwards. Another motivation for the automatized early detection system
is the comprehensive examination of few subsidiaries in irregular time in-
tervals (due to high costs) which could be marginalized. A typical repair
log consists of a maximum of 300.000 technical terms. That’s why the logs
should be saved as vectors x = (x1, . . . , xn)⊤ of length n = 300.000, where

xi =

 1, the word i is in text x

0, else

199
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These vectors x are normed such that they are on the sphere Sn−1. Within
one year a huge dataset of those vectors is created with several million
entries. The task of a statistician is the drastic reduction of the dimension
n− 1 of the data such that a visualization is possible. A possible solution is
the usage of PCA. The groundwork for PCA has been done by Beltran (1873)
and Jordan (1874) who introduced the singular value decomposition (SVD).
In a more or less modern form (cf. (6.1)) it is presented in the work of K.
Pearson (1901) and H. Hotelling (1933). Also, the name PCA was introduced
by Hotelling. A more developed version of the method was introduced by
Girshick (1939), Anderson (1963), Rao (1964) and some others. Without a
computer the calculation of principal components for n > 4 turns out to be
rather difficult, thus this methodology has found its practical applications
after their invention.
Since the 1980’s there is a rapid increase in applications of PCA in the
whole knowledge domain (especially in in engineering), where multivariate
datasets are analyzed.

6.2 PCA on model level
This section aims to introduce the main concept of PCA for random samples
X = (X1, . . . , Xn)⊤ with known covariance structure. Let X = (X1, . . . , Xn)⊤

be a random sample of random variables Xi with known covariance matrix
Σ and VarXi ∈ (0,∞), i = 1, . . . , n. Let λ1 > λ2 > . . . > λn > 0 be the
eigenvalues of Σ, which are sorted in descending order and all different from
each other. The goal is to find linear combinations α⊤X of Xi which have
the biggest variance, whereas the vectors α are normed respectively, e.g.
such that α ∈ Sn−1 with the euclidean norm.

Definition 6.2.1. The linear combination α⊤
i X, i = 1, . . . , n, is called i-th

principal component of X, if it has the biggest variance under the condition
that αi ∈ Sn−1 and α⊤

1 X, α⊤
2 X, . . . , α⊤

i−1X and α⊤
i X are uncorrelated:

Var α⊤X → max
α

,

|α| = 1,

Cov (α⊤X, α⊤
j X) = 0, j = 1, . . . , i− 1.

(6.1)

Here αi is the coefficient vector of the i-th principal component α⊤
i X.

Theorem 6.2.2. The i-th principal component of X is given by

Yi = α⊤
i X,

where αi is the eigenvector of Σ with eigenvalue λi. Here

Var(Yi) = λi, i = 1, . . . , n.
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Proof Show that the assertion holds for i = 1, 2. For i > 2 the proof works
in the same spirit.
For i = 1 there is a constraint |α| = 1 in (6.1), which is taken into the
Lagrange function

f(α) = Var(α⊤X) + λ(|α|2 − 1).

Furthermore

Var(α⊤X) = E
(
α⊤X − Eα⊤X

)2
= E

(
α⊤(X − EX)

)2

= Eα⊤(X − EX)(X − EX)⊤α = α⊤E(X − EX)(X − EX)⊤α

= α⊤Σα,

|α|2 = α⊤ · α, and f(α) = α⊤Σα + λ(α⊤α− 1).
The necessary conditions for a maximum is given by

∂f

∂α
= 0,

∂f

∂λ
= 0,

where the second equation represents the constraint |α| = 1.
∂f
∂α =

(
∂f

∂α1 , . . . , ∂f
∂αn

)
, where α = (α1, . . . , αn)⊤ and ∂f

∂α = 0 can be rewritten
as Σα − λα = 0 vectorial or Σα = λα, which means, that α is an eigen-
vector of Σ with eigenvalue λ. Since Var(α⊤X) = α⊤Σα is supposed to be
maximized, it holds that

Var(α⊤X) = α⊤λα = λ α⊤α︸ ︷︷ ︸
1

= λ

and λ = λ1 > λ2 > . . . > λn ⇒ λ = λ1 and α = α1.
For i = 2, the maximization task

α⊤Σα→ max
α

,

α⊤ · α = 1,

Cov (α⊤
1 X, α⊤X) = 0

needs to be solved with respect to α, where

Cov (α1X, α⊤X) = α⊤
1 Σα = α⊤Σα1 = α⊤λ1α1 = λ1α⊤α1.

That means, the following function needs to be maximized:

f(α) = α⊤Σα + λ(α⊤α− 1) + δα⊤α1.

Similarly as above it holds that

∂f

∂α
= Σα + λα + δα1 = 0.
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The constraint α⊤
1 Σα = 0 and α⊤

1 α = 0 (see above) imply

α⊤
1

∂f

∂α
= δ α⊤

1 α1︸ ︷︷ ︸
1

= δ = 0,

which means, that Σα = λα and α is again, an eigenvector of Σ with eigen-
value λ. Since α is supposed to be orthogonal to α1 and Var(α⊤X) = λ is
supposed to be maximized, it holds that

α = α2 and λ = λ2 ⇒ Y2 = α⊤
2 X.

Exercise 6.2.3. Work out the proof for i > 2!

Let now A = (α1, . . . , αn). This is a orthogonal (n× n) matrix, for which it
holds that (by Theorem 6.2.2)

ΣA = AΛ, Λ = diag (λ1, . . . , λn),

or equivalently
A⊤ΣA = Λ, Σ = AΛA⊤. (6.2)

Theorem 6.2.4. For a (n × m) matrix B, with orthogonal columns bi,
i = 1, . . . , m, m ≤ n, let Y = B⊤X and ΣY = Cov (Y ) = B⊤ΣB be the
covariance matrix of Y . Then

Am = argmax
B

trace(ΣY ),

where Am = (α1, . . . , αm).

Proof Since α1, . . . , αn is a basis of Rn, it holds that

bk =
n∑

i=1
cikαi, k = 1, . . . , m,

where B = (b1, . . . , bm), or matrix wise, B = AC, with C = (cij), i =
1, . . . , n, j = 1, . . . , m. Thus it holds that

ΣY = B⊤ΣB = C⊤ A⊤ΣA︸ ︷︷ ︸
Λ

C = C⊤ΛC =
n∑

j=1
λjcjc⊤

j ,

where c⊤
j is the j-th row of C. Thus it holds that

trace(ΣY ) =
n∑

j=1
λjtrace(cjc⊤

j ) =
n∑

j=1
λjtrace(c⊤

j cj) =
n∑

j=1
λj |cj |2.
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Since C = A−1B = A⊤B, it holds that

C⊤C = B⊤ AA⊤︸ ︷︷ ︸
In

B = B⊤B︸ ︷︷ ︸
Im

= Im,

where
Ik = diag (1, . . . , 1︸ ︷︷ ︸

k

).

Thus
n∑

i=1

m∑
j=1

c2
ij = m,

and the columns of C are orthonormal. Thus C can be seen as a part (the
first m columns) of an orthonormal (n× n) matrix D. Since the rows of D
are also orthonormal vectors and c⊤

i are the first m entries of the rows of D,
it holds that

c⊤
i ci =

m∑
j=1

c2
ij ≤ 1, i = 1, . . . , n.

Since
trace(ΣY ) =

n∑
i=1

λi

m∑
j=1

c2
ij︸ ︷︷ ︸

βi

=
n∑

i=1
βiλi,

where βi ≤ 1, i = 1, . . . , n, ∑n
i=1 βi = m and

λ1 > λ2 > . . . > λn,
n∑

i=1
βiλi → max

for β1 = . . . = βm = 1, βm+1 = . . . = βn = 0. If B = Am, then

cij =

 1 , 1 ≤ i = j ≤ m

0 , else
,

which implies β1 = . . . = βm = 1, βm+1 = . . . = βn = 0. Thus Am is the
solution of trace(ΣY )→ maxB.

The assertion of Theorem 6.2.4 implies that

Var
(

m∑
i=1

Yi

)
= Var

(
m∑

i=1
α⊤

i X

)

is maximized for all m = 1, . . . , n, if Yi are principal components of X.
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Corollary 6.2.5. Spectral representation of Σ.
It holds that

Σ =
n∑

i=1
λi · αi · α⊤

i . (6.3)

Proof The representation is obtained by using (6.2), since

Σ = (α1, . . . , αn) · diag (λ1, . . . , λn) · (α1, . . . , αn)⊤.

Remark 6.2.6.

1. Since λ1 > λ2 > . . . > λn with |αi| = 1, ∀i, the representation (6.3)
implies, that the first principal components do not only explain the
biggest ratio of the variance of Xi, but also to the covariance. This
value decreases with an increasing i = 1, . . . , n.

2. If rank (Σ) = r < n, then (6.3) implies, that Σ can be completely
determined by considering the first r principal components and coef-
ficient vectors.

Lemma 6.2.7. Let Σ be a positive definite and symmetric (n× n) matrix
with eigenvalues λ1 > λ2 > . . . > λn > 0 and corresponding eigenvectors
α1, . . . , αn, |αi| = 1, i = 1, . . . , n. Then

λk = sup
α∈Sk,α /=0

α⊤Σα

|α|2
,

where Sk = ⟨α1, . . . , αk−1⟩⊥ for arbitrary k = 1, . . . , n.1

Proof Let
c = sup

α∈Sk

α⊤Σα

|α|2
.

Show that λk ≤ c ≤ λk.

1. c ≥ λk: For α = αk prove that

c ≥ α⊤
k Σαk

α⊤
k αk

= λkα⊤
k αk

α⊤
k αk

= λk.

2. c ≤ λk: It needs to be shown that

α⊤Σα ≤ λk|α|2, ∀α ∈ Sk, α /= 0, ∀α ∈ Rn α =
n∑

i=1
ciαi,

1⟨. . . ⟩ denotes the span
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since {αi}ni=1 form an orthonormal basis.

α ∈ Sk ⇒ c1 = . . . = ck−1 = 0.

That means

α =
n∑

i=k

ciαi, Σα =
n∑

i=1
ciΣαi =

n∑
i=1

ciλiαi,

α⊤Σα =
(

n∑
i=1

ciαi

)⊤( n∑
i=1

λiciαi

)

=
n∑

i,j=1
cicjλi α⊤

j αi︸ ︷︷ ︸
δij

=
n∑

i=1
c2

i λi, |α|2 =
n∑

i=1
c2

i .

Thus it holds that α ∈ Sk

α⊤Σα =
n∑

i=k

c2
i λi ≤

n∑
i=k

λkc2
i = λk

n∑
i=k

c2
i = λk|α|2,

and c ≤ λk since λk > λj , j > k.

Theorem 6.2.8. Let B, Y and ΣY such as in Theorem 6.2.4. Then

Am = argmax
B

det(ΣY ),

where Am = (α1, . . . , αm).

Proof Let k ∈ {1, . . . , m} be fix. Introduce Sk = ⟨α1, . . . , αk−1⟩⊥ ⊂ Rk (as
in Lemma 6.2.7). Let µ1 > µ2 > . . . > µm be the eigenvalues of ΣY = B⊤ΣB
with corresponding eigenvectors γ1, . . . , γm, which are orthonormal. Let
Tk = ⟨γk+1, . . . , γm⟩ ⊂ Rm. It obviously holds, that

Dim (Sk) = n− k + 1, Dim Tk = k.

As in Lemma 6.2.7, it can be shown, that ∀γ /= 0, γ ∈ Tk it holds that

γ⊤Σγ

|γ|2
≥ µk.

Consider S̃k = B(Tk) ⊂ Rn. Since B is an orthonormal transformation, it
is thus unique Dim (S̃k) = Dim (Tk) = k. The formula

Dim (Sk ∪ S̃k) + Dim (Sk ∩ S̃k) = Dim Sk + Dim S̃k
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implies

Dim (Sk ∩ S̃k) = Dim Sk︸ ︷︷ ︸
n−k+1

+ Dim S̃k︸ ︷︷ ︸
k

−Dim (Sk ∪ S̃k)︸ ︷︷ ︸
≤n

≥ n− k + 1 + k−n = 1

that means, ∃α ∈ Sk ∩ S̃k, α /= 0. For this α it holds that α = Bγ, γ ∈ Tk

and thus
µk ≤

γ⊤Σγ2

|γ|2
= γ⊤B⊤ΣBγ

γ⊤γ︸︷︷︸
γ⊤B⊤Bγ

= α⊤Σα

α⊤α
≤ λk

since |γ| = |Bγ|, because B is preserving distances. That’s why µk ≤ λk for
all k = 1, . . . , m and

det(ΣY ) =
m∏

i=1
µk ≤

m∏
k=1

λk ⇒ max
B

det(ΣY ) ≤
m∏

k=1
λk.

However, since B = Am, µk = λk, k = 1, . . . , m, it holds that

Am = argmax
B

det(ΣY ).

Now geometric properties of principal components are considered.

Proposition 6.2.9. The principal component coefficients α1, . . . , αn are
the principle axis of the ellipsoids x⊤Σ−1x = c, with semi-axis length

√
cλi,

i = 1, . . . , n.

Proof The principal components of X are given by Z = A⊤X, where A =
(α1, . . . , αn) is an orthonormal transformation and thus A⊤ = A−1, X =
AZ. Therefore for the ellipsoid it holds that

x⊤Σ−1x =︸︷︷︸
Subst.x=Az

z⊤A⊤Σ−1Az = z⊤Λ−1z = c,

where

A⊤Σ−1A = Λ−1 = diag
( 1

λ1
, . . . ,

1
λn

)
, Λ = diag (λ1, . . . , λn),

since Σ−1 has the same eigenvectors with eigenvalues 1
λi

. That’s why the
ellipsoid z⊤Λ−1z = c can be represented in its normed form as

n∑
k=1

z2
k

cλk
= 1.

That implies that the αi point towards the principal axis and that the half-
axis are given by

√
cλi.



CHAPTER 6. PRINCIPAL COMPONENT ANALYSIS 207

Remark 6.2.10. (Multivariate normal distribution). If X ∼ N(0, Σ) then
x⊤Σ−1x = c is an ellipsoid of constant probability for X, since the proba-
bility density function of X

fX(x) = 1√
det Σ

exp
{
−1

2x⊤Σ−1x

}
· 1

(2π) n
2

, x ∈ Rn,

is constant on this ellipsoid. Else x⊤Σ−1x = c defines contours of the con-
stant probability for X. Here the vector α1 points towards the largest vari-
ance of α⊤X (it is the biggest principal axis with length

√
cλ1 of the ellip-

soid); α2 points towards the second largest variance (half-axis with length√
cλ2), and so on (cf. Condition (6.1)).

Remark 6.2.11. Another form of PCA is possible, if instead of X =
(X1, . . . , Xn)⊤ the normed random sample Xω = (X1/ω1, . . . , Xn/ωn)⊤ is
used, where the weights ω = (ω1, . . . , ωn)⊤ contain advance information
which represent a certain preference in the analysis. A usual choice is

ωi = √σii =
√

VarXi,

which leads to a PCA of X∗ = (X∗
1 , . . . , X∗

n), X∗
i = Xi√

VarXi
, i = 1, . . . , n by

using the correlation matrix Σ∗ = (Corr (Xj , Xi))i,j=1 with

Corr (Xi, Xj) = Cov (Xi, Xj)√
VarXiVarXj

= Cov (X∗
i , X∗

j ), i, j = 1, . . . , n.

By doing so, other principal components α∗T
i X∗ can be obtained for which

α∗
i /= αi holds for i = 1, . . . , n.

What are the advantages and disadvantages of PCA based on (X, Σ) and
(X∗, Σ∗)?
Disadvantages of (X, Σ)-PCA:

1. PCA based on (X∗, Σ∗) does not depend on the unit measurements of
X. Thus comparisons between results of PCA for several samples of
different origin are possible.

2. If the variances Xi are varying a lot, the variables Xi with the largest
variance are determined to be the first principal component. The PCA
based on (X∗, Σ∗) does not have this disadvantage. The (X, Σ)-PCA
is not significant in such a case, because it sorts the variables Xi (in a
slightly different form) in a variance wise descending order.

Example 6.2.12. Let X = (X1, X2), where X1 is the length and X2
the weight. X1 can be measured in cm or m, X2 only in kg. In those
two cases, the covariance matrices X are given by
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Σ1 =

 80 44
44 80

 resp. Σ2 =

 8000 4400
4400 8800

 .

Calculating the first principal components in both cases yields

α⊤
1 X = 0, 707X1 + 0, 707X2 for Σ1 resp.

α⊤
1 X = 0, 998X1 + 0, 055X2 for Σ2.

Note that, in the first case, both X1 and X2 have the same absolute
value with respect to the 1. principal component, whereas in the 2.
case X1 is a dominating factor. Moreover it holds that λ1

λ1+λ2
·100% =

77, 5% in the first case and λ1
λ1+λ2

· 100% = 99, 3% in the 2. case (it is
the ratio of the variation of the first principal component to the whole
variation).

3. If random variables Xi in X have a differing origin (as in the example
above), then the interpretation of the ratio of the variation is rather
problematic, since the sum λ1 + . . . + λn contains m2, kg2 and so on.
The PCA based on (X∗, Σ∗) only considers values without unit, such
that the sum λ1 + . . . + λn can be interpreted.

Advantages of (X, Σ)-PCA:

1. If instead of Σ resp. Σ∗ the empirical analogues Σ̂ resp. Σ̂∗ are used
(if Σ(Σ∗) are not known, they have to be estimated by using the avail-
able data), then (X, Σ̂)-PCA has some advantages, since the statisti-
cal methods are easier to use in this case compared to using them in
(X∗, Σ̂∗)-PCA.

2. If all Xi in X have the same unit, then the (X, Σ)-PCA is sometimes
preferable, since during the standardisation of (X, Σ) to (X∗, Σ∗) the
relation to the units of X are lost.

Remark 6.2.13. Sometimes instead of |α| = 1 the standardization |αk| =√
λk, k = 1, . . . , n in Definition 6.2.1 is used (cf. optimisation problem

(6.1)). This is in particular the case in the correlation based PCA.

Remark 6.2.14. (Equal eigenvalues λi). If some eigenvalues of Σ are equal,
e.g. λ1 = λ2 = . . . = λk > λk+1 > . . . > λm implies that there exists a linear
subspace of dimension k, in which an arbitrary basis represents the first k
eigenvectors. This means, with respect to PCA that the first k eigenvectors
can not be defined uniquely. Geometrical interpretation: The first k half-
axis of x⊤Σ−1x = c are equal, i.e., the ellipsoid x⊤Σ−1x = c has a spherical
k-dimensional cross section through the origin, where the directions of the
half-axis can be chosen (orthogonal to each other) arbitrarily.
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Remark 6.2.15 (λi = 0). If λ1 > . . . > λn−k > λn−k+1 = . . . = λn = 0,
then there are only n − k linear independent random vectors Xi in the
random sample X. That’s why only those n − k variables should be good
for the analysis.

6.3 PCA on data level
In this section it is not assumed that the covariance matrix Σ is known.
That’s why it is replaced by empirical covariance matrix Σ̂.
Let X1, X2, . . . , Xm be independent realizations of a n-dimensional random
vector X = (X1, . . . , Xn)⊤, Xi = (Xi

1, . . . , Xi
n)⊤, i = 1, . . . , m. Xi is inter-

preted as a sample of X.

Definition 6.3.1. Define the n-dimensional random vector ak by

ak = argmax
a∈Rn

1
m− 1

m∑
i=1

(Yi − Y )2

with constraint |a| = 1, a uncorrelated to a1, . . . , ak−1 for all k = 1, . . . , n,
where

Yi = a⊤Xi, i = 1, . . . , m, Y = 1
m

m∑
i=1

Yi.

Thus a⊤
k X defines the k-th principal component of X with coefficient vector

ak. Yik = a⊤
k Xi is the evaluation of the k-ten principal component of the

i-th observation Xi of Xi, i = 1, . . . , m, k = 1, . . . , n.

Lemma 6.3.2. It holds that

1
m− 1

m∑
i=1

(Yik − Y k)2 = lk, k = 1, . . . , n,

where
Y k = 1

m

m∑
i=1

Yik, Xk = 1
m

m∑
i=1

Xi
k, k = 1, . . . , n

and lk is the eigenvalue of the empirical covariance matrix Σ̂ = (σ̂ij)n
i,j=1,

σ̂ij = 1
m− 1

m∑
t=1

(Xt
i −Xi)(Xt

j −Xj), i, j = 1, . . . , n, l1 > l2 > . . . > ln.

ak is the eigenvector of Σ̂ with eigenvalue lk, k = 1, . . . , n.

Proof

Exercise 6.3.3. cf. proof of Theorem 6.2.2.



CHAPTER 6. PRINCIPAL COMPONENT ANALYSIS 210

In the following, replace Xi with Xi − X but keep the notation Xi, i =
1, . . . , n.

Remark 6.3.4. The properties of PCA as formulated in Theorem 6.2.4,
Corollary 6.2.5 and Proposition 6.2.9 are preserved in the statistical version
(cf. Definition 6.3.1) by using the following modification: Σ is replaces by
Σ̂, A = (α1, . . . , αn) by A = (a1, . . . , an), Am = (α1, . . . , αm) by Am =
(a1, . . . , am) and ΣY by the empirical covariance matrix Σ̂Y of Y . Thus use
the spectral representation of Σ̂:

Σ̂ =
n∑

i=1
liaia

⊤
i . (6.4)

Exercise 6.3.5. Prove that!

In the following another property of the empirical PCA, which can also be
seen as an equivalent definition is presented:

Theorem 6.3.6. Let B be a (n×p) matrix, p ≤ n, with orthogonal columns.
Let Zi = B⊤Xi, i = 1, . . . , m be a projection of Xi, i = 1, . . . , m, on a p-
dimensional subspace LB. Define

G(B) =
m∑

i=1

∣∣∣Xi − Zi

∣∣∣2 .

Then
Ap = (a1, . . . , ap) = argmin

B
G(B).

Proof By the Pythagorean Theorem it holds that
∣∣Xi

∣∣2 = |Zi|2 +|Xi−Zi|2,
that’s why

G(B) =
m∑

i=1

∣∣∣Xi
∣∣∣2 − m∑

i=1
|Zi|2 → min

if
G̃(B) =

m∑
i=1
|Zi|2 =

m∑
i=1

Z⊤
i Zi =

m∑
i=1

XiT BB⊤Xi → max
B

.

It holds that

G̃(B) = trace
(

m∑
i=1

(
XiT BB⊤Xi

))
=

m∑
i=1

trace
(
XiT BB⊤Xi

)
=

m∑
i=1

trace
(
B⊤XiXiT B

)
= trace

(
B⊤

(
m∑

i=1
XiXiT

)
︸ ︷︷ ︸

2(m−1)Σ̂

B

)

= (m− 1)trace(B⊤Σ̂B).
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In summary:

G̃(B) = (m− 1)trace
(
B⊤Σ̂B

)
,

since it is maximized by Remark 6.3.4 and Theorem 6.2.4, if B = Ap.

Remark 6.3.7. How can Theorem 6.3.6 be used as an equivalent definition
of the empirical PCA? ai are defined as orthogonal vectors, which is the
span of a linear subspace Lp = ⟨a1, . . . , ap⟩, p = 1, . . . , n − 1, with the
property, that the sum of the quadratic orthogonal distances of Xi to Lp

are minimized. Thus for p = 1, L1 would be the best line for approximating
the data set X1, . . . , Xm. For p = n−1, Ln−1 would be the best hyperplane
with the same property (cf. linear regression).

The following theorem provides a new interpretation for PCA as well as
more efficient method for the calculation.

Theorem 6.3.8. (Singular value decomposition.)
Let X̃ =

(
X1 −X, X2 −X, . . . , Xm −X

)⊤
be a (m× n) matrix, with cen-

tered observations Xi of X. Let rank (X̃) = r ≤ n, m. The following
decomposition holds:

X̃ = ULA⊤
r , (6.5)

where U is a (m× r) matrix with orthonormal columns.

L = diag (l̃1, . . . , l̃r) where l̃i =
√

(m− 1)li

is the square root of the i-th (non trivial) eigenvalue of X̃⊤X̃ = (m− 1)Σ̂,
i = 1, . . . , r. Ar = (a1, . . . , ar) is the (n× r) matrix with columns ai.

Proof Define U = (u1, . . . , ur) with columns ui = X̃ai/l̃i, i = 1, . . . , r. In
the following it is shown, that the representation (6.5) holds. Using the
spectral representation 6.4 it holds that

(m− 1)Σ̂ = X̃⊤X̃ =
r∑

i=1
l̃2i aia

⊤
i , since li = 0, i = r + 1, . . . , n.

Thus

ULA⊤
r = U


l̃1a⊤

1
...

l̃ra⊤
r

 =
r∑

i=1
X̃

ai

l̃i
l̃ia

⊤
i =

r∑
i=1

X̃aia
⊤
i

li=0,i>r=
n∑

i=1
X̃aia

⊤
i .

2Since Xi was replaced by Xi − X.
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It holds that X̃ai = 0, i = r + 1, . . . , n, since rank(X̃) = r and because of
the centered columns of X̃ by X. By the orthogonality of the ai it holds
that

ULA⊤
r = X̃

n∑
i=1

aia
⊤
i = X̃I = X̃.

Remark 6.3.9. The matrix U provides the following versions of evaluations

Yik = a⊤
k Xi = XiT ak, Yik = uik l̃k, i = 1, . . . , m, k = 1, . . . , n.

It holds that

Var(uik) = Var(Yik)
l̃2k

= lk
(m− 1)lk

= 1
m− 1 , ∀i, k.

6.4 Asymptotic distributions of principal compo-
nents for normal distributed random samples

Let now X ∼ N(µ, Σ), Σ have the eigenvalues λ1 > λ2 > . . . > λn > 0 and
corresponding eigenvectors αk, k = 1, . . . , n. Calculate

λ = (λ1, . . . , λn)⊤, l = (l1, . . . , ln)⊤,

αk = (αk1, . . . , αkn)⊤, ak = (ak1, . . . , akn)⊤,

k = 1, . . . , n

Theorem 6.4.1.

1. l is asymptotically (for m→∞) independent of ak, k = 1, . . . , n.

2. l and ak, k = 1, . . . , n are asymptotic m → ∞ multivariate normal
distributed, with asymptotic expectation

lim
m→∞

E(l) = λ and lim
m→∞

E(ak) = αk, k = 1, . . . , n.

3. It holds that

Cov (lk, lk′) ∼


2λ2

k
m−1 , k = k′

0, k /= k′
for m→∞,

Cov (akj , ak′j′) ∼


λk

m−1
∑n

l=1,l /=k
λlαljαlj′
(λl−lk)2 , k = k′

− λkλk′ αkjαk′j′
(m−1)(λk−λk′ )2 , k /= k′

for m→∞.
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Without proof!
The assertion of Theorem 6.4.1 can be used for constructing MLE and con-
fidence intervals for λ and αk.

Exercise 6.4.2.

1. Show that an MLE of Σ is given by m−1
m Σ̂.

2. Show, that the MLE

 for λ is given by λ̂ = m−1
m l.

for αk is given by α̂k = ak, k = 1, . . . , n.

3. Show that the MLE in 2. coincide with the moment estimators λ and
αk, which can be obtained from Theorem 6.4.1.

Corollary 6.4.3 (Confidence intervals for λk). An asymptotic confidence
interval for λk (m→∞) with confidence level 1− α is given bylk

(
1−

√
2

m− 1z α
2

)−1

, lk

(
1 +

√
2

m− 1z α
2

)−1 ,

where m is large enough such that −
√

2
m−1z α

2
< 1.

Proof Since lk ∼ N

(
λk,

2λ2
k

m−1

)
for m→∞ by Theorem 6.4.1, 2. and 3., it

holds that
lk − λk√

2
m−1λk

∼ N(0, 1) for m→∞.

This implies, that

lim
m→∞

P

(
z α

2
≤ lk − λk

λk

√
m− 1

2 ≤ z1− α
2

)
= 1− α,

or for m→∞ √
2

m− 1z α
2
≤ lk

λk
− 1 ≤

√
2

m− 1 z1− α
2︸ ︷︷ ︸

=−z α
2

,

lk

1−
√

2
m−1z α

2

≤ λk ≤
lk

1 +
√

2
m−1z α

2

with probability 1− α.
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Since all lk, k = 1, . . . , n are asymptotically (m → ∞) independent, a si-
multaneous confidence interval for l can be denoted by a cartesian product
of the confidence intervals for lk as in Corollary 6.4.3.

Lemma 6.4.4. It holds that

(m− 1)α⊤
k

(
lkΣ̂−1 + l−1

k Σ̂− 2In

)
αk

d−−−−→
m→∞

χ2
n−1.

Without proof!
As a consequence of the lemma above, the (asymptotic) confidence ellipsoid
for αk with confidence level 1− β{

y ∈ Rn : (m− 1)y⊤
(
lkΣ̂−1 + l−1

k Σ̂− 2In

)
y ≤ χ2

n−1,β

}
is obtained.

Remark 6.4.5. Corollary 6.4.3 resp. Lemma 6.4.4 can be used to construct
statistical tests forλk resp. αk as follows:

1. Test H0 : λk = λko v.s. H1 : λk /= λk0

H0 can be rejected, if ∣∣∣∣∣∣ lk − λk0√
2

m−1λk0

> z α
2

∣∣∣∣∣∣ .
This is an asymptotic test (m→∞) with confidence level α.

2. Test H0 : αk = αk0 v.s. H1 : αk /= αk0

H0 can be rejected, if

(m− 1)α⊤
k0

(
lkΣ̂−1 + l−1

k Σ̂− 2In

)
αk0 ≥ χ2

n−1,α.

This is an asymptotic test (m→∞) with confidence level α.

6.5 Outlier detection
In this section it is assumed that the random sample X1, X2, . . . , Xm can
contain some outliers. How can an outlier be defined? In statistical literature
there is no coherent definition. Generally speaking, an observation Xi is an
outlier if it attains an unusual value (with respect to the distribution of X).
For example, an unusual value of some coordinates Xi could be significantly
bigger or smaller than the others. An outlier could also occur in form of
an unusual combination of the coordinate values of some coordinates Xi. A
reason for those anomalies could lie in the data, or simply occur because of
measurement errors.
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Example 6.5.1. Let X = (X1, X2), where X1 = “height” (in cm) and X2 =
“weight” (in kg) of children between the age of 5 and 15. The feature X
is obtained n times in a medical survey. Here the features Xi = (250, 80)
and Xj = (175, 25) are considered as outliers, because Xi = 250cm is an
abnormal height and for Xj , Xj

1 = 175 and Xj
2 = 25 as a combination are

highly unlikely.

How can outliers be detected? One way to identify outliers of Xi is to plot
the dataset X1, . . . , Xm and spot values which are outside of a larger ag-
glomeration of values. If the dimension n of X is high, it is rather difficult
to visualize the data. It can thus be helpful to generate a data point of
the first 2-3 principal components of (X1, . . . , Xm). By looking at them,
outliers of Xi

k can also be identified quickly. In order to detect unusual rela-
tionships between coordinate values Xi

k, the last few principal components
should be considered. Let a1, . . . , an be the coefficient vectors of the prin-
cipal components of (X1, . . . , Xm), Yik = a⊤

k Xi, i = 1, . . . , m, k = 1, . . . , n
be realizations of the principal components of the observation Xi and lk,
k = 1, . . . , n be the eigenvalues of the empirical covariance matrix Σ̂ of
(X1, . . . , Xm). For 1 ≤ n0 ≤ n, define the statistic

d
(1)
i (n0) =

n∑
k=n−n0+1

Y 2
ik, d

(2)
i (n0) =

n∑
k=n−n0+1

Y 2
ik

lk
,

d
(3)
i (n0) =

n∑
k=n−n0+1

lkY 2
ik, d

(4)
i (n0) = max

n−n0+1≤k≤n

|Yik|√
lk

,

for i = 1, . . . , m.

Lemma 6.5.2. It holds that

d
(2)
j (n) =

(
Xi −X

)⊤
Σ̂−1

(
Xi −X

)
, i = 1, . . . , m,

where Yik are centered, i.e. Yik is replaced by Yik − Yk, k = 1, . . . , n, i =
1, . . . , m.

Proof It holds that

Σ̂ = ALA⊤, where L = diag (l1, . . . , ln) and A = (a1, . . . , an).

Thus
Σ̂−1 = AL−1A⊤ with L−1 = diag (l−1

1 , . . . , l−1
n ).

Since additionally Yi = A⊤Xi for Yi = (Yi1, . . . , Yin)⊤, i = 1, . . . , n, it holds
that

Xi = A⊤−1
Yi = AYi, Xi⊤ = Y ⊤

i A⊤, i = 1, . . . , n
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and thus

X = 1
m

m∑
i=1

Xi = AY , Y = 1
m

m∑
i=1

Y i, X
⊤ = Y

⊤
A⊤.

This implies that(
Xi −X

)⊤
Σ̂−1

(
Xi −X

)
=
(
Yi − Y

)⊤
A⊤A︸ ︷︷ ︸

I

L−1 A⊤A︸ ︷︷ ︸
I

(
Yi − Y

)

=
(
Yi − Y

)⊤
L−1

(
Yi − Y

)
=

n∑
k=1

Y 2
ik

lk
= d

(2)
i (n).

In order to identify outliers in (X1, . . . , Xm), the values d
(j)
i (n), i =

1, . . . , m, j = 1, . . . , n for n = 1, 2, 3 are calculated. Observations Xi with
the largest value d

(j)
i (n) are classified as possible outliers. Additionally the

plot of the point cloud, defined by

D =
{(

d
(2)
i (n)− d

(2)
i (n0), d

(2)
i (n0)

)
, i = 1, . . . , m

}
can be helpful. Xi is considered an outlier, if(

d
(2)
i (n)− d

(2)
i (n0), d

(2)
i (no)

)
is isolated from the remaining point cloud D.

Remark 6.5.3. If X ∼ N(µ, Σ) with known µ and Σ and PCA is con-
ducted on model level, the distributions of d

(j)
i (n0) can be explicitly stated.

They are (except for d
(4)
i ) gamma distributed with known parameters e.g.

d
(2)
i (n0) ∼ χ2

n0 , i = 1, . . . , m. The distribution function of d
(4)
j (n0) is given

by Φn0(x), where Φ(x) is the distribution function of a N(0, 1) distribution.
Confidence intervals for d

(j)
i (n0) can provide a decision rule, whether Xi is

an outlier. Even though this approach is based on a strict mathematical
basis, it is rather uncommon in practice, since normally distributed data
(with known µ and Σ!) are relatively rare.

Remark 6.5.4. The statistics d
(2)
i , d

(4)
i emphasize the last statistics more

than d
(1)
i (because of the corresponding standardization). That’s why they

are sufficient for the detection of unusual correlations in the data (cf. Exam-
ple 6.5.1, observation Xj = (175, 25). The statistic d

(3)
j emphasizes the first

principal component. Thus it can be used to detect unusual large (small)
values of the coordinates Xi

k (cf. Example 6.5.1 Xi
1 =250).



CHAPTER 6. PRINCIPAL COMPONENT ANALYSIS 217

6.6 PCA and regression
Consider the multivariate regression model: Y = Xβ + ε, where Y =
(Y1, . . . , Yn)⊤ is the vector of goal variables,

X = (Xij) i=1,...,n

j=1,...,m

the (n × m) matrix of output variables, rank (X) = m, ε = (ε1, . . . , εn)⊤

the vector of error terms, where εi are independent of Eεi = 0, Varεi = σ2,
i = 1, . . . , n. W.l.o.g. assume, that X (as in Theorem 6.3.8) is centered,
i.e., the empirical mean of X is zero, or in detail, Xij is replaced by Xij−Xj ,
where

Xj = 1
n

n∑
i=1

Xij , j = 1, . . . , m.

Assuming that some of the variables Xij in X are almost linearly dependent,
i.e. det(X⊤X) ≈ 0, causes the estimators β̂ of β to be affected in form of an
instability for the calculation, since Cov (β̂) = σ2(X⊤X)−1 (cf. Theorem
6.3.8) only contains little variance of β̂j . A solution to this problem is the
usage of generalizations as in Section 6.3. Another application of PCA is
the detection of linear dependencies in X by looking at the last principal
components and eliminating variables βj based on those. This application
will be discussed in more detail below.
Let a1, . . . , am be the coefficient vectors of the principal components (i.e.
the eigenvectors) of X⊤X. Let Zik = a⊤

k Xi be the realization of the k-th
principal component of the i-th row Xi of X, i = 1, . . . , n, k = 1, . . . , m.
With Z = (Zik) it holds that Z = XA, where A = (a1, . . . , am) is an
orthogonal (m×m) matrix. The regression equation Y = Xβ + E is given
by:

Y = X AA⊤︸ ︷︷ ︸
I

β + E = XA︸︷︷︸
Z

A⊤β︸ ︷︷ ︸
γ

+E = Zγ + E , where γ = A⊤β. (6.6)

By doing so, the old output variables β are replaced by the transformation
γ = A⊤β. The estimation of γ is obtained with Theorem 4.2.1:

γ̂ =
(
Z⊤Z

)−1
Z⊤Y = L−1Z⊤Y, (6.7)

where L = diag (l1, . . . , lm) contains the eigenvalues li of X⊤X. This holds,
since Z has orthogonal columns. Thus

β̂ = Aγ̂ = AL−1Z⊤Y = AL−1A⊤︸ ︷︷ ︸
(X⊤X)−1

X⊤Y =
m∑

k=1
l−1
k aka⊤

k X⊤Y,
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where in the last part of the equation the terms (6.6), (6.7) and the spectral
representation (Corollary 6.2.5) of (X⊤X)−1 have been used. Theorem 6.2.4
implies furthermore, that

Var(β̂) = σ2
m∑

k=1
l−1
k aka⊤

k .

Thus the following assertion is proved:

Lemma 6.6.1. The solution of the OLS equation Y = Xβ + E is given by

β̂ =
m∑

k=1
l−1
k aka⊤

k X⊤Y.

Here it holds that
Cov (β̂) = σ2

m∑
k=1

l−1
k aka⊤

k .

Remark 6.6.2. What are the advantages of the in (6.6)-(6.7) introduced
methodology?

1. After calculating the principal components of X⊤X, the calculation of
γ̂ = L−1Z⊤Y is fast and easy, since (6.7) does not include any inverted
matrices (L−1 = diag (l−1

1 , . . . , l−1
m ) is explicitly known).

2. If some of the lk are close to zero or rank (X) < m, some of the last
few principal components (with small or even zero variance) of X⊤X
can simply be excluded from the regression. This can be realized with
the new estimator given by

β̃ =
p∑

k=1
l−1
k aka⊤

k X⊤Y

p < m.

Lemma 6.6.3. Let rank (X) = m:

1. The estimator β̃ is biased:

Eβ̃ =

I −
m∑

k=p+1
aka⊤

k

β.

2. It holds that:
Cov (β̃) = σ2

p∑
k=1

l−1
k aka⊤

k

.

Proof
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1. Since
β̃ = β̂ −

m∑
k=p+1

l−1
k aka⊤

k X⊤Y

and β̂ is biased, it holds that

Eβ̃ = Eβ̂ −
m∑

k=p+1
l−1
k aka⊤

k X⊤EY

= β −
m∑

k=p+1
l−1
k ak a⊤

k X⊤X︸ ︷︷ ︸
lka⊤

k

β = β −
m∑

k=p+1
aka⊤

k β

=

I −
m∑

k==p+1
aka⊤

k

β

2.

Exercise 6.6.4.

Another equivalent formulation for regression with PCA is given in the fol-
lowing. Instead of using γ = A⊤β, use singular value decomposition (cf.
Theorem 6.3.8) for X:

X = UL
1
2 A⊤,

where U is a (n ×m) matrix with orthonormal columns and L a diagonal
matrix with L

1
2 = diag (

√
l1, . . . ,

√
lm). Define

δ = L
1
2 A⊤β, (6.8)

then
Y = Xβ + E = U L

1
2 A⊤β︸ ︷︷ ︸

δ

+E = Uδ + E .

The MLE for δ is given by

δ̂ = (U⊤U)−1︸ ︷︷ ︸
I

U⊤Y = U⊤Y,

since U has orthonormal columns. (6.8) implies β = AL− 1
2 δ and thus

β̂ = AL− 1
2 δ̂ = AL− 1

2 U⊤Y.

Here the relationship between γ and δ is given by:

γ = A⊤β = A⊤
(
AL− 1

2 δ
)

= A⊤A︸ ︷︷ ︸
I

L− 1
2 δ = L− 1

2 δ.

Thus the following Lemma has been proven.
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Lemma 6.6.5. The principal components Y = Uδ + E of the regression
Y = Xβ + E has the MLE solution δ̂ = U⊤Y resp.

β̂ = AL− 1
2 U⊤Y. (6.9)

Here the parameter vector δ is simply a standardized version of γ: δ = L
1
2 γ.

Remark 6.6.6.

1. Since there are efficient algorithms for calculating a singular value
decomposition, the term (6.9) can be calculated more efficiently com-
pared to β̂ = (X⊤X)−1X⊤Y , since X⊤X has to be inverted in the
latter.

2. Instead of removing the last m − p principal components of X⊤X
from the regression (cf. Remark 6.6.2, 2.), it is generally possible to
calculate β̃ on a subset M of {1, . . . , m}:

β̃M =
∑

k∈M

l−1
k aka⊤

k X⊤Y.

Here, only principal components lk, k ∈M , are used for the regression.
Then it also holds that

Cov (β̃M ) = σ2 ∑
k∈M

l−1
k aka⊤

k ,

cf. Exercise 6.6.4. This approach uses the elimination of components
γk, k /∈ M of γ = (γ1, . . . , γm)⊤ of the ML estimation. Equivalently
it can be thought of the exclusion of the components δk, k /∈ M of
δ = (δ1, . . . , δm)⊤, since δ = L

1
2 , with δk =

√
lkγk for all k.

What are possible strategies for determining M?

1. M = {k : lk > l∗} for a predetermined threshold l∗ > 0. If

l = 1
m

m∑
i=1

li

are close to 1, l∗ ∈ (0.01, 0.1). The disadvantage of this methodology
is that some of the (possibly important for the forecast of Y ) principal
components, might have a small variance and are thus eliminated from
the model.

2. Let σ2
ii be the i-th diagonal element of (X⊤X)−1. It holds that σ2

ii =
Varβ̂i

σ2 (cf. Theorem 6.2.4), i = 1, . . . , m. Then M = {k : σ2
kk > σ∗}

can be chosen for a sufficient threshold σ∗. For the choice of σ∗ see
[18], p. 174. This methodology has the same disadvantages as 1.
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3. Define M = {1, . . . , p}, where p is the biggest number ≤ m, for which
one of the following criteria is met:

a) It holds that:
m∑

i=1
E(β̃Mi − βi)2 ≤

m∑
i=1

E(β̂i − βi)2, (6.10)

for all β = (β1, . . . , βm)⊤ ∈ Rm.
b) It holds that:

E(c⊤β̃M − c⊤β)2 ≤ E(c⊤β̂ − c⊤β)2 ∀β ∈ Rm, c ∈ Rm

c) It holds that:

E
∣∣∣Xβ̃M −Xβ

∣∣∣2 ≤ E
∣∣∣Xβ̂ −Xβ

∣∣∣2
Here the criteria a) is similar to the task of estimating β as precise as
possible. Criteria b) and c) on the other hand deliver the best possible
estimation of of EY = Xβ with Xβ̂M resp. Xβ̂. All terms in a)-c) are
mean squared errors, which contain both the bias and the variance of
β̃M .

Many more strategies are described in statistical literature, which provide a
better estimator β̃M compared to β̂ depending on the given situation. The
question on how to choose M is still unanswered.

An alternative approach of eliminating principal components in the regres-
sion is given by the following estimator β̃R:

β̃R =
m∑

k=1
(lk + Kk)−1aka⊤

k X⊤Y,

where K1, . . . , Km > 0 are weights, which represent additional influencing
factors with respect to the regression. By using those weights it can be
achieved, that lk ≈ 0 does not have a destabilizing influence on the estima-
tion.

Exercise 6.6.7. Show that

•
Cov (β̃R) = σ2

m∑
k=1

lk
(lk + Kk)2 aka⊤

k

• β̃R is a biased estimator of β. Find the bias of β̃R!
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β̃R is called Ridge Regression. Here the question arises on how to choose
Kk, k = 1, . . . , m. In practice, Kk = K, k = 1, . . . , m is usually used, where
K is to be chosen small.

Another application of PCA in regression is the so called latent root regres-
sion. This form of regression aims to only remove principal components, if
they have a small variance lk and do not add any additional value to the
estimation of EY with Xβ. Here the PCA is applied to the (m+1)×(m+1)
matrix X̃⊤X̃ with X̃ = (Y, X). Let ãk, k = 0, . . . , m be the coefficients of
the PCA of X̃⊤X̃, with corresponding eigenvalues l̃k, k = 0, . . . , m. Let
ãk = (ak0, . . . , akm)⊤, k = 0, . . . , m.
Define the index set of the principal components that are to be eliminated
as ML = {k = 0, . . . , m : l̃k ≤ l∗, |ak0| ≤ a∗}. This is the index set of those
principal components, that have small variance and do not influence the
estimation of Y a lot. Let M = {0, . . . , m}\ML. Define β̂L = ∑

k∈M c̃kãk,
where {c̃k, k ∈M} = argminβ |Y −Xβ|2 with β = ∑

k∈M ckãk.

Theorem 6.6.8. It holds that

c̃k = −
ak0

√∑n
i=1

(
Yi − Y

)2

l̃k
∑

i∈M
a2

i0
l̃i

, k ∈M.

Without proof!
Thresholds l∗ and a∗ are still to be chosen empirically.

6.7 Numeric calculation of principal components
In order to understand how statistical software packages calculates princi-
pal components, it is important to know the algorithms. By knowing the
algorithms one can gain awareness about why some results might be bad
(e.g. with eigenvalues that are almost equal) or what kind of restrictions
there are with respect to size of the datasets (e.g. storage wise or runtime
wise). In the following a short overview for those methods is given. Since
the PCA is mainly based on calculating eigenvalues λi and eigenvectors αi

of a positive semi-definite (m ×m) matrix Σ, the focus will mainly be on
this calculation.
Let Σ thus be a (m×m) matrix with eigenvectors α1, . . . , αm and eigenval-
ues λ1, . . . , λm, which is positive semi-definite. In statistical literature there
are at least four approaches for calculating αi and λi:

1. Power iteration,

2. QR decomposition,
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3. Singular value decomposition,

4. Neural networks.

Here only the essence of power iteration is presented: it represents an it-
erative algorithm for determining λ1 and α1, if λ1 >> λ2 > . . . > λ. Let
u0 ∈ Rm be a starting vector. Define ur = Σur−1 = Σru0 for all r ∈ N. If

u0 =
m∑

i=1
ciαi,

where α1, . . . , αm are the orthonormal basis vectors and c1, . . . , cm are co-
ordinates then

ur = Σru0 =
m∑

i=1
ciΣrαi =

m∑
i=1

ciλ
r
i αi, r ∈ N.

Let ur = (ur1, . . . , urm)⊤, αi = (αi1, . . . , αim)⊤.

Lemma 6.7.1. It holds that

uri

ur−1,i
−−−→
r→∞

λ1

for i = 1, . . . , m and

ur

ciλr
1
−−−→
r→∞

α1.

Proof For j = 1, . . . , m it holds that

urj =
m∑

i=1
ciλ

r
i αij

and thus

urj

ur−1,j
=

∑m
i=1 ciλ

r
i

αij

λr−1
1∑m

i=1 ciλ
r−1
i

αij

λr−1
1

=
c1α1jλ1 +∑m

i=2 ci

(
λi
λ1

)r−1
λiαij

c1α1j +∑m
i=2 ci

(
λi
λ1

)r−1
αij

−−−→
r→∞

c1α1j

c1α1j
λ1 = λ1,

since λi
λ1

< 1, i = 2, . . .. Furthermore,

ur

uλr
1

= α1 +
m∑

i=2

ci

c1

(
λi

λ1

)r

αi−−−→
r→∞

α1.
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The fact, that c1 is unknown, is nothing to be worried about, since ur
λr

1
can

be standardized. The proof of Lemma 6.6.5 implies, that the rate of conver-
gence of uri

ur−1,i
to λ1 and ur

c1λr
1

to α1 is getting worse, if and only if λ1 ≈ λ2,
or in this case λ2

λ1
≈ 1.

What should be done in the case that λ1 ≈ λ2, in order to increase the rate of
convergence? Instead of using Σ, Σ−ρI can be used for the iteration, in order
to decrease the ratio λ2−ρ

λ1−ρ . Furthermore Σ can be replaced with (Σ− ρI)−1,
which leads to solving the system of equations (Σ− ρI) ur = ur−1 for every
r ∈ N. Thus for a suitable choice of ρ a convergence to αk, k = 1, . . . , m is
possible (in the second case).

Exercise 6.7.2. Construct those vectors and proof the convergence!

An increase in the rate of convergence can also be achieved, if one considers
the sequence {u2r} instead of {ur} where u2r = T 2r

u0, r ∈ N. Further
methodologies for improving the algorithm of power iteration can be found
in [18], p. 410-411.
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weak consistency, 21

Method of least squares, 142
Method of moments estimation, 13
Mistakes of type I and II, 76
mixed moments, 134
models

generalized linear, 177
Moment estimator, 14
Multinomial distribution, 109

Newton’s method, 188

Neyman-Fisher Factorisation Theorem,
45

Neyman-Fisher, Factorisation Theorem,
45

Neyman-Pearson
Fundamental Lemma, 93
Optimality theorem, 92

non-centered χ2
n,µ distribution, 137

Normal distribution
Confidence interval

for two samples, 68
confidence interval

One sample, 60
multivariate, 129
Significance tests, 84

normal equation, 142

Odds, 182
OLS estimator, 142
one-parametric exponential class, 97

p-value, 80
parameter space, 1
parameter vector, 1
Pearson test statistic is introduced, 110
Performance function, 76
Plug-in estimator, 12
Plug-in method, 12
point estimation, 1
point estimator, 1
Poisson distribution, 70, 86, 88

Asymptotic confidence interval, 66
Neyman-Fisher test, 120
Neyman-Pearson test, 95

Poisson model, 198
Poisson regression, 188
posteriori distribution, 29
Power function, 76
predictor variables, 128
prior distribution, 29
Probit model, 182
Procedure of Cramér-Wold, 131

quadratic form, 134
Covariance, 134

Quantile function of the normal distri-
bution, 182

Randomization region, 75
regression
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binary categorical, 182
logistic, 182, 188

Rejection region, 75
related sample, 68
Resampling methods, 32
residual distribution, 153
residuals, 152
response variable, 141

Score function, 195
Score statistic, 195
Significance level, 58
Sufficient estimators, 42

t distribution, 6
Test

Asymptotic, 78, 85
Binomial test, 123
χ2 goodness-of-fit test, 109
χ2-Pearson-Fisher test, 115
for connectivity, 152
for regression parameters, 151
Goodness-of-fit test, 108
Iteration test, 125
Kolmogorov-Smirnov, 109
Monte-Carlo test, 78
most powerful, 90
Neyman-Pearson test, 91

One sided, 96
parameter of the Poisson distri-

bution, 95
Rejection region, 91
Scope, 91

Neyman-Pearson-Test
modifizierter, 104

NP test, see Neyman-Pearson test
Parameters of the normal distribu-

tion, 84
parametric, 77

left-sided, 77

one-sided, 77
right-sided, 77
two-sided, 77

Parametric significance test, 84
Power, 76
powerful, 90
randomized, 75, 89
Scope, 90
of Shapiro-Francia, 122
of Shapiro-Wilk, 123
Shapiros goodness-of-fit test, 121
unbiased, 82
Wald test, 85
of Wald-Wolfowitz, 127

Test statistic, 60
Theorem

χ2 Distribution, special case, 5
Cramér-Rao inequality, 36
Density of the t distribution, 6
Factorisation Theorem of Neyman-

Fisher, 45
Lehmann-Scheffé, 50
Moment generating and characteris-

tic function of the Gamma dis-
tribution, 3

weak consistency of ML estimators,
21

unimodal, 21
Uniqueness theorem

for characteristic functions, 130
for moment generating functions,

137

variability of the expected values, 174
Variance analysis, 174

single factor, 174
two factor, 176

Wald statistic, 195
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