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Preface

The present lecture notes aim to give an introduction to different aspects
of modern statistics. They are, in their current state, a result of holding
lectures on statistics at Ulm University in the years 2010-2023 for students
of mathematical bachelor’s and master’s programs.

The goal of the lectures is to provide an overview of typical problem settings
and approaches to statistical inference. Additionally it aims to present a
middle ground between practically orientated applied statistical monographs
(which are usually mathematically sparse) and arid books on mathematical
statistics. Whether I actually succeeded in finding said middle ground, shall
be decided by the reader.

I would like to thank my colleagues at the Institute of Stochastics for their
support and exhilarating discussions during the making of these notes. A
special thanks goes to Linus Lach for the English translation of the German
version and the creation of figures which accompany the text. I am also in-
debted to Tobias Brosch for the initial creation of the German IXTEX—version
and to Viet Hoang for the many corrections.

Ulm, July 11, 2025
Evgeny Spodarev
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Chapter 1

Point Estimation

Let (z1,...,x,) be a given sample. Assume that it is a realization of a
random sample (X1,...,X,), where Xy,..., X,, are independent identically
distributed (i.i.d.) random variables with unknown distribution F'. Further
assume that F' is an element of a parametric family of distributions given
by {Fp : 0 € ©}. Here § = (61,...,0,,,) € © denotes the m-dimensional
parameter vector of the distribution Fy, and © C R is the so called param-
eter space (a Borel subset of R, which is composed of all valid parameter
values). The parametrization 6 — Fj is set to be identifiable, under the
assumption that Fy, # Fy, for 6, + 0s.

An important task in statistics, discussed in this chapter, is the estimation
of the parameter vector § (or a part of #) on the basis of a given sample
(z1,...,oy). In this context, the described procedure is called point estima-
tion with respect to a point estimator 6: R" — R"™ which is a valid sample
function. Usually one assumes that

P(0(X1,..., X)) €0) =1,

even though exceptions exist. The probability space (£, F, P) on which the
random sample is defined has yet to be specified thoroughly. Here, the so
called canonical probability space comes into play, which is defined by

Q:ROO, ]::BIEOZBR(@BR@...

with probability measure P given by
k
P({w=(wi,...,wn,... ) ER®:w; <@jp,...,w; < azzk}):H Fp(xy;)
j=1

forall k€ Nand 1 <i; < --- < i;. In order to emphasize that P depends
on 6, the notation Py, Ey and Vary is introduced for the measure P as well
as the expectation E and variance Var with respect to P.
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On the canonical probability space (€2, F, Py) it holds that X;(w) = w; (pro-
jection on the i’th coordinate), i = 1,...,n, with

Pg(XiS.Z‘Z’):Pg({WEQZwigxi}):Fg(xi), i:1,...,n, z; € R.

1.1 Parametric families of reference distributions

In the lecture “Elementary Probability Theory” some parametric families
have already been introduced. In this section, more parametric families of
distributions that play a special role (e.g. as reference distributions in esti-
mation theory, statistical tests and confidence intervals) will be presented.
1.1.1 Gamma distribution

First, consider the following special functions:

1. The Gamma function:
oo
I(p) = / P e % dz, forp>0.
0

The following properties hold:
e I'(1)=1
« I(Y2) = y/m,
e I'(p+1) =pI'(p) for all p > 0,
e '(n+1)=mn!forallneN.

2. The Beta function:

1
B(p,q) = / (1 -1 dt, p,q>0.
0
The following properties hold:

« B(p,q) = B(q,p),

e B(p,q) = Fr(ﬁziff)) for all p,q > 0,

Definition 1.1.1. The Gamma distribution with parameters A > 0 and p >
0 is an absolutely continuous distribution with probability density function

APzP—1 _\x

T € ) x Z 0)

fx(x)=4 T® (1.1)
0, x<0.

Denote by X ~ T'(\,p) a random variable X which is Gamma distributed
with parameters A and p. Obviously X > 0 almost surely (a.s.).

Exercise 1.1.2. Show that (1.1) is indeed a probability density function.
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Figure 1.1: Probability density function of the Gamma distribution with
various choices for the parameters A > 0 and p > 0.

Example 1.1.3.

1. The Gamma distribution is often used for modeling small and medium
sized insurance claims.

2. If p=1, then I'(\, 1) = Exp()\), i.e. the Ezponential distribution with
parameter A > 0.

Theorem 1.1.4. Let X ~ I'(\, p).

1. The moment generating function ¥ x(s) of X is given by

1
N} —ResX = .
X(S) € (1 _ S/)\)p’ S <

The characteristic function ¢x(s) of X is given by

; 1
_ s X __
vx(s) =Ee BTN seR.

2. The k-th moments of X are given by

Pl (ptk—1)

k_P(
EX" = G ,

keN.

Proof
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1. Consider
00 - <0
Ux(s) = / e’ fx(v) dr = I‘)(\;) / M CED VN
0 0
gy TR
—(s=na=y T(p) /0 S R e e

-(5) a2

If s € C and Re(s) < A, then Ux(s) is holomorphic on D, where
D ={s=x+1iy € C:x < A}. It holds that

Ux(s) =px(—is),
for s = it, 0 < A, which implies that
@X(t):\px(it), t e R.

Ultimately, this yields

1

@X(t)zm, teR.

p+1)-...-(p+k—1)
AF ’

BXF = wh)(0) — Bxk = 2o keN.

O]

Corollary 1.1.5 (Stability of the Gamma distribution). If X ~ I'(\, p1),
Y ~T(A\,p2) and X and Y are independent, then X +Y ~ I'(\, p1 + p2).

Proof It holds that

ox+v(s) = px(s) py(s)
= 1 . 1

1- is/)\>P1p1+(plQ_ is/x)p2
- (1 1is/)\>

= (PF()\,p1+p2)(s) .

Since the characteristic function uniquely determines the distribution of a
random variable, X +Y ~ T'(\, p1 + p2) holds. O



CHAPTER 1. POINT ESTIMATION 5

Example 1.1.6. Let X;,...,X,, ~ Exzp(\) be independent. By Corollary
1.1.5 it holds that X = X; + ...+ X, ~T'(\,1+...+1) =I'(\,n), since
—_——

n
Exzp(A) = I'(A\,1). This special case of the Gamma distribution is also
called Erlang distribution with parameters A > 0 and n € N. Notation:
X ~ Erl(A\n).

In summary:  Erl(A\,n) =T(A\,n), A>0,n¢eN.

Interpretation: In risk theory the random variables X; represent interar-
rival times for the individual damages. Here X = " ; X; represents the
occurrence time of the n-th loss with X ~ Erl(\,n).

Definition 1.1.7 (x? distribution). X is a y? distributed random variable
with k degrees of freedom (Notation: X ~ x3), if X 4 X?2+.. .+ X7, where

X1,...,Xk ~ N(0,1) are i.i.d. random variables.
04 \ k=2

03f N\

020 \
k=4~ N\

0 2 4 6

Figure 1.2: Probability density function of the Xi distribution with
k =2,3,4 degrees of freedom.

Theorem 1.1.8 (x? distribution: Special case of the Gamma distribution
with A = 1/2, p = k/2). If X ~ x2, then

1. X ~T(1/2,k/2), i.e.

xk/2—1€—z/2
x>0

fx(@)={ 2PT0p) 0 T (1.2)
0, z <0

2. In particular EX =k, Var X = 2k.

Proof



CHAPTER 1. POINT ESTIMATION 6

1. Let X = X? + ...+ X? with X; ~ N(0,1) i.i.d. random variables.
Calculating the distribution function of X? by [33, Satz 3.6.4] and
using

@) = 5= (e (V) + i (V)

yields

x 1 -t 1
P(X?2<z) = / ( ot )
( 1_96) 0 \/27r o 2\f \/ T 2/t
_/ 1/2 1/2151/2 1 _t/2dt L0,

Thus X7 ~ ['(Y/2,1/2) = X ~ ['(/2,1/2+ ...+ 1/2) = T'(1/2,k/2) and
—_———

k times

therefore (1.2) with respect to the density holds.

2. Because of the additivity of the expected value and the independence
of the X;, it holds that

EX = kEX}?, VarX =kVarX?, E(X?)=E((Y21/2)) =1 by Theorem 1.1.4, 2.
Indeed,

E(X12>—1§Z—1, E(Xf)—l/Z((ll//Z;l)_Zi_&
Var X7 = B(X}) - (E(Xf))z _3_1-9

1.1.2 Student’s! t distribution

Definition 1.1.9. Let X and Y be independent random variables, where
X ~ N(0,1) and Y ~ x2. The random variable

d X
ST

is called Student or t distributed with r degrees of freedom. Notation: U ~ t,.

U

Theorem 1.1.10 (Probability density function of the ¢ distribution). If
X ~t,, then

1.

1 1
\[3(2’2) (1+‘”72)%7

Named after the mathematician William Sealy Gosset, who signed his work under the
pseudonym “Student”.

zeR.

fx(z) =
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2. EX=0, VarX = r > 3.

T
r—2
Remark 1.1.11.

1. Student’s t distribution is symmetric. In particular,

Figure 1.3: Probability density function f of the t distribution for
r =2,10,100

tr,a = _tr,l—av RS (0, 1)7

where t, , is the o quantile of the Student’s distribution with r degrees
of freedom.

22

2. For r — oo it holds that f,(z) — \/%767'7 ,  x € R. (Proof: Exercise)
3. For r = 1 the t distribution coincides with the standard Cauchy dis-
tribution, i.e. it holds that ¢; = Clauchy(0,1) with probability density

function f(z) = m The expected value of t; doesn’t exist.

Proof of Theorem 1.1.10:

1. It holds that X := (Y, Z), where o(z,y) = \/"”;7 and V = (Y, 2)
is a two dimensional random vector with Y ~ N(0,1) and Z ~ 2
independent of Y. The density transformation theorem [33, Theorem

3.6.6] states that

foon (@) = fu (e~ (@) ]],
—1 n
where |J| = |det J|, where J = (W) denotes the Jacobi
ij=1

matrix of the function ¢ = (¢1,...,¢,) : R® = R”. Computing ¢!,

where ¢ : (z,y) — (v,w) as above, with v = — %, w = y yields
¢ (z,y) = (v,w) N yy

x \/ﬂ w
V= ——= =2 =V4y/— =7 —_—.
\/Q r Vor
I
o o) o (v 2w)),
r

Thus,
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and the Jacobi matrix is given by

oot 9o w
_ ov ow _ r 2v/wr
= 34.02_1 8%02_1 = 0 . .
ov ow

For V = (Y, Z) with Y and Z independent it follows that

2
1 2 yr/z—le—y/Q T/z—l —y+21

Frley) = fr(@) - 20) = e S = g s

for all x € R and y > 0. The density transformation theorem ulti-
mately yields

v):/oof¢v(u,w)dw:/0 fv (e v, w))|J| dw

0o v 7+w /2 r/2—1
_/ e \/wrdw

L(Y/2)I(7/2)

—t

=
~~
l\'.)
=
[}
~
—
—
@
\
3
~
[

2. Exercise.

1.1.3 Fisher-Snedecor distribution (F distribution)

Definition 1.1.12. Let X = UTZ, where U, ~ x2, Us ~ X%, r,s € N,
U,,Us are independent. Then, X is Fisher or F distributed with r,s € N
degrees of freedom. Notation: X ~ Fj .

Lemma 1.1.13. Let X ~ F.;, r,s € N. Then, X is absolutely continuously
distributed with probability density function
xr/z—l

f (.%' = r+s Iz 0)7
) = Bt () o

where Ip(x) denotes the indicator function of the set B.
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Figure 1.4: Probability density function of the F; ; distribution for various
choices of r and s.

Proof Note that for U, ~ x2 the probability density function is given by

lj'/z—le—z/Q

fu.(z) = W,

x>0, reN.

Consequently,
P (Ur/r <z)= P(U, <rz)=Fy, (rz),

and therefore

—rT

r(re)/>~ e

T(r/2)27

foupp(@) = (Fu, (re))" = fu,(rz) =

r/2,.r/2—1 _—r/2-x

T e

p— . I 0 .
[ (r/2)27/2 (z>0)

-I(x >0)

By the density transformation theorem for the ratio of two random variables
[33, Theorem 3.6.9., 2] it holds that

fuey () = /Ooo t fu,,(xt) - fuy(t)dt- I(z > 0).

Us/s
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Hence,
0o pr2(tg) 2 lem S Y2215t
fx(x) = / () - : 5
o T TomzP IR
=y

——
re+ S

T/2 o5/2 . 7/2—1 0o -
S = / el 2 tdt
T(/2)T(s/2)2°F o

-1

TT/285/237T/2_1 0o y? _

= — -/ Py - e Y dy
TCRANED o a g o)
_ 7"74/255/21:72—1 . r (7,, _;_ S)

= D(r/2)T(5/2)s ™5 (14 £ - 2) "3

(T/S)T/QJ,‘T/Q_l . I(x - 0) '

- r+s

B(7/2,5/2)(1 + Sx) =2

O]

Remark 1.1.14. Let X ~ F. ,, r,s € N, with probability density function

fx.

1. Some graphs of the F distribution are shown in Figure 1.4.

2. Some properties of the F distribution:

Lemma 1.1.15. Let X ~ F,, r,s € N. Then,

(@ .
s>3.

(b) - )
sH(r+s—
VarX:r(s—4)(s—2)2’ §>5.

(c) Denote by F; 5o the a-quantile of the F; ¢ distribution. Then,

1
F, = 0,1).
7,8, Foria , ae(0,1)

Exercise 1.1.16. Prove Lemma 1.1.15.

3. The following approximation formula holds for quantiles Fj s, (cf
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Abramowitz, Stegun (1972)): F, 5 ~ ¢, where
o a<h+a>1/2_( L1 ) ( +5_2)
©= h r—1 s—-1) \""6 3n))"

22 -3
6
and z, is the a quantile of the N(0,1) distribution.

1.2 Methods for obtaining point estimators

The following introductory examples were given in the lecture "Elementary
Probability Theory and Statistics”.

Definition 1.2.1.

1. The function F,(z) = #{z;: 2; <z,i=1,...,n}/n for all z € R is
called empirical distribution function of a realized sample (x1,. .., Ty).
Here F}, : R**! — [0, 1] holds, since F},(z) = ¢(x1,...,Tn, ).

2. The random variable £}, : Q x R — [0, 1] which is indexed by z € R is
called empirical distribution function of the random sample given by
(X17 s 7X7L)7 if

A A 1
Fo.(z,w) = F,(z) = E#{Xi’i: 1,...,n: Xij(w) <z}, zeR.

Equivalently to Definition 1.2.1 it can be shown that

n

A 1
F, =—> I(z; <x), € R,
where
1 A
Iwedy={— "€
0, otherwise.
It holds that
1, T > x(n) ,
Fo(z) = %, T S x <z, t=1,...,n—-1,
0, z< (1) -

for Ty <T) <...<Ip).

The height of the jump at z(;) is equal to the relative frequency f; of z(;.
If 2y = z(i41) for ad € {1,...,n}, the value i/n does not occur (cf. [33,
Section 6.3.2] ).
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1.2.1 Plug-In estimator

Based on the empirical distribution function Fn, the Plug-in method yields
the class of Plug-in estimators. Let M := {F : F is a distribution function}.

Definition 1.2.2. Let the parameter 6 of the distribution F' be given as a
functional T': M — R of F, i.e § = T(F). Then, § = T(F},) is called the
Plug-in estimator for 6.

Definition 1.2.3. Let F' be an arbitrary distribution function. The func-
tional T': M — R is called linear, if

T(aFl—i—bFQ) = GT(F1)+bT(FQ> for all a,b € Ry,a+b=1, F,Fh e M.

Consider a special class of linear functionals given by

T(F) = [ r(a)dP(a).

where r(x) is an arbitrary continuous function with E (r(X)) < oo. An
example for such T is given by

EXk:/xde(x), keN.
R

Lemma 1.2.4. The Plug-in estimator for § = [ r(z) dF(x) is given by

é:/r(g;) by () = =3 r(z).
R i=1
Exercise 1.2.5. Prove Lemma 1.2.4!

Example 1.2.6 (Plug-in estimator).

1. X, is a Plug-in estimator for the expected value p.

2. Plug-in estimator for 0 = Var X: It holds that Var X = EX?—(EX)?
and therefore

A2—1ZH:X2 1ZH:X-2—1ZH:(X 2= ""lg
U_nizl i n ‘= I ‘ ey T

i=1

3. Estimator for skewness and kurtosis 41 and 4o (cf. [33, Section 6.4.4])
are Plug-in estimators, since the coefficient of skewness is defined as

X — 3
n=E ( M)
o
where = EX, 02 = Var X, implies
p=Xn % ?zl(Xi - Xn)g . 1 ?:1(Xz‘ - Xn)g

n

1 2362 (&%)3/2 (l S (X — Xn)2)3 2

n

The construction of 4 can be done in the same spirit.
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4. The empirical coefficient of correlation oxy is a Plug-in estimator,

since
PN _ Sg(Y _ ?:1(Xi — Xn)(Y; - ?n)
exy = 2 2 n v )2\ vVo\2 ’
VSR /S8y VS (X - X2 (Y - Vi)
Indeed
E(X —EX)(Y —EY) E(XY)—-EX -EY

XY T T Nar X Vary JEX? - (EX)?)(EY? — (EY)?)

and therefore, considering the linear functionals

T\(F) = / 2dF(z), To(F) = / 22 dF(x), Tia(G) = / 2y dG(z, y)
oxy = Tio(Fxy) —Ti(Fx) - T1(Fy)
T V(D(Fx) - (MEX))?) (B(Fy) — (D))

Oxy is obtained by replacing Fx, Fy and Fxy in T, T5 and 115 with
Fn,X: Fn,Y and Fn,XY:

A A A

Tio(Fpxy) —Th(Fnx) - Ti(Fny)

Oxy = '
oo

1.2.2 Method of moments estimator

In the following let (Xi,...,X,) be a sample of i.i.d. random variables
X; with distribution function F' € {Fy : § € ©}, ©® C R™ (parametric
model). Assume that the parametrisation 6 — Fj is distinguishable, i.e.
FQ#F9/<:>9#9/.

Goal: Construction of an estimator 9(X1, ooy Xp) for 0 = (01,...,0m). [33,
Theorem 4.5.6%] implies that under certain conditions on F (e.g. uniform
distribution on a compact interval) the underlying distribution can be deter-
mined, if the moments EX*, &k € N are known. The method of moments
estimation is based on the idea of estimating F' by using the moments and
was introduced by Karl Pearson in the end of the 19th century.

Assumptions: There exists r > m such that Eg|X;|" < oco. Assume that
the moments EgXF = g,(f), k = 1,...,r are given as functions of the pa-
rameter vector 0 = (01,...,0,,) € O.

2Theorem 4.5.6. Let X be a random variable with values in C' C R, i.e.
PXe(C)=1

If C C [a,b], a < b, then {uk}ren defines Px uniquely.
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Moment equation system: [i, = gip(0), k = 1,...,r, where [i; are the
k-th empirical moments defined by jix = %Z?:l Xk,

Definition 1.2.7. If the system above is uniquely solvable for 6, then its
solution 0(X1, ..., X,) is called moment estimator (M-estimator) of 6.

Lemma 1.2.8. Let g = (g1,...,9-) : © — C C R" be a bijective function,
and let its inverse function ¢g~! : C' — © be continuous. Then the moment

estimator (X1, ..., X,) of 0 is strongly consistent.

Proof It holds that é(Xl, o X)) =g N, 1) 2200, since iy, 22
n—oo n—oo

gr(0), k = 1,...,r (strong consistency of the empirical moments) and g—*

is continuous. O
Remark 1.2.9.

1. Under certain conditions with respect to the regularity of Fy the mo-
ment estimator 6(Xy,...,X,) for € is asymptotically normally dis-
tributed:

Jﬁ(é(xl,...,xn) 79) —5 N(0,3),

where N (0,Y) is the multivariate normal distribution with covariance

matrix
> =G"E(yY")G
with
Y =(x,x2,....x)7, x<Xx;,
and

2. Other properties for the moment estimator do not hold in general (e.g.
not all moment estimators are unbiased (cf. Example 1.2.10, 1)).

3. Sometimes r > m equations in the moment equation system are neces-
sary in order to obtain a moment estimator. It can occur for example,
if some g; = const, i.e they do not provide additional information
about 6 (cf. Example 1.2.10, 2)).

Example 1.2.10.

1. Normal distribution: X; 4 X, i=1,....,n, X ~ N(u,0?); The
goal is to obtain a moment estimator for y and o2, so 0 = (u,0?). It
holds that

g1(p,0%) =EgX = p,
92(n,0%) = EgX? = Varg X + (EgX)? = 0” + 1i°.
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Consider the system of equations

{rlL ?=1Xi::u’7
Ly XE= 24 ot

It follows that

1 & —
p=—> Xi=Xy,
"ia
62=l§njx2—AQZEiX?—XZZEi(XtX?)
ni= 8 ni= T "
n
712(Xi_)2n)2:n_1572w
=1

n- n

hence, the moment estimators are given by g = X,,, 67 = =
Note that 62 is not unbiased, since

1 1
Epo? =~ EpS2="""52.
n mn

2. Uniform distribution: X; 4 X,i=1,...,n, X ~ U[-0,60],6 > 0.
The goal is to obtain a moment estimator for #. It holds that

g1(0) =EgX =0,
(0—(=0) _ (20> _ ¢

=EyX? = X = = —.
g2(0) 0 Vary 12 B 3

Thus, the following system of equations can be set up:

n )
1 n 2 [
7 2im1 Xi =5

n 1=

{1 1 Xi=0 (useless) ,

Solving the above system of equations for 6 yields the moment estima-

tor 6 = 4/ % ", X2, Here, two equations for the estimation of one
parameter 6 were necessary, i.e. 1 =2 >m = 1.

1.2.3 Maximume-likelihood estimator

Maximum-likelihood estimators were discovered by Carl Friedrich Gauss
(beginnig of the 19th century) and Sir Ronald Fisher (1922). Assume that
all distributions in the parametric family {Fy : 6 € ©} are either discrete or
continuous.

Definition 1.2.11. Consider the random sample X = (X1,..., X,,).
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1. Let X;, ¢ =1,...,n, be absolutely continuous random variables with

probability density function fp(x). Then,

L(wl,...,xn,ﬁ):Hfg(mi), (x1,...,zp) ER™", €O
i=1
is called likelihood funktion of the sample (z1,...,xy).

2. Let X;, i = 1,...,n, be discrete random variables with probability
mass function py(z) = Pyp(X; = z), © € C, where C is the range of

X. Then,
L(xl,...,xn,é’):Hpg(xi), (1,...,2p) €C", 0€0O
i=1

is called Likelihood function of the sample (x1,...,xy,).

By this definition

o the discrete case yields L(x1,...,xn,0) = Pp(X1 =21,..., X5 = xp)

e the continuous case yields

L(x1,...,2p,0) H Az;
i=1

= fix1,,x0,0(T1, - T) Ay - Ay
~ Py(Xy € [x1, 21+ Axy), ..., Xy € (20, xn + Axmy])

for Ax; =+ 0,i=1,...,n.
The goal is to construct an estimator 6 such that the probability
Py( Xy =x1,..., X, =xp) resp. Py(X; € [xj, 2, + Axy], i=1,...,n)
is maximized. This procedure is called Mazimum-likelihood method.

Definition 1.2.12. Assume that the maximization problem given by

L(x1,...,2,,0) — maxgeg is uniquely solvable. Then,
9(301, .o, @y) = argmax L(x1,...,2,,0)
(<(C]

is called Maximum-Likelihood estimator of 8 (ML estimator).

Remark 1.2.13.
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1. There are only very few cases in which the ML estimator 8 for 6 is
explicitly expressible. In most cases, the constant factor of the likeli-
hood function is omitted. By taking the logarithm of the remaining
function

log L(x1,...,2,,0)
the so called log-likelihood function is obtained.
Consequently

n
I fo(z:) resp. ] pe(xi)
i i=1
turn into sums

> log fo(xi) resp. > logpg(wi),
=1

i=1

which are easier to differentiate with respect to 8. To compute the
maximum of the log-likelihood function, one considers the first order
conditions

Olog L(x1,...,xy,0)
0,

=0, i=1....,m,

which are a necessary condition for an extremum of log L (and thus
of L, since the logarithm is monotonically increasing). If this sys-
tem is uniquely solvable and the obtained solution é(X 1,-..,Xp)isa
maximum, it is also the ML estimator.

2. In most applied cases, the ML estimators need to be calculated by
numerical methods.

Example 1.2.14.

1. Bernoulli distribution: Let X; ~ Bernoulli(p) ii.d.,i=1,...,n, with
p € [0,1]. Since

1, with probability p,
X, =
0, else,

where the respective probability mass function is given by
po(z) = p°(1 —p)t=%, z € {0,1}.

The likelihood function of the random sample (X1, ..., X,) is given by

n
L(zq,...,2p,0) = Hp"’”(l —p)l®i
i=1

n

2 n=Y0 @, def.
= it " (1 = p)" i " (p),
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(a) X" 1 2,=0 (<= x1=22=... =12, =0), then
h(p) = (1 —p)" is maximized at p = 0. The ML estimator is then
given by p(0,...,0) = 0.

(b) f X" 2 =n (<= x1 =22 = ... =z, = 1), then h(p) = p"
is maximized at p = 1. The ML estimator is then given by
p(1,1,...,1)=1.

(c) If 0 < >0 z; < n, then

log L(z1,...,%n,p) = nZ,logp + n(l — z,)log(l —p) =n-g(p).

Since g(p) — —oo and

p—0,1
op P 1-p P 1-p

— (1 -p)y+ (Z, — 1)p =0 < p = I, the continuity of g
implies that g attains exactly one argmax, g(p) = Zp.

Thus, the ML estimator is given by p(X1,...,X,) = X,.

2. Uniform distribution: Let X; ~ U[0,0], 1 =1,...,n, iid. with 6 > 0.
The goal is to obtain a ML estimator for 6. It holds that

fx;(x) =19 I(x €]0,0]), i=1,....n.

Thus, the likelihood function is given by

o)y, 0<ay,...,20, <0
L(ﬁl,...,xn,a):{(/e) ) > 71, , Ty <

0, else

(1/6)™, if min{xy,...,zn} >0

= and max{xi,...,x,} <0
0, else
=g(9), 6> 0.

Therefore, § = argmaxy. o g(f) = max{z1,...,z,} = T(n)- So the ML

A

estimator is given by 0(X1,..., Xy) = X(y).

It can be shown that under certain conditions, the ML estimator is weakly
consistent and asymptotically normal distributed.

Definition 1.2.15. Let

L(z.0) = {fg(x), if continuous,

po(x), if discrete
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g(¢

5

ol X(n) 0”7

Figure 1.5: Illustration of the function g.

be the likelihood function of X. For 6,6’ € © and X 4 X,
Py(L(X,0") = 0) = 0 define the Kullback-Leibler information (distance)
H(Py, Py) in the continuous case as

L(x,0)
L(x,0")

H(P), Py) = Eglog L(X, 6) — Eglog L(X, ') = / log . L(x,0) da.
R

If Py(L(X,0") = 0) > 0, then define H(Fy, Py) = co. In the discrete case
take the sum over all non-trivial pg(z) instead of the integral.

The following lemma will show that H(-, -) has the properties

H(Py,Py) =0 < 0 = 0" and H(Py,Py) >0 V0,0 € ©. It is, on the
other hand, easy to prove that H(Py, Py ) is not symmetric with respect to
6 and @'. Thus, H(-, -) is not a metric.

Lemma 1.2.16. It holds that
1. H(Py, Py) is well-defined and > 0.
2. If H(PQ,PQI) = 0, then 6 = 0'.

Proof Consider the continuous case Py, 6 € O (the discrete case can be
shown in the same spirit).

1. Define

L(x,0 .
foy = | 6T 1 L@0) >0,
1, else.

If Py(L(X,0") = 0) =0, then Pp(L(X,0") > 0) = 1. On the other
hand, if H(Py, Py) = oo > 0, then H is well-defined and positive.
With probability 1 it holds that L(z,0) = f(z) - L(z,0’).

Let g(x) =1 —x +xlogz, x> 0. It can be shown that g is convex
with g(z) > 0. Indeed, it holds that

g(x)=—1+logx+1=logz,g"(x) =1/= > 0.
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Thus, g admits exactly one zero at = 1, which is a minimum. Con-
sider g(f(X)), X ~ L(xz,6). Then,
0 <Eyg (f(X)) =1-Ey f(X) + Eg (f(X)log f(X))

z,0) L(z,0)
-1
)de +/La;, Ny Lz, 00)

. . L /

L (. 9/ (z,0")dx
— H(Py, Py).

Therefore, H(Py, Py) > 0, which was to be shown.

2. If H(PQ,PQI) =0 - Eg/g(f(X)) =0, g(f(X)) > 0. Thus,

L(z,0")-almost surely g(f(X)) =0 = f(X) o 1, which implies
either L(X,0") = 0 or L(z,0) = L(x,¢") for L(z,0)-almost all x and
therefore Py = Py.

O
Example 1.2.17.

1. Let ® = Ry and {P\,A\ > 0} be the family of exponential dis-
tributions with parameter A > 0 and probability density functions
L(z,\) = A\e™*I(z > 0). Computing the Kullback-Leibler informa-
tion H(Py, P{) for any A\, X' > 0 yields

H(P P’)—/Oolo A e Mdx
s L)) — 0 g A,€_>\II

= log (;) : / e Mdr —(A = N) / e M dx
QL U

=1

N (/\)_)\—X

APY )

N G
|

X\ Og(A)

For A = X we get H(Py,Py) =1—1—1og(1) = 0.

>

2. Tt may also happen that H(Py, Py) = +oo for absolutely continuous
distributions Py. As an example, consider the family {U[0, 0], ¢ > 0} of
uniform distributions on [0, 0] with the likelihood L(zx,0) = w.
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Then,

0
_ {log (). ifo'>0,

Theorem 1.2.18 (Weak consistency of ML estimators). Let m =1 and ©
be an open interval in R. Furthermore, let L(x1,...,x,,0) be unimodal, i.e.
for the ML estimator 6 of 6 it holds that

{VG < é(ml, ceoyy) = L(z1,...,Ty,0) is increasing

Vo > é(xl, cooyxy) = L(z1,...,z,,0) is decreasing
(i.e. maxgeo L(x1,...,2n,0) exists and is unique). Then,
0(X1,..., X, - 0.
n—oo

Proof For the weak consistency (the convergence in probability) of 6 to
hold, the following needs to be shown:

Pg(‘é(Xl,...,Xn)—9‘>€> — 0, >0 (1.3)

Let e >0 : 6+e € O be arbitrary. Then, the Kullback-Leibler informa-
tion satisfies H(Py, Pp+c) > o > 0, because of the distinguishability of the
parametrization of Py and Lemma 1.2.16. Consider {|§ — 8] < }. In order
to show (1.3), it is sufficient to find a lower bound for Ps(|6 — 6| < ¢), which
converges to 1 for n — oco. By unimodality it holds that

{10-0] <<}

unimod

D {L(Xl, .. .,Xn,e)e(L(Xl, ey X, 00— ), L(Xq, ... ,Xn,9+5))3}

U{ L(X1,. X0 6) }a>0=>3e"5>lu{ L(X1,..., Xp, 6) >€n5}
TO\LXL, . X, 6 £ o) = L(X1,... Xp,0 o)

1 L(X1,..., Xp,6)
—ul=y
U{n B L(X1,.. . Xn 0+

)>0'}—A+UA_,

where

1. L(X1,..., Xn,0)
AL =< =1 .
+ {n OgL(Xl,...,Xn,His)>U}

3This means an interval with these endpoints, even though we don’t immediately know
which one is larger.
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Hence,
Py (|é - 9| < 6) > Pg(A+ U A,) .

Showing that
lim Py(Ay) =1 (1.4)

n—oo
then implies
1> nh_)rgo Py(AL UA_) > nh_}rglo Py(Ay) =1,
in particular this yields
nlbrgo Py(ALUA) =1
and
1> lim Py (|00 <) > 1.
which implies that

Tim Pp(|6—0]>e) <1 lim Py (|0 0] <<) =0,

=1

A

ie. 6 50,

n—oo

In the following it will now be shown that Py(Ay) =2 1 (similar for
Py(A_) — 1):

n—oo

1. Let H(Py, Pys.) < oo and

L(x,0)
f(.’B): L(l’,@—l—&“)’

1, else.

if L(x,0 +¢) >0,

By Definition 1.2.15, it holds that Py(L(X;,0+¢) > 0) = 1. Further-
more, the strong law of large numbers implies

1 L(Xy,...,Xp,0) 1 « L(X;,0) 1
-1 - S0 ) 1
nOgL(Xl,.. , Xn,0+¢) nz; L(X;,0+¢) Zng
S. L(xz,0
H%OE(; logf(Xl):/L(a:,Q)-log(x(e)) de=H(Py, Ppyc) >0 >0,

since log f(X1) € LY(Q, F, P) and

Ey logf(Xl) = H(Pg,Pg+5) <0 = P(A+) — 1.

n—oo
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2. Let H(PQ,P9+€) = oo and Pg(L(Xl,e +¢)=0)=0, then

. L(z,0)
L(z,0+¢)

with respect to the distribution Py,. Now, log min{f(X1),c} € L*(Q, F, P)
for all ¢ > 0. Thus, similarly to 1 it holds that

:LGzlog min{ f(X;), c} n%o Eglogmin{ f(X;),c} € (0,00)
i=1

— H(Pp, Pyyc) = 00

c— 00

and therefore
1 & .
4,5 {n;mgmm{fmc} > a}
1< )
e P(A) > P (n > logmin{ ().} > o) 1

3. Let H(Py, Py, .) = 00 and Py(L(X1,0 +¢) =0) =a > 0. Then,

1 L(X1,..., X, 0)
Py (=1 =
9(” OgL(X17~"7X’VZ76+€) )
1 L(Xy,..., X, 0)
=1-P(=1
(TL OgL(X17'~'7Xn79+€)<OO>

=1-P (ﬁ{L(Xi,G—FEE) >0}>

=1

By et — 1.

n—o0

In summary, P(A;) — 1.

n—oo

O]

Definition 1.2.19. Let X = (Xi,...,X,) be a random sample of i.i.d.
random variables X; ~ Fy, 6 € O. Let L(x,6) be the likelihood function
of X;. Then,

o 2
1(0) = Eg (89 logL(X1,9)> , 0e€O (1.5)
is called the Fisher information of the sample (X1,...,X,).

From now on it will be assumed that 0 < I(#) < co. In the following some
necessary conditions with respect to the asymptotically normal distribution
of the ML estimator will be presented.
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1. © C R is an open interval (m = 1).
2. Tt holds that Py # Py if and only if 6 + ¢'.

3. The family {Py, 0 € O}, 6 € © consists only of discrete or continuous
distributions and no mixtures.

4. B=supp L(z,0) ={z € R: L(x,0) > 0} does not depend on 6§ € O.
Here supp f denotes the support of f, which is defined as

supp f ={z € R: f(z) # 0},

and the likelihood function L(x,#) is given by

p(x,0), in the discrete case,

L(z,0) = { (1.6)

f(z,0), in the continuous case,

where p(z,0) resp. f(z,0) denotes the probability mass or density
function of Py.

5. The mapping L(z,0) is three times continuously differentiable and

dk "
O:W/BL(:):,G)CZ:U:/B%L(UC,H)M, k=120€0.

Since the integral of L(x, ) is equal to 1, the above derivative is equal
to 0. In the discrete case, the integral is replaced by a sum over all
values = € R with positive probability mass p(z, ) > 0.

6. For all 6y € © there exists a constant op, > 0 and a measurable
function gp, : B — [0, 00), such that

03log L(x,0)
063

‘§900($)7 VQTGB, ’0_00‘<0907
where Eqg, gg,(X1) < 0.
Remark 1.2.20. It holds that
n-1(8) = Vary <§9 log L(X1, .., Xy, 9)> ,

where

L(X1,...,Xn,0) = ﬁL(XZ-,G) (1.7)
=1

is the likelihood function of the sample (Xy,...,X,) with L(X;, ) given in
(1.6).
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Proof Note that

0 0 &
1 Xq,...,X = — 1 X; 1 (X
89 OgL( 1 P nae) 8921 OgL( ’576 Z OgL Zae)
B Zn: L'(X;,0)
i=1 (XZ,Q)

Furthermore

In summary
Var (8 log L(X X 9)) = Var z": log L(X;,6)
[/ 89 g Ly ny - 6 . 80 g (3]

X; iid w )
i log L(X;,
3 Vary (69 0g L( 9>)

= n - Vary (aaelogL(Xl,G))

2
=n-Ey (gglogL(Xl,Q)> =n-1(60).
O

Example 1.2.21. Let X; ~ N(u,0?), i = 1,...,n. For § = u the Fisher
information is given by I(u) = % assuming that o2 is known.

Indeed
1 (X1 —p)?
L(Xlnu) = \/%O' exp{_w )
X, — 2
logL(le.u) = —lOg( v 27TU) - ((120_2?)5
Olog L(X1,p) _ 2(X1—p) (—1) = X1—p
ou 202 o2 7’
Hence,

dlog L(X1,u)\? 1
1) = B (PRI g = L e
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By Remark 1.2.20 and [33, Theorem 7.3.2., 4)] with i = X, it holds that

Var,, (% log L(Xy,. .. ,Xn,u)) == m This means that little infor-
mation about p (small values of I(u)) leads to an increasing variance when

estimating p and vice versa.

Theorem 1.2.22. Let (Xi,...,X,) be a random sample of i.i.d. random
variables fulfilling conditions 1) to 6) and 0 < I(f) < co, 6 € O. Let
é(Xl, ..., X,) be a weakly consistent ML estimator for . Then, the ML
estimator é(X 1,-..,Xp) is also asymptotically normally distributed, in par-
ticular

n-1(0) (é(Xl,...,Xn) —9) 4 Y ~ N(0,1).

n—oo

Proof Denote by [,,(0) = log L(X3,...,X,,60) the log-likelihood function,
0 € O. Let l%k) denote the k-th derivative of [,, with respect to 0, i.e.

k
1) () — %znw), k=123

n

A

Since § is a ML estimator 19)(0) = 0 must hold. Considering the Taylor

expansion of 17(11)(@) in a neighborhood of 6 yields

V(0 —0) = _1512;(9) - g_ H)Z(S)Q(,f*)
By showing
1. lgll)(e) )
N N(0,1(9)),
. D) as
- = 1(0),
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3.
(3) (g
P n (0%)
is bounded, i.e.
. . 1Y (67)
there exists a ¢ > 0 : lim Py <c|=1,
n—00 2n

it can be followed that

19 (6 19 (o
(0—0)- 2( ) - 0, since 97) < ¢ with high probability
n n—00
and hence
17 (0) 1
)=0) = g2 1)
n(d —0) = — Z1~N |0, —

by Slutskys Theorem Ultlmately this ylelds

VAVIO)(0—0) 5 ¥ ~ N(0,1).

1. The central limit Theorem implies

(1) n
1 (0) Yt logL(Xz,H) i> Y ~ (0 Varg(aae (XI,H))>

\/ﬁ \/ﬁ n—00

=1(0)

since % log L(X;,0) are i.i.d. random variables with expectation 0 (cf.
Remark 1.2.20).

1 0
H; 02logL X, 0)

1o (2O XZ,H) ~ L(X,,0) - L?(X;,0)
“n s (L(X:.0))

n—oo

by the law of large numbers, where
8k

LK) (X;,0) = 50

L(X;,0)
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is the k-th derivative of the likelihood function with respect to 8, and
L®) (X4, 0) 0? 5)
Eg| ———~—"-2| =] =Lz L(z,0)d
9<um@ 5 (00 e = w/ (,0)dz=0.

3. By the weak consistency of 6 we have 0 % 6. Following this it can
n oo
be shown that

@-0) 2 0

n n—00
Note that § 5 0 implies that for all e > 0
n—oo
P(l0-0/<c) — 1,
n—oo

which means that \é — 0| < o0y, with high probability oy > 0, as
required in Condition 6. Thus, for all § with |0 — 0] < oy

a.s.
de i) =2 Egge(X1)<oo

<g0(Xi)

Consequently, there exists a constant ¢ > 0 such that

13 (g
Py (‘(0) < C> — 1,
n n—00
and hence
(3) g
l”()w—ﬂ)JQO
n n—00
O
1.2.4 Bayesian estimation
Let (X1,...,X,) be a random sample, where X; are i.i.d. random variables

with distribution function Fy ¢ € ©. The distribution Fyp can be either
discrete or continuous. Additionally, let 6 be a realization of a random
variable § with distribution Q(-) on the measurable space (6, Bg), which is
either discrete with probability mass function ¢(-) on absolutely continuous
with probability density function ¢(-). As usual, both cases will be handled
simultaneously with integration being replaced by summation in the discrete
case.
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Definition 1.2.23. The distribution Q(-) is called prior or apriori dis-
tribution of the parameter 6 (of 6) (prior means "prior to the experiment
(X1,..., X0)").

Definition 1.2.24. The posterior distribution of the parameter 6 (of 0~)
is given by the probability mass/density function ¢x, . x, (0, X1,...,Xy),
which is defined by

P(é:Q\Xl =x1,...,Xp =1x,), if Q is discrete,
f.§|X1 X 0,21,...,2p), if @ is continuous.

Here,

PO=0|X1=x21,...,Xpn=12p,) =

Pg(Xi:xi,izl,...,n)-q(H)

by the Bayes formula, resp.

f (9 ) f(é»Xh...,Xn)(ea T1,... ,xn)
g Llyeoe, L —
0| X1,...,.Xn \77 1 ybn fX1,...,X,L($1, .. ,xn)

_ L(zy,...,xn,0)-q(0)
f@ L(xl, ooy Ty, 91) . q(91) dgl7

where L(zy,...,x,,0) is the likelihood funtion defined in (1.7).

Definition 1.2.25. A loss function V : ©2 — R, is a ©2 measurable
function.

Loss functions are used as follows: Denote by E,V (0, a) the expected loss
(mean risk), which occurs from estimating 6 with a, where E, is the expec-
tation with respect to the posterior distribution of 6. Note that E*V(é, a)
is a function of a and z1,...,z,, since the sample (z1,...,x,) is an explicit
part of the posteriori distribution. In particular, it holds that

E.V(0,a) = o(z1,...,Tn,a).

Definition 1.2.26. An estimator 6 is called a Bayes estimator of 6, if

A

O(x1,...,x,) = argmin B,V (0, a) (1.8)

exists and is unique.
Remark 1.2.27.

1. Sometimes § ¢ O, which is attributable to ¢(z1,...,z,,a) attaining
its minimum outside of ©.
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2. The name “Bayes approach” honors the English mathematician Thomas
Bayes (1702-1761), who only introduced the idea behind the Bayes
formula given by

P(A|B;) - P(B;)

PEI = 5 B Py )

The actual discovery of (1.9) was by Pierre-Simon Laplace (1749-
1827) (end of the 18th century). The formula was explicitly used in
the derivation of the posterior distribution of 6.

3. The approach in Definition 1.2.26 is usually only realizable by numeric
minimization. There are only very few cases where an analytic solution
of the minimization problem stated in (1.8) can be computed.

Example 1.2.28 (Quadratic loss function). If V (61, 602) = (1 — 62)?, then

argmin (¢(x1,...,Ty,a)) = argmin (E* 6 — a)2>
a a
= argmin (E*§2 — 2aE,.0 + a2)
a

= E.f.

The Bayes estimator of é(xl, ..., xy) for § is thus given by E.6.

Example 1.2.29 (Bernoulli distribution). Let (X7,...,X,,) beanii.d. ran-
dom sample of random variables X; ~ Bernoulli(p), p € (0,1). Furthermore
let p ~ Beta(a, ), a, 8 > 0 be the prior distribution, with probability mass

function

P p)ot
B(a, B)
The posterior distribution of p is then given by
_ Py X1 =x1,...,Xp =2y) - q(p)

Jo P (X1 =1, Xo = 20) - q(p1) dpy

It is always possible to calculate the posterior distribution with respect to a
function g(Xj,...,X,) instead of the vector (Xy,...,X,).

Here, Y = g(X1,...,X,) = Y11 X; denotes the number of successful trials
within n experiments, where

q(p) = “Iio11(p) -

a*(p) = foix1=a1,... Xpn=2,(P)

i =

B {1 , with probability p,

0, else.
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Therefore,
. P, (Y =k)-q(p
0 0) = Foys(p) = 2L =8 1)
fo Pm(Y = k)Q(pl) dpy
v~Bin(np), (1)PF(1—p)" % (B(a,§)) " p* (1 - )"
falls p=p ng?ﬂ) o YT = py)n kA Ldpy
_ pk—i-a—l(l _ p)n—k-i-ﬁ—l

p € [0,1].

Bk+a,n—k+p) ’

holds for the posterior distribution with respect to Y. Hence, the posterior
distribution of p under the condition Y = k is given by

Beta(k + a,n —k+ f).
For the Bayes estimator it holds that

1 flpk—i-a(l _ p)n—k+6—1 dp
H w”,l:&~:/ -q*(p)dp = 22
p(ar, ... an) =Ep  pra(p)dp Bk tan—Fi D)
_ Bk+a+1,n—k+p)
~ Blk+an—k+p)

 kta
a+pB+n
YTt a
a+B+n
_ o+ nx,
Ca+B+n’
Interpretation:

n - a+ « - ~
p(X1,...,X,) = X . =c1 X B -
p( 1 n) oz—l—ﬁ—i—n n+a+5+n Ck+5 C1 n T+ C2 apr

=:C1 =iCc2

where c; +c2 = 1. This means that the Bayes method is a middle ground be-
tween the estimator Eqyp,0 (with no information about the sample (X1, ..., X;,))
and the estimator X, (with no information about the prior distribution of

p) for p.

1.2.5 Resampling methods for obtaining point estimators

Let (X1,...,X,) be a random sample in a parametric model. The goal is
to find an estimator 6 for the parameter #. In order to construct this es-
timator, resampling methods will be applied, i.e. generating a new sample
(X7,..., X7) by randomly drawing from the old random sample (X1, ..., X,)
independently with replacement. After resampling the sample mean, sample
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variance and other estimators with respect to the new sample can be com-
puted. In this case the dimension m of the parameter space © is arbitrary.
The following resampling methods are introduced:

1. Jackknife, which is supposed to imply its handiness in every situation

2. Bootstrap, which is supposed to imply its self-sufficiency

1. Jackknife methods for estimating the variance or the bias of estimators

As an introductory example, consider # = EX = p or § = Var X = o2

and the respective (unbiased) estimators i = X,, or 6% = S2.

It is already known that

2
1 -3
Var,a:%, Var&zzn(uﬁl—z_la4).

Now an estimator of the variance of i resp. 62 is desired. In order to
do so, the plug-in methods are useful:

_ S2 _ 1 -3
Varp=20, Varg?=- (,1;1— n Sﬁ) :
n n n—1

where /i) is the fourth centered empirical moment.

In general there are no explicit formulas for Varf known. That is
where the jackknife method comes into play.

o Let X|;) be the random sample given by (X1, ..., Xi—1, Xit1,..., Xn),
i=1,...,n. Let

A

Q(Xl,...,Xn) = Son(Xla-- . ,Xn),

and set
~ _ 1 .
O = pn1(X), O =—> 0y
=1
Var, (é)dif'"_lzn:(@ ~ay)’
m(®) = == 2 0 —0n)

Definition 1.2.30. The estimator é[,] resp. @jn(é) is called
a jackknife estimator for the expectation resp. variance of the
estimator 6 of 6.

Example 1.2.31. Let 0 = 1, 6 = [t = X,. Then

1 n
On(T1, .. 1) == > xi,
n’i:l
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which implies that

A 1 1 i
Q[i]:n—lsz:n—l _Xi—i_ZXj
J#i Jj=1
n 1 .
= —1%n _1Xz, Vi=1,...,n,
_ 1 <A A n - 1 L
] nz b= =1 n(n—l)g !
i=1 =1
X X 1.
A A _NTo% X,

n—1 n—1 n—1

Thus, a jackknife estimator for u is equal to X,.
Construction of a jackknife estimator for the variance:

— -1 _ 1 _\?2
Val‘jn(g):n Z( n Xn_ Xi_Xn)

n = n—1 n—1
n—1g 1 - 2
T Z(n—l(X"_Xi)>
=1
_ n—1 zn:(X X,)?
S on(n 1247 "
=1

1
=-52

nn

which is exactly the plug-in estimator for the variance of ji.

o jackknife for the bias of an estimator
Let é(Xl, ..., X},) be an estimator for 6. The bias of 0 given by
Ep0 — 0 = Bias(6).
Definition 1.2.32. A jackknife estimator of the bias of 4 is given
by e -

Bias;,(0) = (n — 1)(0) — 0).

The following examples show that the procedure above leads to
a decreasing bias: The estimator

6 = 0 — Bias;,,(0) = nf — (n — 1), (1.10)
generally has a smaller bias than 6. Here
A - 1IN A
O = pn1(Xpg) and Oy =3 O
i=1

with

H(Xl,...,Xn) = SDn(le- . ,Xn) .
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Example 1.2.33.

(a) Let # = EX; = p. Then 6 = X, is an unbiased estimator

for u. Now the question for the corrected bias estimator f
arises? (It is not supposed to be any worse!)
It holds that 9_[.] = X,, thus, the bias estimator of jackknife
B/igsjn(é) = (n—1)(X,, — X,,) = 0, and therefore § = § —0 =
X,,. Hence, the jackknife method does not (at least in this
example) add additional bias.

(b) 6 = 02 = VarX;, 6 = 62 = Ly (X — Xp)tis a biased
moment estimator of the variance. The question of how 6
looks like arises.

Exercise 1.2.34. Show that the bias corrected estimator 6
is an unbiased estimator of the variance:

§—52 =

It follows that the bias of 62 is completely removed by ap-
plying the jackknife method.

Idea of the proof: Show that

Bias(0) = - 3 (X - £,)°
ias; =—— ; — .

Remark 1.2.35. The examples 1.2.33 a), b), which provided a
jackknife estimator in analytic form are rather an exception. In
most cases, the reduction of the bias is achieved by using Monte-
Carlo methods on the basis of (1.10).

2. Bootstrap estimator

The bootstrap method draws a new random sample (X7, ..., X}) from
an approximate distribution F of the random sample variables X,

i =1,...,n. Let E, and Var, be the expectation and variance with
respect to the distribution Py of (X7,..., X). There are two possi-
bilities for the construction of E*:

i) F(x) = F,(z), which is the empirical distribution of X;, if X; are
ii.d.

ii) F, which is a parametric estimator of the parametric distribution
F, of X;. That means, if X; ~ Fyp, i = 1,...,nfora f € ©
and 0 = O(X1,...,X,) an estimator for 6, then F' = Fj (plug-in
method).

Definition 1.2.36. A bootstrap estimator for the expectation (resp.
bias or variance) of the estimator 6(X,...,X,) is given by
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(a> Eboot(é) - E*é(va s 7X:<L>
(b) B/igsboot(é) = Ebooté - é
(¢) Varpoo(8) = Var (0(X7, ..., X2)).
Example 1.2.37. Let 6 = p = EX; and F = E, be the empirical

distribution function. How is a random sample X7,..., X} with
X7 ~ I, generated?

The empirical distribution function F), weighs every observation x; of
the original sample with a weight 1/n. As a consequence, it is sufficient

to select one of the entries in (z1,...,x,) (with probability 1/n, urn
model “drawing with replacement”), in order to generate X o
j=1...,n.

Bootstrap estimator for the expectation i = X,,:

L 1o | X7iid 1 .
Epootfl = Ex ( ZXZ> = —-nBE(X7)
n = n
. 1 & _
= /xan(:B) = E;XZ =X,.

It follows that B/igsbootﬂ = 0. Moreover,

o . AP R R | i}
Varboot(,u) = Var, ( Z X; ) = E -m - Var, (Xl)

1 & . 52
Y- Xt = T

n n
is a plug-in estimator for VarX,, = o/n.

Monte-Carlo methods for constructing bootstrap estimators mumeri-
cally:

What can be done, if there is no explicit expression of @Boot(é)
(which is usually the case in statistics)?

Generate M independent random samples (X/,..., X} ), i=1,..., M
under i) or ii) by using Monte-Carlo simulation. Then,

A

M
0120( ;15‘.-,X;<n)7 ’L:].,,M and set EbOOtG%MZ v

Similarily a bootstrap estimator for Bias and Var @ is obtained:

1 X, N2
M_1;<9i_Eboot9)~

Biasboote ~ Eb00t9 -0 ) Varboote ~
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Furthermore, the distribution function of X7 can be determined by
the empirical distribution function, i.e.

M n
Fboot( Z Z X*<$ reR.

Using the methods above the Bootstrap confidence intervals for 0 can

be constructed:

The quantiles Fé_l(oq) and Fé_l (1—ay) of the distribution of §(X#, ..., X*)
originating from the sample (él, ey 6 M) can be estimated empirically.
Then

P(Ey (o) <OXT,. . X0) < Fyl(1-ag)) ml-ai—as=1-a,

where a = a3 + a9 is sufficiently small. Note that it is desired that
X} are similarily distributed as the X;, and hence

A

P (BN ) <0(X,.. ., Xa) S Byl (1—an)) ~1-a

holds.

1.3 Further quality properties of point estimators

1.3.1 Cramér-Rao inequality

Let (Xi,...,X,) be a random sample of i.i.d. random variables X; with
distribution function Fy, 8 € © C R,i.e., m = 1. Let HA(X]L7 ..., X,) be an
estimator for 0. If 0 is unbiased, then the quality of another unbiased estima-
tor 0 of # is determined by the its variance. That means, if Varg 6 < Vargé
then 6 is in a sense better. This section strives to answer the question,
whether it is always possible to find a newer, better estimator 6 with de-
creasing variance. Under certain conditions this is not possible. The lower
bound for Varg 8 is given by the Cramér-Rao Theorem.

Let L(z,0) be the likelihood function of X, i.e.

(z,0) = {Pe(w) , in the discrete case,

fo(x), in the absolutely continuous case,

and L(z1,...,2n,0) = [[in; L(x;,0) the likelihood function of the whole
random sample (X1, ..., X,,). The conditions 1) to 5) for the asymptotically
normal distribution on page 24 hold, where 5) holds for k = 1.

Theorem 1.3.1 (Inequality of Cramér-Rao). Let 0(X1,...,X,) be an es-
timator for 6 with the following properties:
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1. Egf2(Xy,...,X,) <00 VOeO.
2. For all § € O exists LE0(X1,...,X,), given by
{fRn é(xl, ce, T )geL(xl, ey Tp,0)dxy ... dxy, in the abs. cont. case ,

> ron O(x1, ... ,xn)%L(ml, cey T, 0), in the discrete case

Then, a lower bound for the variance of 0 is attained, i.e.

. 2
(4B 0(X1,..., Xy))
n-1(0) ’
where I(0) is the Fisher information defined in (1.5).
Proof Let

Varg 0(X1,..., X,) > 6co,

0
wo(x1,...,2pn) = 2 log L(x1,...,2,,0).
In Remark 1.2.20 it has been shown that
Eopo(X1,...,Xn) =0, Vargee(X1,...,Xp) =n-I1(0).
Applying the Cauchy-Schwartz inequality to
Cov g(po(X1,. ., Xn), (X1, ..., X))
yields
Cov g (o(X1,.., Xn),0(X1,..., X))
— By (0(X1,- . X0) - 6K, X)) = 0

< \[Varg o( X1 ..., Xo)\/Varg 6(X1, ..., X,.)

Thus,
=:A
~ 2
v éX X > (EG (SOQ(XlavXn)H(Xla?Xn))) A?
arg (X1, .., Xn) 2 Varg vo(X1, ..., Xn) n-1(0)°

Now it suffices to show

d

A= —Fyb(Xy,... Xn).
4o [ ( 1 ) )

Only the absolutely continuous case will be shown (in the discrete case,
replace the integrals with sums):

A= / log L(x1,...,2p,0) - é(ml, cosXp) - L(x, ... 20, 0)dey .. day,

:/%L $17...,$n79) é(ml,,xn)dmlda@n

Cond. 2) d
=Y —Egl(X4,...,X»).
a0 [} ( 1, ) )
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Corollary 1.3.2. If § is an unbiased estimator for § and the conditions of
Theorem 1.3.1 are fulfilled, then

1
n-1(0)"

VargO(X1,...,X,) >

Proof Apply the Cramér-Rao inequality with

d% (o 0(X1, ..., X)) = d%e = 1.

O]

The following examples will show, that the estimator X,, of the expectation
1 has the smallest variance within the class of all estimators p which fulfill
the conditions of Theorem 1.3.1. Hence, the sample mean X,, is the best
unbiased estimator in this class for at least two families of distributions:

e Normal distribution and
e Poisson distribution.
Example 1.3.3.

1. Let X; ~ N(u,0?) and 1 = X,, be an estimator for u. Here, i is
unbiased with Varji = ¢*/n. In the following it will be shown that the
Cramér-Rao boundary for the variance of an unbiased estimator 6 for
p is also given by o°/n. In an initial step, the conditions of Theorem
1.3.1 will be validated. In order to show that

d d
0 dM/IR (, ) dz /Ra# (z, p) dz

with
1 _l(u)Q
L(x, ,LL) = ——e 2 o
2mo
consider
9 2(x — p) 1 1peuy? x—p
7L — . 2( o ) = L
o (z, 1) 52 5 ¢ —Llan),

0 B X —p\
/RaHL(m,u)dacE< = )0.

For condition 2) in Theorem 1.3.1 it holds that

d _ - d
an du(u)
2 1 O+ 1 _1(zze)
= — n)=— 2\ @ dry...dz, .
n/n(a:1+ +x )alu<i1_[1 o j T x

Induction with repsect to n:
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e Initial step n = 1:

0 e,
/Rx&tLL(I7M) dsc—/]R 5 L(z,p)d

(o)
_i(E“X2_M2):VaruX:1_

o2 o2

e Induction hypothesis: For n it holds that
0
/ (x1+ ...+ xp) - @L(:L‘l,...,xn,u)d:cl...dxn =n.
e Induction step n — n + 1:

0
A= (x1+ ...+ xpy1)=— L(z1, ..., 2pq1, 1) doy...deps
Rn+1 8M

=L(x1,0,Zn,t) L( Ty 1,1)

”
=n+1.

For A it holds that

0
A= Rn+1($1 e mn) ' (aHL(‘Th <oy Ty /’L) : L(xn-i-h:u’)
0
+ L(z1,...,%Tn, ) - %L(Iﬁn_’_l,/},) dzy...dxpdx,11

0
+ I Tn+1 (auL(xh <oy Iy M) : L($n+1, ,LL)

0
+ L(‘Tla s 71.717“) : auL(wn-f-h/j’)) dl.l .. .dCCndCCn_A,_l
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=n- /RL(xTHhM) dni1
=1

+/ (x1+ ...+ ) - L(x1,...,2n, 1) dzy ... doy
R?’L

0
: / 87L($n+1vu) dxpi1 + /R xn+1L(xn+1,,u) dxp41

/ —L (1,...,Tp, 1) dzy ... dxy,
=0

0
niLna dn
+/Rx+18u (1, i) dpgr

_d —_d
=L B X=4p=1

L(xi,...,xp,p)dxy . ..de, =n+1.
Rn

=1

Since all conditions are fulfilled, the bound can be computed by

with

1 n
Ip)=— = n-Ip=—.
o o
In summary:
A1 2
Var, 0 > ——— = — = Var, X

holds for an arbitrary estimator § for w, which fulfills the conditions
of Theorem 1.3.1.

. The second example will be an exercise.

Exercise 1.3.4. Let X; ~ Poisson()\), i=1,...,n. Show that the
Cramér-Rao bound given by

1 A -
=—-=V X’nv
n-I(A) n A

which means that X, is also the best unbiased estimator fulfilling the
conditions of Theorem 1.3.1.
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The following example will show that it is possible to construct an estimator
with a smaller variance than the one provided by the Cramér-Rao bound, if
the conditions of Theorem 1.3.1 are not fulfilled.

Example 1.3.5. Let X; ~ UJ[0,6], # > 0. Then the condition
“supp fo(x) = [0, 0] independent of #” is not met. Additionally

0 o /1\’ 1 1

holds. LetAé be an unbiased estimator of 6, then Cramér-Rao would imply
that Varg 6 > (n-1(6))~!, where

I1(0) =E (gelogL(X,H))Q = /Ogé (88910g (é))Q dz

1 /0 1\? 1
—5/0 dw'(‘e) @

Thus
.~ 02
VarQGZ—
n
would hold. Consider
N n—+1 n+1
0(X1,...,X,) = X1,...,.Xp} = X -
(X150 Xn) = —— max{X, b= X
In order to show that
~ A 62
Eg0(Xy,...,Xn) =60 and Varge(Xl,...,Xn)<E,

compute the k-th moments E(;X(kn), ke N.
It holds that

g7, re€l0,0],

Fx,, () =Fx,(z)={1, x>0,
0, z<0,
na™ !

fX(n) (‘T) = Fé((n) ($) = on ’ I(:IZ € [07 9]) )
1

0 nr"— n 0 .
E Xk :/ k dr = 7/ TH*k*ld _ — )
63 = Jo T T T ), " YTt k) ntk

Thus,
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which means that 6 is unbiased. Furthermore,

A n+1\2 n+1)\2 nf? n262
b= (2 e - (1) (12 20

(n+1)2 ' n(n+1)2 —n%(n +2) ‘

= 62
n? (n+2)(n+1)2
02 5 5 02
= Mm+1-n2—2m)= .
n(n+2)(n an " n) n(n +2)
Ultimately, it follows that
A 62 62
Varg = —— < —.
n(n+2) n
1.3.2 Sufficiency
Let (Xi,...,X,) be a random sample of i.i.d. random variables X; with

distribution function Fy, 6 € © C R™. If the whole information
{Xy = x1,...,X,, = z,} passes to the estimator §(X1,...,X,) of 0, then
the function

6:R" >R™, m<n!
causes a loss of information, since (X7i,..., X,) can (usually) not be recon-
structed from 6(Xy,...,X,). The class of so-called sufficient estimators

minimize the loss of information in a stochastic sense:
Definition 1.3.6.

1. Let the random variables Xi,..., X, and é(Xl, ..., X,) be discrete.
An estimator 6 of the parameter 0 is called sufficient, if

Pg(Xl:xl,...,Xn::):n]é(Xl,...,Xn):t)

does not depend on 6, as long as x1,...,z, and t are in the support
of (X1,...,X,) resp. (Xq,...,X,).

2. Let Xq,...,X, and é(Xl, ..., X,) be absolutely continuous. Then,
the estimator 6 is called sufficient for 0, if the probability

P((Xl,...,Xn)€B|9(X1,...,Xn):t>

does not depend on 6 € O for arbitrary B € Bgn and t € supp f; ,
where f; is the probability density function of 6.

Remark 1.3.7.

4in classical statistics
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1. In Definition 1.3.6, 2. it holds that

P(é(Xl,...,Xn) :t> =0, W,

because of the absolute continuity of 6. Therefore, the conditional
probability (in contrary to Definition 1.3.6, 1.) is not understood
in the classical sense, but as a conditional expectation. Conditional
expectations were introduced in the lecture “Probability Theory and
Stochastic Processes” (Section 1.1.4).

2. Consider the likelihood function
Lé(xl,...,a:n,e) = Pg (X1 = .Cl:l,...,Xn :$n’é(X1,...,Xn) :t)

for discrete Xi,...,X,. Definition 1.3.6 implies that a new estima-
tor for 6 cannot be obtained from this conditional likelihood function
Lg(z1,...,xy,0), since it does not depend on €. That means, the esti-
mator already provides all the information about 6 obtainable from

(T1,...,Tp).

3. Let ¢ : R™ — R™ be a bijective Borel measurable function and

A A

0(X1,...,X,) asufficient estimator of 6 € © C R™. Then g(0(X,...,X,))
is also a sufficient estimator for 8. This is due to the fact that

{w €EQ:yg (é(Xl, . ,Xn)):t}:{w eN: é(Xl,...,Xn):g_l(t)},
for all t € R™.

Lemma 1.3.8. Assume that the random variables X1, ..., X,, and é(Xl, ey Xn)
are either all discrete or absolutely continuous with likelihood functions

L(zy,... 2. 0) = {Pg(Xl =21,...,Xpn =y,), in the discrete case,

fxioxa (@, . 2, 0), in the abs. cont. case,

Ly(t.0) = {Pe(é(Xl, ..., X,)=1t), in the discrete case,

f4(t,0), in the abs. cont, case.
Denote the support of L by
supp L = {(z1,...,2,) € R" :  L(z1,...,2p,0) > 0}.

Then, the estimator 6 is sufficient with respect to @ if and only if the ratio

L(zy,...,2n,0) (1.11)
Lé(ﬁ(xl, ce ,$n)a 9)

does not depend on 6 for all (z1,...,z,) € supp L such that

A~

0(x1,...,2,) € supp Ly .
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Proof Only the discrete case will be shown in the following.

“:7’

Let 0 be sufficient for 6. Then, it has to be verified that (1.11) does
not depend on 6 for all (z1,...,z,) € R, t € R and 0 € O, such that
(x1,...,2y) € suppL. It holds that:

Py(Xi=z1,...,Xp =2, |0(X1,...,X,) = 1)

o P@(Xl = CEl,...,Xn == xn,G(Xl,...,Xn) == t)
Py(O(X1,...,X,) =1)

{o, if §(x1,...,20) £t

Pg(Xlle,...,XnZIn) lf é(xl
)

Py(B(X1,., X)) =0(21,.7n))

coyTy) =t.

Thus (1.11) does not depend on 6.

“<:7’
Can be done in the same spirit as the previous argument (backwards).

O
Example 1.3.9.

L. Bernoulli distribution: Let X; ~ Bernoulli(p), p € [0,1],i=1,...,n,
p = X, be an unbiased estimator for p. In the following, it will be
shown that p is sufficient. It holds that

where Y ~ Bin(n,p). By Remark 1.3.7 3. it is sufficient to show, that
Y is a sufficient estimator for p. For z; € {0,1} i = 1,...,n compute

n
P(X1=a1,.... Xy=a)=[[ p"(1=p)' 7" =p2ict " (1 —p)" 221 "1

=1

Define the likelihood function Ly by

n —
LY(%P)Z(y)py(l—p)” v, y=20,...,n.

Replacing y with the sum > ;" | z; yields

L(z1,.. xn,p) | prm Tl —p) i 1

LY(Z?:l (L’i;p) B (Z?ZI xi)pzyz1 xz(l _p)n—Z?:l T o (Znn ml) .

i=1

The term above obviously does not depend on p, thus Lemma 1.3.8
implies, that Y and therefore also p are sufficient.
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2. Normal distribution with known variance: Let X; ~ N(u,0?),
i=1,...,n, with known o2. Then, /i = X,, is an unbiased estimator
for u. In the following it will be shown, that { is sufficient: Considering

L 1 1 xi—,u>2
L DRI R () = Y
(1) =11 %exp( (2 )
1 7-1, i — 2
— 7 - exp (_Zzl( M) )

(2mo?) 202

and [33, Lemma 6.4.5] imply

L[
(2mo2)"/2 202 '

Furthermore, note that i ~ N(u,7%/n), hence

Lz, p) = \/ga - exp (Z (x ; M>2> )

! Z?: (i —%n)2+n(Tn—p)?
L(zy,...,¥n,p) Gy P <_ 1 202
La(@n, 1) \2/::‘0 - exp (%2_“)2)

1 1 & _
_¢mmﬂmlfmndﬂ;m_%0’

which is independent of p. Lemma 1.3.8 implies that i = X, is an
sufficient estimator for pu.

The Neyman-Fisher factorization theorem, which will be introduced below,
implies that the estimator (X,,S2) for (u,0?) with unknown variance is
sufficient.

Theorem 1.3.10 (Neyman-Fisher Factorization Theorem). Under the con-
ditions of Lemma 1.3.8 it holds that §(X1,..., X,,) is a sufficient estimator
for 6 if and only if there exist two measurable functions g : R™ x © — R and
h : R™ — R, such that the following factorization of the likelihood function
L(x1,...,2n,0) of the random sample (X1, ..., X,) holds:

L(x1,...,2p,0) =g (é(wl,...,xn)ﬁ) ch(zy,...,zp)

for (z1,...,2,) €supp L,0 € ©.

Proof Only the discrete case will be shown.
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1. Iff is sufficient, then Lemma 1.3.8 implies that

= h(z1,...,2,)

L(x17 s 7337170)
Lé(H(xl, . ,:L’n), 9)

=g(0(z1,...,xn),0)

does not depend on 6. Thus, the factorization of Neyman-Fisher holds.

2. Let L(x1,...,zp,0) = g(é(xl, cees ), 0) - h(x, ..., x,) for all
(z1,...,2yn) € supp L, 0 € O. Furthermore, define

C:{(yl)ayn) ERR: é(yl)7yn) :é(ajla"')xn)}

A~

= 9_1 (é($1,,l’n)> s

then
Py( Xy =x1,..., Xy =) _ g(é(xl, cey T )y 0) - h(xy, .. x)
Lo(0(z1,...,2p),0) Xrrymec Po(Xa =y1,. ., Xn = yn)

A

g(0(z1,...,2,),0) - h(x1,...,25)
Z(y1,...,yn)60 g(e(yla s 7yn), 9) : h(yla s ayn)
—_———

=0(x1,....,2n)
h(zy,...,xn)
Z(y1:-~~7yn)€C h(y17 s 7yn) ’

does not depend on 6. Thus, 0 is sufficient by Lemma 1.3.8.

Example 1.3.11.

1. Poisson distribution: Let X; ~ Poisson(\), X > 0, A = X, be an
unbiased estimator for A. In the following it will be shown that A is
sufficient. For z; € {0,1,2,...}, i =1,...,n it holds that

n 7 —_ n . _ —
_\AT e A . )\21:1 T e~ A \NZn

L(xl,...,a:n,)\)zne)\ _ _

=1

x;! 1!y IR M

=g(Zn, A) - h(x1,...,20),

where g(jn’ )‘) =e . A ) h(!El, cee ,CL‘n) = x1!~..1.~a;‘n! :
Thus, A = X, is sufficient by Theorem 1.3.10.
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2. Ezponential distribution Let X; ~ Exp(A), A > 0, = X1 be a
moment estimator for A, which is not unbiased but strongly consistent,
since the strong law of large numbers implies that
X, n%o EX, = % In the following it will be shown, that \ is sufficient.

For 1 > 0,...,z, > 0 it holds that

L(xb <oy T, )\> = H )\e_)wi = )\nei)\ Zlel Ti — Ane_/\n'i"
i=1
= )\ne_% =g (Xa)‘) : h(xh oo 7xn> )
—_—
=1
where 9(5\7)\) = )\ne_%n and h(zy,...,z,) = 1. Thus, \ is sufficient
by Theorem 1.3.10.

Exercise 1.3.12. Using Theorem 1.3.10 show that the estimator (X, S?)
is sufficient for (u,0?) if the random sample (Xi,...,X,) is i.i.d. with
distribution X; ~ N(u,0?) for all i.

Remark 1.3.13. An advantage of the Neyman-Fisher Theorem is, that if
one wants to determine whether an estimator 6 is sufficient, the likelihood
function of  does not need to be known explicitly. This is particularly
important if the estimator 0 is rather complicated and the likelihood function
cannot be computed.

1.3.3 Completeness

Definition 1.3.14. An estimator é(Xl, ..., Xp) of the parameter
0 € © C R™ is called complete, if for an arbitrary measurable function

A

g :R™ = R with Egg(A(X1,...,X,)) = 0,0 € O it holds that
g(é(Xl,...,Xn)> =0. Py—as.foralldecO.

Remark 1.3.15.

1. Let g1,92 : R™ — R be functions with

Eg

gi (é(Xl,...,Xn))‘ < 0
VO € © and

Bog1 (0 (X1, Xn)) = Eogo (0(X1,..., X)),
where 0 is complete. Definition 1.3.14 then implies

g1 (é (Xl,...,Xn)> = (é(Xl, . ,Xn)) ,  a.s.
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(Take g = g1 — g2).
Conclusion: The completeness as characteristic allows a comparison

A

between the estimators g1(@) and ga(f) with respect to their almost
surely equality.

2. If 0 is a complete estimator for 0, then g(é) is also a complete estimator
for @ for an arbitrary measurable function g : R™ — R™.
Example 1.3.16.

1. Bernoulli distribution: Let X; ~ Bernoulli(p), p € [0,1]. In order

to show that p = X,, is complete, let g be an arbitrary real valued
function. It is sufficient to show that Y = > ' | X; is complete. It
holds that Y ~ Bin(n,p), which implies that

Eg(Y) = Zn: g(k) <Z> P —p) k.
k=0

Furthermore, E,g(Y") = 0 if and only if

()] ==

g

=t

—

forp € (0,1), so t € (0,00). The polynomial p,(t) is of degree n, hence

g(k) (Z) =0 forall k

= g(k)=0, k=0,...,n
= g(Y)=0 P,as.

Therefore, Y is complete and p = X, as well.

2. Uniform distribution: Let X; ~ U[0,0], i=1,...,n. It has already

been shown that the estimator (X1, ..., X,) = 2L (n) is unbiased.

n
In order to show its completeness, it is sufficient to show that
X(n) = max;—1,.nX; is complete, i.e. all measurable functions g :

R — R with Egg(X(,)) = 0 need to fulfill g(X(,)) = 0 almost surely.

nx"il

The probability density function of X, is given by fx,, (7) = "
Ij0,6(x) by Example 1.3.5. Hence, we can compute

0= LBog(Xe) = & [ g x,@rar = L1 [ nr1g(a)a
= a0 69 )= g Ogl’ X(ny (& x_déen Onm g(z)dz

10 1 1 n
=-—Nn—- z)nz™ tdr + —nb""1g(0) = —— Egg( X)) +
ot [ 9@ S0 g(0) = — 7 Bog(X() + 5
=0

n

g(0)

n

zeg(G)zoforall@>0:>g(x):0, x> 0.
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It follows that g(X(,)) = 0 holds almost surely.

1.3.4 Best unbiased estimator

Following [33, Definition 7.2.9.] note that for a random sample (X1,..., X,)
with i.i.d. random variables X; ~ Fy, § € © C R (m = 1), the estimator

A

0(X1,...,X,) is called best unbiased estimator, if
Eof?(X1,...,X,) <oo  Egf(Xy,...,X,) =0, 6€0,and
the estimator § has the smallest variance among all unbiased estimators.

Lemma 1.3.17 (Uniqueness of the best unbiased estimator). If 0 is a best
unbiased estimator for 8, then it is unique.

Proof Let § = é(Xl,...,Xn) be a best unbiased estimator for 6 and
another best unbiased estimator for €. In the following it will be shown that
both estimators coincide, i.e. 6=0.

Ex adverso: Assume, that 0 # 6 and consider 6* = 1/2( + ). Obviously 6*
is unbiased and its variance is given by

1 A 1 | ~ 1 A~
Vargf* = Zval"g(@ + (9) = Zval"ge + ZVarge + 500‘\/’ 9(9, 9) .

The Cauchy-Schwartz inequality implies |Cov ¢(6,6)| < \/Vargf - Vargd =
Vargé and therefore

1 ~ 1 A "
Vargf* < §Var90 + §Var99 = Vary0 .

Since 6 is a best unbiased estimator, it follows Vargf* = Vargé, and conse-
quently g(é, é) = 1 implies that  and 6 are linearly dependent, i.e. there
exist some constants a and b, such that 0 = af +b. It holds that a = 1 since
Vargé = a*Varf = Vargé. Moreover, b = 0, because 6 and 6 are unbiased:
0 = Egf = Egf+b = 0+b. Ultimately, 6 = 6, which completes the proof. [

Lemma 1.3.18. A unbiased estimator § with finite second moment is the

best unbiased estimator for € if and only if Cov ¢(0,p) =0, 6 € © for an
arbitrary sample function ¢ : R™ — R with Egp(X4,...,X,) =0,V0 € ©.

Proof

“=" Let 0 be the best unbiased estimator for 6 and o(X1,...,X,) asample
function with Egp(X1,...,X,) = 0,V0 € ©. It is sufficient to show
Cov 4(0,¢) = Eg(fp) = 0,0 € O.
Define § = 6 + ap,a € R. In order to compute

Vargf = Varpf + a*Vargp + 2aCov g(é, ®)
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for a € R, let g(a) = a®Vargp + 2aCov (¢, 6). For Cov 4(¢,0) + 0
there exists an a € R with g(a) < 0. Since 6 is an unbiased estimator
for 6 (Egf = Egf + aEgp = 0 + 0 = 6) it holds that Vargd > Varyf
for all @ € R. This is a contradiction to g(a) < 0 for an a € R. Thus,

A

Cov ¢(p,0) =0,6 € O.

“<” Let § be an unbiased estimator with E@@2 < oo,~0 € 0 and
Cov ¢(p,0) =0,0 € © if Egp = 0,0 € O. Let ¢ be another unbiased
estimator for 6. In order to show that Vargf > Vary#, consider

0=0+0—0), Egp=FEg —Egd=0—-0=0, VHecO.
::SD

It follows that

Vargd = Varg + Vargp +2 Cov 9(@, ©) > Vargf
>0 =0

which implies, that 8 is the best unbiased estimator for 6.

O]

Theorem 1.3.19 (Lehmann-Scheffé). Let 6 be an unbiased, complete and
sufficient estimator for 6 with Egf? < oo for all # € ©. Then, 0 is the best
unbiased estimator for 6.

ProofAIn order tf) make use of Lemma 1.3.18 it has to be shown that
Cov ¢(0,p) = Eg(p) =0,0 € © for Egpo = 0,0 € O. It holds that

Eg(fp) = By (B(Bp|6)) *

(6)-measurable ~ N ?

Eg(0 - Eg(p]0)) = Eo(0- 9(0)) = 0,

for g(@) = 0 almost surely. Since 6 is sufficient, g(t) = Eg(¢|0 = t) is
independent of 6.

Consider Egg(#). In order to show that g(¢) = 0 for all § € ©, it has to be
shown that Eyg(f) = 00 € O since 0 is already assumed to be complete.

Egg(0) = Eg(Eg(¢|0)) = Egp =0

is assumed to hold, thus Eg(pf) = 0 and 0 is uncorrelated to
w: Egp =0, 6 € O, which implies that 6 is the best unbiased estimator
by Lemma 1.3.18 . O

Theorem 1.3.20. LetﬂA be an unbiased estimator for 6 and
E¢6? < 00,0 € ©. Let 6 be a complete and sufficient estimator for §. Then,
the estimator 6* = E(60) is the best unbiased estimator for 6.

Proof
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1. Tt has to be shown that Eg6*2 < ooV € ©. Tt holds that
a2 U .
By (6°%) = B9 (E(010)) < By (E(6210)) = Egd? < o0,
by Jensen’s inequality for the conditional expectation, which states

f.s.
fEX|B)) < E(f(X)|B)
for any random variable X, o-algebra B and convex function f.

2. It has to be sllovgn that 9:" is unbiased: X
Ep0* = Eg(E(0]6)) = Egf = 0, 6 € O, since 0 is unbiased.

3. By Lemma 1.3.18; it is sufficient to show that
Eg(0*¢) =0for 0 € ©,if Egp =0, § € O.

Eg(0%0) = Eo( E(016) ) =Eq(9(8)p) = Eo(E(9(d) ¢ |0))

——
=¢(0), 0 suf.
(6) f-measurable ~ ~
TTETT R (9(0) - Bl |0) = 0,
w"—/
=g1(0)

A\ Q.S

if g1(0) = 0,0 € O. It needs to be shown that Egg;(6) = 0. Now,

Egg1(0) = Eg(E(¢|0)) = Egp = 0 and the completeness of 6 imply

(similarly to the proof of Theorem 1.3.19) that g;(#) = 0 almost surely.
U

Lemma 1.3.21 (Blackwell-Rao inequality). Let 0 be an unbiased estimator
for 0 and E¢f? < 0o ,0 € O. Furthermore, let 6 be a sufficient estimator for
0. Then, the unbiased estimator 8% := Ey(f|6) attains a variance which is
smaller or equal to Vargé.

Proof See proof of Theorem 1.3.20. Here, 6* is unbiased, due to 2) in
Theorem 1.3.20 and Vargf* = Eg6*2 — 62 < Eyh2 — 62 = Varyf due to 1) in
Theorem 1.3.20. [

Remark 1.3.22. The sufficiency of 6 is not mentioned explicitly in the
proof of Lemma 1.3.21. It is still necessary in order to assure that
0* =Ey(6]0) = g(#) does not depend on 6.

Corollary 1.3.23. If § is a complete and sufficient estimator for 6 and there

exists a function g : R — R such that Egg(0) = 0, V8 € ©, then g(0) is the
best unbiased estimator for 6.

Proof g(f) = E(g(f) | 0), which is the best unbiased estimator by Theorem
1.3.20. O
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1.3.5 /—Method

Let 6, = 0,(X1, ..., X,) be an estimator of a parameter § € © C R (m = 1),
where (X7,...,X,) is a random sample of i.i.d. random variables X for
j=1,...,n, X; ~ Fy. Suppose that 0, is asymptotically normal dis-
tributed, i.e. there exists a sequence of functions {o,(6) }nen with o, () > 0
and 0,(0) =20 Vn € N, 6§ € © such that

A

O, —0 4
o (0) — Y ~ N(0,1).

Let g : © — R be a Borel measurable function. What can be said about the

A

asymptotic normality of g(6,)? In other words, this section aims to identify
the sufficient conditions under which

9(6n) — 9(0) i>Y (1.12)

for another sequence {5, (0)}nen with 6,(0) > 0, n € N, and 5,(9) =20,

6 € ©. For linear g(f) = a -6 + b, a,b € R, relation (1.12) obviously
holds. When does (1.12) hold for more general functions g? There may
be multiple reasons for the consideration of functions g(én) One of those
lies in the variance stabilization which will be discussed at the end of this
section. There a function g is considered, such that ,,(6) does not depend
on #. This makes the construction of asymptotic confidence regions for 6
much easier (cf. Section 2.2.3 for examples).

The following method of proving the asymptotic normality for g(f,) makes
use of the Taylor series decomposition of a sufficiently smooth function g.
It has been known since the early 19" century and first asymptotically de-
scribed by J. Doob [11]. The name “§ method” alludes to the differential or
increment dg(x) = g(x + dx) — g(x) which lies in the core of the method.
Due to its very general nature, the results can be formulated for any asymp-
totically normal sequence of random variables {Y}, },en, i.e. sequences with
Yn—p

2k LY~ N (0,1) for some p € R and a normalizing sequence {oy, }nen

with o, > 0 for all » € N and o,, —» 0.
n—oo

Theorem 1.3.24. Suppose that

Y —
n Tl Ay~ N(0,1) (1.13)

On

for a sequence {Y,, }nen, p and {0y, }nen as above. Let g : R — R be differ-
entiable at x = pu with ¢’(u) # 0. Then,

9¥a) —9(w) 4,

g'(w)on  n—eo
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Proof First, show that (1.13) implies with o, —> 0 that
n—oo

Y, 5 (1.14)

n—oo

Indeed, Slutsky’s Theorem (cf. [32, Theorem 3.4.3.]) yields

Y, — Y -
Tl Y 0 = YV —p=on —b L 0.y =0
On n—o0 On n—oo

= Y, —pu 50
n—oo
by [32, Theorem 3.3.4.]. Introduce the function

qes) — '), @+,
0, T = [
Since g(z) is differentiable at x = u, h(z) is continuous at z = p. The

Continuous Mapping Theorem (cf [32, Theorem 3.4.4.] implies

P

M) 25 h(u) =0,
(¥2) — g(u)
gl¥n) — gl / P
A —g(p) —2.0.

Multiplying both sides by ¥2=£ and using (1.13) in combination with Slut-

On

sky’s Theorem implies that
h(Yn)(Yn - N) _ g(Yn) B g(M)

= —d — 0
- . g — = %
——
Ly~ N(0,1)
Hence M _% g (1) - Y as well and dividing by ¢'(u) yields the
n n o0
desired result. O

Remark 1.3.25. If g € C'(B;(u)) for some 6 > 0, where
Bs(p) ={z eR: |z —p| < 5},
the proof above can be simplified by using the Mean Value Theorem

9(Yn) = g(p) + ¢'(6) (Yo — ),

where £ lies between p and Y,. In addition, the Continuous Mapping
Theorem together with (1.14) and the assumption g € C(Bs(u)) yield

d (V) n%o g’ (). By Slutsky’s Theorem a modified version of (1.13) holds:

9(¥n) —9(1) _a
g (Yn)on ”;)OY
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Example 1.3.26. By [33, Theorem 7.4.4, 2)], the sample variance

LS - X7

=1

S2 =

n—1

is an asymptotically normally distributed estimator of 62 = VarX j>0:

52 L2
non— %y L N(0,1),
/ 4 M—00

Hy — Op

where 1), = E(X; — EX;)% One can show that the empirical standard
deviation S, is an asymptotically normal estimate of o. Here,

Following Theorem 1.3.24 it holds that

Sn =0 d,

/ 4 M—00
\VHe — O

What happens if ¢’(11) = 0 in Theorem 1.3.247 In this case, a higher order
Taylor approximation should be used, as the following result shows.

20v/n

Theorem 1.3.27. Assume that a sequence of random variables {Y, }nen
satisfies the conditions of Theorem 1.3.24. Let g : R — R be m > 2 times
differentiable at p with ¢U) () = 0, j < m and g™ (u) # 0. Then,

o 900 —g(w) ym
g (p)omm  n—roo

where Y ~ N(0,1).

Proof Use the function

g@) —glp)  m
h(zx) = W!W—g( )(M)7 T F p,
0, T = [l

in the proof of Theorem 1.3.24. O
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Example 1.3.28. Suppose that {Y}, },en is a sequence of random variables
with

Y,
n 4y~ N(0,1)

On n—oo

for oy, = 0 with o, > 0 for all n € N. Apply Theorem 1.3.27 to
g(x) =log*(1 +z) and m = 2, u = 0:

_ 2log(1+ x)

! /0 :0
g () Trz , 9(0) =0,
2 (14 ) — 2log(1 + x) 1 —log(1 log( ) )
" _ 14z o g( +I) - 1+x
(14 x)? (14 x)? (14 x)2
g”(O):2>O.
Then,

log®(1+Y,)

1
D) -
202 o2

log?(1 +Yy,) 4 y2 o X3
As already mentioned above, it might be advantageous for some applica-
tions in the asymptotic theory of confidence intervals and statistical tests
to eliminate the dependence of the asymptotic variance o,,(0) from the pa-
rameter 6. In other words, find a transformation g of the estimate 6 such
that &,(0) in (1.12) does not depend on # anymore. This device is known
as wvariance stabilization. By Theorem 1.3.24 a function g : R — R with
g'(0) # 0 such that ¢'(f) - 0,,(6) depends only on n € N has to be found.
Let 0,(0) = o(0) - v, with v, — 0. Then it suffices to solve the ordinary
differential equation

Jg(0) = ﬁ, ¢ constant. (1.15)

If ¢’(6) = 0, Theorem 1.3.27 can be applied here accordingly.
Example 1.3.29.

1. Consider a random sample (Xi,...,X,) of centered i.i.d. random
variables with ps = EX ;1 < o0 and 02 = VarX; > 0. Since
1 = EX; = 0, consider the estimate S2 = % i1 Xf of 02. Assume
that py is known. By [33, Theorem 7.4.4, 2)], it holds that
g2 _ 2
RO Ay N0, 1),

‘//J4_O-4 n—oo

By stabilizing the asymptotic variance in this case,

1 2\ 1
glr) = pa — (%)
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has to be solved. The solution is given by g(z) = arcsin (\/%) and
thus

G2 2
Vn (arcsin (\i%) — arcsin <;;T4>> nﬁo Y ~ N(0,1).

2. Let (Xy,...,X,) beasample of i.i.d. random variables with X; ~Bernoulli(p),
for p € (0,1). By [33, Theorem 7.3.2, a)], it holds that

V1 (pn — )
p(1—p) %

n—0o0

Y ~ N(0,1),

where p, = X,,. Similarly to 1), the variance stabilising transform
g is given by g(p) = 2arcsin(,/p), since ¢'(p) = % Applying
p(1-p
Theorem 1.3.24 yields
2v/n(arcsin(v/pr) — arcsin(y/p)) Ly ~ N(0,1) (1.16)

n—00

3. Let (Xq,...,X,) be a sample of Lid. Poisson(A) distributed random
variables with A > 0. For 8 = A\, \,, = X, it holds that

~

A=A 4y N0, ).
\/X n— 00

The variance stabilizing transform ¢ is then given by g(z) = 2\/x

N

1
because of ¢'(\) = —=. In summary, we get

VA
2vn (@ - \ﬁ) L Y ~ N(0,1). (1.17)

n—o0

Remark 1.3.30. The d—method can be extended to the asymptotic nor-
mality of (functions g of) d-dimensional random vectors {Y}, },en, for d > 2.
See [30, Section 3.3] for more details. It can be used to prove the asymptotic
normality of the empirical Bravais-Pearson correlation coefficient

Z?:l Xij — anZn

Sn,X Sn,Z

PXzZ =

of i.i.d. random samples (X1,...,X,)and (Z1, ..., Z,), where 5721,)( and ST%Z
are their sample variances. Similarly, the empirical coefficient of variation
)5—;—” of one i.i.d. sample (Xi,...,X,) can be shown to be asymptotically

normal with -
S.
(22 -2) Ly on(o,ZE ),
X, W) n—oo 402




CHAPTER 1. POINT ESTIMATION o7

where X, is the sample mean and S2? the sample variance, cf. [1]. Here

2 _ M4 p2\ 2 pe\®  Apops
o="13"\2) T4 2) —— 5
10 I I I

is a function of the first four moments of X; which are assumed to be finite.



Chapter 2

Confidence Intervals

2.1 Introduction

This chapter will focus on the formal definition of confidence intervals. We
will gain a deeper understanding of how they work and what they are used
for. In particular, this chapter will cover one-sample problems and two-
sample problems.

Recall the assumptions of parametric models: Let (Xi,...,X,) be a ran-
dom sample with X; ~ Fyp, i = 1,...,n, and Fy € {Fy:0 € O}, where
{Fy : 0 € ©} is some parametric family with © C R.

Each point estimator of 6 provides a value for the parameter vector. It would
also be beneficial to have information about the accuracy of the estimator,
i.e., a neighborhood which contains 6 with a certain probability 1—c«. Here «
denotes a significance level, which indicates the probability of 6 being outside
the predetermined neighborhood. Typical values are o« = 0.01;0.05;0.1. For
m = 1 the neighborhood is an interval called confidence interval and the
probability 1—« is called coverage probability or confidence level. 1t is always
desired to achieve a high confidence level, e.g., 1 — a = 0,99;0,95;0,9 are
typical values.

Definition 2.1.1. Let 1 — « be a confidence probability and
0:R" - R=RU{+x}, §:R" — R be two measurable sample functions
with the property

0(z1,...7p) <O(z1,...,2,) V(x1,...7,) € R™
If
1. P (9 c [Q(Xl,...,xn), @(Xl,...Xn)D >1—a, 00O,

2. jnf Py (9 c [Q(Xl,...,Xn),?(Xl,...,Xn)D —1—aand
3. lim By (0€[0(X1,...,X0), 0(X1,..., X,)|) =1-0a, 6€0,

o8
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then I = [Q(Xl, LX), 00X, Xn)] is called
1. confidence interval,
2. minimal confidence interval,

3. asymptotic confidence interval,

with confidence level 1—a. Here, ly(X1,...X,) = 0(X1,... X,)—0(X1,... X,)
denotes the length of the confidence interval. It is desired to construct an
interval, which has a relatively short length but a high confidence level, i.e.,
1—a=.99.

In Example 1.2.14, the construction of a confidence interval was introduced.
This methodology can be generalized as follows.

1. Find a statistic T'(X1, ..., Xy, 6) which

e depends on ¢ and

o underlies a known (test) distribution F' (possibly asymptotic as

2. Determine the quantiles F~!(a;) and F~1(1 — as) of the distribution
F' for the niveaus a1 and 1 — a, such that a3 + as = a.

3. Solve (if possible) the inequality
FYo) < T(X1,...,Xn,0) < F7Y(1 — a3) wr.t. 0. The respec-
tive solution (if the statistic 7" in 6 is monotonically increasing) I =
[T=YF~ o)), T7HF7(1 — a2))] is a confidence interval for 6 with
confidence level 1 — «a, because

Py0cl)=D (Te_l(F_l(al)) <O<THFY1- ag)))
= Py (F~ (1) < Ty(X1,..., X, 0) < F7H(1 = a))
= F(F (1 —ag)) = F(F (1))

=1—q« forall § € O©.

For asymptotic confidence intervals the notation nhﬁngo is introduced:

le Py €I)=...=1-a. Here T, ' denotes the inverse of T(Xj, ..., X,,0)
n oo

w.r.t. 6. A corresponding picture can be found in Figure 2.1.

Definition 2.1.2.

1. If a1 = ag = /2, then the confidence interval given by

= (e () (e ()

is called symmetric.
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2. If oy = 0, ie, 0(X1,...,X,) = —oo, then the confidence interval
(—oo, 0(X1,... ,Xn)} is called one sided.

Analogously, if az = 0 i.e., (X1,..., X,) = +oo, then the confidence
interval is given by [0(X71, ..., X},,), +00).

From now on, mostly symmetric confidence intervals will be constructed.
More general, non symmetric confidence intervals can easily be constructed
similarly.

[ ]
L ]
Fil((ll) Fil(l—(l2)

Figure 2.1: asymptotic confidence interval

Remark 2.1.3. One can observe, that the process of constructing a confi-
dence interval is similar to constructing a test. In Definition 2.1.2, T'( X7, ..., X))
is called test statistic. Generally, a statistical test for every confidence in-
terval can be constructed, but not the other way around.

2.2 One-sample problems

This section provides examples of confidence intervals for parameters of
known distributions using the algorithm above.

2.2.1 Normal distribution

Let X1,..., X, be ii.d. random sample with X; ~ N(u,0?),i=1,...,n.

Confidence interval for the expectation p

« Known variance o2: Under the assumption that 0% is known, [33,
Theorem 7.3.2] implies that an exact confidence interval for p with
confidence level 1 — « can be constructed. Since X, ~ N (u, 02/71)7

X, — 1

T(X1,...,Xn, 1) = V1 ~ N(0,1)
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Let z4, and z1_4, be quantiles of the (0, 1) distribution, such that
a1 + ag = a. Then, 1 — « is the given confidence level and

l—a=Pzo <T( X1, s X 1t) < 21-01y)

X, —
:P<za1§\/ﬁ n “§z1a2>

g

(—2zay=%1-0ay)

p(xn_

21—y 0 < <X zla10>

NG
Hence, [Q(Xl, LX), 00Xy, ,Xn)] with

— g

Q(Xh cee 7Xn) - Xn - zl—ag%

and

0(X1,...,Xn) = Xn + zl,m%,
is a confidence interval for u with confidence level 1 — a. Its length is
lu(le . ,Xn) = % (Zl—az + Zl—oq)-
If n — oo, then [,(X1,...,X,) — 0 which means, that if the
amount of available information increases, i.e., n — o0, the preci-
sion of the estimation also increases.
If the underlying distribution is symmetric i.e., a1 = ag = /2, then

Q(le'qun) :Xn_
g(Xl,...,Xn) :Yn+21,

and
20
%21—a/2-

If the length € > 0 is predetermined, the number of necessary ob-
servations n for achieving the desired precision can be calculated by
solving

l,u(Xla s 7Xn) =

20
—=Z1-aj2 S € (2.1)

NG

for n, which yields

2
n> <2UZ1—a/2> ‘
£

For a; = 0 or as = 0 one sided intervals like (—oo, X, + zl,aﬁ ,

resp. | X, — zl_aﬁ, +oo> can be constructed.
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« Unknown variance o2: Using [33, Theorem 7.4.10.], the following
confidence interval with confidence level 1 — « € (0, 1) for the expec-
tation p of a normally distributed random sample (X7, ..., X,) with
unknown variance o can be constructed.

s tho11-ap ln—1,1—0f D
P Xpn——7="5, Xn+—"F=85,| ) =1-q,
(“ < [ Jn T @

P(\/ﬁ g_u € { ln—1,0/2 7tn—1,1—a/2:|> = (2.2)
n ———

=—tp_1,1—a3 bc. of the sym. of ¢ dist.

=L, (tnfl,lfa/2) - F, (tnfl,a/2)

o (0]
1Y _%_q_
2 2 &

where ¢,,_1  is the o quantile of the ¢,,_; distribution. By solving for
i in (2.2) the remaining part can be shown.

Note that the length 1,(X1,...X,) = %tn_m_a/g of the confidence

interval is a random variable. Thus, the expected length

2
Ely(X1,... Xp) = —=ESutn 11 a2

vn

yields an answer to the question about the required number of obser-
vations n for a predetermined precision € > 0 (cf. Equation (2.1)).

Confidence interval for the variance o2

« Known expectation y: Consider the estimator 52 = % (X; — ,u)2

i=1
for 02. [33, Theorem 7.4.8 1.] implies T%ﬁ ~x2.
Define T'(X1, ..., X, 02) == ”:;3, then
) nS,> nS2 ,  n$?
P Xnae = =5 < Xni-a | =P | 2 sofs 5| =l-a
o Xn,lfal Xn,ag

nS2 nS2 . : 2 i
Thus, |— , =3 is a confidence interval for o“ with level 1 — «,
n,l—aq X”vo‘Z

where @ = a1 + ao. The expected length is given by

1 1
El022n02<2 - = >
Xn,ag Xn,l—al
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o Unknown expectation p: Similarly to the construction above, [33,
Theorem 7.4.8. 1.] implies that [X(in)sﬁ (ZI)S’%} is a confidence

9y
n—1,1—aq anl,ocg

interval for o2 with confidence level 1 — «, where o« = a1 + as. Note

n . \2
that M ~ x2_, for the sample variance S2 = il > (Xi — Xn) .

=1

.

The expected length is

1 1
Elgz(n—1)02< — )
7 ng—Locz X72’L—1,1—o¢1

2.2.2 Confidence intervals and stochastic inequalities

An alternative approach for obtaining confidence intervals is applying stochas-
tic inequalities. Let, for example, (Xi,...,X,) be a random sample of

i.i.d. random variables with EX; = u, VarX; = 02 € (0,00), then the

Tschebyschew inequality can be used to construct a simple confidence inter-

val for pu:

Var X, _ o?

P (X0 —pl>e) <

Then, for ¢ = \/L—

no

l—a<P (Y )
- (r A Sr)

holds. The confidence interval [Yn - \/%, X, + \/%} for p with known

variance o2 is independent of the underlying distribution of X; since no

assumptions have been made.
More precise confidence intervals can be constructed by using the Hoeffding
inequality:

Theorem 2.2.1 (Hoeffding inequality). Let Y7,...,Y,, be independent ran-
dom variables with EY; =0,a; <Y; <b; a.s.,i=1,...,n. Forall ¢ > 0,

( n ) 262
P ZYz el <exp|————
i=1 > (bi — ai)?

=1

holds.
(without proof)
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Assume that Xi,..., X, are i.i.d. with X; ~ Bernoulli(p), p € (0,1). Next,
we will show how to construct a confidence interval for p.

Corollary 2.2.2. Let Xi,..., X, be ii.d. Bernoulli (p) random variables.
Then ,
P (\Yn —p| > s) <27 2> 0.

Proof
_ 1 X
Xn_p: EZ(XZ—p)’ Y; € [_pal—p]a

=1 Y,

holds, which means that a; = —p, b =1—p, b; —a;, = 1,1 =1,...,n,
n

EY; =p—p=0. Then,
pR? 25n>
=1

=P, <§:Yl > 5n> + P, <§:(—K) > 5n>

i=1 =1

Pp(yxn—p\>a)zpp<

(Theorem 2.2.1) 2,2
< 2= 5 = 2e7 2%,
where Theorem 2.2.1 is applied to {Y;} as well as {—Y;}. O

Remark 2.2.3. Let a > 0 and ¢, = \/ﬁ log%. Applying Corollary 2.2.2
with e, yields P, (]Yn —p| > an) < a, and thus P, (\Yn —pl < en) >1—a.

Hence,
_ 1 2 — 1 2
Xn—\/7log—, X, + 1/ —log —
2n « 2n «
is a confidence interval for p with level 1 — a.

2.2.3 Asymptotic confidence intervals

The idea behind asymptotic confidence intervals is relatively simple, as it can
be explained by using the example of an asymptotically normal distributed
estimator @ for a parameter 6. Let (X1,...,X,) be an i.i.d. random sample
with X; ~ Fp, 0 € © CR. Let 0, = é(Xl, ..., Xp) be an estimator for 0,
that is asymptotically normal distributed. If 0,, is unbiased for every n € N,
then

0, —0

On

Y ~ N(0,1),
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where &, is a consistent estimator for the asymptotic variance of 6,. Fur-
thermore,

. 0, — 0
nh_{gope <Zoz/2 < a_n < Zla/2>

= lim Py (9 € {én — 21—a/20n, 0, + Zl,a/g&n}) =1—-a.

n—oo

Thus,
{én - Zl—a/26m 6A?n + Zl—a/?‘%n}

is an asymptotic confidence interval for 8 with level 1 — «.
This approach can be applied to the following two examples:

e Bernoulli distribution

Let X; ~ Bernoulli(p), i = 1,...,n. Then § = p and én = pp = Xp.
Moreover, E,p,, = p, Var,p, = £ (17:7’ ),

Let 6% = L1 p,(1 — p,) = £=(1 — X,,) be the Plug-In estimator for
o2. Then the central limit theorem [33, Theorem 5.2.2.] and Slutsky’s
theorem [32, Theorem 3.4.1] imply

X, —
nP 4y~ N,1).

Vn

Thus,

[Xn — Z1-a/2\/ (n)’ Xn +21-a/2 (n)

is an asymptotic confidence interval for p with confidence level 1 — a.
Since p € [0, 1] is supposed to hold, one considers

_ X,(1-X,
p(X1,..., Xp) :mauX{O7 Xn— 21—a/2 ()}
and

_ 1-X
p(X1,...,Xn) :min{l, Xn+21—a/2 n(n)}

Remark 2.2.4.
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1. Another confidence interval for the parameter p of the Bernoulli
distribution can be obtained by considering an application of the
central limit theorem

Yn - D
lim Py —2;_qp < Vi—————= < 21_, =1—-«a
e ( 1-a/2 = p) 1 /2)

and solving the quadratic inequality for p.
Exercise 2.2.5 Solve the inequality!

2. Using the variance stabilization from Example 1.3.29, 2., the re-
lation (1.16) can be used to construct a confidence interval for p
with sufficiently large n.

P (—Zl—‘; < Qﬂ(arcsin\/;n — arcsiny/p) < zl_g) ~1l—a«
holds, hence
arcsm\/i — a-3 < arcsin,/p < arcsm\/i + —=
With probability 1 — «
Vp € [Sin (arcsin\/; z21 \/ﬁ> sin (arcs1n\/7 + \/%)] =
pE [Sin2 <arcsin )_(n Z;\F> sin (arcsm\/7+ i 7% ﬂ

Zl_,

holds. As \/ X, H VP € (0,1), Tn =20 and since

sin (arcsm\/ i 2 )

for sufficiently large n, the terms

- Z]_a
max {0, arcsiny/ X,, — 21\; }
n

and

21, a
min { arcsm\/ —|— }

do not need to be considered here.

e Poisson distribution:
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Let X; ~ Poisson()\), i = 1,...,n, then § = X, 6, = A\ = X,,. Since
E)X; = Var)X; = A, the central limit theorem [33, Theorem 5.2.2.]
can be applied:

X,— )\ 4

Y ~ N(0,1
S okt ~NOD)

Since X, is strongly consistent for A, Slutsky’s theorem [32, Theorem
3.4.1] implies

vn

X,— A
—= -5 Y~ N(0,1).

Xn

NG

Thus, a asymptotic confidence interval

— [ X — X
[Xn_zla/2 Tn, Xn+21-a/2 Tn

for the parameter A with level 1 — o can be obtained.
Remark 2.2.6.

1. Similarly to Remark 2.2.4, solving the quadratic inequality

. X, —A
nh_)rgo Py (x/ﬁ N € [_Zl—a/Za Zl—a/2]> =1l-a

for A leads to an alternative asymptotic confidence interval for .

Exercise 2.2.7. Solve this quadratic inequality.

2. Since A > 0, the lower bound can be adjusted to
_ X,
A(le--an) = max 07 Xn_zl—a/Q 7
n

3. Using the variance stabilization transformation from Example
1.3.29, 3.

P (_Zlf% < Vn(Va, — V) < Zyg) 2 1l-a

holds. For n sufficiently large, the asymptotic confidence interval
for A with confidence level 1 — « is given by

()]

A€ l( Xn—z;\/ﬁ
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Since 1/ X, n%o VA by the strong law of large numbers and

Zl—%
— 0

\/ﬁ n—00

for sufficiently large n

= Zl_a2
V Xn — 0
"2y/n ~

holds. Hence max {0, \/ X — h-g } does not need to be taken

2n
care of.

2.3 Two-sample problems

In this section, some characteristics or parameters of two different samples
will be compared by constructing confidence intervals for simple functions
of those parameters.

Consider two random samples Y7 = (X11,..., X1pn,) and Y2 = (Xo1, ..., Xon,)
of random variables X;1,..., X;,,, ¢ = 1,2, which are, within the sample Y;
iid. with X;; 4 X;, j=1,...n; 1 =1,2. Assume for the prototype random
variable X; ~ Fy,, 0; € © C R™. In general it will not be assumed that Y;
and Y5 are independent. If they are dependent, the random samples Y; and
Y5 are called related samples. Consider a function ¢ : R?™ — R of the param-
eter vectors 01 and 6. In this lecture the cases m = 1,2, g(61,02) = 61;—62;
and g(01,0) = % will mostly be covered, where 0; = (6;1, . .., 0im), i = 1,2.
The goal is to construct a (possibly asymptotic) confidence interval for
g(6h,02) by using (Y1, Ya).

As it turns out, the approach will be similar to Section 2.2. A statistic
T(Y1,Ys,9(01,02)) is desired, that has a (possibly asymptotic) test distribu-
tion F' and explicitly depends on g(61,62).

By solving the inequality F,' < T(Y1,Ys,9(61,62)) < Ff_1a2 for g(01,02) a
(possibly asymptotic) confidence interval with level 1 — «, & = a1 + g can
be obtained.

2.3.1 Normally distributed samples
Assume, that X; ~ N(u;,07),i=1,2.
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Confidence interval for the difference p; — p2 with known variance
0% and ag and independent random samples

Let Y7 and Y> be independent and o7, 03 known. Consider the parameter
function g(p1, u2) = p1 — p2 and

— 1 &
Xing = — > Xijyi=1,2
in; nij:1 ijy v 3

J— 2
the sample mean of Y7 and Y. Then, X;,, ~ N(u;, %), i =1,2. [33,
Theorem 7.3.2, 4] implies that X1, and X3, are independent. The stability
of the normal distribution implies

2 2
J— R o a.
Xin, — Xop, ~ N (m — 2, Y;-l-?;)

and normalizing yields

X1 — Koy — (1

T(YI? Yo, M1 — :u2) = dm 2 <N1 M2) ~ N(07 1)
o2 4 cﬁ
n1 no

The confidence interval

2 2 2 2

—_— —_— ag g —_ e g a.
1 2 1 2
Xin, —Xopy — 210 — 4+ —=, Xip, — Xopy, + 212/ —+ —
2V n1  ng 2V ng

for p1 — po with level 1 — « then results.

Confidence interval for the quotient O'% / Ug with unknown expected
values p; and p2 and independent random samples

2
Let Y7 and Ys be independent and g(o1,02) = % Construct a statistic
2
2
T (Y1, Yo, %) Let
92
1 & - \2
2 _ - ) .
S2, = ni—lj;(X’ ~Xin,) =12

be the sample variances of Y; and Y,. Then, applying [33, Theorem 7.4.8.]

. (nifl)S?n_ 2 . . 2
yields ——— ~ x5, @ = 1,2. Since S;

in;» © = 1,2 are independent, the

definition of the F distribution implies
(n2—1)S2,
2 —_— 2 2
o (na—1)02 S5, O
T<Y17Y27U;> = : = 2n2 ‘%NFm—l,m—l'
2

B % - Slnl
(nl—l)af
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Thus, the confidence interval

2 2
Slnl Slnl

SQ an—l,nl—l,a1752 Fnz—l,nl—l,l—aQ
2n9 2n2

2
for % with level 1 — « is obtained.
2

Confidence interval for the difference p; — p2 of expected values
with dependent samples

Let Y7 and Y3 be linked, i.e., X1 — Xo ~ N(u1 — po, 0%) for an unknown
02 >0, n; = ngo = n. Since Xij,j=1,...,n areiid,,

Zj = le —ng ~ N(Ml —/1,2,0'2), j = 1,...,77, holds.

The goal is to construct a confidence interval for p; — pe. Consider the ran-
dom samples (Z1, ..., Z,) and the results of Section 2.2, then the confidence
interval

_ S g
[Zn B tn—l,l—% 7%7 Zn + tn—l,l—%j%

for 1 — pe with level 1 — § is obtained. Here,

_ 1 1 _ _
Zn:*E Zj:—E (X1 — Xo9j) = X1 — Xon
n < n -
J=1 J=1
and
1 n N2 1 n _ _\2
2 _ L _ L .
Sn_”‘ljgl(ZJ %) _n—ljzl(X“ Xoj = Xn + Ko

2.3.2 Poisson distributed random samples

Assume that the random samples Y7 and Y5 are independent and
X; ~ Poisson(\;), i = 1,2. The goals is to construct confidence intervals for

g(A1,A2) = A1 — Mg,

ng Ao A2
9 A2) nAL +n2Xa  pAL+ Ao

where p = Z—; = const for nq,ny — oo.

Asymptotic confidence interval for \; — \o

In order to obtain an asymptotically N/ (0,1) distributed statistic
T(Y1, Y2, A1 — A2), the central limit theorem of Ljapunow (cf. [33, Theorem
4.2.13]) will be used.
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Lemma 2.3.1. For ny,ny — oo with 0 < ¢; < nj/ng < ey < oo,

Xin, — Xony, — A1+ A2 d

/A A —
A1 Aa n1,n2—>00
ni + ng

Proof Define the random variable

Y ~N(0,1)

holds.

Xik—M1 —
— k=1,.
z.o_) MVmtm
nk = _ Xog—ng—A2

A1 Ao
ny n2

..o n

, k=n14+1,...,n1+n9

n2

where n = ny +ny. Then, EZ,, =0 forall k =1,...,n, and

Vaerk — )\1 k — 1 nl
Y AR )
) () ()
0< oy, =VarZ,, = N " .
T ) =n1+1,...,n,
"2\ Ty
Thus,
2 = (Gt ane ) 5w = L
k=1 1 2 ni no

Furthermore, for § > 0 and ni,ny = oo

R ) E (| X — \]|2T9 E (1Xo1 — \o[)2F0
e
=1

ni,na—00 ’n1+6 AL A2 (2+5)/2 n1+6 AL Ao (2+5)/2
1 ni ' ng 2 ny ' n2

=0
holds. The Ljapunow condition is therefore met and [33, Theorem 4.2.13]

implies

n
d
> Zok e Y ~ N(0,1).

el ,M2—00
. n Xing —Xong—A1+A .
Finally, 3 Z,, = =™ ;1 2 = 1772 which completes the proof. O
k=1 =142
ni n2

The strong law of large numbers implies X, f—s> Ai, 2 = 1,2 and using
Slutskys theorem then yields

Xin, — Xony, — A1+ A2 R

T(Y1, Yo, M — X2) = — — L=
\/le/m +Xn2/n2 L2

Y ~ N(0,1).
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The asymptotic confidence interval for A\ — Ay with level 1 — « is thus given
by

— — 71 YQ -  a Yl Y2
Xiny —Xon, —21-a/21/ nfl +T;2, Xiny =Xon, +21-0/21 nlnl +T2m

n2A2
niii+na2iz

Asymptotic confidence interval for

Let p be some constant, nj/ne = p and

Def. .
g\, \) = nl)ﬁrﬂ:‘éb = pAf‘jAQ =" p. The goal is to construct an asymp-

totic confidence interval for p. Consider the statistic

T(Yl YQ p) — SZHQ 7p(Sl’I’L1 + 5277,2)
7 7 \/ﬁ(l _ﬁ)(slnl +52n2))7

i
where Sml = Z Xz'j, 1= 1, 2 and
Jj=1

S2n2 . n2Xon, f-s. »
Sty +S2n, M1 Xip, +noXop, n1n2z=o0

p=

is a consistent estimator for p (by the strong law of large numbers). If it can
be shown that T'(Y1, Y2, p) Ay~ N(0,1), then

ni,me—0o0

SZnQ
Sin +520, P
lim P (—ZI_Q/Q < Dty T (S1n, + Sgn2)3/2 < zl_a/Q) =1-aq,

i mahoc = VSt Soms

which yields the asymptotic confidence interval
|:Q(}/la }/Q)a 5()/17 Y2)7:|

for p with level 1 — «, where

Szn Sln S2n
O( A1, \o) = 2 s 1" O2my
B(;As) St + Sons 2\ (S, + Somy)?
and
_ Son, S1n: - Son
9()\1,)\2)_#*'21—@2' Sl

(Stny + Sons)®
Since 0 < p < 1, the boundaries can be adjusted as follows:

0% (Y1,Y2) = max{0, 0(Y1,Y2)},

67 (Y1,Ys) = min{1, 6(Y71,Y3)}.

B Slnl + SQng

Now the asymptotically normal distribution of T'(Y1, Y2, p) will be shown.
It results from Slutskys theorem and the following Lemma:
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Lemma 2.3.2. One has the following property

52712 - (Slnl + SQng) d
\/p 1- Sln1 + SZn ) n1—o0

Y ~N(0,1)

Proof In order to show the assertion, a version of the central limit theorem
for sums of random variables with random numbers as sum limits (cf. [33,
Theorem 4.2.2]) is used. Let N,, = Sin, + Son, be a sequence of non-
negative random variables, then the sum is monotonically increasing. Let
then ay, = n1A1 + n2A2. Obviously

Nn . S1n1 SQng
a,in2 - N1AL + NoAg N1 + NoAg
o Y1n1 YQng
N M+p A pAi+ X
fs, A1 A2
1 mgros AL+ p7t * PAL + A2
PA1 A2

= + =
PAL+ A2 pAr+ Ao
holds. Furthermore:

P(S2n2 = k, Sln1 + 52n2 = m)
P(SIm =+ Sgn2 = m)
. P(Sgnz = k, S1n1 =m — k)
P (Slnl + Sgn72 = m)
k

—nala ()‘2n2)k . e—nl)\l (nl)\l)m_
k! (m—k)!

efnl)\lfng)\z (nl)‘1+77"2)‘2)m
m:

o m! ( n2>\2 >m < ’I’L1>\1 >m—k
N (m — kj)‘k" nl)\l + n2)\2 nl)\l + 712)\2

= <Tg>pk(1 —p)" "

which means that Sa,, | {N, = m} ~ Bin(m,p). Then, Sng P | {Np, =

V=

, where S, = Z Z; is a sum of identically distributed

P (Sany =k | Npy =m) =

(&

Smfmp
mp(1-p)
Z; ~ Bernoulli(p). [33, Theorem 4 2 2] implies

m}i

—Nn ng — 4iVn
MLYNN(OJ)(:)M%YNN(OJ).
Npp(1—p) Npp(1 —p)



Chapter 3

Testing Statistical
Hypotheses

In [33, Chapter 7], some tests like the Kolmogorow-Smironow test were in-
troduced. This chapter, however, focuses on introducing tests for statistical
significance formally.

3.1 General philosophy of testing

Let (Xi,...,X,) be a random sample of i.i.d. random variables X; with
distribution function F' € A, where A is some class of distributions. Let
(z1,...,zy) be a realization of the random sample (Xi,...,X,). In statis-
tical testing, hypotheses with respect to the nature of a (unknown) distri-
bution F' are posed and tested. Generally, two concepts are distinguished:

[ Statistical tests J

Parametric test Nonparametric test
if A= {Fg, 0 e @} else
where © C R™

Parametric tests check, whether a parameter 6 attains certain values (e.g.
6 = 0). Popular nonparametric tests are the so-called “goodness-of-fit tests”,
which check whether the distribution F' is equal to a predetermined distri-
bution Fj.

In an initial step, the term Hypotheses needs to be formalized. The set A
of admissible distributions F' is divided into two disjoint sets Ay and A;
Ao UA; = A. The assertion

74
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“The null hypothesis Hy : F' € Ag
is tested against the alternative Hy : F € Ay”

means, that we aim to assign the distribution function of the random variable
X; to Ay or Ay, based on the explicit realization (z1,...,x,). The process
of assigning the distribution of X; involves a decision rule

¢ :R" —[0,1],

which is a statistic with the following interpretation:
The sample space R” is divided into 3 disjoint sets Ky, K91 K1, such that
R" = Ko U Ky U Ky, where

Ko =¢7({0}) ={zeR":p(x)=0},
Ki =¢7({1}) ={zeR":px)=1},
Kn =¢1((0,1) ={zeR":0<p(x)<1}.

Thus Hy : F' € Ag is
o rejected, if p(x) =1, ie., z € K,
 not rejected, if p(x) =0, i.e., z € Kjy.

If p(x) € (0,1), i.e., x € Ko, then p(z) is interpreted as a Bernoulli proba-
bility and a random variable Y ~ Bernoulli(p(z)) is generated with

v _ { 1 = Hj is rejected

0 = Hj is not rejected

If Ko1 # 0, the decision rule is called randomized. If Ko1 = 0, i.e., R" = KoU
K the tests are called non-randomized. Ko and K; are called acceptance
region and rejection region (critical region) of Hy respectively. Ko, is called
randomization region.

Remark 3.1.1.

1. One deliberately says “Hg is not rejected”, instead of “Hy is accepted”,
since statistical inference can generally not make positive decisions
rather than negative decisions. The issue above is a general philo-
sophical problem with respect to the falsifiability of hypotheses or
scientific theories, which can generally not be at odds with the truth.
(cf. wissenschaftliche Erkenntnistheorie by Karl Popper (1902-1994)).
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2. Randomized tests are generally of a more theoretic nature (cf. Section
3.3). In practice, most non-randomized rules are used, which leads to
a decision with respect to Hy based on the explicit sample (21, ..., 2y,)
alone. Here, () = Ig,,z = (x1,...,2,) € R™ holds.

In the following paragraph, non-randomized tests are considered in order to
return to the more general approach in Section 3.3.

Definition 3.1.2. The non-randomized test rule ¢ : R™ — {0, 1} provides
a (non-randomized) statistical test with significance level «, if for F' € Ay

Pr(p(Xy,...,X,) =1) = P (Hp reject | Hy true ) < a.
Definition 3.1.3.

1. If Hy is rejected, even though Hj is correct, then a type I error has
occurred. The probability

an(F) = Pr(p(z1,...,2n) =1), F €y,

is called Probability of a type I error. This probability is supposed to
be lower than the significance level a.

2. A type II error occurs, if a wrong hypothesis Hy is not rejected. Here
ﬂn(F):PF(QO(IL‘l,,SEn):O), FEAl,

is called Probability of a type II error.

A summary of all possible errors can be found in the following matrix, which
is called confusion matrix:

Hy true Hy false

reject Hy Error of type I with proba- | right decision
bility ay,(F) < «

not rejecting Hy right decision Error of type II with prob-

ability 3,(F)

Here «,, and 3, are aimed to be small, which is contrary to the fact that a
decreasing value of « increases the probability of mistakes of type II.

Definition 3.1.4.
1. The function

is called performance function (or power function) of a test .
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2. The constraint G, on Ay is called power of the test .
With respect to the constraint it holds

Gn(F) = an(F) < a, F € Ay,
Gn(F) = 1_/8n(F)a F e

Example 3.1.5. Parametric tests.
What does a parametric test look like? The parameter space © is given by
O U ©O1, where ©g N O = (. Then

Ao = {Fg :0 € @0},

A = {Fg :0 € @1}.

Pr is replaced by Py. Furthermore ay,, G), and 5, are defined on © instead
of A.

Which hypotheses Hy and Hp are popular among parametric tests? The
case © = R is discussed below, but it should be noted that a more general
choice of © is also possible.

1. Hy: 6 =0p vs. Hy : 0+ 6y
2. Hy: 0>0yvs. H :0 <6
3. Hy: 0<0yvs. H :0> 6
4. Hy: 0 € [a,b] vs. Hy:0 ¢ [a,D]

In the first case the, parametric test is called two-sided and in the second
and third case one-sided (right- resp. left-sided). The fourth case is called
interval hypothesis Hy.

Considering a one-sided or two-sided test, the power function may look like
the one displayed in Figure 3.1 (a) or 3.1 (b), resp.

t
o

o

Figure 3.1: Performance function

In general models (not necessarily parametric), the ideal power function can
be illustrated schematically, as in Figure 3.2.
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Figure 3.2: Schematic illustration of an ideal power function

e Definition 3.1.3, errors of type I and II and the rejection rule imply
that the hypotheses Hy and Hp can not be treated symmetrically,
since only the probability of errors of type I is controlled. That is the
reason why statisticians mostly formulate the hypothesis of interest
as Hj instead of Hy, because if one decides that Hy can be rejected,
it can be assured that the probability of a false decision is below the
significance level a.

e How is a statistical, non-randomized test constructed in practice? The
construction of the rejection rule ¢ is very similar to constructing
confidence intervals:

1. Find a test statistic 7' : R” — R, which has a certain test distri-
bution (perhaps asymptotically for n — oo) under Hy.

2. Define By = [ta,t1—as], Where t,, and t1_,, are quantiles of the
test distribution of T" with a1 + ag = a € [0, 1].

3. HT(Xy,...,Xyn) € R\ By = By, then set ¢(Xy,...,X,) =1 and
reject Hy. Else, set ¢(X1,...,X,) =0.

o If the distribution of T' can only be determined asymptotically, then
@ is called asymptotic test.

e Most of the times, even the asymptotic distribution of 7' is unknown.
In this case, the so called Monte-Carlo tests come into play. In those
tests the quantiles ¢, are determined approximatively by conducting
a large number of Monte-Carlo simulations of 7' (under Hy):

Ift', i = 1,...,m takes the values of T" in m independent simulations,
ie. t'=T(z},...,2%), where xé are independent realizations of X; ~
FeAgforj=1,....,n 4 =1,...,m, then t, ~ tllem) 1 with

tM ...t the order statistics and o € [0,1] .

Tset t0) = —0
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Remark 3.1.6. It is easy to see that by using an arbitrary confidence
interval

Iy = [I{(X1, ., Xa), (X1, Xo)]

with confidence level 1 — « for a parameter 8 € R, a test for 8 can be
constructed. The hypotheses Hy : 6 = 6y vs. Hy : 0 #+ 6y are tested under
the following decision rule:

PX1, -, X)) =1, i O ¢ [ 10X, X)), I90(X0, 0, X))
The significance level of the test is a.

Example 3.1.7. Normal distribution, testing the expected value with known
variance. Let

X1, .., Xy~ N(p, 0?)
with known variance 0. A confidence interval for y is given by
Rl—a/2'0 =  Rl-a/2°0
o/ Tox oy flma/z 7
NN

(cf. Section 2.2.1). Hence, Hp : i = po (versus the alternative Hy : p # o),
is rejected, if

"= [I(Xy,. ., X)), B(X1, ., X)) = | X

Rl—a/2° 0

vn

In the language of testing, the above can be rewritten as

(X1, xn) =1 ((x1,...2,) € Ky),

ko — Xn| >

where
_ f1-a/2° 0
Ky = {(xlv"'7$n> ER": |/.L() _xn| > jé//ﬁ}
is the rejection region. For the test statistic T'(X71,..., X,)

under Hy it holds o, (p) = .
The power function (cf. Figure 3.3) can be calculated as follows

_ ¥ Zl—a/? 1 v Uzl—a/Q
Guli) = Py (110 = Xl > 222 ) 1P ([ = o] < T22)
Szl—oz/2>

< _ _
~—1-P, <|\/ﬁ L BB
1 — o Xon— 1 — fio
=1-P, <_Zl—a/2_ Vn<y/n—" S \/ﬁ>

g g g

=1-® <Zl—a/2 -k ;#O \/ﬁ) + @ <—Z1—a/2 -k _UMO \/ﬁ>
=0 (_Zl—a/Z + a _O_MO \/ﬁ) + & <_Z1—a/2 — a _JMO \/ﬁ) .
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Figure 3.3: Performance function of a two-sided test of the expected value
of a normal distribution with known variance.

The “yes-no” decision of tests is mainly viewed as too rough. That is why
it is desirable to obtain a finer measure for the data with respect to the
hypotheses Hy and H;. The so-called p-value solves the problem above and
it is luckily included in most statistic software.

Definition 3.1.8. Let (z1,...,x,) be an explicit sample, i.e., a realiza-
tion of (X1,...,X,) and T(Xy,...,X,) the test statistic which was used
to construct the decision rule . The p-value of the test ¢ is the smallest
significance level to the value ¢t = T'(x1, ..., x,) which leads to a rejection of
Hy.

In the example of a one-sided test with rejection region By = (t,00), the
rule of thumb for p is given by

p=%“P(T(X1,...,Xn) >t| Hpy)",

where the quotation marks imply that the term is not a probability in the
classical sense, rather than a conditional probability, which will be defined
more precisely later.

Using the p-value, the rejection rule changes: The hypothesis Hy is rejected
with a significance level «, if a > p. Previously, the significance of a test
(rejection of Hp) was determined with respect to the following table:

p-value interpretation

p < 0,001 very strongly significant
0,001 <p <0,01 strongly significant
0,01 <p<0,05 weakly significant

p> 0,05 not significant
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Since the p-value can be calculated with ease nowadays, one can use the p-
value directly to decide which significance level is sufficient for the underlying
test.

Remark 3.1.9.

1. The significance level must not depend on p. By doing so, the general
philosophy of testing is jeopardized!

2. The p-value is not a probability rather than a random variable since
it depends on (Xi,...,X,). The expression

p=P(T(Xy,...,X,)>1t]| Ho),

in Definition 3.1.8 for the p-value of an one-sided test with test statis-
tic T' can be interpreted as an exceedance probability. The exceedance
probability is defined with respect to ¢t = T'(z1,...,x,) or more ex-
treme values in order to be close to the hypothesis H; while repeating
the random experiment under Hy:

p=P(T(X},....X,)>T(x1,...,2,) | Ho),

where (X1,..., X)) 4 (X1,...,X,). If instead of the explicit sample
(z1,...,2zy) the random sample (X1, ..., X,) is used, then

p:p(Xl,...,Xn) :P(T(Xi,,X;l) ZT(Xl,...,Xn) ’Ho,Xl,...,Xn).

3. For other hypotheses Hy, the p-values may look different. For example:

(a) A symmetric two-sided test has an acceptance region
By = [_tlfa/Za tlfoz/Q}
for Hy. Therefore
p=P(T(X1,....,.X)| >T(X1,...Xn) | Ho, X1,...,Xn) -
(b) A left-sided test with By = [t4, 00] results in
p=P(T(X],...., X)) <T(X1,...Xpn)|Ho, X1,...,Xn).
4. The behavior of the p-value can be evaluated using the following lemma

Lemma 3.1.10. If the distribution function F' of T is continuous
and monotonically increasing (e.g., the distribution 7" is absolutely
continuous with continuous probability density function for example),
then p ~ U0, 1].
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Proof The result will be shown for right-sided tests only.

P(p<al|Hy)=P(Fr(T(Xy,...,Xn)) < | H)
:P(FT(T(XI,,XTL)) 2 1—0{|H0)
=PU>1-a)=1-(1—-a)=a, ac]l0,1],

since Fr(T(X1,...,X,)) LU~ U|0, 1], and Fr is absolutely continu-
ous. O

Exercise 3.1.11. Show that for an arbitrary random variable X with
continuous and monotonically increasing distribution function Fy

Fx(X)~Ul0,1]
holds.

If the distribution of T' with domain {t1,...,t,}, t; < t;, is discrete for
1 < j, then the distribution of p is also discrete. In particular, it does
not hold that p ~ U[0,1]. In this case Fj,(z) is a step function which

k
touches the line y = u at the points uy = > P(T(X1,...,X,) = t;),
i=1
kE=1,...,n (cf. Figure 4).

Figure 3.4: Distribution of p for discrete T

Definition 3.1.12.

1. If the power G,(-) of a test ¢ with significance level « satisfies the
inequality

Go(F)>a, FeA,

then the test is called unbiased.
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2. Let v and ¢* be two tests with significance level o and power functions
Gr(-) and G}, (-). The test  is said to be more powerful than ¢* if its
power is larger:

Gn(F) > G:(F) VF € Ay

3. The test ¢ is called consistent, if G,,(F) 1 for all F' € A;.

Remark 3.1.13.

1. The power of a one-sided test is mostly larger than the two-sided
version:

Example 3.1.14. Consider the Gauss-test for the expected value of
the normal distribution if the variance is known. The two-sided test

Hy:p=povs. Hy:p+ po.

implies that the power function is given by

— 1 — 1o
Gulp) = @ (=210 + V) 40 (<2 gy - V).
The one-sided test ¢* of the hypotheses
Hy:p < povs. Hf :p> po

attains a power function given by

Grl) =@ (10 VL)

Since G, () = L G} () —2 1 both tests are consistent. In the

case above, ¢* is more powerful than ¢. Moreover, both tests are
unbiased (cf. Figure 3.1.14).

2. For testing interval hypotheses Hy : 0 € [a,b] vs. Hy : 6 ¢ [a,b] with
confidence level « the following methodology can be used: Test

(a) H§ : 0 > a vs. Hf : 6 < a with significance level a/2,
(b) HS: 60 <bvs. HY: 0 > b with significance level /2.

Hy is not rejected if H§ and Hg are not rejected. The probability for
a type I error is a. The power of those tests is generally low.

3. As a rule of thumb, it holds that an increase in parameters that need
to be estimated with respect to the test statistic leads to a decrease in
power.
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Figure 3.5: Power function of an one-sided and two-sided test for the ex-
pected value of a normal distribution.

3.2 Non-randomized tests

3.2.1 Parametric significance tests

This section provides examples of tests that can mostly be obtained from
their corresponding confidence intervals for the parameters of distributions.

1. Tests for the parameters of a normal distribution N '(u, o2)

(a) Test of p with unknown variance

o Hypotheses: Hy : p = po vs. Hy : pu % pp.
o Test statistic:

X, —
T(Xi,..., Xa) = =12 RO t,y | He
n

e Decision rule:
QO(Xl, .o 7—Xn) = 1, if ‘T(Xl, e ,Xn)’ > tnfl,lfoc/Q‘

(b) Test of o2 with known p
o Hypotheses: Hy: 02 =03 vs. Hy : 0%+ o3.
o Test statistic:

T(X1,...,X,) = —2~x2 | H

- n
with 52 =1 > (X — w2
e Decision rule:

PX1s e, X)) =1, 8 T(X1, o, Xn) 0 g2 Xt a2 -
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¢ Performance function:

(c) Test for 02 with unknown pu
o Hypotheses: Hy: 02 =03 vs. Hy : 0% #+ o3.
o Test statistic:

n—1)S2
T(X17"'7XTL) = (O_Q)n NX?L—l ‘HO?
0

__\2
where S,% = ﬁ > (Xi — Xn) .
i=1
e Decision rule:

P(X1, o X)) =1, (X1, X)X 10 X2 11 ag2) -

Exercise 3.2.1.
i. Find Gy (+) for the one-sided versions of the tests above.
ii. Show that the one-sided tests are unbiased, contrary to
the two-sided tests being biased.

2. Asymptotic tests
Considering asymptotic tests, the test statistic distribution can only
be estimated (for large n). In the same spirit, the confidence level «
is obtained. Its construction is mostly based on limit theorems.

The general methodology is introduced via the Wald test (named after
the statistician Abraham Wald (1902-1980)):

o Let (X1,...,X,) be a random sample and X; be i.i.d. for i =
1,...,n, with X; ~ Fyp, § € © CR.

o Hy:0=~0qvs. Hy:0 0 is tested. Let 0, = é(Xl,...,Xn) be
an asymptotically normal distributed estimator for 6. Let

N

0, — 6
=0 4y~ N(0,1) | Ho,
On n—o0
where 62 is a consistent estimator for the variance of én

n

The test statistic is given by
én(Xla s 7X?’L) — 90

A

On

T(X1,...,Xn) =
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e The decision rule is: Hj is rejected, if
IT(X1,..., Xn)| > 21_a/2, Where z1_q /0 = &' (1 — a/2).

This decision rule should only be applied for large n. The prob-
ability of a type I error is equal to «, since P(|T(X1,..., X,)| >
21 a2 | Ho) @ because of the asymptotically normal distri-
bution of T

The power function of the test is asymptotically given by

0o — 0 0y — 0
lim G,(0)=1— (Zl—a/Q + 0 ) + o (_Zl—a/Q + 2 ) )
n—00 g g

2

where 67 2

P
— O0°.
n—oo
Special cases of the Wald test are asymptotic tests for the ex-
pected value of Poisson or Bernoulli distributed random samples.

Example 3.2.2.

(a) Bernoulli distribution
Let X; ~ Bernoulli(p), p € (0,1) be i.i.d. random variables.
o Hypotheses: Hy:p=po vs. Hi : p # po.
o Test statistic:
Xn—po Y
T(X1,..., X,) = o AL
0, otherwise.

Under Ho, T(X1,...,Xn) -5 Y ~ N(0,1) holds.
n—00
(b) Poisson distribution

Let X; ~ Poisson(A), A > 0 be i.i.d. random variables.

o Hypotheses: Hy: A= Ao vs. Hy: XA # Ao.

o Test statistic:
JnXa=de i X, >0,
T(X1,...,X,) = VX "

0, otherwise.

Under Hy, T'(X1,...,Xn) Ay~ ~ N(0,1) holds.

n—oo

3. Two sample problems
Let

Yi=(X11,..., X1n,), Yo = (Xo1,...,Xop,), n=max{ng,na}

be two random samples. Assume that X;; are independent for j =
1,...,7%, Xij ~ ng, 1= 1,2.
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(a) Test for the equality of two expected values for normal
distributed random samples

e with known variance
Let Xi; ~ N (pi,02),i=1,2,5=1,...,n;. Here, 0%, 03 are
known and X;; are independent for all ¢, j.
The hypotheses are given by Hy : pu1 = po vs. Hy @ p1 # po.
Consider the test statistic

Xlnl - XQTLQ

2 2
o o3
ni no

Under Hy, T'(Y1,Y2) ~ N(0,1) holds. The decision rule is
given by: Hy is rejected if [T'(Y1,Y2)| > 21_q/2-

e with unknown but equal variances
Let X;j ~ N(pi,02),i=1,2,5=1,...,n;. Here, 07,03 are
unknown, o? = o5 and X;; are independent for all ¢, j.
The hypotheses are given by Hy : pi1 = po vs. Hy : p1 % po.
Consider the test statistic

b2 Sn1n2 ny + n2,

TV, Ys) =

where S,%lm is given by
1 ni - 2 n2 o 9
e |2 (¥ =)+ 3 (X~ X))
Jj=1 j=1

It can be shown that under Hy T'(Y1, Y2) ~ tpn,4+n,—2 holds.
The decision rule is then given by: Hj is rejected if |T'(Y1, Y2)| >
tnina—2,1—-a/2-
(b) Test for the equality of the expected value for linked
random samples

Let Yi == (XH, NN ,Xln) and Y2 == (Xgl, e ,Xgn), ny =ng =n,
Zj = X1j— Xoj ~ N(u1 — p2,0%), 5 =1,...,m,
be ii.d. with u; = E X;;, © = 1,2. The hypotheses are given by:

Ho : p1 = po vs. Hy : g # pe with unknown variance 2. The
test statistic is given by

T(Zy,...,Z,) = VA=l
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where

Under Hy, T(Z1,...,Zp) ~ tn—1 holds. The decision rule is given
by: Hy is rejected, if [T'(Z1, ..., Zn)| > t,_11-a/2-

(c) Test for the equality of variances for independent Gaus-
sian random samples
Let Y1 = (XH, ey X1n1) and YQ = (Xgl, oo 7)(277‘2) be i.i.d. with
Xii~N (;%012), where p; and 012 are both unknown. The hy-

potheses are Hy : 02 = 03 vs. Hy : 03 # o5. The test statistic is
given by
SQ
T(V1,Y2) = 52,
Iny
where
1

2

" — 2
— > (i = Xin,) i =1,2
=

Under Hy, T(Y1,Y2) ~ Fpy—1n,—1 holds. The decision rule is
then given by: Hj is rejected, if

T(YhYQ) §é {anfl,nlfl,a/% anfl,nlfl,lfa/Z} .

(d) Asymptotic two sample tests

e for Bernoulli distributed random samples
Let X;; ~ Bernoulli(p;), j = 1,...,n;, p; € (0,1), i = 1,2.
The hypotheses are given by Hy : p1 = p2 vs. Hj : p1 # po.
The test statistic is then given by

Xlnl *X2n2

Xlnl(lfxlnl) X2n2(1fx2n2)

T(Y1,Ys) = J T
0, Ylnl = y2n2 S {07 1}

Under Hy, T(V1,Ys) -2 Y ~ N(0,1) holds. The de-

niy,na—0o0
cision rule is then given by: Hj is rejected if |T(Y1,Ys)| >
Z1_q/2- This is a test with asymptotic confidence level a.
o for Poisson distributed random samples
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Let X;; be independent, X;; ~ Poisson(\;), A\; >0, i = 1,2.
The hypotheses are: Hy : A} = Ay vs. Hy : A\ # Ay and the
test statistic is given by:

Xlnl _X2n2

Xlnl X2n2

T(Y1,Y2) = ar g
07 y1711 = YQng =0

The decision rule is then given by: Hj is rejected, if |T'(Y7, Y2)| >
Z1—q/2- This is a test with asymptotic confidence level a.

Remark 3.2.3. Asymptotic tests must only be used for large samples,
since for small samples the, asymptotic significance level can not be
assured.

3.3 Randomized test

In this section, classical results of Neyman-Pearson with respect to the ter-
minology of most powerful tests are presented. Here, randomized tests play
a considerably important role.

3.3.1 Fundamentals

Let (X1,...,X,) be a random sample of i.i.d. random variables X; and
(z1,...,oy) a realization of (Xi,...,X,). Assume that that the sample
space (B, B) is either given by (R", Bgn) or (N, Byr) depending on whether
the distribution of X;, ¢ = 1,...,n is either absolutely continuous or discrete.
If the random variables X; are discrete, the domain is assumed to be Ny =
N U {0}. The domain is equipped with a measure u, where

" { Lebesgue measure on R, if B = R",

Counting measure on Ng, if B = Nj.
Thus

g(z)dx, in the absolutely continuous case,
[ oty = oz, the s
> zen, 9(), in the discrete case,

holds. Moreover, assume that X; ~ Fy, 6 € © CR™, ¢ =1,...,n (paramet-
ric model). For © = ©¢ U ©1, Og N O1 = 0 the hypotheses are Hy : § € O
vs. Hyp : 0 € ©1, which are tested via the randomized test
1, x € Ky,
@(x): ’76(0,1), QS‘EK()l, a::(wl,...,a;n),
0, x € K.
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If © € Ko, then a random variable Y ~ Bernoulli(vy) can be used in order
to decide whether Hj is rejected (Y = 1) or not (Y = 0).

Definition 3.3.1.

1. The power (or performance) function of a randomized test ¢ is given
by

Gn(0) = Gplp,0) =Ego(X1,...,X,), 0 € ©.

2. The test ¢ has the significance level o € [0, 1] if Gy, (¢, 0) < «, for all
0 € ©g. The number

sup G (i, 0)
[USCH

is called scope of the test ¢. It obviously holds that the scope of an «
confidence level test is smaller than or equal to .

3. Let ¥(a) be the set of all test with confidence level o. The test
1 € ¥(a) is called (uniformly) more powerful than the test p2 € V()
if Gp(p1,0) > Gplp2,0), 0 € O4, i.e., if p; has a larger power.

4. A test p* € U(«) is called (uniform) most powerful test in ¥(«) if

Gn(9*,0) > Gn(p,0), for all tests p € ¥(a), 0 € O1.

Remark 3.3.2.

1. Definition 3.3.1 1. is a generalization of Definition 3.1.4, since for
p(x) = I(z € Ky),

Gn(p,0) =Ego(X1,...,Xn)
=F ((Xl, C ,Xn) S Kl)
= Py (reject Hp), 0 € ©

holds.

2. A most powerful test ¢* in ¥(a) does not always exist. It only exists
under certain conditions on Py, 0, ©; and ¥(«).

3.3.2 Neyman-Pearson test for simple hypotheses

In this section, simple hypotheses of the form
H(): 9:00 VS. H1 : 9:91, (3.1)

where 6y, 01 € ©, 01 #+ 0y are considered.
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Therefore, O = {0y}, ©1 = {61}. Assume that Fp, has a probability density
function g;(x) with respect to p for i = 0, 1. From now on the notation Py =
Poy, Pr = Py, Bg = Egy,, E1 = Eg, will be used. Let fi(z) = [j—; gi(z;),
x = (z1,...,2y), © = 0,1 be the density of the random sample under H
resp. Hj.

Definition 3.3.3. A Neyman-Pearson test (NP test) of simple hypotheses
as in (3.1) is given by the rule
L, if fi(z) > K fo(a),
p(@) =pr(r) =19 v, if fi(z) = K fo(z), (3-2)
0, if fi(z) < K fo(x),
for constants K > 0 and v € [0, 1].
Remark 3.3.4.

1. Sometimes K = K (z) and v = y(x) are seen as functions of  and not
as constants.

2. The rejection region of the Neyman-Pearson tests ¢ is
Ki={z€B: fi(z) > K fo(x)}.
3. The scope of the Neyman-Pearson tests ¢ is given by

EO QDK(Xl, e ,Xn) = PO(fl(le- . ,Xn)
> Kfo(Xl, .. Xn))
+ P (fi(Xa, .. Xn) = K fo(Xi, ..., X0).

4. Definition 3.3.3 can be given equivalently by defining the test statistic

fi(z) .
T(x) = f;(x), x € B: fo(x) >0
00, x€ B: fo(x)=0.

Then the new test given by

1, ifT(z)> K,
or(x) =4 ~, ifT(z)=K,
0, if T(z) <K,

can be introduced, which is for Py- and P;j-almost all x € B equivalent
to pr. vr(x) = ¢k (x)Vx € B\ C holds, where C = {z € B: fy(x) =
fi(x) = 0} has Py- resp. P;- measure zero.

Using this new formulation, the scope of ¢ resp. ¢x is given by

E()@K :Po(T(Xl,,Xn) >K)+’7P0(T(X1,,Xn) :K)
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Theorem 3.3.5. (Optimality theorem) Let ¢x be a Neyman-Pearson
test for a K > 0 and v € [0, 1], then px is the most powerful test with
confidence level o = g g of its scope.

Proof Let ¢ € ¥(a), i.e., Ey (¢(X1,...,X,)) < a. In order to show that
px is more powerful than ¢, it is sufficient to show for simple hypotheses
Hy and Hiy, that E; o (X1,...,X,) > Ep o(Xy,...,X,). Define the sets:

Mt ={z € B:pk(x) > o)}
M~ ={x e B:ypk(x) < p(x)}
M~ ={zxc B:og(x) =)}

It obviously holds that

xe M = pg(r) > 0= fi(z) > K folz),
v€M™ = pg(@) <1= fi(z) < Kfo(z)
B=MtuM- UM~.

Hence
B (o (X, X) = 9(X, o X)) = [ (0x(@) = 9(@) fu(w)plda)
~([ ]+ [ ) exto) - ela) st
> [ (exla) = (@)K fo(@)u(de)
+ [ (onla) - o) K fo(a)n(da)

— [ (ox@) = @)K fo(w)u(d)
_ K(EO or(Xi1, ... X)) — By (X1, ... ,Xn))
> K(a—a)=0,

since both tests obtain confidence level a. Il

Remark 3.3.6.

1. As ~ does not appear in the proof, the same result holds for v(z) #
const.

2. The proof implies the inequality given by

|, (erl@) = ¢@) (f2(a) = K fo@) n(dz) = 0
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if K is constant, resp.
]E1 ((pK(Xl, . ,Xn) — (p(Xl, ey Xn)) Z
|, (enl@) = ¢(a) K (@) fo(a)pda)

in the general case.

Theorem 3.3.7. (Fundamental lemma of Neyman-Pearson)

1. For an arbitrary a € (0,1), there exists a Neyman-Pearson test ¢
with scope «, which is by Theorem 3.3.5 the most powerful « confi-
dence level test.

2. If ¢ is also a most powerful test with confidence level «, then ¢(z) =
K (x) for p-almost all z € Koy UKy = {z € B : fi(x) # Kfo(x)} and
px of part 1.

Proof 1. For ¢ (z) it holds that

1, ifze K ={x: fi(z) > K- fo(z)},
or(r) =19 7, ifz e Ko ={x: fi(z) =K - fo(x)},
0, ifexeKy={x: fi(x) < K- fo(x)}.

The scope of gk is given by
PO(T(XlavXn) >K)+’7P0 (T(leaXn) :K) =, (33)
where

fi(@1,zn) - yp >0
T(131,---,37n) :{ fo(x1,...,xn)’ 1 fO(xl, 7l'n) )

0, otherwise.

The goal is to find a K > 0 and a v € [0, 1], such that equation
(3.3) holds. Let Fy(z) = Po(T(Xy,...,X,) < z), z € R be the dis-
tribution function of T. Since T > 0, it holds that Fy(z) = 0, if
x < 0. Furthermore, Py(T(X1,...,Xyn) < 00) = 1, which means that
F~(a) € [0,00), a € (0,1). Equation (3.3) can then be rewritten as

1= Fy(K) + (Fo(K) — Fy(K-)) = a, (3.4)
where Fo(K—) = $11/(H[l( Fy(z).

Let K = I, (1 — a), then:
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(a) If K is a point of continuity of Fy, then Equation (3.4) is satisfied
for all v € [0, 1], for example for v = 0.

(b) If K is not a point of continuity of Fy, then Ey(K) — Fo(K—) > 0,
which implies that
a—1+ Fo(K)
V== = :
Fo(K) — Fo(K—)

Therefore, a Neyman-Pearson test with confidence level a exists.
2. Define M7 := {z € B : p(z) # ¢ (x)}. It has to be shown that
i ((KoUKy) N M7) =0
Consider

Eio(X1,...,Xn) —Eror(X1,..., Xy) =
Eo p(X1,...,Xn) —Eo o (X1,...,Xp) <

(¢ and @x are most powerful tests)
(¢ and @x are a-tests

with scope px = «)

:>/ (p—vK) (i — K - fo)du > 0.
B

In Remark 3.3.6 it has been shown, that
= o)~ K- fo)du <0

:>/ (o —vK)(f1 —K'fo)d/i:():/(@—w[()(fl — K - fo)dpu.
B

M*ﬁ(K@UKl)

pw(M#N(KoUK1)) = 0 holds if the integrand (¢ — g )(fi — K- fo) > 0
on (Ko U K;) N M#. We need to show that

(o — @) (fi — K fo) > 0 fiir # € (Ko U K1) N M7, (3.5)
Now,

fi—=Kfo>0= ¢k —¢>0,
fi—=Kfo<0=¢g—¢ <0,
holds, since
filz) > K fo(z) = ¢r(x) =1
and with ¢(z) < 1 we get ox(z) — (z) > 0 on M7,
filz) < K fo(x) = ¢r(z) =0
and with ¢(z) > 0 we get g (z) — o(z) <0 on M7,
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Thus inequality (3.5) holds and finally
i ((KoUKy) N M7) =0
O

Remark 3.3.8. If ¢ and px are most powerful a-tests, then they are Py-
resp. P1- almost surely equal.

Example 3.3.9. (Neyman-Pearson test for the parameter of the
Poisson distribution)
Let (X1,...,X,) be a random sample with X; ~ Poisson(\), A > 0, where
X, are ii.d. for ¢ = 1,...,n. The hypotheses Hyp: A= Mg vs. Hi : A=)\
need to be tested. Here

A .
gi(x) = e_/\lx—", x€Ng,i=0,1,
AT NP Vet
-n

;! (x1!- . mp)l)’

filz) = fi(xr, ... zn) = Hgi(mj) = H PR A A R E——
j=1 j=1

The Neyman-Pearson test statistic is given by

fo(z)
00, otherwise.

Tlor. ... 1) = {fl(m) — e—n(A1=X0) | ()\1/)\0)2j:1$j , ifx,..., 2, € Ny,

The Neyman-Pearson decision rule is given by

1, ifT(.fL'l,...,.%'n) > K,
O (T1, ... m0) = 7y, T (21,...,2,) = K,
0, ifT(x1,...,z,) < K.

Choose K > 0, v € [0, 1], such that ¢x has scope . In order to do so, solve
o= P()(T(Xl,. . ,Xn) > K) —|—7P0(T(X1, .. ;Xn) = K)
for v and K.

Po(T(Xl, ... ,Xn) > K) = Po(IOgT(Xl, . ,Xn) > IOgK)

)\ n
—n(A1 — o) + log (A;) 3" X; > log K)

(
(

ZX]' >AK) R

J=1
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where
| log K 4+ n- (A1 — Ao)

Ak
log i—é

i

if for example A1 > Ag. If A\ < Ag then replace > with < in the argument
above.
Due to the stability of the Poisson distribution

n
Z X ~ Poisson(ng),
j=1

holds under Hy. Thus choose K as the smallest nonnegative number with

Py (ZX] > AK) < q,

j=1
and set
o a— Po(Xjo Xj > Ak)
Po(Xjo Xj = Ak)
where

n Ag ;
Py (ZX]- > AK) =1 ZG*AO”M,
j=0

i=1 J!
- aon Ron) K
P Y Xj=Ag | = e 0
(j_l Ag!

Hence, the parameters K and « have been found and a Neyman-Pearson
test @i has been constructed.
3.3.3 One-sided Neyman-Pearson tests

So far Neyman-Pearson tests for simple hypotheses like H; : 0 = 6;, i = 0,1
have been considered. This section aims to introduce one-sided Neyman-
Pearson tests for hypotheses of the form Hy : 0 < 60y vs. Hy : 6 > 0.

In an initial step, a test for the following hypotheses is constructed: Let
(Xq,...,X,) be a random sample, X; i.i.d. with

X, ~Fype AN={Fy:0¢€ 0},
where © C R is open and A uniquely parameterized, i.e.,

0%9/=>F9%F9/.
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Furthermore, assume that Fy has a density gy w.r.t. the Lebesgue measure
(resp. counting measure) g on R (resp. Np). Then

f9(x): HQQ(xj)v $:($1,...,xn)
j=1

is a density of (Xi,...,X,) with respect to p" on B.

Definition 3.3.10. A distribution on B with density fy is a member of the
class of distributions with monotone likelihood ratio in T, if for all § < 0’
exist a monotonically increasing function h : R x ©2 — R U oo on Rand a
statistic T': B — R with the property

f@/(l’) _ T /
f@(x) _h(T( )7079)7

where

h(T(x),0,0") = oo, forall z € B: fa(x) =0 and fy(x) > 0.
The case fyg(x) = for(x) = 0 occurs with probability Pg- resp. Pgs zero.
Definition 3.3.11. Let Qg be a distribution on (B, B) with probability den-

sity function fy w.r.t. p. Qp is an element of the one-parametric exponential
family (6 € © C R open), if the density is given by:

fo(x) = exp{c(0) - T(x) +a(0)} - U(z), == (z1,...,25) € B,

where ¢(f) is a monotonically increasing function and Varg T'(X;, ..., X,) >
0,0 € 0.

Lemma 3.3.12. Distributions of the one-parametric exponential family
have a monotone likelihood ratio.

Proof Let (Qy be in the one-parametric exponential family with probability
density function

fo(x) =exp{c(d) - T(x)+a(d)} - l(x).

For 6 < ¢
T
fo@) _ exp {(c(8') —c(9)) - T(x) +a(d') — a(b)}
folx)
is monotone with respect to T, since ¢(0') — ¢(f) > 0 because of the mono-
tonicity of ¢(¢). Thus fp has a monotone likelihood ratio. O

Example 3.3.13.
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1. Normal distributed random samples

Let X; ~ N(u,08), i = 1,...,n be iid. random variables, with
unknown g € R and known variance 0§ > 0 (here p denotes the
expected value of X; and not a measure on R). The probability density
function of the vector X = (Xi,...,X,)" is given by

n
Lz
Ju@) = [T gu(e) = ]1 e
i=1 i=1 /2703
1 1 & )
= Xpe —=—5 » (z; —
= Xp —=5 Ty =2 ) mi+pn
0| (Bt - )|
i 2
n 2 €Z;
1 =
—exp (L5 Y wm-t5 ) P50
of = 208/ (2mol)n/? 20
- T~~~

Thus N (u,03) is a member of the one-parametric exponential family

with ¢(p) = & and T'(x) = i x;.
i=1

90

2. Binomial distributed random samples

Let X; ~ Bin(k,p) be i.id., ¢ = 1,...,n. The parameter p € (0,1)
is assumed to be unknown. The probability mass function of X =
(X1,...,X,)" is given by

fp(.%') :]Dp()(Z :xi,i: 1,...,7},)

n 3 z; _ \nk n
= H <k.>p“(1 — p)h ng1 Gl i p)n _ H <k>

=1 \ Vi Z 2 =1 \ Vi
(I—p)=t
n n k
= exp{(;xz) log (lp) +nk - log(1l —p) } Z_l_[l <x1>’
—— a(p) _——
T(x) <(p) I(z)
thus Bin(n, p) is a member of the one-parametric exponential family
with
c(p) = log <1fp)
and

n

T(z) = sz

i=1
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Lemma 3.3.14. If g is the Neyman-Pearson test of the hypotheses H :
0 =0y vs. H : 0 =0, then

1Ko UKy = i({a € B: fi(w) # K fo(w)}) > 0.

Proof Since 6y # 6; and because of the unique parametrization it holds
that fo # f1 on a set with p-measure greater than 0.

Assume that u(KoUK;) =0. Then fi(x) = K- fo(z) p-almost surely, which
means that

1= /Bfl(x)dx = K-/Bfo(x)d:c.

This yields K =1 and fi(x) = fo(x) p-almost surely, which is a contradic-
tion to the unique parametrization. O

Assume that (X1,...,X,) is an i.i.d. random sample, where X; have the
density gp, i =1,...,nand (X1,...,X,,) has the density fyp(x) =[1i-; g0(zi)
from the class of distributions with monotone likelihood ratio and a statistic
T(x1,...,%n).
Consider the hypotheses Hy : 0 < 6y vs. Hy : 6 > 0y and the Neyman-
Pearson test:

1, ifT(z)> K",

Ple(@) =14 o, i T(x) = K", (3.6)
0, if7T(x)<K*

for K* € R and v* € [0, 1]. The power function of ¢%. at 6y is given by
Gn(eﬂ) :E()(p;(* =F (T(Xl,,Xn) > K*) +’)/* - By (T(Xl,,Xn) = K*)
Theorem 3.3.15.

1. If o = Eg ¢j+(X1,...,X,) > 0, then the defined test is a most pow-
erful test of the one-sided hypotheses Hy vs. H; with confidence level
o.

2. For every confidence level o € (0,1) exists a K* € R and v* € [0, 1],
such that ¢} is a most powerful test with scope «.

3. The power function G, () of ¢j-.(#) is monotonically nondecreasing
in 6. If 0 < G,(0) < 1, then G, is even monotonically increasing.

Proof
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1. Assume 6; > 6y and consider the simple hypotheses H{, : § = 6 and
Hi 10 = 01. Let

(@) =9 7, fiz)=K fo(z),
0, fi(z) < K fo(x),

be the Neyman-Pearson test for H), H{ with K > 0. Since fp has the
monotone likelihood ratio with statistic 7', i.e.,

fi(z)
fo(z)

there exists K > 0, such that

= h(T(l‘), 90, 91),

{x:fl(a:)/fo(a:) > K }c {T(az) > K } with K = h(K*, 0, 01).
<K < K*

K is a most powerful Neyman-Pearson test with confidence level a =
Eo ox = Eo @f»-
a > 0 implies that K < o0, since K = oo would yield

0<a=Ejpxg < Po(T(Xl,,Xn) > K*)

(X, ..., Xp) B
=P (fo(Xl,---,Xn) B OO)

:PO(fl(Xla"'7Xn) > OafO(le"'aXn) :0)

= [ 1(h(@)> 0. fo(w) = 0)- fo(@)u(d)
= 0.

For the test 7. in (3.6) it holds that

Lo if fi(@)/fole) > K,
Pic-(@) =4 7 (@), if fi(@)/fole) = K,
0, if fi(x)/fo(z) < K,

where v*(z) € {7*,0,1}. Thus ¢j.. is a most powerful Neyman-
Pearson test for H) vs. H} (cf. Remark 3.3.4, 1. and Remark 3.3.6)
for an arbitrary 6; > 6y. That is why @7« is a most powerful Neyman-
Pearson test for HY : 0 = 60y vs. H{ : 0 > 6.

The same assertion is obtained by part 3. of the theorem for Hy : 8 <
0o vs. Hy : 0 > 0y, since then G,,(0) < G (0y) = « for all 6 < 6.
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2. See proof of Theorem 3.3.7, 1.).

101

3. It has to be shown that G,,(6) is monotone. In order to do so, let §; <

02 and show that a1 = G,(01) < G,(02). Consider the new, simple
hypotheses H{ : @ = 6, vs. H{ : § = 5. The test ¢j.. can similarly
to 1. be stated as a Neyman-Pearson test (for the hypotheses H{ and

HY), which is a most powerful test with confidence level ;. Consider

another constant test ¢(xz) = a3. Then ag = Eg, ¢ < Eg, @i+

Gr(62). This implies that Gy, (61) < Gr(02).

It is now to be shown that for G,,(6) € (0,1) it holds that G, (61) <
Gr(02). Assume that a3 = Gp(01) = Gr(02) and 0; < 0 for a; €
(0,1). Then ¢(z) = « is also a most powerful test for H and Hy'.

Theorem 3.3.7, 2. implies

p"({z € KoUKy : p(x) # ok-(2)}) =0
——

=

which is a contradiction to the construction of the test ¢%-.. This test

can not be equal to a; € (0,1) on Ko U Kj.

Remark 3.3.16.

O]

1. Theorem 3.3.15 can be applied to the Neyman-Pearson tests of the

one-sided hypotheses
Hy:0>60gvs. Hy:0 <6,
with the corresponding difference

60— —0
T —T.

Thus the most powerful « test also exists in that case.

2. It can be shown that the power function Gy, (¢, 8) of the most pow-
erful Neyman-Pearson tests on ©p = (—o0, ) attains the following

minimization property:

Gn(@}((*ve) S Gn(SO,Q) VSD S \I/(Oé), 6 S 00.

Example 3.3.17. Consider a normally distributed random sample (X7, ...

, Xn)

of i.i.d. random variables X; with X; ~ N(u,08) and known o2 > 0. The

hypotheses

Ho:p<povs. Hi:p>po
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are tested. Example 3.1.7 provides the test statistic

X, —
T(X1,...,Xn) = /oot HO

o0
where under Hy it holds that T'(X1,..., X,) ~ N (0,1). Hy is rejected, if
T(X1,...,Xn) > 2z1-0, with a € (0,1).

It will be shown that this test is the most powerful Neyman-Pearson test
with confidence level a. Example 3.3.13 implies that the probability density
function f, of (Xi,...,X,) is a member of the one-parametric exponential
family with

T(X1,....Xn) =) X,

=1
Then f, of (x1,...,2,) is also a member of the one-parametric exponential
family with respect to the statistic

Yn —H

T(X1,....Xp) = vn ,

since it holds that

_ BN,

fulw) = exp (g3 owi—op ) 1)
~ ==
éw)  p o aw

= 2

= oxp (B2 T 0 ) )

oy (1) 20’0

e~ ——

() T a(p)

The statistic T can be used in the construction of the Neyman-Pearson tests
(cf. Equation (3.6)):

1, ifT(x) > z1-q,
P+ () =1 0, i T(2)=z-aq,
0, ifT(z)<zi-q
(with K* = 214 and v* = 0). Theorem 3.3.15 implies that this test is

the most powerful Neyman-Pearson test with confidence level a for our
hypotheses:

Gn(WK*,Mo) =F (T(Xl, ... ,Xn) > 21,(1) +0-F (T(Xl, - ,Xn) < Zlfa)
=1-P(z1—q)=1-(1—-0a)=qa.
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3.3.4 Unbiased two-sided tests

Let (X1,...,X,) be a random sample of i.i.d. random variables with prob-
ability density function

n
fo(@) =[] go(x).
i=1
In the following, a two-sided test of the hypotheses
H()ZHZQ()VS. Hl:H%HO

is considered. There cannot be a most powerful test ¢ with confidence level
a forall @ € (0,1). Assume that ¢ is the most powerful with confidence level
a for Hy vs. Hi, then ¢ would be the most powerful test for the hypotheses

1. H),:0 =0y vs. H] :0> 0
2. Hi:0 =00 vs. H : 0 < 0.
By Theorem 3.3.15, 3. the power function would then be given by
1. Gp(p,0) < aon é < 6, resp.
2. Gp(p,0) > aon 0 < b,

which is a contradiction!
That is why the class of all possible tests is reduced to the class of unbiased
tests (cf. Definition 3.1.12). The test ¢ is unbiased if and only if

Gn(p,0) <« for 6 € Oy and
Gn(p,0) > a for 0 € O;.

Example 3.3.18.
1. ¢(x) = « is unbiased.

2. The two-sided Gauss test is unbiased, (cf. Example 3.1.7): G, (p, p) >
a for all p e R.

Assume that X; are i.i.d. The probability density function fy of (X1,..., X,)
is assumed to be a member of the one-parametric exponential family

fo(x) =exp{c(@) - T(x)+a(d)}-l(z), (3.7)
where ¢(f) and a(6) are continuously differentiable on © with
d(0)>0 and VarpT(Xy,...,X,) >0

for all § € ©. Let fy(x) be continuous in (z,6) on B x ©.
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Exercise 3.3.19. Show that the following relation holds:
a'(0) = - (OEyT(X1,...,Xp).
Lemma 3.3.20. Let ¢ be an unbiased test with confidence level « for
Hy:0=10pvs. Hy : 0 6.

Then

. a=Egp(X1,...,Xn) = Gn(e, b),

2. Eo [T(X1,...,Xn)o(X1,....Xp)]=a-EgT(Xy,...,X,),
Proof

1. The power function of ¢ is given by
Calp,0) = [ (@) fo(a)pn(da).

Since fy is in the one-parametric exponential family, G,, (¢, 0) is differ-
entiable (under the integral) with respect to 6 and hence continuous
in 6. Since ¢ is unbiased, it holds that

Gn(@v 90) <q Gn(@ve) >a, 0 7é fo
Thus G, (¢, 0y) = a and 0y minimizes G,,, which proves 1.

2. Since 6y minimizes G,,, it holds that

0=G(p,00) = /B p(2)(c'(00)T () + @ (60)) fo () p(da)

= (o) - Eo [p(X1,... Xn)T(X1,...,Xn)] +d'(60) - Grle, 00)
— (0) Eo [p(X1, -, Xa)T(Xs, ., X)) + ! (60)
Exerc. 3.3.19
(Bxere 3319 1(90) (Bo (¢ - T) — aBo T)
Therefore, Eg (¢T) = aEo T

O

In the following paragraph, a modification of the Neyman-Pearson test for
simple hypotheses of the form

H():@:QQVS.HiZ@:@l, 91#90,
is introduced. For A\, K € R, v: B — [0, 1], define
L if fi(z) > (K + AT(2)) fo(z),
orA(T) =1 y(x), if fi(z) = (K +XT(z))fo(x), (3.8)
0, if fi(z) < (K + AT'(2))fo(x),
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where T'(z) is the statistic in (3.7).

Let ¥(a) be the class of all tests that satisfy the conditions 1. and 2. of
Lemma 3.3.20. Lemma 3.3.20 implies that the set of unbiased tests with
confidence level « is a subset of W(c).

Theorem 3.3.21. The modified Neyman-Pearson test ¢ ) is the most
powerful « test in \Il(a)Nfor the hypotheses Hy vs. H] with confidence level

a=Eo g if oxx € Y(a).

Proof It has to be shown that E; gy > Ej¢ for all ¢ € ¥(a), resp.
Ei (¢ — @) > 0. It holds that

E: (o — ) = [ (pra(@) - 9l hla)a(do)

(Rem. 3.3.6, 2.))
> /B (Pr(@) — 9(@)) (K + NT(2)) fo(w)p(dz)

= K(Eyprr—Eop ) +A(Eo(prr-T) —Eo(p-T))
—_— =
=« =« akg T =a-EoT

=0,

since ¢, g\ € ¥(a). O

Consider the following decision rule, which will later be used in testing two-
sided hypotheses given by

H02(9:90VS. HI:G%HO,

1, if T(Jj) ¢ (Cl, 62),

ool = | T T = (3.9)
Yo, T (z)=co
0, ifT(x)€ (c1,c2),

for ¢ < co € R, y1,72 € [0, 1] and the statistic T'(x), x = (z1,...,2,) € B,
which is in the density (3.7). In the following it is shown that ¢. can be
rewritten as a Neyman-Pearson test.

For the density

fo(x) = exp{c(0)T (x) + a(0)} - (x)

assume that [(z) > 0, ¢(z) > 0, and a/(z) exists for 0 € O.
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Lemma 3.3.22. Let (Xi,...,X,) be a random sample of i.i.d. random
variables with probability density function fy(x),z € B, which is a member
of the one-parametric exponential family. Let T'(z) be the respective statistic
in the exponent of the density fy. For arbitrary real numbers ¢; < co,
71,72 € [0, 1] and parameters 0y, 01 € O : 6y # 0; the test . in (3.9) can be
rewritten as a modified Neyman-Pearson test ¢ » asin (3.8) with K, A € R,

v(z) € [0,1].
Proof If the notation

f@z(x):fl(x)v i:071)
is used then

fi(z)

fO(-’L‘) ~— —_———

and therefore
{reB: filr) > (K+\T(z)) folx)} ={x € B:exp(cT'(z)+a) > K+ \T'(x)}.
Can one find such K and X in R for the line K + A\, t € R, which

intersects or touches the convex curve exp(ct + a) exactly in ¢; and ¢y (if
c1 # ) orint = ¢y (if ¢ = o) resp.? As it turns out, such K and A can
always be found (cf. Figure 3.6).

Figure 3.6: Intersection of a line with a convex curve

Let y(z) =, for {x € B: T(x) = ¢;}. Then
{z:exp(cT(x)+a)> K+ \T(z)} ={x:T(z) ¢ [c1,c2]}
and

{z:exp(cT(x)+a) < K+ XT'(2)} ={x:T(x) € (c1,¢2)} .
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Remark 3.3.23.

1. The inversion of Lemma 3.3.22 does not hold, since for given curves
y = K+ Xt and y = exp(ct+a) the intersections ¢; and ¢z do not have
to exist. The line can be underneath the curve y = exp(ct + a).

2. The test ¢, does not explicitly use the parameters 6y and 6, which
makes it different from ¢ , since it uses the densities fo and fi.

In the following, the fundamental theorem for two-sided tests for the
hypotheses

H():@:@()VS. Hl:H;éHO
will be presented.

Theorem 3.3.24. Fundamental theorem for two-sided tests

Under the conditions of Lemma 3.3.22, let ¢, be a test as in (3.9), for which
Ye € \i/(a) holds. Then ¢, is the most powerful unbiased test with confidence
level a (and thus most powerful test in ¥(a)) for the hypotheses

H()IH:H(]VS. H1:97é90.

Proof Let 01 € O, 0; # 6y be arbitrary. By Lemma 3.3.22, ¢, is a modified
Neyman-Pearson test ¢y for a specific choice of K and A € R, but ¢x )
is a most powerful test in W(a) by Theorem 3.3.21 for Hy : 6 = 6y vs. H] :
0 = 0. Since ¢, does not depend on 61, it is the most powerful test in \i!(a)
for Hy : 6 = 6. Since unbiased tests with confidence level a are in ¥(a) it
only has to be shown that ¢, is unbiased. . is the most powerful test and
thus not worse than the constant unbiased test ¢ = «, i.e.

Gn(pe,0) > Gu(p,0) = a, 0 0.
Thus ¢, is also unbiased. O

Remark 3.3.25. It has been shown that ¢, is the most powerful test within
its scope. It should still be shown that for arbitrary o € (0,1) constants
c1,C2,71, %2 can be found, which satisfy Eg o, = «. The proof is rather
technical and will thus be omitted here. The following example shows how
c1,¢2,71,v2 have to be chosen.

Example 3.3.26. Two-sided-Gauss-test

Example 3.1.7 considers the following test for the expectation of a normally
distributed random sample X = (Xi,...,X,) with i.id. X; and X; ~
N (u,03) where 03 is known. The hypotheses

Hy:p=povs. Hy:p+ po
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are tested. The test ¢(z) is given by

pla) =1 (z €R": [T(@)| > 51-ap2)

where

T(z) = /o 1O,

o
It has to be shown that ¢ is the most powerful test with confidence level
o in ¥(a) (and thus the most powerful unbiased test). By Theorem 3.3.24
it has to be shown that ¢ can be rewritten as . with (3.9), since the n-
dimensional Normal distribution with probability density function f, (cf.
example 3.3.17) is a member of the one-parametric exponential family with
statistic

R

0o

Let 1 = =21 42, ¢2 = 21-ay2, 11 = 72 = 0. Then

17 if ‘T(I’)| > zlfa/Za
07 lf ‘T(flﬁ)| S 21704/2'

p(r) = pe(z) = {
The assertion is thus proven, since the power function G, (p,0) of ¢ as in
Example 3.1.7 implies, that ¢ is an unbiased test with confidence level «
(and therefore ¢ € ¥(a)).

Remark 3.3.27. So far, we only assumed that one parameter of the dis-
tribution of the random sample (Xi,...,X,,) is unknown. This has been
necessary in order to be able to introduce the above theory of most powerful
(Neyman-Pearson) tests for one-parametric exponential families. In order
to consider the case with more unknown parameters (as in the example of
two-sided tests for the expected value of a normally distributed random sam-
ple with unknown variance), a deeper understanding of randomized tests is
needed. If one is interested, the theory can be found in [26].

3.4 Goodness-of-fit tests

Let (X1,...,X,) be arandom sample of i.i.d. random variables with X; ~ F
for ¢ = 1,...,n. Goodness-of-fit testing tests the hypotheses

HO:F:FQVS. HliF#Fo,

where Fy is a given distribution function.
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A goodness-of-fit test has already been introduced in the lecture “Elemen-
tary probability theory”. The Kolmogorow-Smirnov test can be found in
Remark 7.6.8.

In this section, further non-parametric goodness-of-fit tests are introduced.
The first one, namely the y?-goodness-of-fit test, was introduced by K. Pear-
son.

3.4.1 x2%-goodness-of-fit test

The Kolmogorov-Smirnov test is based on the distance

Dy, = sup | Fy(z) — Fy() |
z€R

between the empirical distribution function of the random sample (X7, ..., X},)
and the distribution function Fy. In practice this test is usually too sensi-
tive, since irregularities in the random samples might lead to an unjustified
rejection of Hy. A solution to this problem is a test which coarsens the null
hypothesis Hy and is based on the y?-goodness-of-fit statistic.

Partition the domain of X; into r classes (aj,b;], j = 1,...,r with the
property

—co<a<b=a<b=...=a < b <.
Instead of X;,7 = 1,...,n, consider the so-called class sizes Z;, j =1,...,r,
where

Zj:#{i:aj<Xi§bj,1§i§n}.

Lemma 3.4.1. The random vector Z = (Zy,...,Z,)" is multinomial dis-
tributed with parameter vector

P = (pl: o 7p7"—1)T S [07 1]1“717

where
r—1
pj:P(aj < X3 Sbj):F(bj)—F(aj),jzl,...,T—l, przl_zpj-
j=1
Notation:
Z ~ M,_1(n,p).
Proof We show that for all numbers k1,... k. € Ng with k1 +...+ k. =n

. n!
P(Zi=ki,i=1,...,r)= 'plfl-...-pf" (3.10)
-

kl-... -k
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holds. Since X; are i.i.d. it holds that
n
P(Xj S (aij,bl-j], j= 1,...,77,) = HP(aij <X; < bij) :pllcl e 'pf’",
j=1

if the sequence of intervals (a;;,b;;]j=1,.n contains the interval (a;, b;] k;
times, i = 1,...,r. The formula (3.10) results from the law of total proba-
bility as a sum over all permutations of sequences (ai]., bi].] j=1,...;n O

In the sense of Lemma 3.4.1 new hypotheses w.r.t. the nature of F' are
tested:

Hy:p=po vs. Hi :p# po,

where p = (p1,...,pr—1) " is the parameter vector of Z, and py = (po1, - - -, Posr—1) "

r—1
(0,1)"! with 3" po; < 1. In this case,
i=1

A():{FEA:F(bj)—F(aj):pgj, jZl,...,T—l}
and A; = A\ Ag holds, where A is the set of all distribution functions. In
order to test Hy vs. Hy, the Pearson test statistic
T

1) = Y =)

j=1 npoj

where x = (z1,...,2y,) is an explicit sample and z;, j = 1,...,r the corre-
sponding class sizes. Under Hy,

EZj:npoj, j:1,...77',

holds and thus Hy is rejected, if 7,,(X) attains higher values than expected.
The following theorem shows that 7'(X7y, ..., X, ) is asymptotically (for n —
o) x2_;-distributed, which leads to the following goodness-of-fit test (>
goodness-of-fit test):

Hj is rejected, if Ty, (x1,...,2,) > X%—l,l—a‘
This test is named after its inventor Karl Pearson (1857-1936).

Theorem 3.4.2. Under Hy,

lim Py (Ta(X1,- - Xa) > X2o110) =, a € (0,1),

n—oo

holds, which means the y2-Pearson test is an asymptotic test with confidence
level a.

S
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Proof Denote by Z,,; = Z; (X1,...,X,) the class sizes of the random sam-
ples (X1,...,X,). By Lemma 3.4.1

Zn = (Zniy. oy Znyr) ~ My_1(n,po) under Hy

holds. Moreover, E Z,,; = npy; and

npoj (1 — poj), @ =7,

COV(ZnZ‘7 an) = ) )
—NPoiPoj, iF ]

should hold for all 2,57 =1,...,r. Since
an:ZI(aj<Xi§bj), j:1,...,7“,
i=1

it holds that Z, = (Zu1,...,Znr—1) is the sum of n ii.d. random vectors
with Y; € R"™! with coordinates Yij=1(a; < X; <bj),j=1,...,r—1.
Thus, the multivariate limit theorem (which is proven in Lemma 3.4.3) yields

n
Y; —nEY;
no \/ﬁ o \/ﬁ n—00 ’ ’

with (0, K) a (r — 1) dimensional multivariate normal distribution (cf.
[33, Example 3.4.5.3.] with expectation vector 0 and covariance matrix
K = (afj), where

9 { —PoiPoj, i # 7,

poi(1 —poj), i=j
for i,j =1,...,r — 1. This matrix K is invertible with K~! = A = (a;;),

1 . .
oo i+
) )
az]:{ Por

S P
p0¢+p0r’ t=17J

Moreover, K (as a covariance matrix) is symmetric and positive semi-definite.
Results from Linear Algebra ensure the existence of an invertible (r — 1) x
(r — 1) matrix AY2 with A = AY2(AY?)T. Thus,

K=A"1—= ((AI/Q)T)—I . (AI/Q)—I.
If (AY%)T is applied to Z/, we get

(AI/Z)T . Z?”L i> (A1/2)T . Y,

n—o0
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where
(Al/Q)T Y ~ N (07 (Al/Q)T K- A1/2) :_/\/'(O7 Ir—l)

by the properties of the multivariate normal distribution. Furthermore, the
continuous mapping theorem, which has been introduced in [32, Theorem
3.4.4.], implies that

d d
Yo =2 Y = o(Yn) — oY)

for random variables {Y,,}, ¥ € R™, and continuous mappings ¢ : R — R.
Repeatedly applying the continuous mapping theorem implies that

‘(141/2)1—27/1

L @) Ty =Rl

n—oo

It needs to be shown that

2
To(X1,...,X,) = ‘(AVQ)TZ’

Now,

(A7) 2| = ((AY2) T Z) T (AT 2)
=270 AV (AT 7l = 7T AZ),

n

I

j=1Poj \ T Por ;=5 55
2
—1 —1
_ S (Znj — npoj) n TZ (Zm . )
= ] j
jfl npo_j pOT‘ j:1 n
-1
_ s (an npoj) n (an ~ o >2
- T
j=1 npo; Por
r 2
Znj — NPoj
= (m—]):Tn(le"'aXn)a
j=1 npoj

since

Z Zn] =n—- TL’I‘7
Zpoj' =1-—por.
j=1
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Lemma 3.4.3. Multivariate central limit theorem
Let {Y,,}nen be a sequence of i.i.d. random vectors with EY; = p € R™
and covariance matrix K € R™*™, Then

n
leﬁ e
1=

Proof Let Y; = (Yj1,...,Yjm)". By the continuous mapping theorem for
characteristic functions the convergence in (3.11) is equivalent to

on(t) =2 o(t), teR™, (3.12)
where
. L Y. — nu;
on(t) = EeitSn — | exp{ Zt 1+ \/ﬁnj My } :

is the characteristic function of the random vector

"
and
o(t) = et Kt/2

is the characteristic function of the A'(0, K) distribution. The function ¢y, (t)
can be rewritten as

pn(t) =B exp{ iy =}t = (t1,... ) €R™,

where
m
Li=) t;(Yy — ny)
j=1
is a random variable with
EL; =0,
VarL; = E Z t;(Yij — 1) Yig—p )te | =t Kt, i€N.

k,j=1
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If t" Kt = 0, then L; = 0 almost surely for all i € N, which implies ¢, (t) =
©(t) = 1. Thus the convergence in (3.11) holds.
If t" Kt > 0, then ¢, (t) is the characteristic function of a random variable

zn:Lz‘/\/’ﬁ
i=1

evaluated at 1, and ¢(¢) is the characteristic function of a one-dimensional
normal distribution AV(0,¢" Kt) evaluated at 1. The central limit theorem
for one-dimensional random variables then implies (cf. [33, Theorem 5.2.2.]

)

Z \/ﬁ == L~ N(0,t" Kt)

and thus

on(t) :SO(Z?ZILZ-/\/H)( ) — er(l) = (1),

n—oo
which proves the convergence in (3.11). O
Remark 3.4.4.

1. The method of reducing a multidimensional convergence to a one-
dimensional convergence, using linear combinations of random vari-
ables, as in the proof above is called Cramér-Wold device.

2. The y?-Pearson test works asymptotically for large random samples.
Naturally the question of how big n is arises. In this case, the “rule
of thumb” is given by: npg; should be larger or equal to a, with
a € (2,00). For a larger class number, i.e., r > 10, even a = 1 is
sufficient. In the following, it is shown that the x? goodness-of-fit test
is consistent.

Lemma 3.4.5. The x?-Pearson test is consistent, i.e., for all p € [0, 1]’"*1, P+
Po
lim P, ( To(X1, ..., Xn) > X%,M,a) =1

n—o0

holds.

Proof Under Hj, the strong law of large numbers implies

n

7 ZI(aj<Xi§bj)
=l 25 El(aj < X1 < bj).
n n n—00
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Choose j such that p; # po;. Then

Zoi — )2 7. 2
Tn(le...,Xn) > M > n( nJj _p0j> a.s, 00,
npo;

~n(p;—poz)?

and thus

Py (Ta(X1,- o Xn) > xaa) 2501

n—oo

3.4.2 x2-goodness-of-fit test of Pearson-Fisher

Let (Xy,...,X,) be a random sample of i.i.d. random variables X;, i =
1,...,n. The goal is to test whether the distribution function F' of X; is an
element of a given parametric family

Ao={Fy:0€0}, O©CR™
Let a;,b;, i =1,...,r be given with m <7,
—o<a<b=a<b=...=a <b <
and
Znj=#{Xs,i=1,....n:a; < X; <bj}, j=1,...,r
Zn = (Zn1s. s Znr) "

Lemma 3.4.1 implies Z ~ M,_1(n,p), p = (po,.--,pr—1)" € [0,1]""1. Under
Hy : F € Ay, p =p(0), 8§ € © C R" holds. Presume p € C(0). By
coarsening the hypothesis Hy the new hypotheses:

Ho:pe{p®):0€0©} vs. H :p¢ {p):60c06}

are to be tested. In order to test these hypotheses, the x2-Pearson-Fisher
test is constructed as follows:

1. Find a maximum-likelihood estimator 6, = 6(X1,...,X,) (weakly
consistent) for €, such that 0,, n§>oo . Here, {én}neN is asymptotically
normal distributed.

2. Construct the plug-in estimator p(6,,) for p(f).

3. For the test statistic

AN\ 2
A " (Z”j - npj(g)) d
(X1, Xn) = A S~
n( 1 n) = npj(e) n—>oo77 Xr—m—1

holds under Hy and certain assumptions.
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4. Hy is rejected, if Tp,(X1, ..., X,) > Xr—m—1,1—a- This is an asymptotic
test with confidence level a.

Remark 3.4.6.

1. The x2-Pearson-Fisher test assumes that the function p(f) can be
stated explicitly, but 6 is unknown. That means for every class of
distributions A, the function p(-) has to be calculated.

2. Why is T,, able to discriminate between the hypotheses Hy and Hy?
The strong law of large numbers implies

1 1 A »
~Zni —0i(0n) = =Zn; —pi(0) — (p;(0,) —p:(0)) — 0,
5 omi pj(On) o om p;(0) — (pj(0n) — p;i( ))n_mOO
—_—
2o S0

if ,, is weakly consistent and p;(-) a continuous function for all j =
1,...,7.

Thus, under Hy Tn(Xl, ..., X,) is supposed to take relatively small
values. A significant deviation of this behavior is is supposed to lead
to the rejection of Hy.

For the distribution Fy of X; the following regularity properties are assumed
to hold ( cf. Theorem 1.2.22).

1. The distribution function Fy is either absolutely continuous or discrete
for all § € O©.

2. The parametrization is unique, i.e. 6 # 0; < Fy # Fy,.

3. The support supp L(z,0) = {z € R : L(z,6) > 0} of the likelihood
function given by

(2. ) Py(X1 =), in case of discrete Fy,
X =

fo(x), in the absolutely continuous case,
does not depend on 6.

4. L(x,60) is assumed to be three times continuously differentiable and
fork=1,...,3 and i1,...,ix € {1,...,m},

06, T G, a0, Z/LM

% k=1
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5. For all 0y € © there exist a constant ¢y, and a measurable function
9o, : supp L — R, such that

93 log L(x,0)

< —_
89“69128923 > 9o, (LL'), |9 90‘ < Chy

and
Eq, gGo(Xl) <00

Define the Fisher information matriz by

1(6) = (E [alogg((;(l,a)aloggégl,e)b : (3.13)
' J 1,5=1

Theorem 3.4.7. Asymptotical normal distribution of consistent
maximum likelihood estimator én, multivariate case m > 1

Let X1,..., X, beii.d. with likelihood function L, which satisfies the regu-
larity assumptions 1.-5. Let I(#) be positive definite for all § € ® C R™ and
6, = é(X 1,...,Xpn) be a sequence of weakly consistent maximum likelihood
estimators for 6. Then

Vb, —0) —% N(0,171(9)).

n—oo

Without proof (cf. proof of Theorem 1.2.22).

For the coarsed hypothesis Hy : p € {p(#),0 € O} construct the piecewise
constant likelihood function

L(z,0) = p;(0), if x € (aj, b;].

Then, the likelihood function of the random sample (z1,...,x,) is given by

L(xla"'axnv Hpj 931, . )

= log L(x1,...,2,,0) = ZZj(xl, ooy @p) - log p;(6).

For the maximum likelihood estimator, we get

0, = 0(x1,...,2,) = argmaxlog L(x1, ..., o, 0)
0eO
- opi(0) 1 .
= Zi(Z1,. .. )=t - ——=0, i=1,...,m.
j; J 89, pj(g)

Furthermore, the property > 7_; p;(#) = 1 implies

ap] _ " Zj((l)l, R ,.In) - npj(g) ap](e) _
Z > 2;(6) o,

=1
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Lemma 3.4.8. In the case above, I(f) = CT(6)-C(#) holds, where C(#) is

a (r x m)-matrix with elements

_ Opi(9) 1
ii(0) = 99, \/pi(0)

Proof

dlog L(X1,0) Olog L(Xy,0)| ZT: dlogpy(#) 9logpi(h)
0 0; 0; = 00,
Ope(0) 1 Opp(0) 1
= . . (0
Z (99 pe(0) 905 pi(9) Pe(f)

= (OTw) .C(0)).

v

- pr(9)

since

log L(X1,6) Zlogpj € (aj,b5]) -

Theorem 3.4.7 implies

Corollary 3.4.9. Let 6, = é(Xl, ..., X,) be a weakly consistent maxi-
mum likelihood estimator of # in the coarsened model, which satisfies the
regularity assumptions 1.-5. Assume that the Fisher information matrix
1(0) = CT(0) - C(0) is positive definite for all § € ©. Then, § is asymptoti-
cally normal distributed

Vi (6, —0) =5 ¥ ~ N (0,170)) .

Theorem 3.4.10. Let én be a maximum likelihood estimator in the coarsed
model for #, which satisfies all assumptions of Corollary 3.4.9. The test
statistic

T , e (D ))2
Tn(Xl,...,Xn):Z (ZJ(Xl""’X”A) np;(0n))
=1 np;(6n)

is asymptotically x2_, _,-distributed under Hy:
Yy Y Xr—m—1

lim P, (Tn(Xl, LX) > XE_m_M_a) - a.

n—oo
Without proof (cf. [27]).

This theorem implies that the y?-Pearson-Fisher test is an asymptotic test
with confidence level a.
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Example 3.4.11.

1. x%-Pearson-Fisher test of the normal distribution

Let (X1,..., X,) be a random sample. We test, whether X; ~ N (u, 0?).
Define

0= (u,0°) €O =R xR,.

Let {(aj,bj]}j=1,...r be an arbitrary partition of R in r disjoint inter-
vals. Recall that density of the one-dimensional N (u, 02)-distribution

is given by
LS TC= 0
) = e 2 o
fo(z) s
and define

b;
p;(0) = Py (X1 € (aj,b;]) :/ fo(x)dx, j=1,...,r
aj
with class sizes

Zj = #{Z : X, € ((lj,bj]}.

The goal is to find the maximum-likelihood estimator in the coarsed

model
3pj(9) B bj g B 1 /bj T— [ _l(zw)z
O oy g s, e e T
Op;(0 bi 9
aj(f(?) :/ go2 fo@)d
aj

1 11 1(azn
‘mﬁ_?wﬁ

1 _1(z=n\? x — p)?
+¢ﬂe2(“)'0%ﬂ@>]m
bj bj
=gz [, oo+ g [ = P et

The necessary conditions for a maximum are
b
, [ xfo(x)dx .,
szaijb_ —szlzjz(%
j=

J

=1 ff@(x)dx \:,_/
by
L Jeeenee
ﬁzzjj b, _ZZj:07
=t J fo(x)dz =

a; =n
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which results in the maximum likelihood estimators /i and 2 for

and o2
bj bj 9
L J @ fow)dx L J (@ = p)* fo(x)da
=Xl P2 4
=T fe(a)da 7= [ fo(z)dz
aj aj

Construct an approximation of /i and 62 for r — oo as follows: If
r — oo (and thus n — o00), then b; — a; is small and by the simple
quadratic rule

bj
/a zfo(z)dx =~ (b; — a;) yj fo(y;),

j
bj
/ fo(z)dz = (b; — a;) fo(y;),
aj
holds, where y1 = b1, ¥y, = b,_1 = a,, and
yj:(bj+1+bj)/2, j=2,...,r—1

Thus, for the maximum likelihood estimators /i and &2

i 2=
j=1
1 T
N ~\2 ~
2“&2(%"#) Z; =35
j=1

and

2. x2-Pearson-Fisher test for the Poisson distribution

Let (X1,...,X,) be a random sample of i.i.d. random variables. We
aim to test, whether X; ~ Poisson(A), A > 0. Set § = X\ and © =
(0, +00). Coarsing © leads to

—o=a1< b =ar< by =a3<...<b_1 =a, <b,=400.
\6/ \,1/ —~—
= = =r—2
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Then,
oy M

pi(A) =P\ (X1 =37-1) Am7 j=1,...,r—1,

oo _)\7,

i=r—1
dp;(A) A N , N2 N AL (]—1

= - +(—1)— e "=e AN |
\ G- UGy TERA

7—1

:p](A) ()\_1> j:]-a 7T_17
dr
p = > pilA ( —1).

i>r—1

Next, we have to solve the maximum likelihood equation

i 2 a0 (5
O;ZJ'(A_OJFZT pr(A) '

If 7 — oo, then r(n) exists for every n with Z,.,y = 0. Thus, for
r>r(n)

r—1 1 n o
*ZU— 1)ZJ = *ZXJ =Xn
=1 "=

Hence, the y?-Pearson-Fisher test rejects Hy, if

P r (Zj_nP)\(Yn))Q

2
n = — 9 > Xr—21—a-
= (X))

3.4.3 Shapiros goodness-of-fit test

Let (X1,...,X,) be a random sample of i.i.d. random variables X; ~ F.
The hypotheses

Hy: F € {N(p,0?) : p€R, o%> 0} vs.
Hl:F¢{N(Ma02)7M€Ra 02>0}
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are to be tested. The y2-tests of sections 3.4.1 - 3.4.2 are asymptotic, which
makes them impractical for small sample sizes.

The following test is more suitable for testing Hy, if only a small sample is
available.

Consider the order statistic X(y),..., X(), e, X1) < Xg) < ... < Xy,
and compare their correlation to the mean of the corresponding order statis-
tic of a N'(0,1)-distribution. Let (Y3,...,Y,) be a random sample of i.i.d.
random variables with Y3 ~ N(0,1). Define a; == EY;), i = 1,...,n. If the
empirical correlation coefficient p, x between (a1, ..., a,) and (X, ..., X))
is close to 1, the random sample is normally distributed. In the following,
the approach above will be formalized.

Let b; be the expected value of the i-th order statistic of a N'(u, 0?)-distributed

random sample of i.i.d. random variables Z;, with b; = E Z;y, i =1,...,n.
It holds b; = p+o0a;, i = 1,...,n and considering the correlation coefficient
yields

S0 . (3.14)

~

Since p is invariant with respect to linear transformations and

n n n
Y ai=) EY;=E (ZY) =0,
i=1 =1 1=1

=0
n
> a; (X(z) — Yn) Z; azX(z) - Xn Z a;
pux = pox = — =
\/Za? > (X - X,) ﬁa% > (X - X,)
i=1 = i=1 i=1 =1
2, 4 X
n n — \2
\/E azz > (Xi— Xn)
=1 =1
holds.
The test statistic is then given by
2 aiX ()
T, = =1 - (Shapiro-Francia test)
\/z a? 3. (X; - X,)
=1 i=1
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The values a; are known and can be found in tables or by using statistic
software. Note that |T,| < 1.

Hy is rejected if T;, < gpo, Where g, o is the a-quantile of the distribution
of T),. Those quantiles can also be found in tables or by using Monte-Carlo-
Simulations.

Remark 3.4.12. Another famous test of this kind is obtained by replacing
the linear transformation b; = p + oa; with another linear transformation
given by

T —
(ah,....a) =K (ay,...,an),

»'n

where K = (k;;)}j_; is the covariance matrix of (Y(l), . ,Y(n)) with

k?”:]E<YV(Z)—aZ) (Y(j)—aj>, i,jzl,...,n.

The constructed test is called Shapiro- Wilk test.

3.5 More nonparametric tests

3.5.1 Binomial test
Let (Xi,...,X,) be a random sample of i.i.d random variables with X; ~

Bernoulli(p), where p € [0,1]. We want to test the hypotheses

Hy:p=mpovs. Hi:p+#po

The test statistic is given by

n

To=>_ X 7 Bin(n, po),
=1

and Hj is rejected if

Tn §é [Bin(napO)a/Qv Bin(napo)l—a/Q]v

where Bin(n, p), is the a quantile of the Bin(n, p) distribution

For different Hy, like p < po (p > po) the rejection region has to be adjusted.
The quantiles Bin(n, p), can also be found in tables or by using Monte-Carlo
simulations. If n is sufficiently large, the quantiles can be approximated
using the central limit theorem of DeMoivre-Laplace:

T, — npo T — npo T — Npo
P(T,<z)=P = < ~ | ——).
" (\/npo(l —po) ~ /npo(l —po) ) n—ee npo(1l — po)
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This yields

_ Bin(n,po)a — npo
s
npo(1 — po)

= Bin(n, po)a ~ \/npo(l — Do) - Za + NP0

Using Poisson approximation (for n — oo, npg — \o)

Bin(n, po)a 2 & Poisson(Ao)q /2,

Bin(n, po)1—a/2 & Poisson(Ao)1 a2,

holds if )\0 = npo.

Question: Can the symmetry of a distribution be tested by using the bi-
nomial test?

Let (Y1,...,Y,) be a random sample of i.i.d. random variables with distri-
bution function F. The hypotheses are

Hy : F is symmetric vs. Hy : F' is not symmetric.

A symmetric distributions median is around 0. Thus the hypothesis Hy is
coarsed, and

H): F710,5) =0 vs. H : F710,5) #0
is tested instead. More generally, for § € [0, 1] we consider
Hg : F7Y(B) = vs. HY : F7H(B) # 5.

H{ vs. HY{ is tested by using the binomial test: Define X; = I (Y; < v3).
Under H{

X; ~ Bernoulli(F(y3)) = Bernoulli(3).

holds. For a1 = —o0, by = 74, a2 = by, by = 400 define two disjoint classes
(a1, b1], (az,bs] in the sense of the x2-Pearson test. The test statistic is given
by

=1

and the hypothesis F~1(3) = 75 is equivalent to H{’ : p = 3. In this case,

the decision rule states that Hy' is rejected, if

T ¢ [Bin(n, B)a/a, Bin(n, 8)1 o] -

This is a test with confidence level a.
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3.5.2 Randomness iteration tests

Sometimes in biological research a sequence of Os and 1s is tested for its
randomness or the existence of bigger clusters within those numbers. This
hypothesis can be tested statistically by using the so-called iteration tests .

n
Let (Xi,...,X,) be a random sample, X; € {0,1}, > X; = n; the total
i=1

number of ones, no = n — ny the total number of zeroes and ni,no prede-
termined. An exemplary realization of (X1,...,X,) with n = 18, ny; = 12
could be

xz = (0,0,0,1,1,1,0,1,1,0,1,1,1,0,1,1,1,1).
The following hypotheses are to be tested:

Hj : every sequence z is equally likely vs.

H; : There are preferred sequences (clustering).

Let

[
[

el G

ni

is a Laplace space.
Let

T, (X) = #{Iterations in X} = #{Subsequences of zeros or ones}
= #{Change spots from 0 to 1 or from 1 to 0} + 1.

For z =(0,1,1,1,0,0,0,1,0,1,1,1,0,0), T,,(x) =7 =6 4 1 holds.
T,,(X) is used as a test statistic for Hy vs. H; as follows. Hj is rejected, if
T(z) is small, i.e. T,(x) < F:Fnl (o). This is a test with confidence level a.

The question arises, how the quantiles Fr ! can be calculated?
Theorem 3.5.1. Under H
1.
2002 FE— 9
() ’
CONCENHCEICT) i

n )
ny

P(T,=k) =
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2.
ET, =1+ 24"
n
3.
2ning(2ning — n
Var (1) =m0
holds.
Proof

1. Assume that k& = 2i (the uneven case works analogously). How can 4
clusters of ones be selected? The number of those possibilities is equal
to the number of ways, how ny particles can be distributed to 4 classes.

0100 . .. |0] (1).

This is the number of possibilities, how i — 1 partitions can be dis-
tributed on nq — 1 positions, which is equal to ("21:11) The same holds
for the zeroes.

2. Let Y} = I{Xj_l % Xj}j:Q ne Then,

ET,(X)=1+> EY; =1+ P(X;-1+# X))

and the probabilities can be rewritten as

2(n—2) 5 (n—12)!' -
P (Xjfl + Xj) = (n;L_>1 =92. (n— _("1;! N!(ni—1)!
_ 2mn—m)
(n—1)n
o 2’01’02
Con(n—1)
Hence,
2n1ng nino
ET, =1 S22 449 ‘

Exercise 3.5.2. Proof the third assertion.
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Example 3.5.3 ( Wald-Wolfowitz test). Let Y = (Y1,...,Yn,), Z = (Z1,..., Zn,)
be two independent random samples of i.i.d. random variables, Y; ~ F,
Z;i ~ Q.

Hy: F=Gvs. H : F#G.

is to be tested. Define (Y, Z2) := (Y1,...,Yn,, Z1,..., Zn,) and let X be the
sample variables of (Y,Z), i = 1,...,n, n = ny + na. Consider the order
statistic X(’i), 1=1,...,n and set

X 1, ifXEZ.):ijorajzl,...,nl,
;=
0, ifXEi):ZJ' foraj=1,...,ns.

Under Hy, the sample values in (Y, Z) are well distributed, i.e., every com-
bination of 0 and 1 in (Xi,...,X,) is equally likely. Thus, the random-
ness iteration test can be applied to test Hy vs. Hy. Hy is rejected if
Th(z) < FT_nl(a), x=(x1,...,%n).

The quantiles of F, can be calculated directly if n is sufficiently large, since

n1

— pe (0,1
ot o PEOD)

implies that T;, is asymptotically normal distributed.

Theorem 3.5.4. Under the assumptions above

ET,

n—oo N,

1
lim —VarT, = 4p*(1 —p)?,

n—00 N

T, —2p(1—p) 4 ) ny
— - 7 Y ~N(0,1), if —pe (0,1
2y/np(l —p) n—oo 0,1), i ny + ng p€(0,1)

holds. Thus, the quantiles for 7T, can be approximated for large n by

T, — 2np(1 —p) < T 2np(1 —p))
2v/np(l —p) ~ 2y/np(l—p)

a=P (T, < Fpl(a)) :P<

® <FTnl(a) — 2np(1 p))
2y/np(1 —p)
Fp(a) = 2np(1 - p)
2y/np(1—p)

-1
z=Fp " ()

= 2o N

which implies

Fp () ~ 2np(1 — p) +2Vnp(1 —p) - za

ni
ni+nz

In practice p = is used for p.



Chapter 4

Linear Regression

In Section 6.7.3 of the lecture “Elementary probability theory and statistics”,
(cf. [33]) a simple form of linear regression was introduced via

Y, =00+ fizi+e, i=1,...,n

Using matrix notation, this can be rewritten as Y = X + ¢, where Y =

(Y1,...,Y,) " is a random vector and
1 T1
1 2o
X =
1 x,

is a n x 2 matrix, which contains the so-called predictor variables x;,i =
1,...,n and is called design matriz. Further, f = (Bo,B1)' resp. ¢ =
(e1,... ,an)T is the so-called parameter resp. error vector. With respect to
the error vector, we assume that e ~ N(0,Z - 0%) is multivariate normally
distributed.

In multivariate linear regression, i.e. not simple simple linear regression, an
arbitrary (n x m) design matrix

X = (xij)zzl,. “n
Jj=1,....m
and a m-dimensional parameter vector 8 = (B1,...,0m)" are permissible

for m > 2. That means we consider
Y =XB+e¢, (4.1)

where £ ~ N (0, K) and K an arbitrary covariance matrix. In general, this
choice of K can result in the errors not being independent which means that
K # diag (0%,...,02).

128
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The goal of this chapter is to construct estimators and tests for 5. But
before getting into detail about this, properties of the multivaritate normal
distribution need to be discussed.

4.1 Multivariate normal distribution

In the lecture notes of “Elementary probability theory and statistics” (cf.
[33]) the multivariate normal distribution was introduced in example 3.4.5
as follows:

Definition 4.1.1. Let X = (X1,...,X,)" be a n-dimensional random vec-
tor, p € R", K a symmetric positive definite (n x n) matrix. X is multi-
variate normal distribution with parameters p and K (X ~ N (u, K)), if X
is absolutely continuous distributed with probability density function

1 1 1 _
Ix (@) = Gy Jaem) P {_2 (o= Ko - “)} ’

where z = (z1,...,z,) € R"™

However, this is not the only way to define the multivariate normal distri-
bution. Thus, let us discuss three more definitions of N (u, K).

Definition 4.1.2. The random vector X = (X1,...,X,)" is multivariate
normally distributed (X ~ N (u, K)) with mean vector u € R™ and covari-
ance matrix K, if the characteristic function ¢x(t) = EcitX) ¢ € R, is
given by

1
px(t) =exp {it—ru - 2tTKt} , teR"

Definition 4.1.3. The random vector X = (X1,...,X,)" is multivariate
normally distributed (X ~ N (u, K)) with mean vector u € R™ and covari-
ance matrix K, if

for all a € R : the random variable (a,X) =a' X ~ N(a"p,a' Ka)
is a one-dimensional normally distributed random variable.

Definition 4.1.4. Let p € R™ and K be a covariance matrix. A random
vector X = (X1,...,X,)" is multivariate normally distributed with mean
vector p and covariance matrix K (X ~ N (u, K)), if

Xiu—l—C-Y,

where C' is a n x m matrix with rank(C) =m, K = C-CT and Y ~ N(0,7)
is an m-dimensional random vector with i.i.d.~ N(0,1) coordinates.
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Remark 4.1.5. Definition 4.1.4 is an analogue to the one-dimensional case
where we know that Y ~ N (p,0?) if and only if Y 4 p+oX with X ~
N(0,1).

Exercise 4.1.6. Show that the function

1 1 1 - §
i T P s ) KT e f e ek

fx(x) =

from Definition 4.1.1 is indeed a probability density function.

Lemma 4.1.7. Let X and Y be two n-dimensional random vectors with
characteristic functions

ox (t) — ]Eei(t,X) — EeitTX
oy (t) —F ei(LY) —F eitTY
for t € R™. Then, it holds

1. Uniqueness theorem:

X2Y & ox(t)=py(t), teR"
2. If X and Y are independent, then:

ex+y () = ox(t) - ey (t), teR™

without proof (cf. proof of Theorem 2.1.4 (5), [32, Corollary 2.1.10].
Theorem 4.1.8.

1. The definitions 4.1.2 - 4.1.4 of the multivariate normal distribution are
equivalent.

2. The definition 4.1.1 and 4.1.4 are equivalent for n = m.
Remark 4.1.9.

1. If the matrix K in Definition 4.1.4 has full rank n, then X’s probability
density function is given as in Definition 4.1.1. In this case it is called
regular.

2. If rank(K) = m < n, then the distribution N (u, K) is concentrated
on the m-dimensional subspace

{yeR":y=pu+Cx,z € R™}

by Definition 4.1.4. In this case, N'(u, K) is obviously not absolutely
continuous distributed and is thus called singular.
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Proof In an initial step, Definition 4.1.3 < 4.1.2 < 4.1.4 is proven.

1. (a) First, we show that Definitions 4.1.2 and 4.1.3 are equivalent,
i.e., for the random variable X with characteristic function ¢ x it
holds that

1
px(t) = exp{it’ p— §tTKt}
& foralla e R":a'X ~N(a"p,a Ka).
Simple calculations yield
. [ 52 ) 1
orx (1) = | it X1 VoD exp{it pu — §tTKt} = px(t),

for all ¢ € R. (This is called the Procedure of Cramér-Wold, cf.
multivariate central limit theorem).

(b) Next, we show that Definitions 4.1.3 and 4.1.4 are equivalent.
Using the notation y = C''t we compute

(t) = E oitntCY) _ EeitTquitTCY _ eitTu . Eei(CTt,Y)

Y~ I) 1
./\/:’(07 ) eltTu X exp (_Qy"l— . y>

1
= exp {itT,u — itTC : CTt}

Pu+Cy

1
= exp {itT,u — 2tTKt} ,t € R".

2. It needs to be shown that for X ~ A (u, K) in the sense of Definition
41.4 and Y ~ N(u, K) in the sense of Definition 4.1.1 the relation
rank(K') = n implies that px = @y

Definition 4.1.2 (which is equivalent to Definition 4.1.4) implies, that
T 1 T n
px(t) =exp]it ,u—it Kty, teR"
QDY(t) — EeitTY

T T

_ it’ L 1 " Tr—1] \
—/ne ym'exp{—2(y—,u) K (y—,u)}dy

_ itTu ; T _}T -1
=e /n(27r)n/2\/m exp{zt x 2:17 K :c}dx

Diagonalising K : 3 orthogonal (n x n) matrix V : V' = V! and
VTKV = diag (M\1,...,\n), where \; > 0,4 = 1,...,n. By applying
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the substitution x = Vz, t = Vs it holds that
eitTu

@Y(t):m)n/z—m'
_\/(277):;?# > / /eXp{w Z_;Ziz}dzl e
_ thuH/ m oi5iF T <2Mdz,~
=cth. HSO./\/’O)\)Sz =t ”He :

=1

1
= exp {itT,u - §sTdiag (A, ..., )\n)S}

1
exp {z’sTVTVz — 2ZTVTK1V2} dz

1
= explit p— 2(VTt)TVTKVVTt}

A T

1

—expit'p— 2tTKt} ,teR™.

1
= exp {itTu —-t'"VVTKVVT t}
2 N——" N——

4.1.1 Properties of the multivariate normal distribution

Theorem 4.1.10. Let X = (X1,..., X)) ~ N(p, K), p € R", K symmetric
and positive semidefinite. Then the following properties hold:

1. w is the vector of expectations of X:
EX =pu, thatmeansEX;=p;,t=1,...,n
K is the covariance matriz of X:

K = (kij), with kil'j = Cov (XZ,Xj)

2. Every partial vector X' = (X;,,...,X;)" (1 < iy < ... < ip < n)
of X is also multivariate normally distributed, X’ ~ (,u K'), where
o= (i), K = (k) = (Cov(Xi;, X)), J,1 = 1,...,k.
In particular it holds that X; ~ N (u;, ki;), where k;; = Var X;, i =
1,...,n.

3. Two partial vectors of X are independent if and only if the corre-
sponding elements k;; of K, which represent the cross covariances, are
zero, i.e. X' = (Xq,...,X3)", X" = (Xp41, ..., X,) are independent
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(where the given order is chosen for the sake of simplicity) if and only
itk;j=0for1<i<k,j>kori>k 1<j5<k,ie.

( I )
K =
0 | K"

where K’ and K" are covariance matrices of X’ resp. X”.

4. Conclusion stability: If X and Y are independent, n-dimensional ran-
dom vectors with X ~ N (u1, K1) and Y ~ N (ug, K2), then

X 4+Y ~N(u1 + p2, K1 + K3).

Exercise 4.1.11. Prove Theorem 4.1.10.

Theorem 4.1.12 (Linear transformation of N'(u, K)). Let X ~ N (u, K)
be an n-dimensional random vector and A an (m xn) matrix with rank(A) =

m < n, b € R™. Then the random vector Y = AX + b is multivariate
normally distributed with

Y ~ N(Ap+b, AKAT).

Proof Without loss of generality assume = 0 and b = 0, since gy _,(t) =
e=it'a. vy (t), for a = Ap + b. It has to be shown that:

Y =AX, X ~N(0,K) =Y ~ N(0, AKAT).

This can be done by calculation as follows.
o
oy (t) = pax(t) = F it AX _ g oiX.A ')
f. 4.1. 1 1
(Def. 4.1.2) exp {—STKS} = exp {—QtTAKATt} ,teR"

=Y ~N (O,AKAT) .

\]

O]

4.1.2 Linear and quadratic forms of normally distributed
random variables

Definition 4.1.13. Let X = (X1,...,X,,)", Y = (¥1,...,Y,)" be two
random vectors on (2, F,P) and A be a symmetric, real-valued (n x n)
matrix.

1. Z = AX is called linear form of X with matrix A.
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2. Z = YT AX is called bilinear form of X and Y with matrix A. Fur-
thermore, rewriting the vector notation yields

7=y

i=1j

n n
ainjYi.
=1
3. The random variable Z = X " AX (which is a bilinear form X with
itself) is called quadratic form of X with matrix A.

Theorem 4.1.14. Let Z = YT AX be a bilinear form of random vectors
X,Y € R™ with respect to the symmetric matrix A. If ux = EX, uyy =EY
and Kxy = (Cov(X3,Y))) ,, the cross covariance matrix of X and Y,
then

ij=1,...,

EZ = py Apx + trace(AK xy ).
Proof

E Z = Etrace(Z) = Etrace(Y ' AX) (since trace(AB) = trace(BA))
= Etrace(AXY ") = trace(AE (XY "))
= trace (AE ((X —pux) (Y —uy) T +puxY T+ Xpy — ;LXMT/))
= trace (A(Kxy + pxpy + pxpy — pixiny))
= trace (AKXY + A,uX,uiT/)
= trace(AKxy) + trace (A,uX . ,u;)

= trace (H;AMX) + trace (AK xy) = py Apx + trace (AK xy) .

Corollary 4.1.15. For quadratic forms it holds that
E(X"TAX) = pk Apx + trace(A - K),
where ux = E X and K is the covariance matrix of X.

Theorem 4.1.16 (Covariance of quadratic forms). Let X ~ N(u, K) be
an n-dimensional random vector and A, B € R™*™ two symmetric matrices.
Then

Cov (XTAX, X" BX) =4u" AKBp + 2 - trace(AK BK).
Lemma 4.1.17 (mixed moments). Let Y = (Y1,...,Y,)" ~ N(0,K) be a

random vector. Then

E (YZYJYk) =0,
E (Y;Y;YiY)) = kij - ki + ki - kju + kjie -k, 1 <4, 5,k 1 <n,

where K = (k;j)ij=1,. n is the covariance matrix of Y.
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Exercise 4.1.18. Prove the Lemma.

Proof of Theorem 4.1.16.
Cov (XTAX,X"BX) =E (X"AX - X BX)
~E (XTAX) ‘E (XTBX)
=Y =y =y =y
(Corollary 4.1.15) ~ ~ ~ ~
S E((X = p) AKX = ) (X = ) T B(X = )
- (MTAM + trace(AK)) (MTBM + trace(BK))
=E [(YTAY + 207 AY + " Ap) (YTBY + 21" BY + " Bp)|
— " Ap-p" B — p" Ap - trace(BK) — pu' By - trace(AK)
— trace(AK) - trace( BK)
—E (YTAY.YTBY) 12K (YTAY : ,JBY) +E (YTAY) o
+2E (uTAY- Y BY )+4E (uTAY uTBY )+2E (uTAY) u" By
=0
+p ApE (YTBY) + 20" Ap B  BY + " A " By
=0
— " Ap-p" B — p" Ap - trace(BK) — p' By - trace(AK)

— trace(AK) - trace(BK)

=0 (Lemma 4.1.17)
—_—

=E (YTAY .Y BY) + 24" BE (Y - YT AY) +u" By trace(AK)
=0 =K
—_— —_—
+2uTAE (Y- Y BY) +4u" AE (YY) B+ i Ap - trace( BK)

— ' Ap - trace(BK) — p' By - trace(AK) — trace(AK )trace(BK)
=E (Y'AY - YTBY) + 4u" AK By — trace(AK) - trace(BK).

Since

n n
E (YTAY ' YTBY) =E | Y aYi¥j- D buYaYi
17‘7:1 k7l:1
n
= 3 abuE (YY%Y)
i,j,k,l:l

n

Z aijbr (kij - kg + k- kjo + ki - ka)
ij,k,l=1

(Lemma 4.1.17)
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n n n
= > aijkig Y bk +2 D aikj-bikg
ij=1 k=1 ik, l=1

= 2 - trace (AK BK) + trace (AK) - trace (BK)
it holds that
Cov (XTAX, XTBX)
= 2 trace (AK BK) + trace (AK) - trace (BK) + 4u' AK By,
— trace (AK) - trace (BK) = 4" AK By + 2 - trace(AK BK).

Corollary 4.1.19.
Var (XTAX) =4 AKAp+ 2 - trace ((AK)Q)

Theorem 4.1.20. Let X ~ N (p, K) and A, B € R™™" be two symmetric
matrices. Then

Cov (BX, X" AX) =2BK Au
Proof
Cov (BX,XTAX) =
et L g [(BX — Bp)(XTAX — T Apr — trace(AK))]
=E [BOX =) (X =) AKX — )
+2u  AX —2u" Ap — trace(AK))] ,
Since
(X —p)TAX —p) = XTAX —pTAX — X TAp+p' Ap
and by substituting Z = X — u (which implies E Z = 0)
Cov (BX,XTAX) =E [BZ(ZTAZ + 21" AZ — trace(AK))]

=E(BZ-Z"AZ)+2E(BZ - u' AZ)
=BE Z=0
——
— trace(AK) - E(BZ)
=92E(BZ-Z"Ap) +E(BZZ"AZ)
=2B E(ZZ")Au+ B -E(ZZ"AZ)

—— ~———
Cov X=K =0

=2BK Ay,
since Z ~ N (0, K) and Lemma 4.1.17 and the proof of Theorem 4.1.16. I
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Definition 4.1.21. Let X; ~ N (p;,1), ¢ = 1,...,n be independent. Then
the random variable

YV =X7+... + X2

is non-centered X%,u distributed with n degrees of freedom and the non-
centrality parameter

In Remark 2.2.6, WT&SP (cf. [32]), the moment generating function of
random variables were introduced. For the proof of Theorem 4.1.23 the
following uniqueness theorem will be used:

Lemma 4.1.22 (Uniqueness theorem for moment generating functions).
Let X7 and X3 be two absolutely continuous random variables with moment
generating functions

My, (t) =Eei i=1,2,

which are defined on the interval (a,b). If f; and fy are the probability
density functions of the distributions of X; and X5, then

fi(x) = fa(z) for almost all z € R & Mx, (t) = Mx,(t), t € (a,b).
Without proof.

Theorem 4.1.23. The probability density function of a X%,# distributed
random variable X (with n € N and g > 0) is given by the mixture
function of the density of a X% 4oy distribution with mixture variable J ~
Poisson(u/2):

o _ j —x/ n+2j_1
Z e B/2 (P’é?)] e n+22f 2n+2j . ox > 0’

fx(z) =< 720 r(=52)2 2 (4.2)
0, z < 0.

Proof

1. First, calculate Mx (t), X ~ x7. ,:

Mx(t) =E () =E exp {tznjxf}
=1

CT 1
. / etx? e QM dxz <t < 57 X’L ~ N(/"Lla 1))

— 00

-1I

i=1

5~
3
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It holds that

1
ta? — (s Mz) (2t:n — 2?4 2 — pid)
2 2
M Hi
— (1—2t)—2 —
2( il T g (1—2t)+“’>
s i) ()
- V1—2t 2 (1~
T2 < T—a) M 12t
1 (x;(1 — 2t) m) 9 2t
2 1- ot Y,
Substituting
yi = (zi - (1 —2t) — i)
’ V1—2t
yields

Mx(t) = (1—2t)" Hexp{ <

5
i 1)

_ 1 {N}
T2 TP T

2. Let Y be a random variable with probability density function (4.2).
Calculating My (t) yields

} \/%/ _*dyz

=1

M\S

=(1-2t)"

1
5"

00 . 00 _z ﬂ,l
n 2)7 e 2.1 2
My(t)=) e 2 (,u/ ) et : - dx
, j! (7420 . nt2j
Jj=0 0 2 2
_ _ 1
_Mxi+2j (t)_msmz 1.14

- (1i_i>2 i (2<1A—L2t>)j ;1'

:(1_2”3‘6’@{_2+2(1M—2t)}

- 1 .exp{“'él (_1(1;)2t))}
T(1—2t
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Using Lemma 4.1.22 implies fx(z) = fy (z) for almost all z € R.

Remark 4.1.24.

1. Definition 4.1.21 can be rewritten as:
It X ~N(ZI), i = (g1, )", then [X]? = XTX ~ X?%w where
=i,

2. The property above can be generalized for X ~ N (ji, K), with a sym-
metric, positive definite (n x n) matrix K:

XTK'X ~ x5, where i=ji' K™,

ang Silnce K is positive definite, there exists a K %, such that K =
K2K3". Then

Y =K X ~ N(K 3p,T),
since
K 3KK 3 =K 5.K3.K3! .K 31 =T
and thus YTV & X%ﬂ, with
T
i= (K‘%ﬁ) K=K i K ig=i K '

Theorem 4.1.25. Let X ~ N(u, K), where K is a symmetric, positive
definite (n x n) matrix and let A be another symmetric (n X n) matrix with
the property AK = (AK)? (idempotence) and rank(A4) = < n. Then:

XTAX ~ X%ﬂ, where fi = pu' Ap.
Proof A is positive semidefinite since

AK = (AK)? = AK - AK | K!
= A=AKA= Vo eR": 2" Az = 2" AK Ax

= (Az) " K(Az) > 0 because of the positive definiteness of K.
N~ N
=y =y

— 3H : a (n x r) matrix with rank (H) =r: A= HH'
Thus it holds that

X"AX=X"H-H'X=H"X))"T H'X=Y"Y
=Y
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Further, Y ~ N(H ", Z,), since by Theorem 4.1.12 Y ~ N (H "y, HT K H)
and rank (H) = r. Consequently, H " H is a regular (r x r) matrix and

H'KH=(H"H)™WH"H-H'KH-(H"H)H"H)™!
=AKA=A
=H"H)H"- A HH'H)!
~~
=HHT

=7,
Then
XTAX =|Y P~ iy with = (H'p)? =p H-H' p=p" Ap.
O

Theorem 4.1.26 (Independence). Let X ~ N (u, K) and K be a symmet-
ric, positive semidefinite (n x n) matrix.

1. Let A, B be (11 xn) resp. (roxn) matrices, 71,72 < nwith AKBT = 0.
Then the vectors AX and BX are independent.

2. Furthermore, let C be a symmetric, positive semidefinite (nxn) matrix
with the property AKC = 0. Then AX and X "CX are independent.

Proof

1. By theorem 4.1.10, 3) it holds that AX and BX are independent, if
and only if pax px)(t) = wax(t) - wpx(t), t = (t1,12)" € R,
t1 € R™, to € R™. It has to be shown that:

oax.px)(t) = Eelit{ A+t B)-X L g it] AX g ity BX

It holds that
Pax,px)(t) = REei(t] A+ty B)-X

(DefA12) i(t] A+t] B)-p—4-(t] A+t B)-K-(t] A+t] B)"

)

and with
(HA+t3B)-K-(H A+ tQTB)T
= (t{A) K (tIA)T + (ﬂA)T K (13 B)
+(ts B) K (tlTA)T +(ts B) K (tQTB)T

—t]AKATt, +t] -AKB' ty+ty - BKA' 1 +tyBKB'ty
~—— S~——
=0 =(AKBT)T=0
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we get
oax.x)(t) = pitl A=t AKATty ity B—3t] BKBt
= pax(t1) - ppx(t2), t1 €R™ ta € R™

2. C is symmetric, positive semidefinite = There exists a (n x r) matrix
H with rank (H) =7 <nand C = HH', = H'H has rank r and
is thus invertible. Then

X'"OX=X"HH'X=(H"X)" H'X = |H" X%,

If AX and H'X are independent, then AX and X'CX = |H"X|?
are independent by the transformation theorem for random vectors.
By 1) AX and H'X are independent, if AK(H")" = AKH = 0. By
assumption

AKC=AKH -H' =0=— AKH-H'"H =0,
since 3(H " H)™!, it holds that

0=AKH-H'H-(H'H) ™' = AKH — AKH =0
— AX and H'X are independent
— AX and X "CX are independent.

O]

4.2 Multivariate linear regression models with full
rank

Multivariate linear regression has the form

Y =XG+e¢,
where Y = (Y1,...,Y;,)T is the random vector of the so-called response
variables, the design matrix
X = (Tij) i=1,..n
j=1,...m
is deterministic and has full rank, i.e., rank (X) = r = m < n, 8 =
(B, - .- ,ﬁm)T is the parameter vector and € = (g1, ... ,an)T is the random
vector of the error terms. In our setting, the error terms fulfill E¢; = 0,
Vare; = 02 > 0,i € {1,...,n}. The goal of this section is to estimate 3 and

o2
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4.2.1 Method of least squares

Let the design matrix X = (X,..., X,,) be defined by deterministic vectors
X; = (x5, 25, - - ,a:nj)T, j =1,...,m, which generate the m-dimensional
linear subspace Lx = (Xi,...,X,,). Further, define the mean squared
deviation between Y and X via
1 , 1 )
e(B) = E’Y—Xﬁf = EZ(YZ —zaB1— - = TimfPBm)”

1=1

Then, the ordinary least squares estimator, or OLS estimator for short, B
of B is defined as

A

8= argénin(e(ﬁ)). (4.3)

Why does a solution 5 € R™ of the quadratic optimisation (4.3) exist?
Geometrically, X B can be interpreted as the orthogonal projection of the
data vector Y on the linear subvector Lx as depicted in Figure 4.1. Formally,
the existence of the solution will be shown by using the following theorem.

Figure 4.1: Projection on the linear subspace Lx

Theorem 4.2.1. Under the above conditions, there exists an unique OLS
estimator 8, which solves the so-called normal equation

X'Xp=Xx"y. (4.4)
Thus, it holds that
N —1
B = (XTX) XTy.

Proof The necessary condition for the existence of the minimum is €/(3) =
0, that means

oo (0e(B)  de(B)\ _
e(ﬁ)_<351""’05m) =0
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It holds that
2
"B =2(Xx"Xp-X"Y
d(8) == (x'xp )

= B is a solution of the normal equation X' X3 = X'Y. Sufficient
conditions for a minimum are given, since

" . 826(/8) . 2 T

X TX is symmetric and positive definite, since X has full rank:
Vy#0,yeR™: y ' XTXy=(Xy) Xy=|Xy]*>0

and y # 0 = Xy # 0 implies that €”(8) is positive definite. Thus
XTX is 1nvert1ble That means, 3 minimizes e(8). The estimator § =

-1
(XTX) XTY can be obtained, by multiplying (XTX) to the left of
the normal equation X ' X3 = XTY. O

Example 4.2.2.

1. Ordinary least squares

1 T
1 T2 -

X: . . m:2,ﬁ:(ﬁl’ﬁ2) ,Y:Xﬁ—f-é‘
1 =z,

B = (31, Bg) yields the OLS estimator from [33].

~ S2 ~ _ A
P = Sé(y, =Y, — XnP,
XX

where

-2

S\H
:\P—‘

1

Sxy—n 1§(Xz Xa) (¥i-Y2)
Fx= > (X -X,)’

@
Il
—
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Exercise 4.2.3. Prove that!

2. Multiple linear regression

Y = X + ¢ with design matrix

1 211 - Zim
X=|: i | for B=(Bo,Br--sBm) .

1 Tn1 - Tnm

The OLS estimator 3 = (XTX)"1XTY is obviously a linear estimator with
respect to Y.

Next, let us show that 3 is the best linear, unbiased estimator of 3 (BLUE)
in the class

£:{,5’:AY+b: E,Bzﬁ}
of all linear unbiased estimators.

Theorem 4.2.4 (Properties of the OLS estimator B) Let Y = Xf 4 ¢
be a multivariate linear regression model with full rank m and error terms
e=(e1,..., an)T, which satisfy the following conditions:

Ee=0, Cov (g,¢5) = 025ij, i,j=1,...,nfor a o® € (0,00).
Then,
1. the OLS estimator B = (XTX)_1 XTY is unbiased: EB = 0.
2. Cov (B) = o2 (XTX)i1
3. B has minimal variance among the estimators from L, i.e.,
VB eL: VarBj > VarBj, j=1,....,m.
Proof 1. Let us compute

Ef=E (XTX)_le (XB+e)

= (XTX)_1 XTX B+ (XTX)_lXT B¢,
=B VYBER™ -
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2. For all = AY +b € L it holds that
B=EB=AEY +b=AXB+b VB eR™.
—b=0, AX=1.
= =AYV = A(XB+¢e) = AXB+ Ac
= B+ Ae.
For
B = (XTX>71XTY
N
=A
it holds that
Cov 3= (E (5~ 5) (B = 8))). ...
=E (Ag- (Ae)T) =E (AeaTAT> = AE (asT) AT

— A 02TAT = 2 AAT = 2 (XTX>_1XT <(XTX)_1XT>T

= o2 (XTX)_1 XTX (XTX)_l =2 (XTX)_1 :
3. Let B € L, B =+ Ae. It has to be shown that
(Cov (B). = 0*(AAT )i = (Cov (B)) =o?(XTX)5",

fori=1,..., m.
Let D=A— (X"X)"'XT then A=D+ (X"X)"!XT,

AAT = (D + (XTX>71 XT> (DT L X (XTX)lT)
—DDT + (XTX>71 ,
since

DX (XTX)_1 = (ézglg— (XTX>_1 XTX) (XTX)_l

=1
=0

and
(XTX)*1 X'DT = (XTX)*1 xT (AT ' (XTX>1T>

= (xTx) ((Afz)T—XTX (x7x) )

=7
= 0.
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— (447) :Effilﬁ+(XTX> -

>0

:>Var/3’i <Varf;, i=1,...,m.

) > (x7x)

(23 7 (23

O]

Theorem 4.2.5. Let 3, be the OLS estimator of the linear regression model
from above and {a, },,cy be a sequence with a,, # 0, n € N, a,, = 0 (n — 00).
Additionally, assume that there exists a regular (m x m) matrix @ with

Q= nh_)ngo an, (XJXn> .

Then, Bn is weakly consistent, i.e.,

Proof

s
3
|
=
o
V
o™
o
N———

Il
e
S
gk
o
E
|
IS
no
%
™
o}
N———

o
S

|
&

v
|

INA
Y
< N
LCs
—N

-3

>

<SP |Bin — 8

iM:

N

)

Tschebyschew ™ Var an

< m —

< > Q= 50
=1

if VarG;, — 0, i=1,...,m.
n—oo

Var Bm is a diagonal element of the matrix
A (Satz4.2.4 -1
Cov By (Satzd 24) o? (XJXn) )

If Cov ﬁn — 0 is true, then so is the theorem. Thus, let us show this
n (o)
convergence.
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Since there exists a matrix

Q' = Tim — (X X,

n—o00 q,

-1

we can show that
. 5 2 1. T -1
nh_)nolo Cov 8, = c“ lim (Xn Xn>

n—oo

1 -1
2 ) T
=0 nhm an —an (Xn Xn)

=0-Q'-o?=0.

4.2.2 Estimator of the variance o2

Introduce the estimator 2 for the variance o2 of the error terms ¢; as follows:

52— 1 ’Y—X,@”Q. (4.5)

n—m

This is a generalized version of the variance estimator from the simple linear
regression, which has already been introduced in [33].
Theorem 4.2.6 (Ezpectation). The variance estimator

2 1 2

5% = ‘Y ~XB
n—m
is unbiased. That means,
E&? = o2
Proof
. 1 AT .
5% = — (Y—Xﬁ) <Y—Xﬁ)
1 T -1
= (v - x(xTx)"'xTy) (Y - X (x7X) XTY>
n—m
1
= (DY) DY
n—m

where D =7 — X(XTX)7'X T is a (n x n) matrix. Then,
1 1 1
62=——Y'D'DYy=—"Y"D’% =——_YT"Dy,
n—m n—m n—m

if DT = D and D? = D, i.e. D is symmetric and idempotent. Indeed, it
holds that:

DT —T— (XT)T (XTX)T_lXT —T-X (XTX)A xT =D.
D? = (- x(X"Xx)"'x7) <I ~-X (XTX)A XT>
—T-2X (XTX) xTax (XTX)A XTXx (XTX) T

—7-X (XTX)_IXT —D.
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Furthermore it holds that

62 = ! o trace (YTDY = - trace (DYYT)

n—m

—Es = L - trace (DIE (YYT)) =

-t D
- race (D),

n—m

since
trace (D -E (YYT>) =

= trace(D(XB)(XB)" + DXBEe +DEc(XB)" +D- Eee')

=0 =0 =Cove=02%2-T

and
Ty ! yT
DX = <I—X(X X)X >X
Ty ! yT
=X-X(X'X) X'X=X-X=0
Now it needs to be shown that trace(D) = n —m:
-1
trace(D) = trace (Z - X (XTX) XT>
Ty ! yT
= trace(Z) — trace | X (X X) X

= nftrace(XTX- (XTX)_l) =n—-—m.

eine (m x m)-Matrix

4.2.3 Maximum likelihood estimator for 3 and o2

In order to construct a maximum likelihood estimator for 8 and o2 resp. the
distributional properties of the OLS estimators B and 42, the distribution
of € resp. Y has to be specified. In the following, normally distributed
i.i.d error terms are assumed, i.e.,

e~ N(0,0Z), >0,
Clearly, this implies
Y ~ N (X,B, 02I> :
What do the distributions of the OLS estimators B and 62 look like? Since

A A -1
B is linearly dependent of Y, unbiased and Cov 3 = &2 (X X ) , simple
calculations yield

B~N (ﬁ, o> (XTX)1> .
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In the following, the maximum likelihood estimator for 2 and o2, namely 3
and 2 are calculated. Once they have been calculated, it can be seen that
they are closely related to the OLE estimator.

Consider the Likelihood function of Y:

Ly, 8,0%) = fr(y) = (ﬁjm) ep {5 - X9 - Xp)

and the Log likelihood function

n n 1
logL(y,B,UQ) = —§1Og (2m) —§log (0'2) ) ly — X5|2-

=g

The maximum likelihood estimators are then given by

(/87 5-2) = argmax ].OgL(y, ﬁ? 02)7
BER™, 52>0

if they exist.

Theorem 4.2.7 (Mazimum likelihood estimation of 5 and G%). There exist
unique maximum likelihood estimators for 8 and o2 which are given by
- . -1
g%:B:<XTX) XTy
~2 n—m

52 = ﬁ:lp—xﬂ
n n

2

Proof Fix 02 > 0 and find

= argmax log L(Y, 8,02) = argmin |Y — XB|2 ,
peR™ BER™
~ N -1
which implies that 8 coincides with the known OLS estimator 8 = (X X ) Xy

and does not depend on 2. Therefore, we can compute

52 = argmax log L (Y, B, 02) = argmax g(o?).
o2>0 02>0

It holds that
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since |[Y — XB|* # 0 because Y ~ N (XB,0°7) € {Xy: y € R™} with
probability zero. Since
n 1l

e 2N Y

Y - X5 _

e 0 T -y - xaf

is a maximum likelihood estimator for o2.

O

maximizes g(0?), that means 52

Theorem 4.2.8. Under the assumptions above it holds that

1. E¢% = %02, that means 2 is biased; but it is asymptotically unbi-
ased.

2

2 n—m »2 2
~ anma o2 g~ ~ anm'

2. 56
Proof
1. Trivial (similar to the proof of Theorem 4.2.6)

2. Only the assertion for 62 is shown:

n—m,, i A 2
o’ = 5 |Y - X5
Ly
= ﬁY \’D_/Y (by the proof of Theorem 4.2.6)
—D?
1 1
= (DY) DY = = (D(X 5 +¢) -D(X B +e)
o 07 N~ ——
=0 =0
1 T
— —(De)TDe = (5 ) D <5> ,
o o o
where
€
E)~ N(0,7).
(5)~vo
By Theorem 4.1.25 it holds that
T
el e
—D—~ X$>
o o

where 7 = rank (D), since DZ = D is idempotent. If r = n —m, then
(n—m)é? ~ x2_,,. It needs to be shown that rank (D) = r = n —m.
From linear algebra it is known that rank (D) = n — dim(Kern (D)).
Now Kern (D) = {Xz : x € R™} and thus dim(Kern (D)) = m, since
rank (X) = m. It holds that {Xz : x € R"} C Kern (D), since

DX =T -XX"X)'XxXHx=X-(X"X)"'xTXx =0
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and Kern (D) C {Xz : x € R™}, since

VyeKern (D): Dy=0+= (I-X(X'X)"'XN)y=0
—y=X-(X"X)'XTy=Xzec{Xz:zcR"}.
N—————

T

O]

Theorem 4.2.9. Let Y = X5 + ¢ be a multivariate regression model with
Y = (Y1,...,Y,)", design matrix X with rank (X) =m, 8= (B1,...,8m) ",
e ~ N(0,0%Z). Then, the estimators 8 = (X" X)"1XTY for 8 resp. 62 =
L_|y — XJ3|? for o2 are independent.

n—m

Proof In this proof Theorem 4.1.26 is used. In order to do so, B has to be
expressed as a linear and 42 as quadratic form of €. It has been shown in
the proofs of Theorem 4.2.4 and 4.2.8 that

B=B+(X"X)"'XTe,

—_—
=A
1
6= ——c"De, where D=7 - X(X"X)71XT.
n—m

Moreover it holds that AD = 0, by the proof of Theorem 4.2.6

(AD)T =DTAT (X"xX)™HT" =o.

=D-X
=0

Since £ ~ N (0,02T), it holds that
Ac*ID = 0.

Thus, the assumptions of Theorem 4.1.26 are satisfied and B and 62 are
independent. 0
4.2.4 Tests for regression parameters

In this section the hypotheses

Hy:B=pyvs. Hi: 3% po

are tested for a By € R™. In order to do so, define the test statistic

(3 - ﬁo)TXTX (/3’ — ﬂo)
= mé? '

Theorem 4.2.11 implies that under Hy

T ~ Fm,nfm'
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Thus, Hy is rejected, if T > Fyyn—m 1—a, Where Fy, pom1—q is the (1 — )
quantile of the Fy, ,_,, distribution. This is a test with confidence level
ac (0,1).

Special case: The case By = 0 describes test for connectivity ; that means it
is tested, whether (1, ..., B, are relevant for describing the data Y.

Remark 4.2.10.

1. How can we test that the test statistic T can actually distinguish Hy
from H;? Introduce

Then,

n—m
and Y is the vector of residuals.

Without loss of generality assume 5y = 0. If Hy is false, then 8 % 0,
and

XBI* = (Xp) ' XB=5TXTXS>0,
since X has full rank. This implies that Hy has to be rejected, if
12 A2 A R
\Y\:]Xd —8TXTXB>0.

In the test statistic |X3|? the variation of the estimation of 3 is not
considered. In order to do so, a new test statistic 7" can be defined by
dividing | X 3|? by 62, i.e.

~ |2
- ,BTXTX,B B Y
T om-62 512
nﬂJY—Y
The Pythagorean theorem implies
9 12 A2
Y[ =¥ +[¥

Then, under Hy
ElYP=E|YP?-E|Y —Y|> =no® —E|Y|?
holds and thus
E|V|? (Ho) no? —E]Nf/|2 _n—m < m{2 B 1)
1E<m‘ﬂ3 |V |2 m \E|Y? ’

n—m

where we have used that E |Y]? = E (YTY) =o?nandY ~ N(0,0%7).
Consequently, the test statistic T is sensible with respect to variations
of H(].
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2. The term

is called residual distribution. Now the coefficient of determination R>
as introduced in [33] can be generalized as

Y/ 2
R*=1- |J 27
Y=Y,
o n
where e = (1,...,1)T, Yn:%ZYZ-.
Theorem 4.2.11. Under Hy : 8 = By it holds that

- (B - 50)T XLX (3 - 50) o Fo
mao

Proof It holds that
« 1
B~ N (Bo, o? (X" X) )

— B— By~ N(0,0°(XTX)).
=K

If A= X;X, then AK =T is idempotent. Then by Theorem 4.1.25
A T ~ Hy o
(B=80) A(B-80) 2.

Note that under H; the distribution of (3 — o) T A(B — Bo) does not follow
a centered y? distribution.
Furthermore, it holds that

n—m
A2 2
0~ Xn—m-

o2

Also, Theorem 4.2.9 implies the independence of (3 — o) T A(3 — fo) and

e &2. Therefore,

(B = Bo) " (XTX)(B = Bo)/m

s i me = m)

~ Fm,n—m

by definition of the F' distribution.

Now, let us test the relevance of the parameters 3;, i.e., we test

Ho : 8 = Boj vs. Hi: B # Poj-
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Theorem 4.2.12. Under Hy : 3 = fo; it holds that

~ 7fnfmv

where 277 is the j-th diagonal entry of the matrix (X T X)~!.

Proof j & N(Bo,c?(X T X)~!) implies Bj £ N (Boj,o?27) and thus Bj —
Boj ~ N(0,02277). Consequently, A := % ~ N(0,1). Furthermore, it

(n—m)é2 Ho

holds that B := *=—3~— ~ X2_,, and by Theorem 4.2.9 the statistics A
and B are independent which implies that

B;—Boj

Ty = _ovali | b
(n—m)s&2
(n—m)o?

O]

Thus, a test for Hy : 8; = Bjo vs. Hp : not Hy, with confidence level «
can be constructed using test statistic T' by rejected the null hypothesis, if
|T| > tn—m,l—a/Q'

Next, let us test the hypothesis

H0:6j1 :B(]ju"'vﬁjl :/80]'1 V8. HlEIZE{l??l}/sz#BOJz

Exercise 4.2.13. Show that under Hy the following assertion holds:

g GTRG -
162 ’

where

ﬂ, = (53'1’ s ’le)’
/86 = (/Bij s 7/80]'1)’
:'Ujljl e :L'_jljl
K' =
ajjljl e :L'jljl

Construct the corresponding F' test!

Test for linear combinations of parameters
Let us consider
Hy:HB=cvs. H : HB #c,

where H is a (r x m) matrix and ¢ € R".
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Theorem 4.2.14. Under Hj it holds that

TZ(HB—@TGKXTXilHUWHB—C>NFhLm
ro

Thus Hy : HB = cis rejected, if T' > Fy. —m.1—a-

Exercise 4.2.15. Prove Theorem 4.2.14!

4.2.5 Confidence region

1. Confidence interval for B;
In Theorem 4.2.12 it has been shown that

BA]’_/B]

N = ~ tp—m,
o -Vl

where (X" X)~! = (2%); j—1__m. By using the standard methodology,
the following confidence interval for 3; with confidence level 1 — o can
be constructed as follows

P (B] — tnfm,lfa/Q <oV I < /Bj < Bj + tnfm,lfa/Q : &\/ﬁ) =1l-a

2. Simultaneous confidence region for 3 = (B1,...,Bm)"

From the Bonferroni inequality it is known that

J=1

P(ﬁ&)ziPmn4m—m
j=
for sets Ay, ..., A;,. Now, using the sets
Aj = {Bj € [Bj ~ a1/ 2m) OV, By + 1 —a/(2m) & */937} }
yields
P(Aj, j= 1,...,m>

zéP(Aj)—(m—l)zm-(1—Z>—m+1:1—a.

This implies that

{(B=(B1, . Bu) " By € As}

is a simultaneous confidence region for g with confidence level 1 — a.
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3. Confidence ellipsoid for (.
In Theorem 4.2.11 it has been shown that
(5= B)T(XTX)(5 - B)

mo2

T —

~ Fm,nfm-

This implies that

P(T<Fun-mi-oa)=1—a and
(B-B)"(XTX)(B -8

mao2

&= {,8 cR™: < Fm,n—m,l—a}

is a confidence ellipsoid with confidence level 1 — « (see Figure 4.2).

Figure 4.2: Confidence ellipsoid

Since an ellipsoid can be embedded in the minimal parallelepiped P,
such that the length of the sides of P are 2x length of the half-axes of
&, the following simultaneous confidence region for 8 = (B4, ..., m)"
can be constructed:

P = {B : Bj - a'\/mmijm,n—m,l—a < ﬁj < Bj + &\/mxijm,n—m,l—a}

j=1....m

4. Confidence interval for the expected target value xo181 + . . . + TomPBm-

Let Yo = z0181+- - - + TomPBm + €0 be a new target value with Eeg = 0.
Then

n
EYy = zoifi-
i=1
In the following, a confidence interval for E Y} is constructed. In oder

to do so, the proof idea of Theorem 4.2.12 combined with Theorem
4.2.14 with H = (zo1,...,Tom) = 2g, 7 = 1 is used. Then

3

R m
Bizoi — 2 Bitos
T = i=1

~ tn—m-
G/ (XTX) tag
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Thus

{5 = (617 ceey Bm)—r : Z inB’i -0 V x(—)r(XTX)ile : tn—m,l—a/Q
i=1
<> i < 29601'31' + 64/ zg (XTX) g - tn—m,l—a/Z}

=1 i=1

m
is a confidence interval > xg;3; with confidence level 1 — a.
=1

5. Forecast interval for the target variable Yj.
For Yy = in: 20;B3; + €0 with g9 ~ N(0,0?) independent of e1,. .., e,
it holds t}gtl
29 B — Yy ~ N(0,0%2(1 + 2§ (XTX) Lag))

T3
— 205~ Yo ~N(0,1)
J\/l + 2 (XTX) 1z
7 B =Yy

—

~ tn—m7

6/1+ g (XTX)ag
Thus,

(xOT,é’—c, a:gﬁ-i-c)

with ¢ = 6/14+ 2 (XTX)"L- 20 by 1 a2
is a forecast interval for the target variable Yy with confidence level
1—oa.
m
6. Confidence band for the regression plane y = 51+ > x;8; in the mul-
i=2

tiple regression model.
Let Y = X3 + ¢, where

1 z2 - T1m
X=1. 'm and £ ~ N(0, 0% - ).
1 zp2 -+ Tum

The goal is to construct a confidence band B(z) for y. It holds that

P<y251+25ixi63(x)> =1-a VzreRP
=2

where R"™! = {(1,562, - ,xm)T € Rm}.
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Theorem 4.2.16. Furthermore,
=y

(QCTB - (51 + iﬁzxz> )2

=2 — 1 —
P( s, gy <M Faemia) =170
1

holds. Without proof.

4.3 Multivariate linear regression with rank(X) <
m

Let Y = X5 +¢,Y € R", where X is a (n x m) matrix with rank (X) =
r<m,B=B1....,0m) , e €R" Ee=0, E (gig;) = 8ij02, 0,5 =1,...,n,
a2 > 0.

Even though the rank of the matrix is not full anymore, the OLS estimator

A

B is still a solution to the normal equation
(XTX) 3=X"y.
However, X ' X is not invertible, since
rank (X' X) < min {rank (X), rank (XT)} =r<m.

Consequently, in order to obtain /3 from the normal equation, both sides of
the equations are multiplied with the generalized inverse of X ' X.
4.3.1 Generalized inverse

Definition 4.3.1. Let A be a (n x m) matrix. A (m X n) matrix A~ is
called generalized inverse of A, if

AATA=A.
The matrix A~ is not unique, which is shown in the following lemmas.

Lemma 4.3.2. Let A be a (n x m) matrix, m < n with rank (A) =r < m.
There exist invertible matrices P (n x n) and @ (m x m), such that

0 0 —
r times

Z. 0
PAQ = ( ) , where I, = diag(1,...,1). (4.6)
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Corollary 4.3.3. For an arbitrary (n x m) matrix A with n > m, rank (A)
r < m it holds that

— Ir AQ
A= =Q P, (4.7)
A As
r times
——
where P and @) are matrices as in (4.6), Z, = diag (1,...,1), and A;, As

resp. As are arbitrary ((m —r) x r), (r x (n—7)) resp. ((m—7r) x (n—r))
matrices.
In particular

A1:07

Ay =0,

Asg = diag (1,...,1,0,...,0),
——
s—r times

se{r,...,m}

can be chosen, which means rank (A7) =s e {r,...,m} for

A" =Q P.
0 0

Proof In the following it is shown that for A~ as in (4.7), it holds that
AA~A = A. Lemma 4.3.2 implies that

A=P . diag (1,...,1,0,...,0)- Q! and thus

- (T 0\ I, A (. 0\
AA=A=P Q1Q- PP Q
0 0 Ay As 0 0

[T o 7, A, Z 0\
=P Q
0 A A 0 0

Q= A

t
Lemma 4.3.4. Let A be an arbitrary (n x m) matrix with rank (A4) =r <
m, m < n.

1. If (AT A)~ is a generalized inverse of an (m x m) matrix AT A, then
T
((ATA)_) is also a generalized inverse of AT A.
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2. It holds that
(ATA)(ATA)"AT = A" resp.
A(ATA)"(ATA) = A.
Proof

1. AT A is symmetric, i.e.

(ATAMATA)ATA) = (AT4) =474

—ATA((ATA)~) AT A

-
Thus ((ATA)_> is a generalized inverse of AT A.

2. Let B = (ATA)(ATA)"AT — AT, In the following it is shown that
B = 0 by proving that BBT = 0.

BBT = ((ATA)(ATA)"AT — A7) <A ((AT4)7) ATa- A>

.
= ATA(ATA)ATA((ATA)7) ATA-ATAATA)"ATA

=ATA

—ATA ((ATA)—)T CATA+ATA

=ATA
= ATA-—24TA+ATA=0.

The assertion A(ATA)"ATA = A can be shown, by transposing the
matrices on both sides of the equation AT A(ATA)~AT = AT,

O]

4.3.2 OLS estimator for

Theorem 4.3.5. Let X be a (n xm) design matrix with rank (X) =r <m
in the linear regression model Y = X5 + €. The generalized solution of the
normal equation

(XTX) B=XTy
is given by
B=(x"x) xTy+ (Im - (xTx) XTX) 5, zeR™  (48)

Proof



CHAPTER 4. LINEAR REGRESSION 161

1. In the following it is shown that § as in (4.8) is a solution of the normal
equation.

X"Xp=X"X)(X"X)"XTY + (XTX ~X'X(X'TX)"XTX ) z
=XT (Lemma 4.3.4, 2.)) =XTX

=Xy

2. Let us show that an arbitrary solution 3’ of the normal equation can be
written as (4.8). Let 8 be the solution (4.8). Calculating the difference
of the equations yields

(XTxX)p" =XTy
- XTX)p =XTy
(XTX)(8'-p) =0

g'=@-p)+8
=8 =B+ (X X)XV + (T - (XTX)"XTX) 2
= (XTX) XY + (Im - (XTX)_XTX) 2+ (8 - B)
- (X'X)"X"X(8' - B)
=0
=(XTX) XY + (Zn - (XTX)"XTX) (248 - 8)

=20

— [/ can be rewritten as (4.8).

O

Remark 4.3.6. Theorem 4.3.5 yields the set of all extreme points of the
OLS minimization problem

e(B) :%|Y—X,6'|2 —>mﬁin.

Thus, the set of all OLS estimators of 5 in (4.8) should satisfy additional
conditions.

Theorem 4.3.7.

1. All OLS estimators of 5 can be written as
3= (XTX) Xy,

where (X TX)~ is an arbitrary generalized inverse of X ' X.
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2. B is not unbiased, since
EF = (XTX)_ XTX3.
3. Tt holds that
Cov B = o2 (XTX)_ (XTX) ( (XTX)—)T

Proof
1. We show that e(3) > e(8) VB € R™.
n-e(B) =Y - X’ =(Y - XB+X(B-8)" (Y - XB+X(B-p))
— (V- XB)T(v - XB)+ (X(B-p) (X(B-5))
+2(8-8) X" (Y - XB)
n-e(B)+2-(B—B8) (XY - (XTXB)) +|X(B - B)
>n-e(B)+0=n-e(B), (s]ince

’ 2

B can be rewritten as in (4.8) with z = 0 and is thus a solution to the
normal equation.

2. It holds that
EF=E (X'X)"X'Y)=(x"x) x'EY
= (X"X)"X"Xg,
Y =XB+e, Ee=0.

Note that this implies EY = X 3. Why is 5 not unbiased, i.e. (X' X)"XTXj3 #
B, B € R™?
Since rank (X) =7 < m, rank (X'X) < mandrank (X' X)"XTX) <
m. Thus, there exists a § # 0, for which it holds that
(XTX)_ XTXB =048,

so 3 is not unbiased. Furthermore it holds that all solutions of (4.8)
are not unbiased estimators. Applying the expectation on (4.8) yields
the following in the case of unbiasedness

VBER™: B=(X"X)XTXB+ (Ln— (XTX)(XTX))z, zeR™
= (Zn— (XTX)"(XTX)) (- 8) =0 Vz,8€R"
= (X'X) (X'X)(B-2)=B-2 Vz,BeR™

Since this equation can’t hold for all 8 € R™, the assumption leads to
a contradiction.
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3. It holds that

Cov (B;,B;) = Cov (((XTX)—XT Y) ((XTX)—XTY)j>
=A=(ax)

n n
= Cov (Z aik Y, Z%ﬂﬁ)
k=1 =1
n

n
Z QiG] Cov (Yk, Yl) = O’2 Z Qi) = (J2AAT)‘ .
k=1 k=1 J

=020

—(o2(xTx)xT Tyv=)
_< (XTX)" XX ((x X)))i’j‘

4.3.3 Functions that can be estimated without bias

Definition 4.3.8. A linear combination a' 8 of 51,. .., Bm, a € R™ is called
estimable without bias, if

JeceR": E (cTY> =a'B,
i.e. if a linear unbiased estimator ¢'Y for a' 3 exists.

Theorem 4.3.9. The function a' 3, a € R™ is estimable without bias if
and only if one of the following conditions is satisfied:

1. 3ceR*: o' =c¢'X.

2. a fulfills the equation

o (XTX) XTX =al. (4.9)

Proof
1. ,= “ If a' B is estimable, then there exists a vector d € R" with
E@'Y)=a"B VB eR™ So
a"B=d EY =d" X5 = (aT - dTX) B=0, VYBeR™
— ' =d'X,
Finally, setting ¢ = d proves this implication.

,<= “: We can easily compute E(c'Y) = ¢'EY =c"Xp =a'p.
Therefore, a' (3 is estimable without bias.
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2. ,= “ If a' B is estimable without bias, then
XX XX ETX (XX XTx=cTx T,

=X (Lemma 4.3.4)

Thus, relation (4.9) is satisfied.
pie= Ifa"(XTX)"XTX =a', thenc = (¢ (XTX)"XT")T and
the first assertion imply that a' 3 is estimable.

O]

Remark 4.3.10. In case of a regression with rank (X) = m the equa-
tion (4.9) is always satisfied since (X'X)~ = (XTX)™! and thus a'f is
estimable for all a € R™.

Theorem 4.3.11 (Examples of estimable functions). If rank (X) =r < m,
then the following linear combinations of § are estimable:

1. The coordinates fj x;iB5, 1 = 1,...,n of the vector of expectations
EY = Xp. !
2. Arbitrary linear combinations of estimable functions.
Proof

1. Set Z; = (i1, ..., Zim), i = 1,...,n. Then
m
Y wis, =% B Vi=1,...,n,
j=1

XIB = (jlai:Za"‘ 7jn)Tﬁ'

Z;[3 is estimable, if Z; satisfies (4.9), which can be expressed in matrices
forall it =1,...,n as follows:

X (xTx) x'x=X.
By Lemma 4.3.4 this is valid.
2. For ay,...,a; € R™ let alTB, . .,aZB be estimable functions. For all
A= (A,..., )" € R show that f:l A -a; B = \TAB is estimable,
=

where A = (ai,...,a;)". It needs to be shown that b = (ATA)T
satisfies (4.9), i.e.

ATA (XTX>7 XTX =\TA.

This equation is satisfied, since a; (X' X)"X"X =aq/,i=1,...,k.
By Theorem 4.3.9, 2.) AT AB is estimable.
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O]

Theorem 4.3.12 (Gauf-Markov). Let a' 3 be an estimable function, a €
R™ in the linear regression model Y = X 4 ¢ with rank (X) < m.

1. The best linear unbiased estimator of a3 is given by a' 5, where
B= (XTX) Xy
is an OLS estimator for 5.
2. Var (a' ) = 02a" (X TX)"a.

Proof The linearity of a' f =a' (X TX)~ XY as a function of Y is clear.
For the unbiasedness it holds that

E(@ B =aEf=a"(X"X)"X"Xp
=" X(XTX)"XTX8= gl)gﬂ =a'B VBeR™

=aT

=X (Lemma 4.3.4)

First, calculate Var (a'j3) (i.e. prove the second assertion) and show
that it is minimal:

Var (aTB) = Var <§: ai6i> = i a;aj - Cov (BzaBJ>
i=1

ij=1
=a'Cov (B) g BB T 52 ((XTX)_XTX(XTX)_)T a

—o%.q" ((XTX)—)T XTx ((XTX)—)T a
=(XTX)- (XTX)-

I_Jemn’la‘:éi.3.47 1.) 0'2aT(XTX)7XTX(XTX)*a

fheoren 23910 02 T X (X TX)XTX(XTX) "X e

=X
=2 X(XTX)" XTe=0%"(X"X)a.
N——" ——

_aT =a

Now it is shown that for an arbitrary linear unbiased estimator b'Y of
a' B it holds that Var (b'Y) > Var(a'B). Since b'Y is unbiased, it holds
that E(b'Y) = a'j3. Using Theorem 4.3.9 it holds that a” = b" X. Now,

consider
0 < Var (bTY - aTB)
=Var (bY) —2Cov (7Y, a"B) + Var (a'B)
=Var(b'Y) —20%a" (X" X)"a+ 0% (X "X) a
= Var (b7Y) = Var (a'5)
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with

Cov (b—r}/7 QTB) — Cov (bT}/, aT(XTX>_XTY) = O'QCLT(XTX)_@

=02 (XTX)a.

Thus, Var (bTY> > Var (aTB) and a'f is a best linear unbiased estimator
for a' B. O

Remark 4.3.13.

1. If rank (X) = m, then a3 is the best linear unbiased estimator for
a'B,a€R™,

2. The estimator a' =a' (X "X)~X"Y does not depend on the choice
of the generalized inverse as is shown in the following theorem.

Theorem 4.3.14. The best linear unbiased estimator a ' § for a ' 3 is uniquely
determined.

Proof

Theorem 4.3.9, 1.)

o' B=a"(X"X)" XY X(XTX)" XY,

In order to show that X (X T X)~X T does not depend on (X " X)~, we prove
that for arbitrary generalized inverses A; and A of (X TX) it holds that
XA X" =XAX". By Lemma 4.3.4, 2.) it holds that

XA X'X =X =XAX"X.
Multiplying all parts of the equation with A; X T on the right yields
XA X' XAXT=XA4XT=XAX"TXAXT
%,T_/ T
—X -

Thus, XA; X = XA X 7. O

4.3.4 Normally distributed error terms

Let Y = X3 + ¢ be a linear regression model with rank (X) =r < m and
e ~ N(0,0%T). As in Section 4.2.3 the maximum likelihood estimator 3 and
52 can be derived for 3 and 0. Exactly as in Theorem 4.2.7 it can be shown
that

f=B=(X"X)"X"Y and

&2:3‘Y—XB\2.
n
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Now the distributional properties of 8 and 62 are discussed. First the unbi-

asedness of 52 is discussed. &2 is not unbiased but, the corrected estimator
1

= Y - X5 =

n—r n—r

noo_
0,2

S|

is unbiased.
Theorem 4.3.15. The estimator 2 is unbiased for 2.

The proof of Theorem 4.3.15 is similar to the proof of Theorem 4.2.6 in which
f=(XTX)'XTY and 62 = 1Y — X3|? are considered for the case

n—m

rank (X) = m. Thus, Theorem 4.2.6 is a special case of Theorem 4.3.15.
Define D=7 - X(X'TX)"XT.

Lemma 4.3.16. For D it holds that
1. D" = D (symmetry),
2. D? = D (idempotence),
3. DX =0,
4. trace(D) =n —r.
Proof
1. It holds that
D" = (- X(XTX)—XT)T —T-X ((XTX)—)T X7
—7-X(X'X)"X" =D,
since ((X X )_)T is also a generalized inverse of X X (cf. Lemma
4.3.4, 1.)).
2. It holds that
D? = (- X(XTX)*XT)2
=T-2X(X'X)" X"+ X(X'X)" XX (XTx) X"

=X (Lemma 4.3.4, 2.))
=7-X(X'"X)"X" =D.

3. DX=X- XX'X)"X"X =X-X=0.

=X (Lemma 4.3.4, 2.))
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4. It holds that
trace(D) = trace(l) — trace (X(XTX)_XT)
= n — trace (X(XTX)_XT) .

The symmetry and idempotence of the matrix A imply trace(A) =
rank (A) as is known from linear algebra. Since X (X "X)~ X is sym-
metric and idempotent, it is sufficient to show rank (X(X'X)~XT) =
r. By Lemma 4.3.4 2.) it holds that

rank (X) = r = rank (X(X'X) X" X)
< min {rank (X(XTX)"XT), rank (X) }
—_——

=r
<
— rank (X XTX ):r
— trace (X XTX )

O]

Proof of Theorem 4.3.15 By using Lemma 4.3.16 it can be shown that

72 = ‘Y Xﬁ’ ‘Y X(XTX) XTY‘ DY |
TL—’I" n—r n—r
= ’DXB + De’ = —|De)* = L»ST D'De= e' De.
n—r n—r n—r —~ n—r
=0 =D2=D
Thus

Eo? = ﬁE (ETDE) = %Etraee <5TD5) = ! rtrace(D -E (5\6/1))
2

=7 . trace(D) = o*
n—r

by Lemma 4.3.16, 4.), because Ece " = 027 and & ~ N (0,0°T) O

Theorem 4.3.17. The following distributional properties hold
_ T
1. B3~ N <(XTX)—XTX5, oA(XTX)~(XTX) (XTX)") )
2. M ~X2_.,

3. B and @2 are independent.
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Proof
1. It holds that
BF=X"X)" XY =(X"X)"X"(XB+¢)
=(XTX)"X"XB+(XTX)" X e
=p =A

Consequently,
B~N (,u,, a2AAT)
=N ((XTX)"X"X8, (X X)X TX((XTX)7)T)

with AAT = (XTX)"XTX(XTX)")T.

2. It holds that 7% = %5TD5 by the proof of Theorem 4.3.15. Thus,

=T

n—r)o2 e\ " £\ (Satz 4.1.25
( ) :<) D<)( 4 )X2

o2 o o n=r

——
~N(0.T)

3. Consider Ae and €' De. It is sufficient to show that they are indepen-
dent in order to show the independence of 5 and &2, since 3 = pu+ Ae,
o2 = —L_c"De. It holds that A-0?Z - D = 0. By Theorem 4.1.26 Ae

and " De are independent.

O

4.3.5 Hypothesis testing

Consider the hypothesis test Hy : H3 = d vs. Hy : HB # d, where H is an
(s x m) matrix (s < m) with rank (H) = s and d € R®.
In Theorem 4.2.14 for the case rank (X) = r = m the following test statistic
was considered

(HB—d)T(H(XTX) " HT)"\(HB - d) (m)

T = = ~ Fomm.
SO

In general, we may consider

(HB—d) (H(X"X)"H")"'(HB — d)

T = . . (4.10)

SO

We will show that T’ (119) Fs y—r. Then, a test with confidence level a € (0, 1)

can be constructed by rejecting Ho, if T' > Fs ,—y1—-q-
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Definition 4.3.18. The hypothesis Hy : HB = d is called testable, if all
coordinates of the vector Hf are estimable functions.

Theorem 4.3.9 provides conditions for H, under which Hy : HB = d is
testable. They are formulated in the following Lemma

Lemma 4.3.19. The hypothesis Hy : HS = d is testable if and only if
1. There exists an (s x n) matrix C such that H = CX, or
2. HX"TX)"XTX =H.

First, show that the test statistic 7" in (4.10) is well defined, i.e. the (s x s)
matrix H(X " X)~H' is positive definite and thus invertible. Corollary 4.3.3
implies

7, 0
X'x=p! ( " ) p! (4.11)

for an (m x m) matrix P, which is symmetric and invertible. Thus,

7. 0
X'x)y"=p-| 7 P=P.P,
0 Im—r

holds, i.e. there exists a unique generalized inverse X ' X with this represen-
tation. This implies that the (s x s) matrix HPPH' = (PH")T - PHT is
positive definite because rank (PH ) = s. Let now (X " X)~ be an arbitrary
generalized inverse of X ' X. Then, Lemma 4.3.19 implies

HX'X)"H'=CX(X'X)"X'"¢"=cxpPPX'C" =HPPH",

because X (X "X)~X T is invariant with respect to the choice (X " X)~ by
the proof of Theorem 4.3.14. Thus, H (XTX)7 H' is positive definite for
an arbitrary generalized inverse (X TX )_ and the test statistic 1" is well
defined.

(Ho)

Theorem 4.3.20. If Hy: HB = d is testable, then T Fop_r.

Proof This proof is similar to the proof of Theorem 4.2.14. First, we com-
pute
HB—d=H(X"X)"X"(XB+¢)—d
—HX'X)"X'"XB-d+HX"X) "X e.

=p =B
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Show that (Ho) .

(Lomma 4319 o X(XTX)"XTX f-d=CXB—d=HB—d "™ 0.

=X (Lemma 4.3.4, 2.))

_ -1 —
Using Theorem 4.3.17 yields (Hf — d)" (H(X"X)"H")  (HB - d) and

s -2 are independent and (”‘07’;)52 ~ x2_,. Tt remains to show
_ T _ -1 _ (Ho)
(BB —d) (HxXTX) HT) (HE-d) ™ 2
—— ——
—TRBT =Be

It holds that
-1
e'BT (H(X'X)"H")  Be

=’ X ((XTX)—)T gl (H(XTX)_HT)_l HX X)X e

A

It can be shown that A is symmetric, idempotent and rank (A) = s. The
idempotence can be shown as follows

A2 = X((XTX)—)THT(H(XTX)—HT)_1H(XTX)—XTX ((XTX)—)THT-
H (Lemma 4.3.19, 2.))

: (H(XTX)*JLIT)_1 HXTX) X'

=X ((XTX)_)T i (H(XTX)_HT)_I HXTX) X' = A,

.
since ((X X )_) is also a generalized inverse of X ' X (by Lemma 4.3.4).
Thus, H(XTX)"H" = CX(X"X)~X"C" does not depend on the choice
of (XTX)™, c¢f. proof of Theorem 4.3.14. Using Theorem 4.1.25 yields
%A% ~ X2, because £ ~ N(0,02Z) and thus T % Fon_r. O

4.3.6 Confidence regions

Similar to Section 4.2.5, confidence regions for different functions of the pa-
rameter vector 8 can be found. Theorem 4.3.20 directly yields the following
confidence region with confidence level 1 — «a € (0,1):

Corollary 4.3.21. Let Y = X 3+¢ be a multivariate regression model with
rank (X) =7 <m, H an (s x m) matrix with rank (H) = s, s € {1,...,m}
and Hy : HB = d testable Vd € R®. Then,

_ T -1,
(HB—d) (H(XTX)"HT) (HB-d)

deR*: 5

— < Fs,nfr,lfa
S0

is a confidence region for H 3 with confidence level 1 — a.
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Corollary 4.3.22. Let h' 3 be an estimable linear function of 3, h € R™.
Then,

(hT/B - tnfr,lfa/Q o hT(XTX)_hv hTB + tnfr,lfa/Q ’ E\/ hT(XTX)_h>

is a confidence interval for h' S with confidence level 1 — cv.
Proof Set s =1 and H = h'. Theorem 4.3.20 implies

(hTB - d)T (hT(XTX)—h) - (hTB - d) - (hTE - d) (hTB - d)

I= 72 T RGI(XTX)h)

(hTB - d)2
T FZ(hT(XTX)h)

~ Fl,nfr

under the condition h' 8 = d, since h " (X X ) * his one-dimensional. Thus,
it holds that

JT = R'B—h'pB ~t
o\ hT(XTX)"h
Therefore,
P (—tn_m_a/z <VT < tn_m_a/z) —1-a
This implies the confidence interval above. O

An even stronger version of Corollary 4.3.22 can be proven which holds for
all h of a linear subspace:

Theorem 4.3.23 (Confidence band of Scheffé). Let H = (hy,..., hs)"
where hi,...,hs € R™ 1 < s < m and Hy : HB = d testable Vd € R?®.
Let rank (H) = s and £ =< hq,...,hs > the linear subspace with span
{(h1,...,hs}. Then

N2
(hTB - hTﬁ)
P
ez | 7R (XTX)h

Thus,

h'B+\/sFsnria -a\/hT(XTX)h}

is a (uniform with respect to h € £) confidence band for h'j.
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Proof Set
Ty = (HB - Hﬁ)T (H(XTx)"HT) ! (HB - HB).
Then, Theorem 4.3.20 implies
P(T1 <s -52Fs,n,m,a) —1-a

for all @ € (0,1). If it can be shown that

(" (13- )
= zeflg,n:p(;éo 2T (HXTX)"HN)z [’ (412)

then the proof is concluded, since

l-—a= P(Tl < 552Fs,n—r,1—a>
—_—
t

b (- m)’ )

—p
seionto ) 20 (H(X X)-HNz [ =

() B—(H0)75)’
=P max <t
z€RS, 2#£0 (HT.’E)T<XTX)_(HT$)

_ 2
P | max OLTﬁ_hTﬂ)

HTxthE
N heL | h'(XTX)"h

—2
< so Fs,n—r,l—a

In order to prove the validity of (4.12) it is sufficient to show that 7} is an
upper bound of

(«7 (1B - Hp))’
rT(HXTX)"H")z’

which is also a maximum. Since H(X'X)"H' is positive definite and
invertible, there exists an invertible (s x s) matrix B with the property
BB" = H(XTX)"H'. Then,

(:J(HB— H[J’))Q — ( «'B -B~Y(HB - Hﬁ))2
(BT2)T
B a? BN (HE - HB)?
— 2 BBz (HB - Hﬁ)T (BY'B Y HB - HB)
——
— (BT)71B71 — (BBT)—I

=2 H(X"X)"H - (HB - H/;’)T (H(XTX)—HT)_1 (HB — Hp).
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Thus, it holds that

(" (18 — 1p))’
2T (HXTX)"H")x

< (HB - HB) T(H(XTX)_HT) _1(HB - Hﬁ)
= Tl.

—1 _
or r = - — 1T can bpe snown al 1t actua 1S
F (H(XTX) HT) (Hﬁ H,B) it can be shown that it actually i

a maximum. O

4.3.7 Introduction to variance analysis

In this section we discuss an example for the application of linear models
with a design matrix that doesn’t have full rank. It is the assertion of the
variability of the expected values in the random sample Y = (Y71,...,Y;,)T
in short ANOVA(analysis of variance).

First, consider the single factor variance analysis, in which it is assumed,
that the random sample (Y1,...,Y,) can be partitioned in & homogeneous
subclasses (Y, j=1,...,n;),i=1,...,k with

LE(E]‘):/M:H'FO‘Z‘? j=1,....n5, 1=1,... k.

2. n; >1, i=1,...,k, Zni:n, Zniai:().

Here p is a factor, which is equal in all classes and «; € R are the class specific

differences between the expected values p1, ..., ug. The number¢s=1,... k
of the classes are called levels of the influencing factor (e.g. the doses of
a drug in a clinical trial) and «;, ¢ = 1,...,k can be interpreted as the

k
effect of the i-th level. The constraint ) n;a; = 0 causes that the conver-
i=1

k T4
sion (p1, ..., pug) <— (W, 1,..., ) is unique and that p = % > Y EY;.
i=1j=1
Furter, it is assumed that p; can be measured with uncorrelated measure-
ment errors g;;, i.e.

Y;j:,uiJreij:,quaiJreij, i=1,....k j=1,...,n4 (413)
Eeij =0, Vare;; = o2, ;5 uncorrelated, i = 1,...,k, j =1,...,n;.
(4.14)

Here, we want to test the classical ANOVA hypothesis that no variability in
the expected values u; can be found, i.e.

Ho: p=p2=...= p,
which means, that

Hy: aj=ay=...=q.
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The constraint

k
Z n;o; = 0.
i=1

implies a; = 0.
The problem (4.13) can be rewritten in terms of multivariate linear regres-
sion as follows:

Y =XfB+e¢, where Y = (Y11, -, Ying, Yat, -+, Yangs o o> Yo - o5 Yamy) |
B: (/,L,O[l,...,()[k)T,

T
5:(6117"'751”17"'75]617"'7€knk) )
11 0 ... ... 0O
11 0 ... ... 0

ni
1 1 0 0
1 0 1 0 0
X = ng
1o 1 0 ..o/
1 0 ... ... 0 1 }le
1 0 ... ... 0 1

The (n x (k+ 1)) matrix X has rank £k < m = k + 1; thus the theory of
section 4.3 can be applied to this model.

Exercise 4.3.24. Show that the ANOVA hypothesis

Hy: o;=0, Yi=1,... k

is not testable!

In order to consider an equivalent but testable hypothesis

Hy: a1—ay=0,...,a1—ap=0 resp. Hy: Hp=0,
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we construct a (k — 1) x (k+ 1) matrix

01 -1 0 ... 0

01 0 -1 ... 0
H =

01 0 -1 0

01 0 0 -1

which we can use as part of our hypothesis test. (Show that!)

In the two factor variance analysis the random sample (Y7,...,Y},) is divided
in k1 - ko homogeneous groups depending on two factors

Yiiinj, J=1,...,n4,
fori; =1,...,k1, 40 =1,...,ko, such that
ki ke
DD My =1
i1=14d9=1
Here it is assumed that
EY; inj = Mivie = o+ iy + Big + Virior, 11 =1,...,k1, 02 =1,... ko,
thus the following linear model is constructed:
Yiyioj = Hiviy + Eirigg = B+ iy + Biy + Yigiy + Eiying
j: 1,...,722‘”'2, ’il = 1,...,k1, ig = 1,...,]6‘2.

Exercise 4.3.25. Write down the design matrix X for this case explicitly
and show that it also doesn’t have full rank.



Chapter 5

Generalized linear models

Another class of regression models usually allows for an arbitrary functional
connection g between the mean of the goal variable EY; and the linear
part X3, which is a linear combinations of the entries of the design ma-
trix X = (z;;) and the parameter vector 8 = (f1,... ,Bm) . On the other
hand it allows distributions of Y;, which are not necessarily based on the
normal distribution (and functions of those). Thus it is possible to consider
data Y; that has a finite number of characteristics (e.g. “yes” and “no” in
economic surveys). The class of all possible distributions is bounded by the
Ezxponential family.

Let Y7,...,Y, be a random sample of the goal variable of the model and let
X = (xz]) i=1,...,n
j:17" 7m

the design matrix of the output variables, which are not random.

Definition 5.0.1. The generalized linear model is given by

(9(EY1),...,9(EY,)) = XB with = (Bi,....fm)|  (5.1)

where g : G C R — R is the so called link function with domain G. The
rank is given by rank(X) = m.

Under the assumption that g is known explicitly, the parameter vector S is
desired to be estimated using (Y1,...,Y,). Here it is assumed that Y; ,i =
1,...,n are independent but not necessarily identically distributed. But
their distribution is a member of the following family of distributions.

5.1 Exponential family of distributions

Definition 5.1.1. The distribution of a random variable Y is a member of
the exponential family, if the functions a : Rx Ry — R and b: ©® — R exist,
such that

177
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e in the absolutely continuous case the probability density function of Y
is given by

foly) = exp {%(?ﬂ +a(y.7) —b(6))}, yeR (5.2)

e in the discrete case the probability mass function of Y is given by

BiY =) = exp { S (0 +aly,r) —b(0) by e € (5.3)

)
where C is the (at most) countable domain of Y, 72 the so called error
term, § € © C R a parameter and

@z{GER:R/eXp{W}dy<oo}

respectively in the discrete case:
_ , y0 + aly,7)
0= {GER.y;jexp{ﬂ} <oo}

which is the natural parameter space with at least two different ele-
ments.

Lemma 5.1.2. O is an interval.

Proof Show that © C R is convex. It is then (possibly an infinite) interval.
For arbitrary 01, 2 € © (at least one pair exists by Definition 5.1.1) it holds
that afy + (1 —a)fy € O for all a € (0,1). In order show that the statement
above holds, suppose that the distribution of Y is absolutely continuous.
Since 6; € ©, it holds that

1 )
/Rexp {ﬂ(yﬁl + a(y,T))}dy <oo, 1=1,2.
The inequality
azr; + (1 — @)zy < max{zi,z2}, z1,22 €R, a€(0,1),
implies
1
exp { (y(oz@l + (1= a)b2) + a(y, T))}
1 1
= exp {aTQ (901 + a(y, 7)) + (1 - @)~ (02 + aly, T))}
1
< max exp {72 (y0: + ay, T))}

i? (991 + a(y, T)) } + exp {7_12 (y02 + a(y, 7')) } ,

<o
T
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and thus

@

Xp {712 (y(abr + (1 = )f2) +aly, 7)) } dy

/.
2 1
< ;/Rexp {7_2<y02- + a(y,T))}dy < 00
by the assumptions of the lemma. In summary
aby + (1 — )by € O,
and O is a interval. O

Example 5.1.3. Which distributions belong to the exponential family?

1. Normal distribution: If Y ~ N (u,0?), then p is the parameter of
interest and o2 the error term. It holds that

f ( ) 1 _(y—;;)Q
= - e 20
Y V2mo?
1 o (v 2yp  pP
:exp{Qlog(me )—5 ((72—024-02 }

B 1 y? 2 g )
—exp{a2 (yu—2— <2+210g(27ra ) }

and setting 0 = u, 7 = o,
2 2 2
a(y,7) = —% - % log(2m0?) and  b(u) = b(6) = %
satisfies Equation (5.2)

2. Bernoulli distribution: Y ~ Bernoulli(p), p € [0; 1]
The Bernoulli distribution is usually used in surveys in market research

where
{1, if the answer is “yes”

0, if the answer is “no”
)

for a given question in the respective survey.
Here the probabilities are given by P(Y =1)=p, P(Y =0)=1—p.
Then for y € {0,1} it holds that:

Py(Y =y) =p¥(1 — p)l—y — eylogp+(1-y)log(1-p)

— pYlos 755 —(~log(1-p))

Thus the Bernoulli distribution is a member of the exponential family
with 6 = log 1%, T=1,

a(y,7) =0, b(#) = —log(l —p) = log(1 + ).
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3. Poisson distribution: If Y ~ Poisson (A), A > 0, then for y € Ny

\Y
€_>\ C—

— Y log A\—log(y!)—A
y!

P(Y =y) =

Thus the Poisson distribution is a member of the exponential family
with 0 =log A\, 7 =1,

aly, ) = —log(y!), bO) =1=e’.

Lemma 5.1.4. If the distribution of a random variable Y is a member of
the exponential family, EY? < oo and b : © — R is two times continuously
differentiable with b”(0) > 0 for all § € ©, then

EY =b¥(0), VarY = 72b"(9).
Proof

1. Only the case for absolutely continuous distributions is discussed be-
low. The discrete case can be handled simultaneously by replacing the
J with >°. Tt holds that

1
EY:/yfe(y)dy=/yeXP{2 y9+a(yﬁ)—b(9))}dy
R R T
e, 0 1
=e 2 .7 ]Raeexp{T2 y9+a(y,7))}dy
we , 0 1
=e 2 .7 20 exp{TQ(yG—l—a(y,T))}dy

_b(o) b(6) 1
=e 72 .7 % e 2 /Rexp{Tz(ye“‘a(yﬁ)_6(9))}61?!

I fo(y)dy=1

_dO) 5 0 [ b _we) LU (6) o
=e 72760<er2>:e 2 i ez =10b(0).

2. Show (analogously to 1) that

Exercise 5.1.5.
VarY = 720" (6).
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5.2 Link functions

The goal variables Y;, ¢ = 1,...,n are i.i.d. with a distribution which
is a member of the exponential family and a probability (density or) mass
function as in (5.3) resp. (5.2). Assume that b : © — R is two times
continuously differentiable with ”(0) > 0 for all # € ©. Additionally assume
a generalized linear model as in (5.1).

Definition 5.2.1. (Natural link functions) The link function ¢ : G — R
is called natural, if g = (V')7%, G = {¥/(9) : 0 € O} and g is two times
continuously differentiable with ¢’(z) # 0 for all z € G.

The question why the link function is called “natural” is answered in the
following Lemma.

Lemma 5.2.2. If the generalized linear model (5.1) has the natural link
function, then (fy,...,0,)" = X3

Proof Since bv”(6) > 0, it holds that b'(6) is monotonically increasing and
thus invertible. Define

T T .
MZ:E}/:M 771:37167 xi:(xila--'axim) 5 7':17"'7”'

Since g is invertible it holds that
pi=g (@ B) =g m), i=1,...,n.
On the other hand, it holds that u; = ¥/(6;) by Lemma 5.1.4, so
Vo) =g () "2 W), i=1,. 0

Because of the monotonicity of ' the assertion §; = n;, ¢ = 1,...,n holds.
O

Example 5.2.3. In the following the natural link function for the distribu-
tions of Example 5.1.3.

1. Normal distribution: Since b(u) = ”72, it holds that

V(x) = 2; = z and thus g(z) = (V) }z) ==

The natural link function is given by g(z) = x, thus it holds that
(1, s pn) " = (EV1,...,EY,)T = X8

This is exactly the case of linear regression.
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2. Bernoulli distribution: Since b(f) = log(1 + €?), it holds that

1

’ . T _
(x)—1+€x Y
~ L =

e‘x+1_y

1 x
S —-——1=e

Yy
&= —log _yzlogly

:blfl :1 €L

= g(a) = (1)} (2) = log ——

The generalized linear regression model in the case of the Bernoulli
distribution is called binary (categorical) regression. If it is used with
the natural link function, it is called logistic regression. In this case it

holds that
(p17"‘ 7pn)—|— == (E}/l7“ '7EYT’L)T)
QZ:loglex;rﬁ, izl,...,n
— Di
0; bi
S et =
L —pi
el
S pi=——7
pl 1+602
e B
@pl:m, 2217...,71.
The ratio

p_ PYi=1)
l—p; PY;=0)
is called Odds. The logarithm of the Odds is called Logit:
Di
1—p;’
Logits are thus “new goal variables”, which are estimated by using the
linear combinations z;' 3.
An alternative link function which is often used is defined by g(z) =
®~1(x), which is the Quantile function of the normal distribution . Tt

is however, not a natural link function. By using them, the so called
Probit model:

1=1,...,n

log

1=1,...,n.

pi:q>(:v;rﬁ), i=1,...,n

can be obtained.
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3. Poisson distribution: Since b(f) = ¢, in this case

g(x) = ) Yz) =logz, >0

is the natural link function. Thus the generalized linear model with
natural link function has the representation

(log A1,...,logA\,)" = X3 or /\i:exiTB,izl,...,n.

5.3 Maximum likelihood estimator for (5

Since the probability mass (or density) function of Y; is given by

exp {H(y6i + aly,7) = b(0,)) |

and the Y; are independent, the log-likelihood function of the random sample
Y = (Y1,...,Y,) can be written as follows

1
-2

log L(Y, ) 1ong9 znj (Vi + a(¥i, 1) = b(6:).  (54)

The proof of Lemma 5.2.2 implies that

0, = () YWg Yz B), i=1,...,n, (5.5)

which implies that log L(Y, 0) is a function of the parameter . From now
on the notation log L(Y, 3) is used to emphasize this fact.
The maximum likelihood estimator 3 for § is desired:

B = argmax log L(Y, 5)
B

The necessary condition for an extrema

log L(Y,
8OgalB(Z ?5)207 Z:]., ’m?
needs to be checked. Introduce the following notation
log L(Y,
Uz(ﬂ)zaogaﬁ(zjﬁ)a izla"'7m7

UB) = (U(B), - Un(B) T,
Ilj(ﬂ):E[Uz( ) j(ﬁ), i,j:L...,m,

Definition 5.3.1.
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1. The matrix I(8) = (Iij(ﬁ))%:l

is called Fisher information matriz.
2. Introduce the Hesse matrix W () as a random matrix

2
9pi0p;

This (m x m) matrix contains the 2nd order derivative of the log-
likelihood function, which will be relevant for solving the maximisation
problem

W(B) = (Wij ()= with  Wi;(5) = log L(Y, §).

log L(Y, B) — mgx.

Theorem 5.3.2. It can be shown that U(S) and (/) have the following
explicit form.

1.
39_1(7h) 1 .
Tij Y ,U’Z ) J = 17 cees
Z i ) m on; Uf(ﬁ)
2. )
§ A9~ (m) 1 .
5 = T4 ’ jukzla"'7m7
)= 2 mmie\ =g | o)
where n; = ] B, 1;(8) = g~ (2 B) is the expectation of ¥; and
Lemma 5.1.4 (5.5) _ _ .
0P (B) RTINS (0:) = () g (=@ 8)), i=1,.
is the variance of Y;.
Proof

1. Introduce the notation
1
1i(8) = = (Yibi +a (Yi,7) = b(6;)), i=1,...,n.
T

Then,

j=1,...,m.
Z 3 5]
Applying the chain rule several times yields

olLi(B) _ 0lLi(B) 00; Oui O
9g;  96;  Owi Om; OBy

1=1,....n,5=1,...,m.
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Since

a5 100) N (),

-1
o () = (o) = gy ()
2

_ Opi o g~ ( 7i)
o(B) on;  Omi

because u; = EBY; = g~1(n:),

om0z B) . .
= L~ =gy, t=1,...,n, =1,...,m,
a,Bj 6,83 J J

we have

7_2 711’
Uy (8) = 5 3y (Vi = ) - 53— - 2

=1

= Zﬂ?z’j(Yi — 1i(B))
=1

2. For alli,5 =1,...,m it holds that

I;;(B) = E(U;(B)U;(8))
n g (k) g~ (m1) 1
o R I

= (097 () ‘o
‘,2”’”“”“( 1l >a£(ﬂ>‘

O]

Remark 5.3.3. In case of the natural link function, simplify the equation
above so that the log-likelihood function is given by

log L(Y. 8) = Z (Yol B+ a(vi,7) — (] B)).
Since in this case g~'(n;) = V' (), m; = ] B = 6; holds,

6971(7%) " Lemma514 1 2
S = ¥(0) SH0),
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and thus
1 & )
U;(B) = ﬁzﬂfzj (Yi—ui(B), i=1,...,m,
i=1

1 & .
Lix(B) = pr > wiziwoi(B), g k=1,...,m.
=1

Theorem 5.3.4.

Wir(B) = iz ( Yi —Mi(ﬁ))%‘ - = >, JLk=1,....m
i=1 g; (B)
where
-1
v — g~ (ni)
om;
1 () eg ()
i on?
Mz(ﬂ) = EY;, J?(ﬁ) = VarY;,
n =z
fori=1,...,n.

Proof For arbitrary j,k = 1,...,m it holds that
a neorem 9.9. a "
7U](ﬁ) Tk o 5.3.2 ﬁzl‘” (Y; —,ul(ﬁ))
k=1
0 (99 '(ni) 1
= <(Yi —m(B))ge ( o o2(B))

99 (m) 1 6m(6)>
oni o7 (B) 9Pk

g t(m) 1
o o7(B)

Wir(B) =

SN0
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where
097 () 1 temmasaa OV(6) 1 1
87’]1 0’22(5) and The;em 5.3.2 anl 7-2 b//(el)
Cov(B) 99,1 1 106
N 392 8771 T2 b”(@l) a 7'2 87]7;
and
o (0g () 1 - ié% Oni mi=z{p i@x
B\ o oXB)) TPoF 9B, Trom "
with
wi(B)
-1 1 1
09— (m) _ 99~ (m) Om _ 99~ (m)
Bk oni OB on; i
and 0; = (V) Log t(m),i=1,...,n. O

Moreover for generalized linear models with natural link function

1 & "
W(B)=-1(8) = <—4 Z%j%kﬁ(ﬁ)) (5.6)
T i= k=1
holds, since in this case v; = 0 for all i = 1,...,n. W(S) is therefore
deterministic. Indeed, by Lemma 5.2.2 ; = z/ 8 = n; and thus %2”9_21' =0,

k3

1=1,...,n.

Remark 5.3.3 implies u? = %4014(6).

Example 5.3.5. What do U(8),I(5) and W (/) look like for the models

introduced in Example 5.2.3 (natural link function)?

1. Normal distribution: this case corresponds to the usual multivari-
ate linear regression with normally distributed error terms. In this
case it holds that = X3, 72 = o2.

Remark 5.3.3 implies
1
0-2

168) = (B (UB) - Us(5))s s, = X X,
W(8) = —1(8).

=
=
I
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2. Logistic regression: It holds that 72 = 1, u; = p;, 02 = pi(1 — i),
i=1,...,n, p; € (0,1) and thus

UB)=X"(Y -p)
I(B) = X "diag(pi(1 — p;)) X

W(B) =—1(8)
where p = (p1,...,pn) "
3. Poisson regression: It holds that 72 =1, y; = \; =02, i=1,...,n
and thus

UB)=X"(Y = \),
1(8) = X "diag(\) X,
W(B) = —1(8),

where A = (A1,...,\n) "

When is the solution to the equation U(f) = 0 maximizing the function
log L(Y, B)?
In other words: When does an unique MLE f of 5 exist?

A

B = argmax log L(Y, 3).
B

The sufficient condition of a maximum implies that the Hesse matrix W (/3)
is negative definite.

Consider the case of the natural link function. Then Remark 5.3.3 implies
that

« The system of equations U(f) = 0 can be rewritten as U(8) = X " (Y —
u(p)) =0

o The matrix W(3) = —T%XTdiag(U?(ﬁ))X is negative definite, has
rank(X) = m and 0 < 02(f) < o for all i = 1,...,n. Under those
conditions there exists an unique MLE g for .

In the following, two numerical algorithms for solving the system of (in
general nonlinear) equations U(f) = 0 are introduced. These approaches
are iterative, i.e. they approximate the MLE [ incrementally.

1. Newton’s method
Choose a suitable starting value 30 e R™.

In step k + 1, calculate Bk—i—l from &, k=0,1,... as follows:

o Take the first order Taylor expansion of U (B) at B U (B) =
U(Bk) + W (Br)(B — Br)-
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» Solving for 0: U(Bg) + W (Br)(8 — B) =0

e The solution for this system of equations is Bk+1 :
Brr =B =W (B) - U(B), k=0,1,2,...
assuming that W (j3;) is invertible.

Stop the iteration process once ]3k+1 — Bk‘ < 6 for a

predetermined boundary ¢ > 0.

The convergence of this method heavily depends on the choice of Bo, since
By has to be close enough to 3. Another disadvantage of this method is
that the random matrix W (f) might not be invertible. That is why a
modification of the Newton method is presented in which W (/) is replaced
by the expectation

EW(8) = —1(8). (5.7)

It can be shown that the identity (5.7) holds by using Theorem 5.3.4 and
the fact that EY; = p;, i = 1,...,n. If it is assumed that rank(X) = m and
u; #0, i =1,...,n, then by Theorem 5.3.2, I(3) is invertible. This method
is called Fisher’s scoring method.

The only difference of Newton’s method compared to Fisher’s Scoring is that
in the second step the iterative equation

Bra1 = Be + T Y (B)U(Br), k=0,1,...

is used.
In the case of the natural link function (cf. Remark 5.3.3)

B = B+ 7 (X Tdiag (o3 (B X) 5 (XT(V — (b))

= B+ 7 (X T diag(o? (B X) T (XT(Y — pu(A))-

5.4 Asymptotic tests for

The goal of this section is to construct a test for the hypotheses

H():,B:ﬁ()vs.
Hy: B+ Bo

with 8 = (B1,...,6m)" and Bo = (Bot,--.,Bom) . In particular, the hy-
potheses Hy : B = 0 resp. Hp : 3; = 0 are of interest, because they imply
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that the test variables Y = (Y7,. .., Yn)T does not depend on several output
variables (e.g. (1j,...,%nj)" in case of the hypothesis 3; = 0).
In order to test these kinds of hypotheses, the test statistics 7, are used,
which have an asymptotic (for n — 00) reference distribution (e.g. multivari-
ate normal or y? distribution). Some groundwork has to be done beforehand
though. Let

gEY;)) =X;8, i=1,...,n

be a generalized linear model with natural link function g. Let L(Y, /) be
the likelihood function, U(f) the partial derivatives of log L(Y, 5) and I(f)
the Fisher information matrix in this model.

Bn = B (Y1,...,Y,, X) denotes a sequence of maximum likelihood estimators
for .

Assume that

1. 34 compact subspace K C R™, such that all rows X;, ¢ = 1,...,n,
neN,of X arein K. Here 0 =z € O forall 5 € R™ and z € K.

2. There exists a sequence {I'),},en of diagonal (m x m) matrices I';, =
I',,(8) with the properties
(a) v >0,ie€{l,...,m}
(b) lim I'), =0,
n— oo

(c) hﬁm (BT, = K~1(B), where K(B) is a symmetric positive
n—oo
definite (m x m) matrix for all § € R™.
Theorem 5.4.1. Under the conditions above, there exists a I';, consistent
sequence of MLE {f,} for 3,
(ie. P (F#]Bn — Bl <e,U(By) = O) — 1 for n — 00), such that

1 T2 =T;'(Bn — B) —2— N(0, K(B)),

n n—00
2. T, = 2(log L(Y, B,,) — log L(Y, §)) —> X2,
where m = dim f.
Remark 5.4.2. (cf. [27], p.288-292)
1. Usually I';, = diag (%, ey ﬁ) is used.

2. Until now we always assumed that the dispersion term 72 is known.
If that is not the case, then 72 can be estimated by

n (Y ,U«z(/én))2
T on— Z b// )
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where 0,,; = v )*l(uz(ﬁn)) i =1,...,n. This estimator is an empirical
analogue to the equation 72 = ;,I%YZ) of Lemma 5.1.4.

3. The second assertion of Theorem 5.4.1 also holds, if the unknown

parameter 72 can be replaced by a consistent estimator 72.

How can Theorem 5.4.1 be used to test the hypothesis

Hoiﬁ:ﬁo VS.
Hy: B # Bo

or component wise

Ho:Bj=8Bjo,j=1,...,m vs.
Hy:3j1: By # Bjro 7

Let .
E):injﬁj, izl,...,n
j=1

be a generalized linear model with natural link function g.
Using Remark 5.3.3, it holds that

1 n
log L(Y, B) = —ZZ(Yx B+a(Y;,T) — b@:ﬂ))
where Y = (Y1,...,Y,)" and z; = (z41,...,%iy,) . Thus is holds that
To=) Z (Yi! (Bn = Bo) = bla] Ba) + b= Bo))

By specifying an exponential model (7,b are known), with respect to the
random sample of the goal variable Y and the design matrix X, Hy is rejected
it T,, > x?n,l_a, where m is the number of parameters in the model, X%@,l—a
the (1 — a) quantile of the x2, - distribution and « € (0, 1) is the significance
level of the asymptotic test. This test can only be applied for relatively
large n. Type I errors have the (for n — co) asymptotic probability . If a
simple hypothesis

H()Zﬁj:OVS.
Hliﬁj%o

is tested, the test statistic 7} is used which can be derived from T}':
Hy is rejected, if
|Bnj|
’ n| - TZJ > Zl—%
(Tn(Br))jj
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where 21_g is the (1 — §) quantile of the N(0, 1) distribution. Here {I';} is
chosen in a way that K () = Id, for all 8 € R™. This is an asymptotic test
with confidence level «, since

Pry(|T| > 21-9) =1 = Py (|T; < 21-g) —— 1= @(21-2) + (~21-g)
—_—————
1*‘13(217%)

where

1 [ e

is the cumulative distribution function of the N(0,1) distribution.

Example 5.4.3. (Credit risk assessment)!
The following data is provided by a southern German bank from the 90’s:
Results from credit risk assessment for n = 1000 credit applications (ca. 700
good credits and 300 bad credits) analysed:

. 0, if the credit of customer ¢ has been paid
Goal variable Y; = ] .
1, if the credit of customer 7 has not been paid

The design matrix X contains the following additional information about
the customer:

1, mno account
xi1 - Account management with the bank = {0 |
, else

1, good account
Zio - Assessment of account management =
, no- or bad account

;3 - Term of credit in months
;4 - Value of Credit in DM

1, ood
x5 - Payment history of customer = &
0, else

1, private

xi6 - Reference = ]
0, Dbusiness

Question: How should B be estimated?

As a model, the logit model is used with p; = P(Y; =1), i=1,...,n:

i
log - Zp. = Bo + zi1B1 + @i2fe + xi3Bs + Tiafa + wisPs + Tie o
)

for i =1,...,n, where 8 = (Bo,...,0) ", m ="17.

Yef. Fahrmeir, L., Kneib, T., Lang, S. - Regression, p.208
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Y=1 Y=0
T no account 45.0 20.0
T2 good 15.3 49.8
bad 39.7 30.2
T4 Credit value Y=1 Y=0
0<...<500 1.00 2.14
500 < ... <1000 11.33 9.14
1000 < ... < 1500 17.00 19.86
1500 < ... <2500 19.67  24.57
2500 < ... <5000 25.00  28.57
5000 < ... <7500 11.33 9.71
7500 < ... < 10000 6.67 3.7
10000 < ... < 15000 7.00 2.00
15000 < ... < 20000 1.00 0.29
T5 Credit history Y=1 Y=0
good 82.33 94.95
bad 17.66 5.15
T Reference Y=1 Y=0
private 57.53  69.29
business 42.47  30.71

Table 5.1: Abstract of the data

Goal: Estimate g, ..., 8¢ and check, which factors are important for future

credit risk assessment.

Hy : 5; = 0 (feature z; does not affect the credit risk assessment) is rejected,
if the p-value < a. It can also be noticed that 4 is not relevant for credit
risk assessment, contrary to belief. A refinement of the model is necessary:

New model:

9(EY;) = Bo + Brzi1 + Bowia + Biwiz + Bials + Bizia + Bixdy + Bsxis + BeTis

Question: Which model is better?
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T ) T3 T4 T Te

0.274 0.393 20.903 3271 0911 0.657

Table 5.2: Means Z; of z;; in the data

Value \/ (LYB)u T'  p-value

Bo 0.281 0.303 -0.94  0.347
B1 0.618 0.175 3.53 < 0.001
B2 -1.338 0.201 -6.65 < 0.001
Bz 0.033 0.008 4.29 < 0.001
Bsa 0.023 0.033 0.72 0.474
Bs -0.986 0.251 -3.93 < 0.001
Bs -0.426 0.266 -2.69  0.007

Table 5.3: Results of the ML estimation by using the Fisher Scoring method,

where ¢/ (I, 1(5’))” is used as an asymptotic standard deviation of f3;. Sig-
nificance level : a = 0.001.

In other words, the following hypotheses are tested:

Hy : 82 = 0 (linear model) vs. Hj : 5 # 0 (quadratic model) resp.
Hy : 82 = 0 (linear model) vs. Hj : 37 # 0 (quadratic model)

Here the type of statistical hypothesis is generalized as follows:
Hy:CB=dvs. H :Cp+d

is tested, where C is a (r x m) - matrix with rank C' =r <m and d € R".
For comparison, the hypothesis

Hy:p=povs. H :84# po, B,00€R™

was tested before. Obviously 5 = [y is a special case of C5 = d with C' =
Id, d = By. The new hypotheses include assertions about the linear combi-
nations of the parameters. How should Hy vs. H; be tested?

Let 3, be the MLE of 3 under Hy, i.e. Bn = argmax log L(Y,[3)
B € Rm: CB=d

Let 3, be the MLE of 3 unrestricted, i.e. 8, = argmax log L(Y, f3).
B € R™

The idea behind the following tests is to compare Bn with Bn
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Value \/ (LYB)u T'  p-Wert

Bo -0.488 0.390 -1.25  0.211
81 0.618 0.176 3.51 < 0.001
Bs -1.337 0.202 -6.61 < 0.001
1 0.092 0.025 3.64 < 0.001
2 .0.001  <0.001 -220 0.028
1 -0.264 0.099 -2.68  0.007
1 0.023 0.007 3.07  0.002
Bs -0.995 0.255 -3.90 < 0.001
Bs -0.404 0.160 -2.52  0.012

Table 5.4: p-values for the regression coefficients of the new model

If the deviation Bn — En is big, Hy should be rejected.

Theorem 5.4.4. Let log L(Y, 8) be the log-likelihood function of the ran-
dom sample of the goal variable Y = (Yi,...,Y,)", I,(8) be the fisher
information matrix, U(3) be the score function of the generalized linear
model with natural link function g:

g(EY;) =X.p, i=1,...,n.
Consider the following test statistics

1. likelihood-ratio test statistic:

T, = 2(log L(Y, Bn) — log L(Y, 5y))
2. Wald statistic:

Ty = (Chn = d) (CL (B)CT) (OB — d)
3. Score statistic:
Ty, = U(Bn) "1, (Ba)U (Bn)

Under certain conditions for the estimators 3 and 3 (cf. Theorem 5.4.1) the
test statistics 1 - 3 are asymptotically x2, distributed, e.g. for the likelihood-
ratio-test statistic it holds that
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Corollary 5.4.5. Theorem 5.4.4 provides the following decision rule: Hy is
rejected, if o
Tn(T;:aTn) > Xgn,l—oa'

This is an asymptotic test with confidence level a.

Example 5.4.6 (Continued). The following values for the test statistics are
obtained:

e T, = 12.44 p-value: 0.0020

o T =11.47 p-value: 0.0032

for a = 0.005 it holds that the p-value < a, thus Hy : 7 = 0 is rejected =
the quadratic generalized linear model is preferred.

5.5 Criteria for model selection or model adjust-
ment

It is known that the goodness of fit of a parametric model to the data rises, if
the number of parameters increases. A goal of a statistician is to find a well
fitted model with as little variables as possible in order to avoid overfitting.
The Akaike information criterion can help achieving this goal by comparing
models with (possibly) different parameter estimators.

Akaike information coefficient:

AIC = —2log L(Y, B) + 2m

where Y = (Y7,...,Y,,) is the random sample of the goal variable in the
generalized linear model and B the corresponding MLE. The value of the
AIC takes the required maximality of the log-likelihood function log L(Y, B)
into account and punishes models with a large number of parameters m. The
models with the smallest AIC is considered the better model. Sometimes
instead of the AIC, the standardized AIC given by An£ is used.

Example 5.5.1 (Continued). Calculate the AIC for the linear and quadratic
Logit model in the example of credit risk assessment:

Linear model : AIC = 1043.815
Quadratic model : AIC = 1035.371

By considering the AIC, it can be noticed that the quadratic model seems
to be better.

A disadvantage of making a decision based on the AIC alone is, that the
final decision is up to the statistician. Thus it is desirable to construct a
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statistical test which can asses the goodness of fit for the model. The y?-test
aims to solve this issue.
Let

gEY;)) =X;p, i=1,...,n
be a generalized linear model with link function g and parameter vector
B = (B1,...,Bm)". Split the goal variables Yi,...,Y, in k groups, such
that they are as homogeneous as possible with respect to the parameters
that need to be estimated. A said partition can be achieved by splitting the
domain of the goal variable Y; ,skillfully” in k > m? intervals (a;, by]:

—o<a<bi=aa<b=a3<...<bp_1=ar <b <4+

Group [ contains all observations Y;, which are in (a;, b;]. Here (a;, b;] need
to be chosen in a way, such that ji; = g~ (X ﬂ) are constant within the
respective groups: fi; = fi; V j of group 1.3 Let

e ny =#{Y;:Y; € (a,b]} be class size of class .
e V= n% >_Y; be the arithmetic mean of class .

. B be the MLE of 3, which was obtained by using Y.

o [)(B) = > log fo(Y;) be the log-likelihood function of the goal variables
Y; within the group .

o [l = g_l(XlB) and v(fi;) be the expectation estimator resp. variance
estimator p; = EY;, which are obtained by using the MLE /.

Here v(fi) = 720" (0'~1(4i;)), where b(-) is the corresponding coefficient in
the probability density function fy in the exponential family. The following
test statistic is obtained:
k

)2

=y i

= vl /nz
D = —27? Z (lz(ﬂz) - lz(?z))
=1

Theorem 5.5.2. If n — oo and n; — oo V [, then under certain conditions
it holds that

2k<m$D—>X]€ m—1

n—00

<0
3This is an informal description of the methodology, in which for each Y;, n; indepen-

dent copies of Y; are created, which compose the i-th class.
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Corollary 5.5.3. The hypotheses
Hy:Y = (Y1,...,Y,) is from the model g(EY;) = X;
VS.
H,:Y = (Y1,...,Y,) is not from the model g(EY;) = X;5

for i =1,...,n can be tested as follows:
Hy is rejected (for large n) at significance level «, if

2 2 2
X" > Xk—m—l,l—a resp. D > Xk—m—l,l—a'
Those tests should not be used if the class sizes n; are small.

Example 5.5.4. What do the tests described above look like in the Logit-
resp. Poisson regression?

1. logit model: y; ~ Bernoulli(p;), i =1,...,n

= generalized linear model  log T bi _ i
— Di

fori =1,...,n. Divide y, ..., yn in k classes, such that the probability
of occurring 1 in each class is estimated as good as possible by 7, =
n% >~ y;. Thus it holds that

bl

fu=p =g (Xif) AL

« o(pr) = (1 —pr),
-+ X =3 ﬁl((?ll*_ﬁ%)/ill'
2. Poisson model: Y; ~ Poisson(}\),
= generalized linear model log \; = X;[
for i = 1,...,n. Thus it holds that j; = N = eXlB, v(j\l) = )\ and
(Y1 - 5\5)2.

X =) =

= A/



Chapter 6

Principal Component
Analysis

In this chapter, methods for reducing the complexity of big statistical data
is presented in form of the principal component analysis (PCA). PCA aims
to reduce a high dimensional datasets X = (X1,...,X,)" € R” to very few
but important components ¢ = AX € R? with d < n. Those components
should then explain most of the variability of the original dataset X. Here,
A is a (d x n) matrix which can be found if some restrictions (given in (6.1))
are fulfilled. Another applications of PCA is the visualization of complex
datasets, outlier detection, cluster analysis and so on. For an overview see
[18].

6.1 Introduction

In order to motivate the following problem, consider the example of text
mining in automotive:

Example 6.1.1. A car manufacturer is interested in minimizing its losses
which are due to fraud and incompetence in warranty repairs in one of the
subsidiaries. That’s why he wants to introduce a conspicuousness analysis
of repair visits in said warranty subsidiary, which is supposed to find sus-
picious reports with the help of a computer that can be manually checked
afterwards. Another motivation for the automatized early detection system
is the comprehensive examination of few subsidiaries in irregular time in-
tervals (due to high costs) which could be marginalized. A typical repair
log consists of a maximum of 300.000 technical terms. That’s why the logs
should be saved as vectors = (z1,...,,)  of length n = 300.000, where

1, the word 7 is in text x
Ty =
0, else

199
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These vectors x are normed such that they are on the sphere S"~!. Within
one year a huge dataset of those vectors is created with several million
entries. The task of a statistician is the drastic reduction of the dimension
n — 1 of the data such that a visualization is possible. A possible solution is
the usage of PCA. The groundwork for PCA has been done by Beltran (1873)
and Jordan (1874) who introduced the singular value decomposition (SVD).
In a more or less modern form (cf. (6.1)) it is presented in the work of K.
Pearson (1901) and H. Hotelling (1933). Also, the name PCA was introduced
by Hotelling. A more developed version of the method was introduced by
Girshick (1939), Anderson (1963), Rao (1964) and some others. Without a
computer the calculation of principal components for n > 4 turns out to be
rather difficult, thus this methodology has found its practical applications
after their invention.

Since the 1980’s there is a rapid increase in applications of PCA in the
whole knowledge domain (especially in in engineering), where multivariate
datasets are analyzed.

6.2 PCA on model level

This section aims to introduce the main concept of PCA for random samples
X = (Xy,...,X,) " with known covariance structure. Let X = (X1,..., X,)T
be a random sample of random variables X; with known covariance matrix
¥ and VarX; € (0,00), 7 = 1,...,n. Let A\ > Xy > ... > )\, > 0 be the
eigenvalues of 3, which are sorted in descending order and all different from
each other. The goal is to find linear combinations a' X of X; which have
the biggest variance, whereas the vectors « are normed respectively, e.g.
such that o € S*~! with the euclidean norm.

Definition 6.2.1. The linear combination alTX, i1 =1,...,n, is called i-th
principal component of X, if it has the biggest variance under the condition
that oy € S" ' and of X,a9 X,...,a; ;X and o X are uncorrelated:

Var a' X — max,
«
Cov (@' X,/ X) =0, j=1,...,i—1.

Here «; is the coefficient vector of the i-th principal component aiTX .

Theorem 6.2.2. The i-th principal component of X is given by
Y, = O%TXa
where «; is the eigenvector of ¥ with eigenvalue \;. Here

Var(V;) =\, i=1,...,n.
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Proof Show that the assertion holds for ¢ = 1,2. For i > 2 the proof works
in the same spirit.
For ¢ = 1 there is a constraint || = 1 in (6.1), which is taken into the
Lagrange function
f(a) = Var(a"X) + A(|of> = 1).
Furthermore
2 2
Var(a' X) =E(a'X ~Ea'X) =E(a’ (X - EX))
=Fa' (X —EX)(X —EX)'a=a'E(X —EX)(X —EX) «
= aTZa,

la)?=a' -a,and f(a) =a'Sa+ MaTa —1).
The necessary conditions for a maximum is given by

0 0
of Ly 05,
Oa oA

where the second equation represents the constraint |a| = 1.

g—g = (%, . a‘?fn), where o = (a',...,a")" and g—i = 0 can be rewritten

as Ya — Aa = 0 vectorial or Ya = Aa, which means, that « is an eigen-
vector of ¥ with eigenvalue . Since Var(a'X) = a' Xa is supposed to be
maximized, it holds that

Var(a'X)=a ' da=Xa'a=\
1
and A=A >X>...> X\, = A=)\ and a = a.

For ¢ = 2, the maximization task

a'Ya — max,
[e%
a ca=1,

Cov (o] X,a'X) =0
needs to be solved with respect to «, where
Cov (1 X, aTX) = alTZoz =a'Ya; =a' Moy = Ma'a.
That means, the following function needs to be maximized:
fla)=a"Sa+ Aa"a—1)+da’a;.

Similarly as above it holds that

g:2a+/\a+5alzo.
Oa
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The constraint af Yo = 0 and o a = 0 (see above) imply

Taf =dafa; =08=0,
3 ——
1

which means, that Ya = Aa and « is again, an eigenvector of ¥ with eigen-
value \. Since « is supposed to be orthogonal to a; and Var(a' X) = X is
supposed to be maximized, it holds that

a:agand)\:)\géYgza;X.

O
Exercise 6.2.3. Work out the proof for i > 2!
Let now A = (av,...,ay). This is a orthogonal (n X n) matrix, for which it
holds that (by Theorem 6.2.2)
YA=AA, A=diag (A1,...,\n),
or equivalently
ATSA=A, T =AAAT. (6.2)

Theorem 6.2.4. For a (n x m) matrix B, with orthogonal columns b;,
i=1,....m,m<mn,let Y = B"X and Xy = Cov (Y) = B"¥B be the
covariance matrix of Y. Then

A, = argmax trace(Xy ),
B

where A,, = (a1,...,0m).

Proof Since aq,...,q, is a basis of R”, it holds that
n
bk:ZCikaia k=1,...,m,

where B = (b1,...,bn), or matrix wise, B = AC, with C = (¢;), i =
1,...,n,j5=1,...,m. Thus it holds that

T T AT T = T
Sy =B'EB=C"A'SAC=C AC:;Ajcjcj,
A J=

where c is the j-th row of C'. Thus it holds that

trace(Xy) = Z)\ itrace(cjc j Z Ajtrace( c ) Z)\ lc; ]2
Jj=1 j=1
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Since C' = A~'B = AT B, it holds that

C'C=B"AA"B=B"B=1,,
N—— N——

In I
where
diag (1,...,1).
———
k
Thus

and the columns of C are orthonormal. Thus C can be seen as a part (the
first m columns) of an orthonormal (n X n) matrix D. Since the rows of D
are also orthonormal vectors and ¢; are the first m entries of the rows of D,
it holds that

Since . . .
trace(Xy) :Z Z Zﬁi)\iv
=1 : =1
W—/ ’
Bi
where §; < 1,i=1,...,n, Y 1, fi = m and

AL > A > > Ay, Zﬁi)\i%max

forf1=...=8m=1,Bmr1=...=6p=0. If B=A,,, then
1 ,1<i=j<m
Cij = )
0 ,else
which implies 5y = ... = 8 =1, Buy1 = ... = B = 0. Thus A,, is the
solution of trace(¥y) — maxp. O

The assertion of Theorem 6.2.4 implies that
m m
Var (Z Y;) = Var (Z oz?X)
i=1 i=1

is maximized for all m = 1,...,n, if ¥; are principal components of X.
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Corollary 6.2.5. Spectral representation of X..
It holds that

Z:ZAi'Oﬁ'Oz;r. (6.3)
i=1

Proof The representation is obtained by using (6.2), since

Y= (aq,...,00) -diag (A1,..., A\n) - (@1, .. o).

Remark 6.2.6.

1. Since A\ > Ay > ... > A\, with |a;| = 1, Vi, the representation (6.3)
implies, that the first principal components do not only explain the
biggest ratio of the variance of X;, but also to the covariance. This
value decreases with an increasing ¢ = 1,...,n.

2. If rank (X) = r < n, then (6.3) implies, that 3 can be completely
determined by considering the first » principal components and coef-
ficient vectors.

Lemma 6.2.7. Let ¥ be a positive definite and symmetric (n x n) matrix

with eigenvalues \; > A2 > ... > A, > 0 and corresponding eigenvectors
al,...,0p, lajl =1,i=1,...,n. Then
aSa
Ap = sup NDEE
a€Sk,a#0 ‘Oé‘
where Sy, = (aq,...,ap_1)* for arbitrary k =1,...,n.!
Proof Let
a'Ya
c= sup ———
€Sy |OK|

Show that A\, < e < \g.

1. ¢ > Ag: For a = a4, prove that

a,IZak B /\kagak

c >

= = .
agak agak

2. ¢ < A: It needs to be shown that

n
a'Sa < Mo, VaeS, a#0, YaeR" a= Zciai,
i=1

1(...) denotes the span
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since {a;}*, form an orthonormal basis.

a€S, = c=...=c_1=0.

That means

n n n
o= Zciai, Yo = Zcizai = Zci)\iai,
i=k =1

i=1

n T n
o Ya = (Z Ciai> <Z )\iCz‘Oéi>
i=1 i=1

n n
= Z CiCjA; ajTai = ch/\z’, ]a!Z = chz
i,j=1 =1 i=1

ij

Thus it holds that a € S,

n n n
a'Sa=>"ctN < Y e =N D = Nl
=k i—k =k

and ¢ < A\g since A\, > Aj, 7 > k.

Theorem 6.2.8. Let B, Y and Yy such as in Theorem 6.2.4. Then
Ay = argglax det(Xy ),
where A, = (a1,..., ).
Proof Let k € {1,...,m} be fix. Introduce Sy = (a1,...,op_1)" C R¥ (as
in Lemma 6.2.7). Let g > p2 > ... > p, be the eigenvalues of Xy = BTYB

with corresponding eigenvectors 7i,...,7%Vm, which are orthonormal. Let
T = (Vk+1, - --»Ym) C R™. It obviously holds, that

Dim (Sy) =n—k+1, Dim T, =k.
As in Lemma 6.2.7, it can be shown, that Vv # 0, v € T} it holds that

T8y

L2
|v]2

Consider §k = B(Ty) € R™. Since B is an orthonormal transformation, it

is thus unique Dim (S;) = Dim (7)) = k. The formula

Dim (Sj, U Sy) + Dim (S N S;) = Dim Sj, 4 Dim S},
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implies

Dim (S, N Sy) = Dim S + Dim Sy —Dim (S, US;) >n—k+1+k—n=1
n—k+1 k <
- <n

that means, Ja € S, N Sy, @ # 0. For this « it holds that o = By, v € T},
and thus

732 ATBTSBy a'Xa
2 T =5 =N
7l vy ol
—~—
YT BT By

pg <

since |y| = |B7|, because B is preserving distances. That’s why p, < Ag for
all k=1,...,m and

m m m
det(Xy) = H,uk < H A = mBaX det(Xy) < H
=1 k=1 k=1

However, since B = Ay, ux = A, k=1,...,m, it holds that

Ay, = argmax det(Zy).

B

O
Now geometric properties of principal components are considered.
Proposition 6.2.9. The principal component coefficients aq,...,«a, are

the principle axis of the ellipsoids ' X712 = ¢, with semi-axis length v/c);,
1=1,...,n

Proof The principal components of X are given by Z = AT X, where A =
(a1,...,ay) is an orthonormal transformation and thus AT = A7 X =
AZ. Therefore for the ellipsoid it holds that
'Yy = 2TATYS Az =2TA T2 = ¢,
—~
Subst.x=Az
where

AT A = A7 = diag (1 L

=), A=diag (\1,..., M),
)\1’ ’)\n>’ lag( 1, 5 )

since £ 7! has the same eigenvectors with eigenvalues )\i That’s why the
ellipsoid 2" A=1z = ¢ can be represented in its normed form as

Zon

That implies that the «; point towards the principal axis and that the half-
axis are given by v/c\;. O
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Remark 6.2.10. (Multivariate normal distribution). If X ~ N(0,%) then
z Y71z = ¢ is an ellipsoid of constant probability for X, since the proba-
bility density function of X

1 { 1 1o g }
x(x) = exp——x X Ty
Ix(7) = Jm=exP{ 3
is constant on this ellipsoid. Else "X 'z = ¢ defines contours of the con-
stant probability for X. Here the vector a1 points towards the largest vari-
ance of o' X (it is the biggest principal axis with length \/cA; of the ellip-

soid); ag points towards the second largest variance (half-axis with length
VeA2), and so on (cf. Condition (6.1)).

) € R",
ems *

Remark 6.2.11. Another form of PCA is possible, if instead of X =
(X1,...,X,)" the normed random sample X, = (X1/wi,...,Xp/wy) ' is
used, where the weights w = (w1, ... ,wn)T contain advance information
which represent a certain preference in the analysis. A usual choice is

Wi = /04 = \/VarXi,

which leads to a PCA of X* = (X,...,X}), X} = \/\%,i:L...,nby

using the correlation matrix ¥* = (Corr (Xj;, X;))i j=1 with

Cov (Xl, XJ)

/ VarX;Var X

By doing so, other principal components a;-*TX * can be obtained for which
af # a; holds for i =1,...,n.

Corr (X;, X;) = = Cov (X7, X]), 4,j=1,...,n.

What are the advantages and disadvantages of PCA based on (X, X) and
(X*,2%)7
Disadvantages of (X, Y)-PCA:

1. PCA based on (X*,¥*) does not depend on the unit measurements of
X. Thus comparisons between results of PCA for several samples of
different origin are possible.

2. If the variances X; are varying a lot, the variables X; with the largest
variance are determined to be the first principal component. The PCA
based on (X*, ¥*) does not have this disadvantage. The (X, X)-PCA
is not significant in such a case, because it sorts the variables X; (in a
slightly different form) in a variance wise descending order.

Example 6.2.12. Let X = (X1, X3), where X is the length and X,
the weight. X; can be measured in ¢m or m, X5 only in kg. In those
two cases, the covariance matrices X are given by
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80 44 8000 4400
b)) 1= resp. 22 = .
44 80 4400 8800

Calculating the first principal components in both cases yields

of X =0,707X; +0,707X, for X, resp.
of X =0,998X; +0,055X, for .
Note that, in the first case, both X; and X5 have the same absolute

value with respect to the 1. principal component, whereas in the 2.
case X is a dominating factor. Moreover it holds that ~2L— -100% =

A1+
77,5% in the first case and /\1’:3)\2 -100% = 99, 3% in the 2. case (it is
the ratio of the variation of the first principal component to the whole

variation).

3. If random variables X; in X have a differing origin (as in the example
above), then the interpretation of the ratio of the variation is rather
problematic, since the sum A; + ...+ \, contains m?, kg? and so on.
The PCA based on (X*,¥*) only considers values without unit, such
that the sum A; + ...+ A, can be interpreted.

Advantages of (X,Y)-PCA:

1. If instead of ¥ resp. X* the empirical analogues )y resp. $* are used
(if X(X*) are not known, they have to be estimated by using the avail-
able data), then (X,3)-PCA has some advantages, since the statisti-
cal methods are easier to use in this case compared to using them in
(X*,5*)-PCA.

2. If all X; in X have the same unit, then the (X, X)-PCA is sometimes
preferable, since during the standardisation of (X,¥X) to (X*, ¥*) the
relation to the units of X are lost.

Remark 6.2.13. Sometimes instead of || = 1 the standardization |ay| =
Vg, kK = 1,...,n in Definition 6.2.1 is used (cf. optimisation problem
(6.1)). This is in particular the case in the correlation based PCA.

Remark 6.2.14. (Equal eigenvalues ;). If some eigenvalues of ¥ are equal,
eg. A1 =Xy =...= A > Agg1 > ... > Ay, implies that there exists a linear
subspace of dimension k, in which an arbitrary basis represents the first &
eigenvectors. This means, with respect to PCA that the first k eigenvectors
can not be defined uniquely. Geometrical interpretation: The first k half-
axis of 2" X1z = ¢ are equal, i.e., the ellipsoid 2" ¥ ~!z = ¢ has a spherical
k-dimensional cross section through the origin, where the directions of the
half-axis can be chosen (orthogonal to each other) arbitrarily.
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Remark 6.2.15 (\; =0). If \y > ... > Ay > Npgr1 = ... = A\, = 0,
then there are only n — k linear independent random vectors X; in the
random sample X. That’s why only those n — k variables should be good
for the analysis.

6.3 PCA on data level

In this section it is not assumed that the covariance matrix ¥ is known.
That’s why it is replaced by empirical covariance matrix 3.

Let X!, X2, ..., X™ be independent realizations of a n-dimensional random
vector X = (Xq,..., X)), Xt = (Xi,..., X)), i=1,...,m. X'is inter-
preted as a sample of X.

Definition 6.3.1. Define the n-dimensional random vector a; by

ap = argmax Y,-Y
aeRn m — 1 ;( ! )
with constraint |a| = 1, a uncorrelated to aq,...,ax_1 for all k = 1,...,n,
where .
. — 1
Vi=a'X', i=1,...m Y==)Y.
m “
=1

Thus agX defines the k-th principal component of X with coefficient vector
ag. Y = a,IX ? is the evaluation of the k-ten principal component of the
i-th observation X' of X;,i=1,...,m, k=1,...,n.

Lemma 6.3.2. It holds that

1 m _
——> (Y =Y’ =l, k=1,...,n,

m—1:=

where

1 & 13
Vi=—> Yy, Xp=—> Xi, k=1,....n
mi:l mi:l

and [ is the eigenvalue of the empirical covariance matrix ¥ = (62-]-)%:1,

. 1 & - — o

O'ijiz(Xf—Xz)(X;—Xj), L,i=1,....,n, L1 >l>...>1,.
m—1&=

ay is the eigenvector of $ with eigenvalue I, k =1,...,n.

Proof

Exercise 6.3.3. cf. proof of Theorem 6.2.2.
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In the following, replace X* with X? — X but keep the notation X°, i =
1,...,n.

Remark 6.3.4. The properties of PCA as formulated in Theorem 6.2.4,
Corollary 6.2.5 and Proposition 6.2.9 are preserved in the statistical version
(Acf. Definition 6.3.1) by using the following modification: ¥ is replaces by
X, A= (aq,...,a0) by A = (a1,...,ay), Am = (al,.A..,ozm) by A, =
(ai,...,any) and Xy by the empirical covariance matrix Xy of Y. Thus use
the spectral representation of I

n
ﬁ] = Z liaiaiT. (6.4)
i=1

Exercise 6.3.5. Prove that!

In the following another property of the empirical PCA, which can also be
seen as an equivalent definition is presented:

Theorem 6.3.6. Let B be a (nxp) matrix, p < n, with orthogonal columns.
Let Z; = B'X?, i =1,...,m be a projection of X, i =1,...,m, on a p-
dimensional subspace Lg. Define

G(B):Z‘Xi—Zi2
=1

Then

A, = (a1,...,ap) = argmin G(B).

B

Proof By the Pythagorean Theorem it holds that |X"‘2 = |Zi*+|XT - 22,
that’s why

aB) =Y ’X’ 3122 = min

i=1 i=1

if

m m m
GB)=>|1ZP=>"22;=> X"BB"X" - max.

=1 i=1 i=1 B
It holds that

G(B) = trace <Z (XiTBBTXi)> = > trace (X"BB" X")
=1 i=1
= > trace (BTX'X""B) = trace (BT (Z X@'XiT> B>
=1 1=1
2(m-1)$

= (m — 1)trace(BT $B).
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In summary:

G(B) = (m — 1)trace (BTf)B) ,
since it is maximized by Remark 6.3.4 and Theorem 6.2.4, if B = A,,. O

Remark 6.3.7. How can Theorem 6.3.6 be used as an equivalent definition
of the empirical PCA? a; are defined as orthogonal vectors, which is the
span of a linear subspace L, = (a1,...,ap), p = 1,...,n — 1, with the
property, that the sum of the quadratic orthogonal distances of X’ to L,
are minimized. Thus for p = 1, L1 would be the best line for approximating
the data set X',..., X™. For p=n—1, L,_; would be the best hyperplane
with the same property (cf. linear regression).

The following theorem provides a new interpretation for PCA as well as

more efficient method for the calculation.

Theorem 6.3.8. (Singular value decomposMon )

Let X = (X1 -X,X?-X,...,xm —Y) a (m x n) matrix, with cen-
T

tered observations X¢ of X. Let rank (X ) =
decomposition holds:

n,m. The following

X =ULA/, (6.5)
where U is a (m x r) matrix with orthonormal columns.
L = diag (l~1, . ,l;) where [; = (m—1)I;

is the square root of the i-th (non trivial) eigenvalue of X X = (m —1)%,
i=1,...,r. A, = (a1,...,a,) is the (n x r) matrix with columns a;.

Proof Define U = (uq,...,u,) with columns u; = )Z'ai/'z}, t=1,...,r. In
the following it is shown, that the representation (6.5) holds. Using the
spectral representation 6.4 it holds that

(m—1)2=X"X = Zlaz , since L =0i=r+1,...,n

=1
Thus
lLaf
" sair o L=0,i>T o & T
7ol = b i=1 i=1
a

2Since X* was replaced by X' — X.
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It holds that Xa; = 0, i =7r+1,...,n, since rank()N() = r and because of
the centered columns of X by X. By the orthogonality of the a; it holds
that

Uuﬂzii@dzkhai
i=1
O
Remark 6.3.9. The matrix U provides the following versions of evaluations
Yir :a;Xi = XTq, Y;-k:uikl;, i=1,....m, k=1,...,n.
It holds that

Val"(Y;'k) lk 1 .
Var(ug,) = ~ ) - . Vi k.
ar(t) 2 m—Uly m—-1 "

6.4 Asymptotic distributions of principal compo-
nents for normal distributed random samples

Let now X ~ N(u,X), ¥ have the eigenvalues A\ > A2 > ... > )\, > 0 and
corresponding eigenvectors ag, k = 1,...,n. Calculate

A=), U=, )T,

ap = (akla cee 7akn)T7 ap = (ak’17 e 7akn)T7
k=1,....n

Theorem 6.4.1.
1. [ is asymptotically (for m — oo) independent of ag, k =1,...,n.

2.l and ag, k = 1,...,n are asymptotic m — oo multivariate normal
distributed, with asymptotic expectation

lim E(I) =)\ and m E(ap) =a, k=1,...,n.

li
m—0o0 m—0o0

3. It holds that

D k=K
Cov (lg, lgr) ~ m=1 for m — oo,
0, k=#kK
Ak Zn )‘laljalj/ b=k
m—1 l:l,l;ék ()\l,lk)Q ) -
Cov (akj,agrjr) ~ for m — oc.
AR AL Qi Ot i1
Ty vesw LR
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Without proof!
The assertion of Theorem 6.4.1 can be used for constructing MLE and con-

fidence intervals for A\ and ay.

Exercise 6.4.2.

A

e

1. Show that an MLE of X is given by mﬁfl
2. Show, that the MLE

for A is given by A= mT_ll.
for ay, is given by ar=ap, k=1,...,n.

3. Show that the MLE in 2. coincide with the moment estimators A and
ay, which can be obtained from Theorem 6.4.1.

Corollary 6.4.3 (Confidence intervals for A\;). An asymptotic confidence
interval for Ay (m — oo) with confidence level 1 — « is given by

-1 -1
I |1 2 e (14 2
F m—_1% 'k m—_12 ’

where m is large enough such that —,/ %z% < 1.

Proof Since I ~ ()\k, > for m — oo by Theorem 6.4.1, 2. and 3., it

m— 1
holds that
e A ~ N(0,1) for m — oo.
T M

This implies, that

. lk_)\k m—1 .
n’%gnoop<zg§ e V2 Sz-g ) =l-q

or for m — oo

Iy, Iy

/2 - - 2
1- mflz% 1+ mflz%

with probability 1 — a. O
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Since all I, k = 1,...,n are asymptotically (m — oo) independent, a si-
multaneous confidence interval for [ can be denoted by a cartesian product
of the confidence intervals for l; as in Corollary 6.4.3.

Lemma 6.4.4. It holds that
(m = o (US+ 5718 = 20,) ap—1 X3y

Without proof!
As a consequence of the lemma above, the (asymptotic) confidence ellipsoid
for ay, with confidence level 1 — 3

{y eR": (m—1)y' (Zki_l + S - 2In) y < X%—l,ﬁ}
is obtained.

Remark 6.4.5. Corollary 6.4.3 resp. Lemma 6.4.4 can be used to construct
statistical tests forA; resp. ay as follows:

1. Test Ho: Ap = A, v.s. Hy: ) + Ao
Hy can be rejected, if

Ui —2 Ak S
\V m)‘ko

This is an asymptotic test (m — oo) with confidence level «.

R

2. Test Hy: ap = ag, v.s. Hi : ag # o,
Hj can be rejected, if

(m — 1)062—0 (lki_l + llzli - 2In) A Z X727,—1,Oé'

This is an asymptotic test (m — oo) with confidence level «.

6.5 Outlier detection

In this section it is assumed that the random sample X!, X2 ..., X™ can
contain some outliers. How can an outlier be defined? In statistical literature
there is no coherent definition. Generally speaking, an observation X is an
outlier if it attains an unusual value (with respect to the distribution of X).
For example, an unusual value of some coordinates X; could be significantly
bigger or smaller than the others. An outlier could also occur in form of
an unusual combination of the coordinate values of some coordinates X*. A
reason for those anomalies could lie in the data, or simply occur because of
measurement errors.
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Example 6.5.1. Let X = (X1, X2), where X; = “height” (in cm) and Xy =
“weight” (in kg) of children between the age of 5 and 15. The feature X
is obtained n times in a medical survey. Here the features X’ = (250, 80)
and X7 = (175,25) are considered as outliers, because X’ = 250cm is an
abnormal height and for X7, X{ = 175 and XJ = 25 as a combination are
highly unlikely.

How can outliers be detected? One way to identify outliers of X is to plot
the dataset X',..., X™ and spot values which are outside of a larger ag-
glomeration of values. If the dimension n of X is high, it is rather difficult
to visualize the data. It can thus be helpful to generate a data point of
the first 2-3 principal components of (X!,..., X™). By looking at them,
outliers of X ,f: can also be identified quickly. In order to detect unusual rela-
tionships between coordinate values X,i, the last few principal components
should be considered. Let aq,...,a, be the coefficient vectors of the prin-
cipal components of (X1,...,X™), Yy =a/ X', i=1,....m, k=1,...,n
be realizations of the principal components of the observation X and I,
k = 1,...,n be the eigenvalues of the empirical covariance matrix S of
(X1,...,X™). For 1 < ng < n, define the statistic

d(l)(n ) = zn: y2 d(2)( ) = zn: ﬁ
i (no) = ik: @ M) = I,
k=n—ng+1 k=n—ng+1
" Y,
)= Y bYE AP = max

bt 1 n—no+1<k<n /I’

fori=1,...,m.
Lemma 6.5.2. It holds that
D) = (x~%) 57 (X~ %), i=1.m
where Yj;, are centered, i.e. Yj is replaced by Y, — Yi, k= 1,...,n, i =
1,...,m.
Proof It holds that
S = ALAT, where L = diag (li,...,l,) and A= (a1,...,an).

Thus

ST =AL7'AT with L7 =diag (I7%,...,1;1).
Since additionally Y; = AT X? for Y; = (Yi1,...,Yin) ", i =1,...,n, it holds
that

Xi=AT 'Y= Ay, X' =V AT, i=1,....n
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and thus
X =
This implies that

(0 %) 87 (0 %) = (v 7) aan A ()

I
_N\T _ Y32
- 6-7) 1 (7)o
k=1
O
In order to identify outliers in (X!, ..., X™), the values dgj)(n), 1=
1,...,m,j=1,...,n for n =1,2,3 are calculated. Observations X* with

the largest value dl(j ) (n) are classified as possible outliers. Additionally the

plot of the point cloud, defined by
D ={(d(n) - d” (no),d” (no)) ,i=1,...,m}
can be helpful. X? is considered an outlier, if

(42 (m) - 4 (o), 4 (1))

7
is isolated from the remaining point cloud D.

Remark 6.5.3. If X ~ N(u,X) with known g and ¥ and PCA is con-
ducted on model level, the distributions of dz(-J )

(4)

)

(ng) can be explicitly stated.

They are (except for d; ) gamma distributed with known parameters e.g.

dgz) (no) ~ X2, @ = 1,...,m. The distribution function of d§4) (ng) is given
by ®"0(x), where ®(z) is the distribution function of a N (0, 1) distribution.
Confidence intervals for dl(j )(no) can provide a decision rule, whether X is
an outlier. Even though this approach is based on a strict mathematical
basis, it is rather uncommon in practice, since normally distributed data

(with known g and X!) are relatively rare.

Remark 6.5.4. The statistics dEQ),dZ(A) emphasize the last statistics more
than dl(l) (because of the corresponding standardization). That’s why they
are sufficient for the detection of unusual correlations in the data (cf. Exam-
ple 6.5.1, observation X7 = (175,25). The statistic d§-3) emphasizes the first

principal component. Thus it can be used to detect unusual large (small)
values of the coordinates X} (cf. Example 6.5.1 X} =250).
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6.6 PCA and regression

Consider the multivariate regression model: Y = X[ + ¢, where ¥ =
(Y1,...,Y,)T is the vector of goal variables,

the (n x m) matrix of output variables, rank (X) = m, ¢ = (e1,...,e,)"

the vector of error terms, where ¢; are independent of Ee; = 0, Vare; = o2,
i=1,...,n. Wlo.g. assume, that X (as in Theorem 6.3.8) is centered,
i.e., the empirical mean of X is zero, or in detail, X;; is replaced by X;; — X,
where

7‘]‘:

S

n
ZXZ‘]', j:1,...,m.
=1

Assuming that some of the variables X;; in X are almost linearly dependent,
i.e. det(X T X) ~ 0, causes the estimators 5 of § to be affected in form of an
instability for the calculation, since Cov (3) = 02(X " X)~! (c¢f. Theorem
6.3.8) only contains little variance of 6}. A solution to this problem is the
usage of generalizations as in Section 6.3. Another application of PCA is
the detection of linear dependencies in X by looking at the last principal
components and eliminating variables 3; based on those. This application
will be discussed in more detail below.

Let ai,...,an, be the coefficient vectors of the principal components (i.e.
the eigenvectors) of XTX. Let Zy, = aZXi be the realization of the k-th
principal component of the i-th row X of X, i =1,...,n, k=1,...,m.
With Z = (Z;) it holds that Z = XA, where A = (a1,...,ay) is an
orthogonal (m x m) matrix. The regression equation Y = X3 + & is given
by:

_ T _ T _ AT
Y—XAxlﬁl ,8—1—5—)\(;14 B+E=Zy+E, where y = A' 5. (6.6)
g

By doing so, the old output variables g are replaced by the transformation
v = AT . The estimation of 7 is obtained with Theorem 4.2.1:

i=(272) 2Ty =177y, (6.7

where L = diag (I1,...,1,) contains the eigenvalues I; of X T X. This holds,
since Z has orthogonal columns. Thus

m
B=Ay=ALTZTY =AL'ATXTY =Y I apaf XY,

(XTX)71 k=1
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where in the last part of the equation the terms (6.6), (6.7) and the spectral
representation (Corollary 6.2.5) of (X T X)~! have been used. Theorem 6.2.4
implies furthermore, that

Var(f) = o2 Z I agal
k=1

Thus the following assertion is proved:

Lemma 6.6.1. The solution of the OLS equation Y = X3 + £ is given by

m
B = Z l,;lakagXTY.
k=1

Here it holds that .
Cov (3) = o? Z I aray .
k=1

Remark 6.6.2. What are the advantages of the in (6.6)-(6.7) introduced
methodology?

1. After calculating the principal components of X T X, the calculation of
4 = L7'ZTY is fast and easy, since (6.7) does not include any inverted
matrices (L' = diag (I7!,...,1;;}) is explicitly known).

2. If some of the [ are close to zero or rank (X) < m, some of the last
few principal components (with small or even zero variance) of X X
can simply be excluded from the regression. This can be realized with
the new estimator given by

P
3= Z l,;laka;—XTY
k=1

p<m.
Lemma 6.6.3. Let rank (X) = m:
1. The estimator B is biased:

ES = (I— i aka;—) 8.

k=p+1

2. It holds that:

P
Cov (B) = o* Z I tagal
k=1

Proof
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1. Since "
B = B — Z l;laka;X—rY
k=p+1

and ﬁ is biased, it holds that

m
EB=E3— > I laa, X EY

k=p+1
m m
—1 TyT T
=5 - Z I, apap X X3 =p— Z agay 3
k=p+1 A’T_/ k=p+1
lkay
m
-
=\|1- Z aray, | B
k==p+1

Exercise 6.6.4.

219

O

Another equivalent formulation for regression with PCA is given in the fol-
lowing. Instead of using v = A'j, use singular value decomposition (cf.

Theorem 6.3.8) for X:

X =UL2AT,

where U is a (n X m) matrix with orthonormal columns and L a diagonal

matrix with L3 = diag (v/11,...,lm). Define
§=L3ATB,
then )
Y=XB+E=UL2A"B+E=Us+E.
é
The MLE for ¢ is given by

S=wTu)ytuTy =0y,
1

since U has orthonormal columns. (6.8) implies § = AL"26 and thus
B=AL"26=AL3U"Y.
Here the relationship between v and ¢ is given by:

 Ta T B R NI SR |
y=ATg=A (AL 26)_AIAL 26 = L26.

Thus the following Lemma has been proven.

(6.8)
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Lemma 6.6.5. The principal components Y = Uéd + £ of the regression
Y = X3 + £ has the MLE solution 6 = U 'Y resp.

B=AL"2U"Y. (6.9)
Here the parameter vector 9 is simply a standardized version of v: § = L%'y.

Remark 6.6.6.

1. Since there are efficient algorithms for calculating a singular value
decomposition, the term (6.9) can be calculated more efficiently com-
pared to f = (XTX)™'XTY, since X" X has to be inverted in the
latter.

2. Instead of removing the last m — p principal components of XX
from the regression (cf. Remark 6.6.2, 2.), it is generally possible to
calculate 8 on a subset M of {1,...,m}:

BM = Z l;laka;—X—rY
keM

Here, only principal components [, k € M, are used for the regression.
Then it also holds that

Cov (Bur) =02 Y U tagaf
keM

cf. Exercise 6.6.4. This approach uses the elimination of components
Ve, k & M of v = (y1,...,7%m) " of the ML estimation. Equivalently
it can be thought of the exclusion of the components dx, k ¢ M of
§=(01,...,0m)", since § = L%, with 0, = /Iy, for all k.

What are possible strategies for determining M?

1. M = {k : 1l > 1*} for a predetermined threshold I* > 0. If

S
=1

are close to 1, I* € (0.01,0.1). The disadvantage of this methodology
is that some of the (possibly important for the forecast of Y) principal
components, might have a small variance and are thus eliminated from
the model.

Z:

2. Let 02 be the i-th diagonal element of (X " X)~!. It holds that 0% =
Vi—rfi (cf. Theorem 6.2.4), i = 1,...,m. Then M = {k : 0}, > o*}
can be chosen for a sufficient threshold o*. For the choice of o* see
[18], p. 174. This methodology has the same disadvantages as 1.
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3. Define M = {1,...,p}, where p is the biggest number < m, for which
one of the following criteria is met:

a) It holds that:
S EBu, — B:)* < D E(Bi — Bi)%, (6.10)
i =1

for all B = (B1,...,B8m)" €R™.
b) It holds that:

E(c'By —c"B)? <E(c'B-c"B)? VBER™ ceR™
c¢) It holds that:

~ 2 ~ 2
E ‘XﬁM - Xﬁ] <E ]X/j - Xﬂ]

Here the criteria a) is similar to the task of estimating § as precise as
possible. Criteria b) and c¢) on the other hand deliver the best possible
estimation of of EY = X 8 with X 3/ resp. X /3. All terms in a)-c) are
mean squared errors, which contain both the bias and the variance of

Bum-

Many more strategies are described in statistical literature, which provide a
better estimator 5 v compared to ﬁ depending on the given situation. The
question on how to choose M is still unanswered.

An alternative approach of eliminating principal components in the regres-
sion is given by the following estimator Sg:

m
Br=> (lk+Ki) 'araf XY,
k=1
where K1,..., K, > 0 are weights, which represent additional influencing

factors with respect to the regression. By using those weights it can be
achieved, that l; ~ 0 does not have a destabilizing influence on the estima-
tion.

Exercise 6.6.7. Show that

COV BR _U2Zm ka;—

. B Rr is a biased estimator of 5. Find the bias of B R!
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BR is called Ridge Regression. Here the question arises on how to choose
K, k=1,...,m. In practice, K = K, k= 1,...,m is usually used, where
K is to be chosen small.

Another application of PCA in regression is the so called latent root regres-
sion. This form of regression aims to only remove principal components, if
they have a small variance [ and do not add any additional value to the
estimation of EY with X 3. Here the PCA is applied to the (m+1) x (m+1)
matrix X ' X with X = (Y, X). Let ag, k = 0,...,m be the coefficients of
the PCA of )?T)Z', with corresponding eigenvalues Tk, k=20,...,m. Let
= (aro, .- apm) , k=0,...,m.

Define the index set of the principal components that are to be eliminated
as Mp ={k=0,...,m: I, < 1%, lako| < a*}. This is the index set of those
principal components, that have small variance and do not influence the
estimation of Y a lot. Let M = {0,...,m}\My. Define f = > ke Crkak,
where {¢x, k € M} = argming [Y — XB* with 8 = e -

Theorem 6.6.8. It holds that
B —\2
ako\/ D ie1 (Yz - Y)

~ a20
2

lk ZieM T
1

Clp — —

, keM.

Without proof!
Thresholds [* and a* are still to be chosen empirically.

6.7 Numeric calculation of principal components

In order to understand how statistical software packages calculates princi-
pal components, it is important to know the algorithms. By knowing the
algorithms one can gain awareness about why some results might be bad
(e.g. with eigenvalues that are almost equal) or what kind of restrictions
there are with respect to size of the datasets (e.g. storage wise or runtime
wise). In the following a short overview for those methods is given. Since
the PCA is mainly based on calculating eigenvalues \; and eigenvectors «;
of a positive semi-definite (m x m) matrix ¥, the focus will mainly be on
this calculation.

Let ¥ thus be a (m x m) matrix with eigenvectors a1, ..., a,, and eigenval-
ues Ai,..., Am, which is positive semi-definite. In statistical literature there
are at least four approaches for calculating «; and \;:

1. Power iteration,

2. QR decomposition,
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3. Singular value decomposition,

4. Neural networks.

223

Here only the essence of power iteration is presented: it represents an it-
erative algorithm for determining Ay and «q, if Ay >> Ao > ... > A. Let
ug € R™ be a starting vector. Define u, = Yu,_1 = X"ug for all » € N. If

m
up =Y cio,
=1

where a, ..., a,, are the orthonormal basis vectors and cq, ..

ordinates then
m m
Uy = X ug = ZciErai = Zci)\;-"oai, r € N.
i=1 i=1

Let Uy = ('LLTl, ceey urm)T, o; = (ail, ce ,aim)T
Lemma 6.7.1. It holds that

Uy

u’l"—l,i T—00
fori=1,...,m and

Uy

aq.
Cz)\g r—oo 1

Proof For j =1,...,m it holds that

m
r
’LLT]': E ci)\iaij
=1

., Cm are co-

and thus
mo L\ Qg
Urj _ =1 Cl)\z >\71“—1
. m r—1 aij
Ur—1,j i1 CiA; )\7‘77‘]1
1
m s r—1
C1Q;5 A1+ Zi:Z & ()\1 ) )\zaz] c1an; 3 \
= - T e’ cyong 1= A1,
cro + 2% G ( 5F Qi
since /)\‘—; < 1,i=2,.... Furthermore,
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The fact, that c; is unknown, is nothing to be worried about, since §# can
1

be standardized. The proof of Lemma 6.6.5 implies, that the rate of conver-
gence of ;‘*r to aq is getting worse, if and only if A\ = Ao,
1

ri- to \; and

U,
Upr—1,3 &

or in this case ﬁ—i ~ 1.

What should be done in the case that A\; & A9, in order to increase the rate of
convergence? Instead of using 33, ¥—pI can be used for the iteration, in order
to decrease the ratio :\\f:z . Furthermore ¥ can be replaced with (3 — pI )_1,
which leads to solving the system of equations (X — pI) u, = u,—1 for every
r € N. Thus for a suitable choice of p a convergence to ax, k=1,...,m is

possible (in the second case).

Exercise 6.7.2. Construct those vectors and proof the convergence!

An increase in the rate of convergence can also be achieved, if one considers
the sequence {uo,} instead of {u,} where ug, = T? ug, r € N. Further
methodologies for improving the algorithm of power iteration can be found
in [18], p. 410-411.
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