ulm university universität UUUIM

The Existence and Uniqueness of Strong Solutions

Thomas Stöwer \mid June 15, 2015 \mid Seminar on Stochastic Geometry and its applications

Theorem (Existence and uniqueness for SDEs)

Let T > 0 and $b: [0, T] \times \mathbb{R}^n \to \mathbb{R}^n, \sigma: [0, T] \times \mathbb{R}^n \to \mathbb{R}^{n \times m}$ be measurable functions satisfying

$$|b(t,x)| + |\sigma(t,x)| \le C(1+|x|) \tag{1}$$

$$|b(t,x) - b(t,y)| + |\sigma(t,x) - \sigma(t,y)| \le D|x-y|$$
 (2)

for all $x, y \in \mathbb{R}^n$, $t \in [0, T]$ and for some constants C, D. Let Z be a RV which is independent of the σ -algebra $\mathcal{F}_{\infty}^{(m)}$ generated by $B_s(\cdot)$, $s \ge 0$ and such that $\mathbb{E}[|Z|^2] < \infty$.

Theorem - continued

Then the stochastic differential equation

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t, \quad 0 \le t \le T, X_0 = Z$$

has a unique *t*-continous solution $X_t(\omega)$ with the property that $X_t(\omega)$ is adapted to the filtration \mathcal{F}_t^Z generated by Z and $B_{s}(\cdot)$; $s \leq t$ and it holds that

$$\mathbb{E}\left[\int_0^T |X_t|^2 \,\mathrm{d}t\right] < \infty.$$

Example 1

The ordinary differential equation

$$u'(t) = u(t)^2, \quad u(0) = 1$$

has the solution

It is impossible to find a global, *t*-continous solution in this case.

Example 2

The ordinary differential equation

$$u'(t) = 3u(t)^{2/3}, \quad u(0) = 0$$

is solved by

for any a > 0.

Uniqueness

Let $X_t(\omega)$ and $\hat{X}_t(\omega)$ be solutions with $X_0 = \hat{X}_0 = Z$, which satisfy all the conditions of the theorem. Then

$$\mathbb{P}\left[|X_t(\omega) - \hat{X}_t(\omega)| = 0 \text{ for all } t \in [0, T]\right] = 1.$$

Existence

Lemma Define the process $Y_{\star}^{(k)}$ inductively by $Y_{4}^{(0)} = X_{0}$ $Y_t^{(k+1)} = X_0 + \int_{a}^{t} b\left(s, Y_s^{(k)}\right) \mathrm{d}s + \int_{a}^{t} \sigma\left(s, Y_s^{(k)}\right) \mathrm{d}B_s.$ Then there is a constant $A(C, D, T, \mathbb{E}[|X_0|^2])$ such that $\mathbb{E}\left[\left|Y_{t}^{(k+1)}-Y_{t}^{(k)}\right|^{2}\right] \leq \frac{A^{k+1}t^{k+1}}{(k+1)!}, \quad k \geq 0, t \in [0, T].$

Existence

Lemma The sequence $\left(Y_t^{(n)}(\omega)\right)_{n\in\mathbb{N}}$ is uniformly convergent in [0, T] for a.a. ω . We denote the limit by X_t .

Existence

 X_t of the Lemma above is adapted to the filtration F_t^Z , solves the stochastic differential equation and it holds that

$$\mathbb{E}\left[\int_0^T |X_t|^2 \,\mathrm{d}t\right] < \infty.$$

References

B. Øksendal, *Stochastic differential equations*, Springer, 2003.