The Markov Property

André Steck | 22.06.2015 | Seminar on Stochastic Geometry and its applications
Motion of a small particle in a moving liquid

- \(b(t,x) \in \mathbb{R}^3 \) velocity of the fluid
- \(X_t \in \mathbb{R}^3 \) position of particle at time \(t \)
- \(\sigma(t, x) \in \mathbb{R}^{3 \times 3} \)
- \(B_t \) 3-dim. Brownian motion

\[
dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t
\]
Definition - A (time-homogeneous) Itô diffusion

is a stochastic process $X_t(\omega) : [0, \infty) \times \Omega \to \mathbb{R}^n$ satisfying a SDE of the form

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad t \geq s, \quad X_s = x$$

where B_t is a m-dim. Brownian motion, and $b : \mathbb{R}^n \to \mathbb{R}^n$, $\sigma : \mathbb{R}^n \to \mathbb{R}^{n \times m}$ satisfying the condition

$$|b(x) - b(y)| + |\sigma(x) - \sigma(y)| \leq D|x - y|; \quad x, y \in \mathbb{R}^n$$
Remarks

- We denote the (unique) solution of the SDE by $X_t = X_t^{s,x}$ if $s > 0$ (X_t^x if $s=0$), $t \geq s$

- The Itô diffusion has the property of being time-homogeneous, i.e. for $s \geq 0$
 $$\{X_s^{s,x}\}_{h \geq 0}, \text{ and } \{X_h^x\}_{h \geq 0}$$ have the same P^0-distribution.
Let \mathcal{M}_∞ be the σ-Algebra generated by the Itô diffusion $X_t(\omega)$.
Define Q^x by

$$Q^x[X_{t_1} \in E_1, \ldots, X_{t_k} \in E_k] = P^0[X_{t_1}^x \in E_1, \ldots, X_{t_k}^x \in E_k]$$

where $E_i \subset \mathbb{R}^n$ are Borel sets;
P^0 the probability law of B_t starting in 0.
Furthermore let $\mathcal{F}_t^{(m)}$ be the σ-Algebra generated by $\{B_r; r \leq t\}$ and
\mathcal{M}_t the σ-Algebra generated by $\{X_r; r \leq t\}$
Theorem - The Markov Property

Let \(f \) be a bounded Borel function from \(\mathbb{R}^n \) to \(\mathbb{R} \) and \(X_t \) an Itô diffusion. Then for \(t, h \geq 0 \) it holds a.s. (w.r.t. \(P^0 \))

\[
\mathbb{E}^x [f(X_{t+h}) | \mathcal{F}_t^{(m)}](\omega) = \mathbb{E}^{X_t(\omega)}[f(X_h)]
\]

\(\mathbb{E}^x \) denotes the expectation w.r.t. \(Q^x \).

\(\mathbb{E}^y[f(X_h)] \) means \(\mathbb{E}[f(X_h^y)] \), where \(\mathbb{E} \) denotes the expectation w.r.t. \(P^0 \).
Remarks

- Definition: A (time-continuous) stochastic Process \(\{X_t : t \geq 0\} \) is called a (time-continuous) Markov Process, if it fulfills the Markov Property.

- Since \(\mathcal{M}_t \subseteq \mathcal{F}_t^{(m)} \), \(X_t \) is also a Markov Process w.r.t. the \(\sigma \)-algebras \(\{\mathcal{M}_t\}_{t \geq 0} \)
Definition - (strict) stopping time

Let \(\{ \mathcal{N}_t \}_{t \geq 0} \) be an increasing family of \(\sigma \)-algebras (of subsets of \(\Omega \)).
A function \(\tau : \Omega \to [0, \infty] \) is called a (strict) stopping time w.r.t. \(\{ \mathcal{N}_t \} \), if

\[
\{ \omega; \tau(\omega) \leq t \} \in \mathcal{N}_t, \text{ for all } t \geq 0.
\]
Example - first exit time

Let X_t be an Itô diffusion and $U \subset \mathbb{R}^n$. Define $\tau_U = \inf\{t > 0; X_t \notin U\}$. Then τ_U is a stopping time (w.r.t. \mathcal{M}_t).
Definition - \mathcal{N}_τ, \mathcal{M}_τ and $\mathcal{F}_\tau^{(m)}$

Let τ be a stopping time w.r.t. $\{\mathcal{N}_t\}$ and let \mathcal{N}_∞ be the smallest σ-algebra containing \mathcal{N}_t for all $t \geq 0$. Then \mathcal{N}_τ consists of all sets $N \in \mathcal{N}_\infty$ such that

$$N \cap \{\tau \leq t\} \in \mathcal{N}_t \text{ for all } t \geq 0.$$

In the case when $\mathcal{N}_t = \mathcal{M}_t$

$$\mathcal{M}_\tau = \text{the } \sigma \text{- algebra generated by } \{X_{\min(s,\tau)}; s \geq 0\}$$

In the case when $\mathcal{N}_t = \mathcal{F}_t^{(m)}$

$$\mathcal{F}_\tau^{(m)} = \text{the } \sigma \text{- algebra generated by } \{B_{\min(s,\tau)}; s \geq 0\}$$
Theorem - The Strong Markov Property

Let f be a bounded Borel function on \mathbb{R}^n, X_t an Itô diffusion and τ a stopping time w.r.t. $\mathcal{F}_t^{(m)}$, $\tau < \infty$ a.s. Then it holds a.s. (w.r.t. P^0)

$$\mathbb{E}^X[f(X_{\tau+h})|\mathcal{F}_{\tau}^{(m)}] = \mathbb{E}^{X_{\tau}}[f(X_h)] \text{ for all } h \geq 0.$$
Literature