ulm university universität **UUU**

The Markov Property

André Steck | 22.06.2015 | Seminar on Stochastic Geometry and its applications

Motion of a small particle in a moving liquid

- $\blacktriangleright \ b(t,x) \in \mathbb{R}^3$ velocity of the fluid
- $X_t \in \mathbb{R}^3$ position of particle at time t

•
$$\sigma(t, x) \in \mathbb{R}^{3 \times 3}$$

▶ *B_t* 3-dim. Brownian motion

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t$$

Definition - A (time-homogeneous) Itô diffusion

is a stochastic process $X_t(\omega) : [0, \infty) \times \Omega \to \mathbb{R}^n$ satisfying a SDE of the form

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad t \ge s, \ X_s = x$$

where B_t is a m-dim. Brownian motion, and $b : \mathbb{R}^n \to \mathbb{R}^n, \sigma : \mathbb{R}^n \to \mathbb{R}^{n \times m}$ satisfying the condition $|b(x) - b(y)| + |\sigma(x) - \sigma(y)| \le D|x - y|; x, y \in \mathbb{R}^n$

Remarks

- ▶ We denote the (unique) solution of the SDE by $X_t = X_t^{s,x}$ if s > 0 (X_t^x if s=0), $t \ge s$
- The Itô diffusion has the property of being time-homogeneous, i.e. for s ≥ 0 {X^{s,x}_{s+h}}_{h≥0}, and {X^x_h}_{h≥0} have the same P⁰-distribution.

Let \mathcal{M}_{∞} be the σ -Algebra generated by the Itô diffusion $X_t(\omega)$. Define Q^x by

$$Q^{X}[X_{t_{1}} \in E_{1}, ..., X_{t_{k}} \in E_{k}] = P^{0}[X_{t_{1}}^{X} \in E_{1}, ..., X_{t_{k}}^{X} \in E_{k}]$$

where $E_i \subset \mathbb{R}^n$ are Borel sets; P^0 the probability law of B_t starting in 0. Furthermore let $\mathcal{F}_t^{(m)}$ be the σ -Algebra generated by $\{B_r; r \leq t\}$ and \mathcal{M}_t the σ -Algebra generated by $\{X_r; r \leq t\}$

Theorem - The Markov Property

Let f be a bounded Borel function from \mathbb{R}^n to \mathbb{R} and X_t an Itô diffusion. Then for $t, h \ge 0$ it holds a.s. (w.r.t. P^0)

$$\mathbb{E}^{x}[f(X_{t+h})|\mathcal{F}_{t}^{(m)}](\omega) = \mathbb{E}^{X_{t}(\omega)}[f(X_{h})]$$

 \mathbb{E}^{x} denotes the expectation w.r.t. Q^{x} . $\mathbb{E}^{y}[f(X_{h})]$ means $\mathbb{E}[f(X_{h}^{y})]$, where \mathbb{E} denotes the expectation w.r.t. P^{0}

Remarks

- ▶ Definition: A (time-continuous) stochstic Process {X_t : t ≥ 0} is called a (time-continuous) Markov Process, if it fulfills the Markov Property.
- Since M_t ⊆ F^(m)_t, X_t is also a Markov Process w.r.t. the σ-algebras {M_t}_{t≥0}

Definition - (strict) stopping time

Let $\{\mathcal{N}_t\}_{t\geq 0}$ be an increasing family of σ -algebras (of subsets of Ω). A function $\tau : \Omega \to [0, \infty]$ is called a (strict) stopping time w.r.t. $\{\mathcal{N}_t\}$, if

$$\{\omega; \tau(\omega) \leq t\} \in \mathcal{N}_t, \text{ for all } t \geq 0.$$

Example - first exit time

Let X_t be an Itô diffusion and $U \subset \mathbb{R}^n$. Define $\tau_U = inf\{t > 0; X_t \notin U\}$. Then τ_U is a stopping time (w.r.t. \mathcal{M}_t). Definition - \mathcal{N}_{τ} , \mathcal{M}_{τ} and $\mathcal{F}_{\tau}^{(m)}$

Let τ be a stopping time w.r.t. $\{N_t\}$ and let N_{∞} be the smallest σ -algebra containing N_t for all $t \ge 0$. Then N_{τ} consists of all sets $N \in N_{\infty}$ such that

$$N \cap \{\tau \leq t\} \in \mathcal{N}_t \text{ for all } t \geq 0.$$

In the case when $\mathcal{N}_t = \mathcal{M}_t$

 $\mathcal{M}_{\tau} = \text{the } \sigma - \text{algebra generated by } \{X_{\min(s,\tau)}; s \geq 0\}$

In the case when $\mathcal{N}_t = \mathcal{F}_t^{(m)}$

 $\mathcal{F}_{\tau}^{(m)} =$ the σ – algebra generated by { $B_{min(s,\tau)}$; $s \geq 0$ }

Theorem - The Strong Markov Property

Let f be a bounded Borel function on \mathbb{R}^n , X_t an Itô diffusion and τ a stopping time w.r.t. $\mathcal{F}_t^{(m)}$, $\tau < \infty$ a.s. Then it holds a.s. (w.r.t. \mathcal{P}^0)

$$\mathbb{E}^{x}[f(X_{ au+h})|\mathcal{F}_{ au}^{(m)}] = \mathbb{E}^{X_{ au}}[f(X_{h})]$$
 for all $h \geq 0$.

Literature

Bernt Øksendal, Stochastic differential equations, Springer, 2003