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MOTIVATION & WORKFLOW
• SEM, nano CT and FIB-EBSD provide detailed 2D and 3D image data of

nano- and microstructures of functional materials
• Cost for 3D imaging and insufficient information provided by

2D imaging for investigating descriptors related to transport paths
motivates the development of a stochastic 3D crack model to address
this stereological challenge.

• Utilize spatial stochastic modeling for the holistic structural
characterization of active material (AM) particles in Li-ion battery
electrodes

– Allows generation of arbitrarily many virtual, but realist cracked
AM particles

– Realizations can serve as input for several numerical simulations
• Investigation of 3D structure-property relationships, i.e., how effective

material properties are influenced by their nano- and microstructure
• Provide structuring recommendations for manufacturing processes of

optimized battery materials
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1. GRAIN ARCHITECTURE
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A 3D U-Net [1] was trained to enhance
grain boundaries in FIB-EBSD data. Then, a

grain-wise segmentation is computed,
utilizing a marker-based watershed

algorithm [2].

Grain architecture model

Parametric representation {(yi, ri)}ni=1 ⊂ R4

of segmented 3D EBSD data by Laguerre
tessellation is determined [3]. The i-th cell of

the tessellation is given by
Ci = {x ∈ R3 : |x− yi|2 − ri

≤ |x− yj |2 − rj for all i ̸= j}.

The grain architecture model is derived by
fitting a stochastic model to the marked

point pattern {(yi, ri)}ni=1 [4].

2. OUTER SHELL
Outer shell model
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Nano-CT data of NMC particles is
segmented [4]. Particles are represented by

radius functions r1, . . . , rn :
S2 = {x ∈ R3 : ∥x∥ = 1} → [0,∞).

Isotropic Gaussian fields R (on the sphere)
can be used to model radius functions [4].
The parameters of a mixture of Gaussian

fields are fitted to r1, . . . , rn.

1.+2. PRISTINE MODEL
Multi-scale pristine model

Left: Realization of the grain architecture
and outer shell. Center: Centers of mass for
each grain. Right: Deletion of grains whose

centers are not in the outer shell.

Multi-scale model for pristine particles [4]
(i) characterizes the shape of particles,

(ii) characterizes the grain architecture of
particles,

(iii) can be used to generate input for nu-
merical simulations [5].

3. CRACK NETWORK
Crack segmentation
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A U-net [6] is trained to segment (super-resolved [7]) SEM
images into background, cracks and solid phase .

Stochastic 3D crack model

n = 1

n = 6

The grain architecture is represented as adjacency
graph of grain boundaries (facets). A crack is modeled

by choosing an initial facet followed by iteratively
adding neighboring facets, based on their alignment

w.r.t. the priorly chosen facet path [8]. Finally, the
chosen facets are dilated to model the crack.

Calibration and validation

The parameters of the 3D crack model are fitted by minimizing a loss
function, which measures the discrepancy between virtual 2D cross

sections with 2D SEM data [8].
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EFFECTIVE PROPERTIES
Transport path lengths (ion transport)

pristine cracked (wet cell) cracked (dry cell)
[µm]

Realizations of the stochastic 3D for cracked particles can be utilized to investigate the
change of path lengths before (left) and after cracking. The change of path lengths for ion
transport depends on the kind of battery. In wet cell batteries, cracks are flooded with elec-
trolyte, resulting in shorter paths (middle). Conversely, in dry cell batteries, cracks typically
serve as obstacles, leading to an increase in path lengths (right).
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