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MOTIVATION & WORKFLOW
• SEM, nano CT and FIB-EBSD provide detailed 2D and 3D image data of

nano- and microstructures of functional materials
• Cost for 3D imaging and insufficient information provided by

2D imaging for investigating descriptors related to transport paths
motivates the development of a stochastic 3D crack model to address
this stereological challenge.

• Utilize spatial stochastic modeling for the holistic structural
characterization of active material (AM) particles in Li-ion battery
electrodes

– Allows generation of arbitrarily many virtual, but realist cracked
AM particles

– Realizations can serve as input for several numerical simulations
• Investigation of 3D structure-property relationships, i.e., how effective

material properties are influenced by their nano- and microstructure
• Provide structuring recommendations for manufacturing processes of

optimized battery materials
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3D FIB-EBSD data

depicting the grain architecture
of an NMC particle

grain architecture model

generates random
3D grain architectures

2D SEM data

depicting crack network
of NMC particles

3D crack model

generates 3D crack network
along grain boundaries

3D nano CT data

depicting outer shells
of NMC particles

outer shell model

generates random outer
shells of NMC particles

multi-scale model for cracked particles

generates random cracked NMC particles
including their 3D grain architecture

PRISTINE MODEL
Multi-scale pristine model

Multi-scale model for pristine particles [4]
(i) characterizes the shape of particles,

(ii) characterizes the grain architecture of
particles,

(iii) can be used to generate input for nu-
merical simulations [5].

For generation see posters of Lukas Fuchs
and Daniel XXX.
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3. CRACK NETWORK
Single crack model

1. Initialize set of cracked facets C = ∅
2. Define Nfacets = ⌈ N̂facets ⌋, as random number of

cracked facets, where N̂facets ∼ Wei(λW, kW)

3. Choose a random initial facet f1 and assign it to C.
4. Determine average normal vC of facets in C.
5. Choose facet f adjacent to a fC ∈ C, whose normal v

maximizes |⟨vC , v⟩| (e.g choose f , which is “aligned best”
with C)

6. Repeat (iv) and (v) until |C| = Nfacets

7. Dilate each f ∈ C by δ ≥ 0, where δ ∼ Γ(kΓ, θΓ)

Depends on parameter θ1 = (λW, kW, kΓ, θΓ) ∈ R4
+.

n = 1

n = 6

Crack network model

• Pθ1 = (Ξ
(θ1)
solid,Ξ

(θ2)
crack) denotes a realization of single crack

model, with Ξ
(θ1)
solid,Ξ

(θ2)
crack ⊂ R3 the solid and crack phase.

• Pθ1,1, . . . , Pθ1,ncracks with Pθ1,i = (Ξ
(θ1,i)
solid ,Ξ

(θ1,i)
crack ) be i.i.d.

copies of Pθ1 , where ncracks sampled from Poisson distri-
bution with parameter λP > 0.

• Define Pθ2 = (Ξ
(θ2)
crack,Ξ

(θ2)
solid) with

Ξ
(θ2)
solid = ∩ncracks

i=1 Ξ
(θ1,i)
solid and Ξ

(θ2)
crack = ∪ncracks

i=1 Ξ
(θ1,i)
crack as real-

ization of the crack network model.
• Introduce technical scaling parameter cdim and

parametrize λW and λP.
Depends on parameter
θ2 = (cW, kW, kΓ, θΓ, cP, cdim) ∈ R5

+ × [0, 1].

Extended crack network model

• Draw two independent realiza-
tions P

θ
(1)
2

, P
θ
(2)
2

of the crack net-

work model.
• Define Pθ = (Ξ

(θ)
solid,Ξ

(θ)
crack) with

Ξ
(θ)
solid = Ξ

(θ
(1)
2 )

solid ∩ Ξ
(θ

(2)
2 )

solid and

Ξ
(θ)
crack = Ξ

(θ
(1)
2 )

crack ∪Ξ(θ
(2)
2 )

crack as a realiza-
tion of the extended crack model.

Depends on parameter
θ = (c

(1)
W , k

(1)
W , c

(1)
P , c

(2)
W , k

(2)
W , c

(2)
P ,

kΓ, θΓ, cdim) ∈ R8
+ × [0, 1].

CALIBRATION AND VALIDTAION
Calibration

The parameters of the 3D crack model are fitted by minimizing a loss function, which
measures the discrepancy between virtual 2D cross sections with 2D SEM data [8]. The
model was fittet to two data sets, exhibiting predominantly short and long cracks,
respectively.

Validation
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EFFECTIVE PROPERTIES
Transport path lenghts (Ion transport)

Realizations of the stochastic 3D for cracked particles can be utilized to investigate the
change of path lengths before and after cracking. The change of path lengths for ion trans-
port depends on the kind of battery. In wet cell batteries, cracks are flooded with electrolyte,
resulting in shorter paths (middle), compared to the pristine particle. Conversely, in dry cell
batteries, cracks typically serve as obstacles, leading to an increase in path lengths (right).

Color Scenario Starting set Transport phase Target set

Pristine

particle
Ξsolid Ξsolid ∪ Ξcrack ΞBG

Liquid

electrolyte
Ξsolid Ξsolid ΞBG ∪ Ξcrack

Solid

electrolyte
Ξsolid Ξsolid ΞBG

relative path lengths τLE

in liquid electrolyte
relative path lengths τSE

in solid electrolyte
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