

1 Structure-property relationships of recycled
2 lithium-ion battery cathodes: Microstructure
3 optimization using virtual materials testing

4 Lukas Fuchs^{1,*}, Philipp Rieder^{1,*}, Donal P. Finegan²,
5 Francois Usseglio-Viretta², Jeffrey Allen², Melissa Popeil³, Orkun Furat^{1,4},
6 Volker Schmidt¹

7 January 29, 2026

8 ¹Institute of Stochastics, Ulm University, Helmholtzstraße 18, D-89069 Ulm, Germany

9 ²National Laboratory of the Rockies, 15013 Denver W Parkway, Golden, CO 80401, USA

10 ³Mines/NLR Advanced Energy Systems Graduate Program, Colorado School of Mines, Golden, Col-
11 orado, 80401 USA

12 ⁴SDU Applied AI and Data Science Unit, University of Southern Denmark, Campusvej 55,

13 DK-5230 Odense, Denmark

14 *Corresponding authors. lukas.fuchs@uni-ulm.de, philipp.rieder@uni-ulm.de;

15 LF and PR contributed equally to this paper.

16 **Keywords:**

17 Virtual materials testing; pristine NMC; recycled NMC; end-of-life NMC; stochastic mod-
eling; virtual microstructure generation; Li-ion battery;

18 **Abstract**

19 The increasing demand for sustainable battery technologies requires effective recycling
20 strategies for end-of-life lithium-ion battery cathodes. In this study, virtual materials
21 testing, a well-established framework for modeling conventionally manufactured NMC-
22 based cathodes, is applied to partially recycled cathodes. To this end, virtual cathodes
23 consisting of mixtures of pristine and recycled NMC particles are utilized to systemati-
24 cally analyze structure-property relationships in dependence of mixing ratios and different
25 spatial arrangement strategies. For this purpose a stochastic 3D model is developed that
 is capable of generating virtual cathodes with arbitrary volume fractions of active materi-

26 als, and mixing ratios of pristine and recycled NMC particles. Particularly, the stochastic
27 3D model can mimic the different size distributions of pristine and recycled particles that
28 are observed in image data. Additionally, the model allows the structuring of pristine and
29 recycled NMC either uniformly mixed or layer-wise arranged. Subsequently, a systematic
30 computational analysis is conducted to assess the influence of increasing active material
31 ratios of recycled particles, ranging from 0 % to 100 %, while maintaining a constant
32 overall active material volume fraction. The impact of particle mixing on cathode perfor-
33 mance is evaluated by examining transport-relevant geometrical descriptors and effective
34 properties, such as geodesic tortuosity, specific surface area, and tortuosity factor.

35 1 Introduction

36 The rapid growth in demand for electric vehicles (EVs) and energy storage systems has
37 driven an unprecedented increase in battery production, with global EV battery output
38 projected to reach 3 TWh by 2030 [1]. Especially, lithium-ion batteries are widely used
39 due to their high energy density accounted for about 60% of EV battery capacity in 2022
40 [2, 3]. However, their popularity results in an increasing demand for raw materials, which
41 poses several challenges, including the need to scale in the mining industry and geopolitical
42 concerns associated with the concentration of these materials. This is especially critical
43 for materials such as lithium and cobalt [4, 5].

44 As battery manufacturing accelerates, managing end-of-life (EOL) lithium-ion batteries becomes critical. By 2030, EV batteries with a cumulative storage capacity of 100–120
45 GWh are expected to reach EOL [6], corresponding to approximately 1.2 million metric
46 tons of material from batteries of electric vehicles alone [7]. Additionally, the European
47 Union plans to introduce mandatory recycling quotas for lithium-ion batteries by 2031,
48 requiring new batteries to consist of at least 6 % recycled lithium, 6 % recycled nickel, and
49 16 % recycled cobalt [8]. These two developments, large volumes of EOL batteries and
50 upcoming recycling requirements, necessitates the development of sustainable recycling
51 technologies to address both limitations in new materials and environmental concerns of
52 the disposal of end-of-life batteries [9].

54 Current battery recycling approaches can be categorized into three main processes:
55 pyrometallic, hydrometallurgical, and direct recycling methods [10]. In pyrometallurgical
56 processes, high-temperature melting is utilized to extract and recover the active materials
57 of lithium-ion batteries, offering, among other benefits, a relatively simple operation and
58 comparatively low environmental impacts [11]. Nevertheless, a major drawback of py-
59 rometallurgical processes is their high energy demand [12]. Hydrometallurgical methods
60 rely on chemical leaching to dissolve valuable metals from end-of-life batteries, generally
61 achieving higher recovery rates than pyrometallurgical processes. However, they also gen-
62 erate significant amounts of chemical waste [11, 13]. Non destructive direct recycling aims

63 to recycle not only specific or valuable elements but also to recover complete battery com-
64 ponents, such as current collectors and electrode materials, binder and electrolyte. These
65 components undergo purification, cleaning and optional regeneration processes before be-
66 ing reused in new batteries [14]. Direct recycling, while potentially the most sustainable
67 approach, faces challenges in maintaining desired structural and electrochemical prop-
68 erties of recovered materials [15]. Recent studies have further highlighted the influence
69 of microstructural damage of $\text{LiNi}_x\text{Mn}_y\text{Co}_z\text{O}_2$ (NMC_{xyz}, hereafter referred to as NMC)
70 cathode particles in Li-ion batteries, such as severe cracks in active materials in cathode
71 recycling [16].

72 The performance of battery cathodes, such as Li-ion cathodes, is determined in parts
73 by microstructural features, e.g., the size and shape distribution of active particles and
74 their spatial arrangement within the electrodes. For example, Li-ion transport and charge
75 reactions depend on geometric factors like porosity, pore connectivity (tortuosity), inter-
76 facial area, and particle arrangement. In literature, the relationship between microstruc-
77 ture and effective properties in porous electrode materials has been extensively studied
78 using both experimental and computational approaches [3]. Advanced characterization
79 techniques, including X-ray computed tomography and focused ion beam scanning elec-
80 tron microscopy, have enabled detailed three-dimensional visualization of electrode mi-
81 crostructures [17, 18]. These 3D images enable computational analyses; for example,
82 volume fractions, specific surface areas, mean chord lengths, and tortuosities directly
83 from tomographic image stacks. Such metrics have been shown to strongly correlate with
84 effective transport properties, e.g. high tortuosity or bottle neck effects slow ion diffusion
85 [19–21]. Complementary numerical modeling approaches have further advanced the un-
86 derstanding through simulations that connect microstructural features to electrochemical
87 performance [22–25].

88 Previously mentioned computational modeling approaches have primarily focused on
89 pristine cathode materials, establishing fundamental structure–property relationships for
90 cathodes derived from measured image data [3, 26–28]. In most of these studies, the
91 analysis concentrates on the geometry of the active material phase, while neglecting the
92 carbon–binder domain (CBD) for simplicity. This simplification is justified, as the active
93 material particle arrangement largely determines the pore network through which lithium
94 ions diffuse, whereas the CBD occupies a comparatively small volume and primarily pro-
95 vides electronic conductivity and mechanical integrity.

96 Building on these foundations, recent advances in virtual materials testing have proven
97 their large potential by integrating stochastic microstructure models [29, 30] for virtual
98 material generation with tools for predicting transport properties [23]. However, cycled
99 cathode materials often exhibit fundamentally different microstructural features compared
100 to their pristine counterparts, including altered primary particle morphology and the ex-
101 istence of cracks [31–33]. Moreover, the incorporation of recycled materials into mixed

102 cathode systems introduces additional complexity, which has not yet been systematically
103 investigated. For instance, uniformly mixing recycled and new particles could lead to
104 different pore space morphologies than segregating them in layers. In analogous contexts,
105 graded or layered electrode designs are known to influence performance. While grading
106 has been studied for optimizing electrodes [34], the impact of integrating recycled materi-
107 als on the microstructure and resulting effective properties has not yet been systematically
108 explored. In particular, the spatial distribution of recycled versus pristine particles rep-
109 resents a critical design parameter influencing electrode performance. Uniformly mixed
110 and layered cathodes show very distinct pore architectures and transport pathways.

111 This work introduces a 3D model for the stochastic generation of uniformly mixed
112 and layered virtual cathodes, consisting of varying ratios of pristine and recycled NMC
113 particles. The model comprises two components: the stochastic 3D model for generating
114 pristine particles described in [30], which has been calibrated to experimentally measured
115 data as well as a stochastic 3D model for the EOL phase which is calibrated to 3D
116 CT images in this paper. Note that pristine and recycled particles follow different size
117 distributions, as the smaller recycled particles are assumed to have undergone direct
118 recycling processes, in which secondary particles break down into clusters of, or even
119 individual, primary particles. Further, it is assumed that pristine and recycled particles
120 differ only in their morphology, while being similar in their chemical and electrochemical
121 properties.

122 This study aims to establish quantitative structure-property relationships for virtual
123 cathode microstructures exhibiting different mixing ratios of active materials. The pri-
124 mary objectives are: (1) to develop a computational framework for generating realistic
125 mixed pristine-recycled cathode microstructures with controlled spatial arrangements, (2)
126 to quantify the impact of the ratio of recycled active material and arrangement strategy on
127 key transport properties, and (3) to identify optimal integration strategies that maintain
128 cathode performance while maximizing the recycling active material fraction.

129 The novelty of this work lies in the systematic computational approach to mixed ma-
130 terial microstructure generation and the analysis of geometric and transport descriptors
131 as functions of recycled content and its spatial distribution, providing guidelines for sus-
132 tainable battery manufacturing.

133 2 Materials and Methods

134 The focus of this section is on the generation of virtual mixed cathodes, consisting of
135 pristine and recycled active material particles consisting of $\text{LiNi}_x\text{Mn}_y\text{Co}_z\text{O}_2$ (NMC xyz).
136 In the context of the present paper, a cathode is characterized by its active material
137 phase and pore space. First, in Section 2.1 virtual pristine NMC811 particles are gener-
138 ated utilizing the stochastic microstructure model introduced in [30]. These particles are

139 subsequently packed to represent a pristine cathode.

140 In Section 2.2, a virtual cathode consisting of recycled active material is generated by
141 means of a marked tessellation, i.e., a partition of the three-dimensional space into disjoint
142 subsets, each assigned a scalar-valued mark. The so-called cells of this tessellation mimic
143 fragments of recycled NMC111, which have been fractured as a result of cycling and
144 chemical treatments during the recycling process.

145 These two virtual cathodes are combined in Section 2.3 by iteratively removing pris-
146 tine particles from the pristine cathode and replacing them with recycled particle (RP)
147 fragments. This replacement is performed according to two different structuring scenarios
148 occurring in real world cathode manufacturing [34], enabling either a uniform or layered
149 distribution of RP fragments within the virtual cathode, while keeping the overall active
150 material volume fraction constant.

151 Lastly, in Section 2.4, several microstructure descriptors are introduced, which are
152 used in Section 3 for a statistical analysis of the geometry and effective properties of
153 differently structured mixed cathodes.

154 2.1 Pristine NMC811 particles

155 The pristine particles considered in this work are generated by the stochastic microstruc-
156 ture model introduced in a previous study [30]. There, the 3D microstructure of a pristine
157 NMC811 cathode was imaged using X-ray nano-computed tomography, and individual
158 particles have been segmented. To statistically capture the observed particle shapes, a
159 stochastic 3D model based on random fields on the sphere has been fitted to the seg-
160 mented image data. Specifically, particle surfaces were stochastically modeled using a
161 series expansion with random coefficients, which implicitly model both particle size and
162 shape distribution. The stochastic 3D model enables the generation of synthetic parti-
163 cle surfaces that are statistically consistent with the experimental observations. In [30],
164 a high degree of agreement between the model realizations and the measured particle
165 geometries was observed.

166 In the present work, particles generated by this model are packed into a virtual cath-
167 ode, following the approach described in [35]. More precisely, in a first step, a certain
168 number of volume-equivalent placeholder spheres are randomly positioned in a cubic sam-
169 pling window. To eliminate the overlaps between the spheres, a force-biased algorithm
170 [36, 37] is applied. Finally, each sphere is replaced by its corresponding NMC particle
171 counterpart, i.e., by a virtual particle generated by the stochastic 3D model.

172 More formally, let P_1, P_2, \dots be a sequence of independent realizations of the particle
173 model described in [30], where $P_i = \{x \in \mathbb{R}^3 : x \text{ belongs to the } i\text{-th particle}\} \subset \mathbb{R}^3$ de-
174 notes a particle, whose barycenter is aligned with the origin of the coordinate system. Let
175 $W = [0, 250]^3 \subset \mathbb{R}^3$ denote a cubic, unitless sampling window. In the present work W

176 corresponds to a cubic observation window of side length of $250 \cdot 128 \text{ nm} = 32 \mu\text{m}$. Further,
177 let $n \in \mathbb{N} = \{1, 2, 3, \dots\}$ denote the number of particles to be placed within W . The value
178 of n is determined as

$$n = \max \left\{ i \in \mathbb{N}: \frac{\sum_{j=1}^i \nu_3(P_j)}{\nu_3(W)} \leq \varepsilon_{\max} \right\},$$

179 where $\nu_3(P_j)$ denotes the volume of $P_j \subset \mathbb{R}^3$ and $\varepsilon_{\max} \in [0, 1]$ the desired maximum active
180 material volume fraction. In the present work, $\varepsilon_{\max} = 0.65$ is set.

181 For each particle P_j , let $S_j \subset \mathbb{R}^3$ denote a corresponding volume-equivalent placeholder
182 sphere, i.e., $\nu_3(P_j) = \nu_3(S_j)$. To initialize the packing, uniformly distributed points
183 $c'_1, \dots, c'_n \in W$ are used as initial centers of the placeholder spheres.

184 The spheres are then packed, under periodic boundary conditions, minimizing their
185 mutual overlap within W utilizing a force-biased algorithm [36, 37]. That is, the spheres
186 are iteratively moved according to repulsive forces proportional to their overlap with
187 neighboring spheres. Consequently, an overlap-free sphere remains at its position unless
188 it is displaced in subsequent iterations by interactions with moving neighbors.

189 This procedure yields new center points $c_1, \dots, c_n \in W$, resulting in a packed place-
190 holder sphere system $\cup_{i=1}^n (S_i + c_i)$, where $S_i + c_i = \{s + c_i \text{ for all } s \in S_i\}$. An exemplary
191 cross section of a packed sphere system is shown in Figure 1(a).

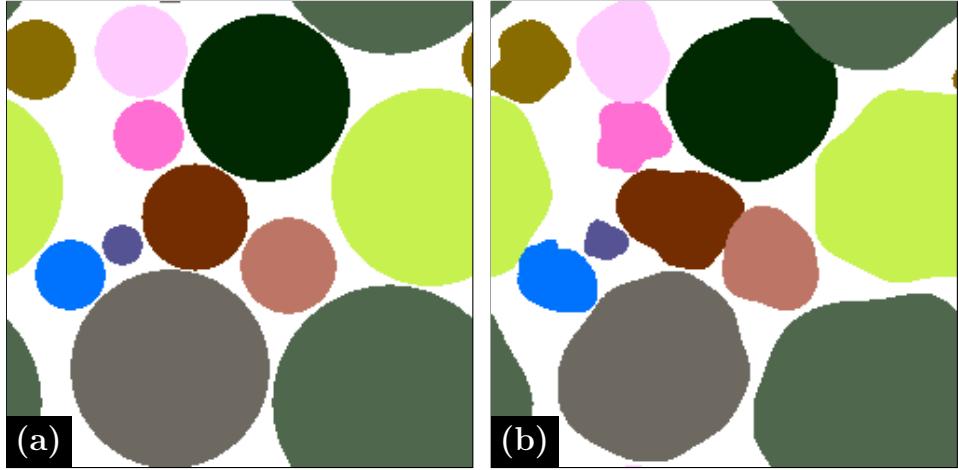


Figure 1: Placeholder spheres packed with minimal overlap within the sampling window (a). Subsequently, these spheres are replaced by volume-equivalent particles by aligning their barycenters with the centers of the respective sphere (b). Each individual sphere and its corresponding particle are shown in false colors for visualization purposes, i.e., the colors have no physical meaning.

192 Subsequently, the placeholder spheres S_1, \dots, S_n are replaced by the corresponding
193 virtual pristine NMC particles P_1, \dots, P_n , which are positioned at their respective center

194 points $c_1, \dots, c_n \in W$. Formally, this replacement yields a particle system, given by

$$\mathcal{P}_n = \cup_{i=1}^n (P_i + c_i), \quad (1)$$

195 which will hereafter be referred to as the particle phase. Further, the particle phase can
196 be considered as a virtual cathode, consisting of pristine NMC particles. A visualization
197 of the particle phase is presented in Figure 1(b).

198 Note that this replacement procedure may introduce new overlaps or remove existing
199 ones, thereby decreasing or increasing the actual active material volume fraction ε , which
200 is defined as

$$\varepsilon(\mathcal{P}_n) = \frac{\nu_3(\mathcal{P}_n)}{\nu_3(W)}.$$

201 The resulting particle phase is rejected whenever ε falls below a predefined threshold
202 $\varepsilon_{\min} \in [0, \varepsilon_{\max})$ or exceeds the maximum allowed active material fraction ε_{\max} . In this
203 work $\varepsilon_{\min} = 0.62$, which ensures that the resulting active material volume fraction satisfies
204 $0.62 \leq \varepsilon \leq 0.65 = \varepsilon_{\max}$. In the case of rejection, the modeling procedure is repeated with
205 new particle realizations P'_1, P'_2, \dots . This simulation strategy is well-known in literature
206 as “rejection sampling” or “acceptance-rejection method” [38].

207 Recall that the particles are packed using periodic boundary conditions. However,
208 from now on, we consider the particle system under non-periodic boundary conditions.
209 Consequently, only the representative in W of each particle is considered, and any particle
210 that is split into multiple disconnected components is relabeled so that each connected
211 component of \mathcal{P}_n receives a unique label. This results in $\tilde{n} \geq n$ labeled connected com-
212 ponents. Note that this also influences the number and position of the barycenters of the
213 particles. For simplicity, each connected component is hereafter referred to as a “par-
214 ticle”, and the notation n is used instead of \tilde{n} . Accordingly, the particle phase is denoted
215 by $\mathcal{P}_n = \cup_{i=1}^n (P_i + c_i)$ with particles P_1, \dots, P_n centered at c_1, \dots, c_n .

216 2.2 Recycled NMC111 particles

217 As a basis for the RP fragment model, a cathode consisting of recycled particles was
218 manufactured experimentally.

219 To obtain recycled particle (RP) fragments, a commercial large-format pouch cell with
220 a capacity of 64 Ah consisting of a NMC111 cathode, a graphite anode, and a carbonate
221 electrolyte was cycled to EOL. The cell was charged and discharged at 30° with a 1.8 C
222 rate to 80% depth of discharge and a 50% duty cycle, as described in [16]. After cycling,
223 the cathode sheets were removed from the spent pouch cell and cut into small pieces.
224 The NMC particles were removed from the current collector utilizing a solution process
225 at Oak Ridge National Lab, similar to the approach described in [39], employing a 0.1

²²⁶ M KH₂PO₄ buffer solution with an added volume of TritonTM X-100 surfactant. The
²²⁷ recovered particles were then dried and stored as powder.

²²⁸ Subsequently, a cathode was manufactured from these RP fragments, containing 4 wt%
²²⁹ conductive carbon, 4 wt% PVDF binder, and 92 wt% RP fragments serving as cathode
²³⁰ active material. The slurry was dried and calendered to a coating thickness of 50 μm ,
²³¹ yielding a loading of approximately 1.5 mAh/cm².

²³² To asses the microstructure of this cathode X-ray nano-CT images were acquired using
²³³ a Zeiss Ultra 810 system. A binning factor of 2 was applied to achieve a voxel size of 128
²³⁴ nm, matching the resolution used for the generation of the pristine particles in Section 2.1.
²³⁵ The radiographs for the CT reconstructions were obtained in phase contrast mode using
²³⁶ the large-field-of-view setting, where the field of view was 64 $\mu\text{m} \times 64 \mu\text{m}$. Figure 2(a)
²³⁷ shows a cross-section of the resulting 3D image, where the RP fragments appear brighter,
²³⁸ while the pore space is darker. As with pristine NMC particles, the RP fragments retain a
²³⁹ polycrystalline structure. However, they are generally not spherical, and some fragments
²⁴⁰ have broken down into individual crystals.

²⁴¹ Note that the image data of the RP fragment phase, shown in Figure 2(a), does
²⁴² not allow for a straight-forward 3D segmentation of individual RP fragments, due to
²⁴³ insufficient resolution. Consequently, a subsequent virtual packing of fragments, similar
²⁴⁴ to the procedure described in Section 2.1 for pristine particles, is not feasible. Moreover, a
²⁴⁵ phase-wise segmentation based on simple (local) thresholding does not yield satisfactory
²⁴⁶ results because of the noise present in the image data. To overcome these limitations, a
²⁴⁷ different approach based on a marked tessellation is utilized to model the RP fragment
²⁴⁸ phase. Instead of identifying individual particles, a two-phase representation is employed,
²⁴⁹ distinguishing only between the pore space and the RP fragment phase. For this purpose,
²⁵⁰ the gray scale image data is first approximated by a marked Voronoi tessellation-based
²⁵¹ representation [40]. A Voronoi tessellation is a low-parametric mathematical concept
²⁵² that is widely used to effectively represent polycrystalline materials and, consequently,
²⁵³ the inner grain architecture of NMC particles [31, 41–43]. To mimic a grayscale image,
²⁵⁴ each Voronoi cell is assigned a scalar value representing its grayscale level. To obtain a
²⁵⁵ phase-wise segmentation, the marks of the tessellation are thresholded such that certain
²⁵⁶ cells represent RP fragments, while the remaining cells correspond to the pore space,
²⁵⁷ resulting in a two-phase representation of the virtual cathode. This approach reduces
²⁵⁸ both the noise in the image data as well as the dimensionality and complexity of the
²⁵⁹ measured microstructure.

²⁶⁰ Formally, the modeling procedure is defined as follows. The marked Voronoi tes-
²⁶¹ sellation is given by a set of tuples $\mathcal{T} = \{(s_i, t_i): i = 1, \dots, m\}$, where each tuple
²⁶² $(s_i, t_i) \in \mathbb{R}^3 \times [0, 1]$ consists of a so-called seed point s_i and an associated mark t_i . The
²⁶³ set \mathcal{T} induces a partition of the observation window W into pairwise internally disjoint

264 sets $C_1, \dots, C_n \subset \mathbb{R}^3$, often referred to as cells, where

$$C_i = \{x \in W : |x - s_i| \leq |x - s_j| \text{ for all } j = 1, \dots, m\}.$$

265 Thereby, $|\cdot| : \mathbb{R}^3 \rightarrow [0, \infty)$ denotes the Euclidean norm. Note that the cells C_i for
266 $i = 1, \dots, m$ exhibit piecewise planar boundaries, a frequently observed characteristic of
267 NMC grains [42]. Furthermore, the marked tessellation \mathcal{T} implicitly assigns the mark t_i
268 to each point within C_i . To generate an adequate representation of a cathode consisting
269 of RP fragments, the parameters (s_i, t_i) for $i = 1, \dots, m$ are fitted to the image data.

270 To do so, the seed points and marks are optimized such that the resulting tessellation
271 resembles a 3D gray scale image of a cathode $Z : \{1, \dots, 250\}^3 \rightarrow [0, 1]$. Thereby, a
272 cell C_i of the tessellation contains voxels of relatively homogeneous gray scale values
273 $Z(x)$. The corresponding mark t_i can be interpreted as the representative gray scale
274 value of the voxels $x \in C_i \cap \{1, \dots, 250\}^3$. Thereby, the optimization aims to minimize
275 the discrepancy between t_i and the mean grayscale value of all voxels in $C_i \cap \{1, \dots, 250\}^3$
276 for all $i = 1, \dots, m$.

277 Mathematically, the minimization problem states

$$\mathcal{T}^* = \operatorname{argmin}_{\mathcal{T} \in \mathbb{T}} \sum_{x \in \{1, \dots, 250\}^3} \left(\sum_{i=1}^m \frac{t_i \exp(-|x - s_i|)}{\sum_{j=1}^m \exp(-|x - s_j|)} - Z(x) \right)^2, \quad (2)$$

278 where \mathbb{T} denotes the space of tessellations.

279 Intuitively speaking, the expression within the outer parenthesis quantifies the discrepancy
280 between the mark t_i at a voxel $x \in C_i \cap \{1, \dots, 250\}^3$ and its actual gray scale value
281 $Z(x)$, whereas the outer sum accumulates these discrepancies over the entire voxel grid.
282 The exponential terms in the fraction ensure differentiability, allowing the use of gradient
283 descent-based optimization schemes to solve the minimization problem. For further
284 details on Eq. (2), the reader is referred to [30, 44].

285 For this purpose, initially, $m = 60\,000$ tuples (s_i, t_i) are sampled uniformly and independently
286 within the domain $W \times [0, 1]$, forming the initial marked tessellation \mathcal{T} . The
287 minimization problem in Eq. (2) is then numerically solved using the Adam optimizer [45]
288 with a learning rate of 0.3. The number of cells, $m = 60\,000$, was chosen heuristically
289 to balance the preservation of granular features observed in the CT image Z with a
290 relatively low cell/ parameter count. This choice allows for substantial dimensionality
291 reduction (reducing the number of parameters by a factor of $60\,000 \cdot 4/250^3 \approx 0.015$),
292 improves computational efficiency, and effectively suppresses noise.

293 Figure 2(b) shows an exemplary cross section of the fitted tessellation \mathcal{T}^* , where each
294 displayed voxel is colored by its corresponding mark. The tessellation-based parametric
295 representation inherently suppresses noise in the raw data by grouping spatially close
296 voxels with similar gray scale values into homogeneous regions, i.e., cells. Note that there

297 is a high similarity between this procedure and k-means clustering [46] and super-pixel
 298 clustering [47].

299 To obtain a two-phase representation distinguishing between the RP fragment phase
 300 and pore space, a threshold $t \in [0, 1]$ is applied to the marks t_1, \dots, t_m to determine
 301 whether the corresponding cells C_1, \dots, C_m belong to the RP fragment phase. More
 302 precisely, the RP fragment phase $\mathcal{E}(t) \subset W$ based on the fitted marked tessellation \mathcal{T}^* is
 303 given by

$$\mathcal{E}(t) = \bigcup_{i \in I} C_i,$$

304 where $I = \{i : t_i \geq t \text{ for } i = 1, \dots, m\}$.

305 Note that $\mathcal{E}(t)$ preserves key structural features of both the tessellation and the original
 306 3D grayscale image, such as the granular structure and the piecewise-planar boundaries.
 307 For a suitable $t \in [0, 1]$, $\mathcal{E}(t)$ can be considered a virtual cathode consisting of RP frag-
 308 ments. Moreover, this unsupervised approach does not require manual segmentation and
 309 avoids several limitations of conventional segmentation techniques. For example, classical
 310 thresholding methods [48] are highly sensitive to image noise and may result in pores
 311 in RP fragments that contradict model assumptions. More advanced thresholding ap-
 312 proaches attempt to address this problem through image smoothing, e.g., by applying
 313 Gaussian kernels. However, they tend to produce overly rounded phase interfaces [49].
 314 Similar drawbacks are observed for black-box methods such as neural network- or ran-
 315 dom forest-based segmentation techniques [50, 51], which additionally require manually
 316 annotated training data.

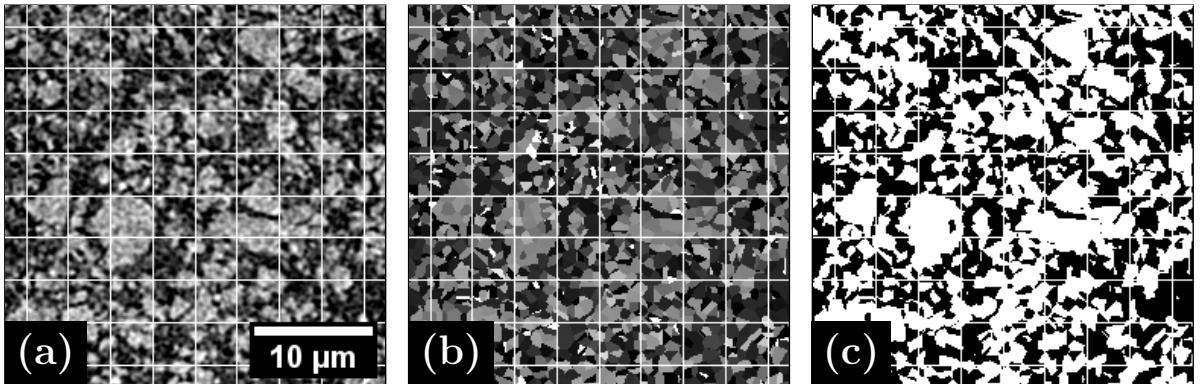


Figure 2: Modeling of RP fragment phase. (a) Cross-section of measured gray scale image.
 (b) Cross-section of corresponding fitted parametric gray scale image. (c) Visualization of
 a cross-section of $\mathcal{E}(t)$ for a $t \in [0, 1]$ corresponding to (b). Note for comparison purposes
 a grid was added to each figure.

317 2.3 Virtual Cathode Generation

318 The virtual cathode microstructures considered in the present paper are generated by a
319 systematic combination of the pristine particle phase, derived by packing pristine particles
320 (see Section 2.1), and the tessellation-based representation of the RP fragment phase (see
321 Section 2.2). To achieve this, pristine NMC particles are iteratively removed and replaced
322 by RP fragments according to different structuring scenarios. In each iteration, the local
323 active material volume fraction is kept constant, while the mixing ratio of pristine particles
324 and RP fragments is systematically varied, thereby ensuring comparability among the
325 evolving microstructures.

326 This procedure can be mathematically described as follows. Let $P_1, \dots, P_n \subset \mathbb{R}^3$
327 be a sequence of pristine particles, $c_1, \dots, c_n \in W$ the corresponding positions of their
328 barycenters, and \mathcal{P}_n the pristine particle phase as introduced in Eq. (1). To generate
329 cathodes with varying ratios of pristine particles and RP fragments, a sequence of pristine
330 particle phases with a successively reduced number of pristine particles are defined. To
331 uphold an overall constant volume fraction of the active material phase, any loss of active
332 material by the removal of pristine particles is compensated by filling the microstructure
333 with RP fragments.

334 For that, let $\mathcal{P}_0, \dots, \mathcal{P}_n$ be a sequence of pristine particle phases, given by $\mathcal{P}_0 = \emptyset$ and
335 $\mathcal{P}_j = \cup_{i=1}^j (P_{(i)} + c_{(i)})$ for $j = 1, \dots, n$, where $P_{(i)}$ denotes the i -th particle with respect
336 to some ordering, and $c_{(i)}$ the respective barycenter. Note that the particle phases are
337 nested, i.e., $\mathcal{P}_0 \subset \dots \subset \mathcal{P}_n$. To obtain differently structured active material phases, let
338 the particles P_1, \dots, P_n be ordered according to one of the following scenarios:

339 (i) **Uniform:** The sequence $P_{(1)}, \dots, P_{(n)}$ is derived by a random permutation of the
340 particles P_1, \dots, P_n . Consequently, the obtained particle phases $\mathcal{P}_0, \dots, \mathcal{P}_{n-1}$ can be con-
341 sidered as spatially homogeneous thinning of \mathcal{P}_n .

342 (ii) **Gradient:** To generate particle phases exhibiting a structural gradient, let the par-
343 ticles $P_{(1)}, \dots, P_{(n)}$ with barycenters $c_{(1)} = (x_{(1)}, y_{(1)}, z_{(1)}), \dots, c_{(n)} = (x_{(n)}, y_{(n)}, z_{(n)})$ be
344 ordered such that $y_{(1)} \leq \dots \leq y_{(n)}$, where the y -coordinate corresponds to the direction
345 of charge transport. In this case, \mathcal{P}_j is obtained by only considering the j particles whose
346 centers have the smallest y -coordinates. This strategy results in a vertical gradient along
347 the cathode thickness: the upper region of the sampling window W becomes increasingly
348 depleted of pristine particles with increasing j , while the lower region contains only pris-
349 tine particles with a packing density similar to \mathcal{P}_n . Note that the transition between these
350 regions is gradual, as particles are removed in their entirety rather than partially.

351 To keep the active material volume fraction constant, RP fragments have to be added
352 to \mathcal{P}_j . Recall Section 2.2, where the RP fragment phase $\mathcal{E}(t)$ was introduced, depending on
353 some threshold $t \in [0, 1]$, which controls the number of RP fragments in $\mathcal{E}(t)$ and hence its
354 volume fraction $\varepsilon(\mathcal{E}(t))$. To ensure that all observed differences between different virtual

355 cathodes rely only on the differently structured active material and not on local variations
 356 of active material volume fraction, the local volume fraction is kept constant. For that,
 357 let the observation window W be partitioned into ten horizontal layers perpendicular to
 358 the y -direction, defined as

$$W_i = \{(x, y, z) \in W : (i - 1) \cdot 25 \leq y < i \cdot 25\} \quad \text{for } i = 1, \dots, 10.$$

359 Further, let $\mathcal{E}_i(t) \subset \mathcal{E}(t)$ denote the i -th layer of the RP phase $\mathcal{E}(t)$, containing those RP
 360 fragments $C_k, k = 1, \dots, m$, whose seed point is located in layer W_i . Formally, $\mathcal{E}_i(t)$ is
 361 given by

$$\mathcal{E}_i(t) = \bigcup_{k=1}^m \{C_k : t_k \geq t \text{ and } s_k \in W_i\} \subset \mathcal{E}(t),$$

362 where (s_k, t_k) denotes the tuple of seed point s_k and mark t_k inducing the Voronoi cell
 363 C_k .

364 Then, the (combined) active material phases are defined as

$$\mathcal{B}_j(\ell) = \mathcal{P}_j \cup \left(\bigcup_{i=1}^{10} \mathcal{E}_i(\ell^{(i)}) \right) \quad \text{for } j = 0, \dots, n,$$

365 with the local threshold vector $\ell = (\ell^{(1)}, \dots, \ell^{(10)}) \in [0, 1]^{10}$. Since \mathcal{P}_j is fixed, the active
 366 material volume fraction of $\mathcal{B}_j(\ell)$ depends solely on ℓ . To ensure that all active material
 367 phases $\mathcal{B}_j(\ell_j)$ for $j = 0, \dots, n$ exhibit a layer-wise similar active material volume fraction,
 368 the threshold ℓ_j is determined as the minimizer

$$\hat{\ell}_j = \underset{\ell \in [0, 1]^{10}}{\operatorname{argmin}} \sum_{i=1}^{10} |\varepsilon(\mathcal{P}_n \cap W_i) - \varepsilon(\mathcal{B}_j(\ell_j) \cap W_i)|, \quad (3)$$

369 i.e., as vector of thresholds that minimizes the deviation in layer-wise volume fractions
 370 between \mathcal{B}_j and the reference particle phase \mathcal{P}_n , in which no particles are removed. Note
 371 that for $j = n$ it holds $\hat{\ell}_n = 0$, where $0 \in \mathbb{R}^{10}$ denotes the ten-dimensional zero-vector. In
 372 this case $\mathcal{P}_n = \mathcal{B}_n(\hat{\ell}_n)$ and consequently $\varepsilon_i(\mathcal{P}_n) - \varepsilon_i(\mathcal{B}_n(\hat{\ell}_n)) = 0$ for all layers $i = 1, \dots, 10$.

373 Due to computational efficiency, the minimization problem stated in Eq. (3) was solved
 374 utilizing a greedy optimization scheme. More precisely, to obtain the threshold vector
 375 $\hat{\ell}_j = (\hat{\ell}_j^{(1)}, \dots, \hat{\ell}_j^{(10)})$, each component $\hat{\ell}_j^{(i)}$ was determined iteratively by assuming the
 376 previously computed $\hat{\ell}_j^{(i')}$ as fixed and solving solving the layer-wise minimization problem

$$\hat{\ell}_j^{(i')} = \underset{\ell \in [0, 1]}{\operatorname{argmin}} |\varepsilon(\mathcal{P}_n \cap W_i) - \varepsilon(\mathcal{B}_j(\ell) \cap W_i)|,$$

377 for $i, i' = 1, \dots, 10$ and $i' < i$. Note that the greedy approach does not necessarily result

378 in the optimal solution; however, it provides substantial computational benefits in time
 379 and memory.

380 The whole procedure results in a sequence of active material phases $\mathcal{B}_0(\hat{\ell}_0), \dots, \mathcal{B}_n(\hat{\ell}_n)$
 381 exhibiting a decreasing proportion of RP fragments compared to pristine particles, how-
 382 ever showing layer-wise constant active material fractions. The portion of RP fragments
 383 compared to pristine particles is quantified by the recycling fractions $\eta_j \in [0, 1]$, given by

$$\eta_j = \frac{\varepsilon(\mathcal{B}_j(\hat{\ell}_j)) - \varepsilon(\mathcal{P}_j)}{\varepsilon(\mathcal{B}_j(\hat{\ell}_j))}.$$

384 By construction, it holds $\eta_n = 0$ and $\eta_0 = 1$, i.e., $\mathcal{B}_n(\hat{\ell}_n)$ contains only pristine particles,
 385 while $\mathcal{B}_0(\hat{\ell}_0)$ consists exclusively of RP fragments.

386 In Section 3, the influence of the two structuring scenarios, “uniform” and “gradient”,
 387 and different recycling fractions η on cathode performance-related descriptors is investi-
 388 gated. For this purpose, the active material phase \mathcal{A}_η with a specific recycling fraction
 389 $\eta \in [0, 1]$ is defined as $\mathcal{A}_\eta = \mathcal{B}_{j^*}(\hat{\ell}_{j^*})$, where the index j^* is chosen as

$$j^* = \operatorname{argmin}_{j \in \{0, \dots, n\}} |\eta - \eta_j|.$$

390 This ensures that the selected active material phase \mathcal{A}_η represents the structure whose
 391 recycling fraction η_j most closely matches the desired value η .

392 Exemplary cross sections of active material phases \mathcal{A}_η , generated using both structur-
 393 ing strategies and corresponding to recycling fractions $\eta \in \{0, 0.2, \dots, 0.8, 1\}$ are presented
 394 in Figure 3.

395 2.4 Geometric Descriptors and Properties of Microstructures

396 To analyze the effects of differently structured active material an extensive microstruc-
 397 tural characterization of the virtual two-phase cathodes was performed, using well-known
 398 geometric descriptors and effective properties [19, 23, 52–54]. These descriptors quantify
 399 the geometry of an active material phase $\mathcal{A} \subset W$ and corresponding pore space $\mathcal{A}^c \subset W$,
 400 given by the complement of the active material phase. In the following, all descriptors
 401 are defined for some phase $A \in \{\mathcal{A}, \mathcal{A}^c\}$. In this work, we focus on descriptors that are
 402 known to influence the performances of battery electrodes [55, 56].

403 **Specific surface area:** A basic geometric descriptor for two-phase materials, besides
 404 the already considered volume fraction $\varepsilon(A)$ of a phase A , is the specific surface area σ .
 405 This descriptor quantifies the interface area between \mathcal{A} and \mathcal{A}^c per unit volume, i.e., $\sigma(A)$

406 is given by

$$\sigma(A) = \frac{\mathcal{H}_2(\partial A \setminus \partial W)}{\nu_3(W)},$$

407 where ∂ denotes the boundary of a set, $\nu_3(W)$ the volume of the observation window, and
408 $\mathcal{H}_2(\cdot)$ the 2D Hausdorff measure. Since the interface between \mathcal{A} and \mathcal{A}^c is quantified, it
409 holds $\sigma(\mathcal{A}) = \sigma(\mathcal{A}^c)$. Applied to an electrode battery, it is used to scale the current density
410 of the charge transfer reaction that occurs at the interface between the electrolyte and the
411 active material. To compute a numerical estimation of σ , we apply the convolution-based
412 method of [57].

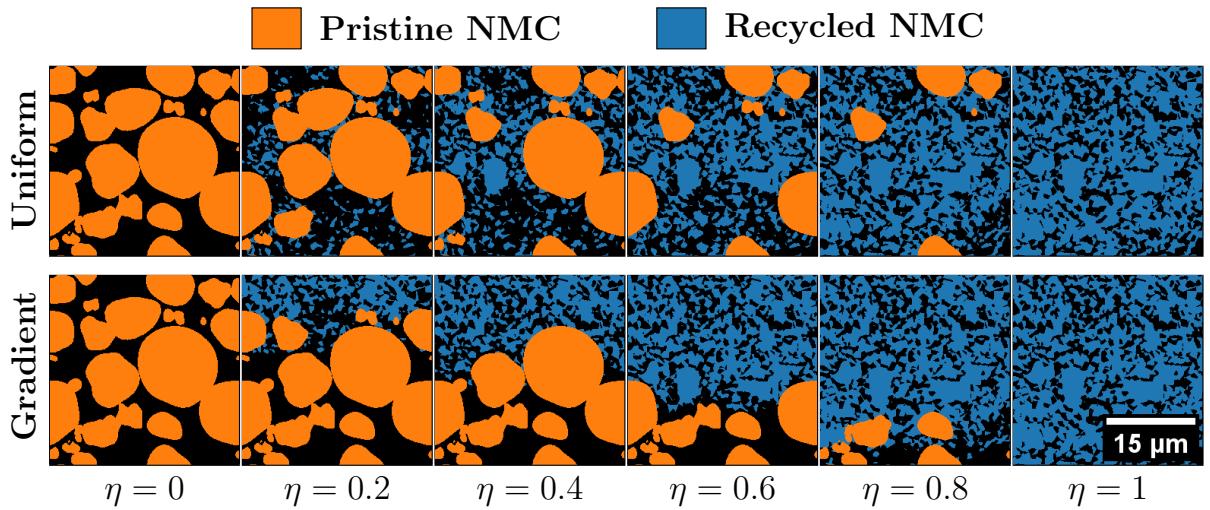


Figure 3: Exemplary cross sections of virtual cathodes \mathcal{A}_η generated according to the “uniform” (top row) and “gradient” (bottom row) scenario utilizing a fixed pristine particle phase \mathcal{P}_n . The columns show increasing recycling fractions η . The pore space, pristine phase and RP fragment phases are represented in black, orange and blue, respectively. By construction both rows coincide for \mathcal{A}_0 and \mathcal{A}_1 .

413 **Tortuosity factor:** The tortuosity factor τ_{fac} is a commonly used measure to describe
414 the diffusivity of porous media [58–60]. It is a key parameter to improve battery per-
415 formances, especially for fast charging [61]. In this work, it is calculated by using the
416 open-source software TauFactor [23]. TauFactor solves Laplace’s equation for steady-state
417 diffusion using a finite difference numerical scheme with Dirichlet-Dirichlet boundary con-
418 ditions. Because of this, the tortuosity factors calculated here are slightly biased toward
419 lower values, as homogenization calculations are impacted by the choice of the boundary
420 conditions (this dependence eventually vanishes for large enough domains) [62, 63]. The
421 tortuosity factor is given by

$$\tau_{\text{fac}}(A) = \frac{D_0 \cdot \varepsilon(A)}{D_{\text{eff}}} \in [1, \infty)$$

422 with $D_{\text{eff}} > 0$ being the effective diffusivity in the transport direction (vertical direction
423 in Figure 3), $D_0 > 0$ is the bulk diffusivity of the considered phase and $\varepsilon \in (0, 1)$ the
424 volume fraction of the considered phase. In this work, the bulk conductivity is set to 1 so
425 that the analysis is agnostic with the material property (i.e., D_{eff} is a relative metric). In
426 such a case $D_{\text{eff}} \in [0, 1]$. Note that while τ_{fac} depends on the axis along which transport
427 is considered, it does not take the transport direction into account, unlike the geodesic
428 tortuosity introduced later. A value of $\tau_{\text{fac}} = 1$ corresponds to the ideal case of straight,
429 unobstructed diffusion paths. Larger values of τ_{fac} indicate increasingly tortuous transport
430 paths, i.e., diffusing electrons or ions need to travel longer effective distances compared
431 to diffusion in solid bulk medium. It is important to note that almost all transport of
432 ions is present in the pore phase, however to give a comprehensive analysis of the virtual
433 cathodes, τ_{fac} is determined for both phases $A \in \{\mathcal{A}, \mathcal{A}^c\}$.

434 While the tortuosity factor quantifies the penalty induced by the heterogeneous mi-
435 crostructure on the effective diffusion, it does not provide insights on the geometric fea-
436 tures responsible for its particular value. Tortuosity factor is an all-in-one parameter that
437 encompasses the contributions of several features of the pore domain. In addition to the
438 volume available for the diffusion itself (i.e., the porosity), two other metrics quantifying
439 geometrically the sinuosity and the constriction of the diffusion paths have been intro-
440 duced in the literature [21, 64] in an attempt to deconvolute their respective contributions
441 to the effective diffusivity. Both are defined in the following.

442 **Bruggeman exponent:** An additional transport-related descriptor, directly derived
443 from the tortuosity factor τ_{fac} and the volume fraction ε , is the so called Bruggeman
444 exponent α , which is given by

$$\alpha(A) = \frac{\log(\varepsilon(A)/\tau_{\text{fac}}(A))}{\log(\varepsilon(A))}.$$

445 Note that this descriptor can be directly obtained from the previously introduced descrip-
446 tors, however it provides a more accessible interpretation. A value of $\alpha = 1.5$ corresponds
447 to a medium composed of spherical, non-touching particles within A , whereas increasing
448 values of α indicate less regular and more complex morphologies [65].

449 **Geodesic tortuosity:** The mean geodesic tortuosity τ_{geo} of a phase A quantifies the
450 deviation of shortest paths within A from straight lines [53]. The tortuosity of a path
451 is defined as the ratio of the actual path length to the straight-line distance between its
452 endpoints. By definition, this ratio is always at least 1, with higher values indicating
453 more tortuous paths. In this paper, the mean geodesic tortuosity τ_{geo} is computed as the
454 average tortuosity of all shortest paths starting on a designated plane (e.g., the top or
455 bottom) of the cathode and ending at the opposite side.

456 To take structural gradients into account, τ_{geo} is calculated separately for both direc-
 457 tions (top-to-bottom and bottom-to-top). For a given direction, the shortest path from
 458 each integer-valued position of the phase on the starting plane to the target plane of the
 459 cathode is determined using Dijkstra's algorithm [66]. Starting positions that are not
 460 connected to the opposite side are excluded from the computation of τ_{geo} , i.e., τ_{geo} reflects
 461 only the tortuosity and not the number of paths. Each path length is then normalized by
 462 the straight-line distance between the two opposing planes. The mean geodesic tortuosity
 463 τ_{geo} is defined as the average of these normalized path lengths.

464 Analogous to the tortuosity factor τ_{fac} , the mean geodesic tortuosity τ_{geo} is determined
 465 for both phases $A \in \{\mathcal{A}, \mathcal{A}^c\}$.

466 **Maximum inscribed radius:** To characterize the typical size of a phase, the maximum
 467 inscribed radius r_{max} is utilized. This descriptor represents the largest radius of spheres
 468 that can cover at least 50% of the volume fraction of the considered phase, with the spheres
 469 being fully contained within that phase. This metric is derived from the calculation of the
 470 so-called continuum particle- or phase-size distribution [67]. More precisely, for a phase
 471 $A \subset W$ let

$$O_r(A) = \{x \in A : B(x, r) \cap A^c = \emptyset\},$$

472 denote the set of centers $x \in A$ where balls $B(x, r)$ of radius $r > 0$ can be placed while
 473 not intersecting the other phase A^c . The corresponding set, which is coverable with balls
 474 of radius r is obtained by dilating $O_r(A)$ with a ball of radius r , i.e.,

$$O_r(A) \oplus B(0, r) = \{x \in W : \text{there is a } y \in O_r(A) \text{ with } x \in B(y, r)\},$$

475 where \oplus denotes the dilation operator. Then the maximum inscribed radius r_{max} is given
 476 by

$$r_{\text{max}}(A) = \sup\{r > 0 : \varepsilon(O_r(A) \oplus B(0, r)) \geq 0.5\}.$$

477 The maximum inscribed radius r_{max} and the subsequently introduced minimum intrusion
 478 radius r_{min} are numerically estimated utilizing the algorithm provided in [68].

479 **Minimum intrusion radius:** The minimum intrusion radius r_{min} quantifies the effect
 480 of narrow constrictions or bottlenecks in a phase along a given direction. It is defined as the
 481 largest radius of balls such that at least 50% of the phase volume can be covered by balls
 482 intruded from one side. More precisely, for an intrusion plane $\Pi = [0, 250] \times \{y\} \times [0, 250]$
 483 (with $y = 0$ for the bottom or $y = 250$ for the top of the observation window W), consider

484 the set of centers connected to Π , i.e.,

$$Q_r(A, \Pi) = \{x \in O_r(A) : \text{there exists a path in } O_r(A) \text{ from } x \text{ to } \Pi\},$$

485 for an $r > 0$. The corresponding set of points coverable with the intrusion of balls with
486 radius r from Π is derived by dilation of $Q_r(A, \Pi)$. Thus, r_{\min} is given by

$$r_{\min}(A, \Pi) = \sup\{r > 0 : \varepsilon((Q_r(A, \Pi) \oplus B(0, r)) \cap W) \geq 0.5\}.$$

487 By construction, $r_{\min}(A, \Pi) \leq r_{\max}(A)$.

488 In applications due to computational efficiency, O_r and Q_r are evaluated only on an
489 integer-valued grid.

490 **Constrictivity:** Constrictivity aims at quantifying the impact of section area variation
491 along the diffusion paths on the effective diffusivity. Note that the constrictivity is a
492 challenging metric to calculate, since the lack of a unique definition of large (bulge) and
493 small (bottleneck) regions in a continuous domain. Because of this, several definitions
494 have been provided in the literature [21, 64]. In this work, the constrictivity $\beta(A) =$
495 $\frac{r_{\min}(A, \Pi)^2}{r_{\max}(A)^2} \in (0, 1]$ of a phase $A \subset W$ and an intrusion plane $\Pi \subset W$ is defined as the
496 squared ratio between the minimum intrusion radius r_{\min} and the maximum inscribed
497 radius r_{\max} , providing a normalized measure of how restrictive the narrowest bottlenecks
498 are relative to the overall phase size [54]. A value of 1 corresponds to no bottleneck effects
499 at all, while a value close to 0 corresponds to extreme bottleneck effects [58].

500 **Chord length:** Another insightful geometric characteristic for transport is the chord
501 length distribution. A chord is a line segment lying entirely within a given phase A that
502 cannot be extended in either direction without crossing into the complementary phase.
503 The chord length distribution captures the spatial extent of the phase. In particular,
504 longer chords correlate positively with favorable transport properties.

505 Since the present paper considers transport only in the vertical direction, only ver-
506 tically aligned chords are investigated. In practice, due to computational efficiency,
507 the chord length distribution is estimated through discretization. For this purpose, let
508 $c = \{(x, y, z), (x, y + 1, z), \dots, (x, y', z)\} \subset A$ with $x, y, y', z \in \{1, \dots, 250\}$, $y \leq y'$,
509 $(x, y - 1, z), (x, y' + 1, z) \notin A$, be a discretized chord. Then, its length ℓ is given by
510 $\ell(c) = y' - y + 1$. The empirical probability distribution of these chord lengths then
511 serves as an estimator for the chord length distribution. Considering the length-weighted
512 distribution of these chords gives the chord length distribution; i.e., a chord of length $\ell(c)$
513 is counted $\ell(c)$ times, thereby accounting for the stronger influence of longer chords on
514 geometry and transport. For a formal definition, refer to [40, 69].

515 3 Results and Discussion

516 In this section, the transport-related descriptors and effective properties defined in Section 2.4 are analyzed for differently structured cathodes. Due to the limited field of view of
 517 the experimentally imaged RP cathode, only one marked tessellation \mathcal{T} of reasonable size
 518 could be fitted. The RP fragment phase and consequently \mathcal{T} , exhibit minor anisotropy
 519 with respect to the transport direction (y-direction), caused by manufacturing, particu-
 520 larly drying and calendering. To avoid transferring this anisotropy onto the geometric
 521 and effective descriptors, we additionally consider virtual cathodes, based on \mathcal{T}' , which
 522 is derived by reflecting \mathcal{T} at the x-z plane. Complementarily, ten pristine particle phases
 523 $\mathcal{P}^{(1)}, \dots, \mathcal{P}^{(10)}$ were generated. For both structuring scenarios, “uniform” and “gradient”,
 524 20 realizations per recycling fraction $\eta \in \{0, 0.05, 0.1, 0.15, 0.2, 0.3, \dots, 0.9, 1\}$ were ob-
 525 tained by combining the two RP fragment phases $\mathcal{T}, \mathcal{T}'$ with the ten pristine particle
 526 phases $\mathcal{P}^{(1)}, \dots, \mathcal{P}^{(10)}$.
 527

528 Note that low recycling fractions η are of particular relevance in view of the recycling
 529 quotas for Li-ion batteries planned by the European Union, which require at least 6 %
 530 recycled lithium, 6 % recycled nickel, and 16 % recycled cobalt in new batteries starting
 531 in 2031 [8]. Therefore, a finer subdivision of η in the low range is applied, while a larger
 532 step size is used for higher recycling fractions. However, the stochastic 3D microstructure
 533 model, described in Sections 2.1-2.3 is capable of generating virtual cathodes for any
 534 recycling fraction $\eta \in [0, 1]$.

535 In Figure 4, the deviation of the **volume fractions** of the pristine particle phase,
 536 RP fragment phase, and pore space is presented. The box plots indicate a low variance
 537 across the 20 realizations for each recycling fraction η . Further, the constant pore volume
 538 fraction implicitly confirms the constant total active material fraction. In addition, the
 539 volume fraction of pristine particles and RP fragments exhibits converse linear behavior,
 540 summing to $1 - \varepsilon(\mathcal{A}_\eta)$ for all η .

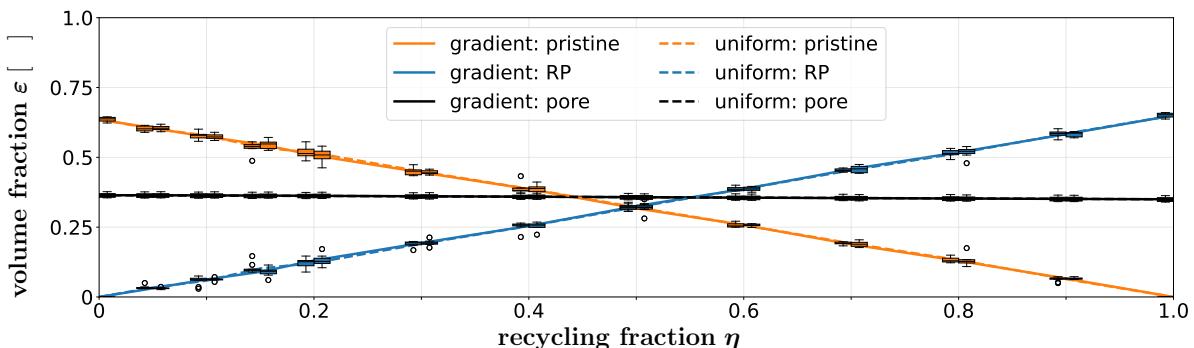


Figure 4: Box plots representing the distributions of the volume fractions of the pristine particle phase (orange), RP fragment phase (blue) and pore space (black). The “gradient” scenario is indicated utilizing solid lines and the “uniform” scenario with dashed lines (dashed and solid lines are nearly overlapping).

541 The box plots in Figure 5 show an increasing **specific surface area** for rising recycling
 542 fractions η for both structuring scenarios. This trend was expected, as the specific surface
 543 area is inversely correlated with the particle size [56]. Moreover, cathodes generated
 544 utilizing the “uniform” scenario consequently exhibit larger specific surface areas. This
 545 observation can be attributed to the fact that in the “gradient” scenario, the iterative
 546 replacement of pristine particles by RP fragments occurs predominantly layer by layer.
 547 As a result, many of the inserted RP fragments come into contact with others, which
 548 reduces the overall specific surface area. In contrast, the “uniform” scenario introduces
 549 RP fragments more evenly throughout the entire observation window W , leading to a
 550 more homogeneous distribution and fewer inter-particle contacts, thereby increasing the
 551 (specific) surface area.

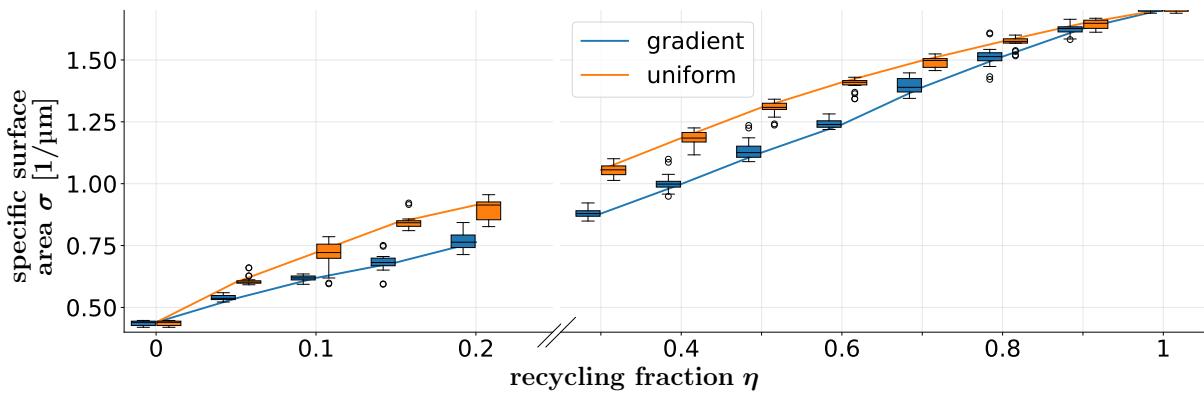


Figure 5: Box plots indicating the distribution of specific surface area for cathodes generated using both structuring scenarios, namely “gradient” (blue) and “uniform” (orange). Note that the breakage of the x-axis at $\eta = 0.25$ indicates differently scales of the intervals $[0,0.25]$ and $(0.25,1]$.

552 Figure 6 shows the **tortuosity factor** as a function of the recycling fraction η . For
 553 transport within the active material phase (Figure 6(a)), the tortuosity factor decreases
 554 monotonically with increasing η , indicating reduced diffusivity. Note that values corre-
 555 sponding to the “uniform” scenario are generally smaller than those of the “gradient”
 556 scenario.

557 In contrast, for transport within the pore space (Figure 6(b)), the tortuosity factor
 558 increases with increasing η , where values corresponding to the “uniform” scenario are
 559 larger than those of the “gradient” scenario.

560 It is important to note that the tortuosity factor of the active material phase decreases
 561 rapidly for $\eta \in [0, 0.2]$, compared to $\eta \in [0.2, 1]$. This implies that a low recycling fraction
 562 within the cathode can significantly increase the effective transport properties.

563 Complementarily, for low η the tortuosity factor in pore space increases only slightly,
 564 indicating a moderate deterioration of tortuosity factor properties. The tortuosity factor
 565 in the pore space increases with the recycling fraction (Figure 6(b)) at constant porosity

566 (Figure 4), which indicates a shift in the pore topology domain. That is, a transition from
 567 roughly spherical particles to a less ideal morphology is expected since the RP fragments
 568 are not spherical but polyhedral due to the underlying Voronoi tessellation. This shape
 569 transition is also confirmed by the Bruggeman exponent of the pore space, which is ≈ 1.5
 570 for $\eta = 0$, and increases for increasing recycling fractions, see Figure 7.

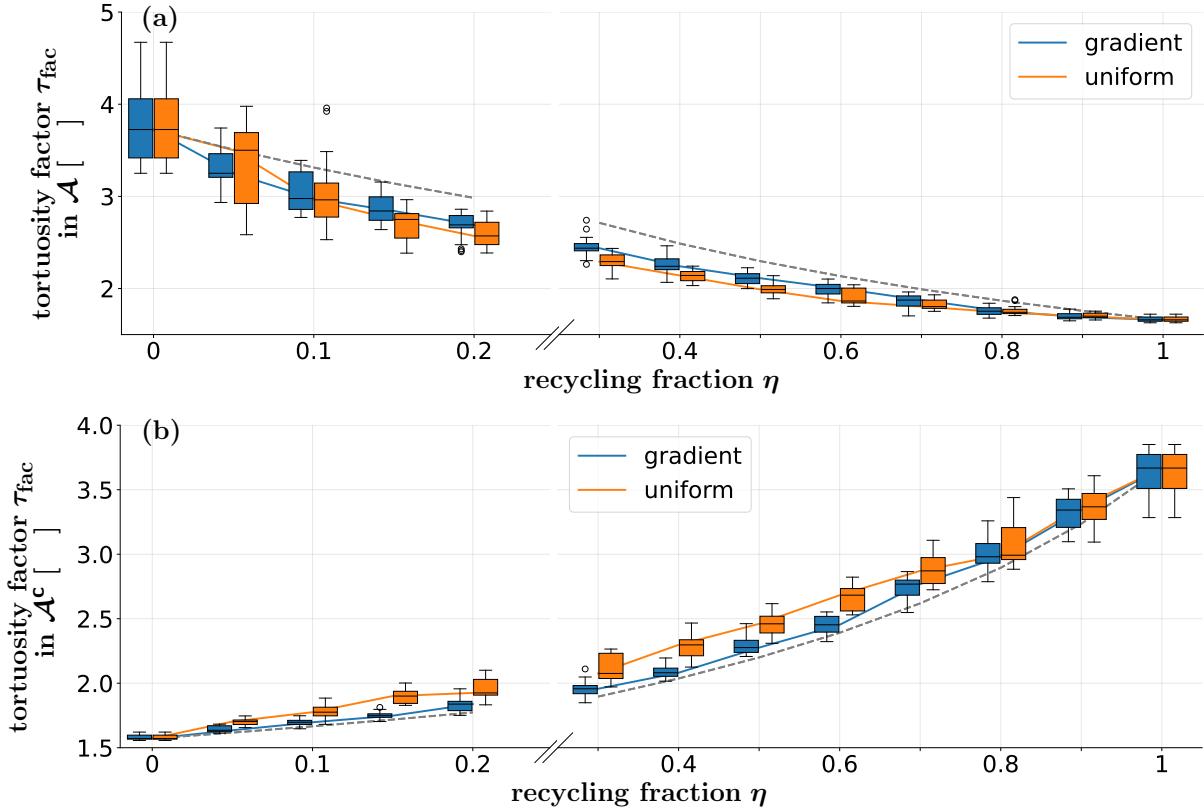


Figure 6: Box plots showing the change of the tortuosity factor for increasing recycling fraction η , where (a) indicates transport within the active material phase and (b) within the pore space. Results derived from the “gradient” scenario are indicated blue, whereas orange boxes represent the “uniform” scenario. The dashed lines indicate the theoretical values for a cathodes consisting of two well-separated layers.

571 The very high tortuosity factors calculated for large values of η , are slightly above the
 572 values calculated or measured for real NMC cathodes [21, 70]. This indicates that the
 573 voxel-based and tessellation-based representations of the RP phase somewhat underesti-
 574 mate the diffusivity in the pore space compared to experiments.

575 Additionally, in Figure 6, the tortuosity factor of a cathode, consisting of two well-
 576 separated layers with a recycling fraction $\eta \in [0, 1]$ is indicated by a dashed line. Formally,
 577 it is given by

$$\tau_{\text{fac}}^{\text{layered}}(\eta, A_0, A_1) = \frac{1}{\frac{\eta}{\tau_{\text{fac}}(A_1)} + \frac{1-\eta}{\tau_{\text{fac}}(A_0)}},$$

578 where $\tau_{\text{fac}}(A_0), \tau_{\text{fac}}(A_1)$ denotes the tortuosity factor of a cathode made solely out of

579 pristine particles and RP, respectively [71]. This theoretical line shows higher tortuosity
 580 factor values than those for both scenarios in the active material phase \mathcal{A} . For transport
 581 in pore space \mathcal{A}^c the tortuosity factor τ_{fac} is slightly larger than the theoretical value of
 582 the layered cathode. This indicates that the influence of the interface between the two
 583 layers is not negligible.

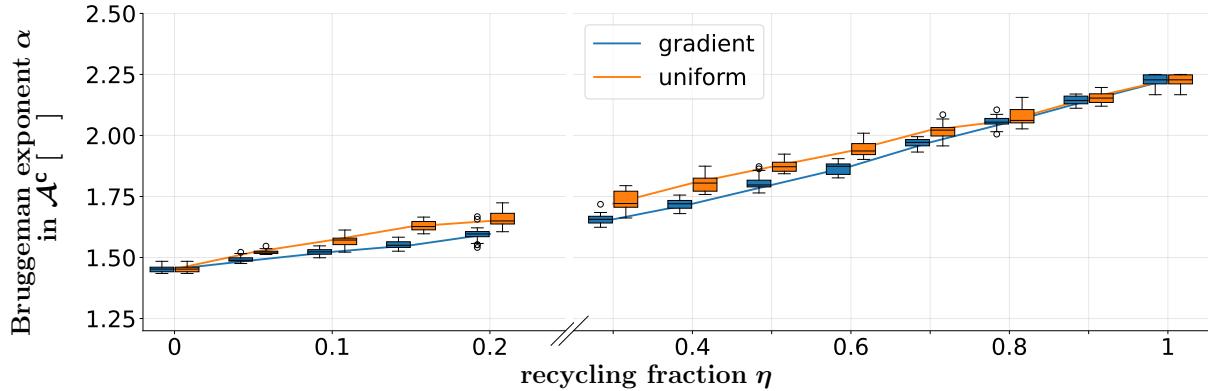


Figure 7: Boxplots indicating the distribution of the Bruggeman exponent for increasing recycling fractions η within the pore space. Results derived from the “gradient” scenario are indicated blue, whereas orange boxes represent the “uniform” scenario.

584 The **mean geodesic tortuosity** was determined within the active material phase
 585 in both the top-to-bottom direction and the bottom-to-top direction, see Figure 8(a).
 586 For both structuring scenarios, “uniform” and “gradient”, the mean geodesic tortuosity
 587 decreases with increasing recycling fraction η . Indeed, as the particles get smaller, mov-
 588 ing from one side to the other within the solid domain requires less direction changes as
 589 particles are closer to each other. However, tortuosity values corresponding to the “uni-
 590 form” scenario are consistently smaller than those of the “gradient” scenario. While the
 591 “uniform” scenario exhibits directional symmetry, the “gradient” scenario reveals larger
 592 values for the top-to-bottom direction, corresponding to transport originating in the RP
 593 fragment-rich layer.

594 This asymmetry can be explained by the large difference in size between the pristine
 595 particles and RP fragments. There are fewer transport paths starting at the pristine-
 596 rich layer (bottom) to the RP fragment-rich layer (top) than vice versa. This effect is
 597 illustrated in Figure 9.

598 Additionally, pores tend to be larger between large pristine particles than between
 599 small RP fragments, as confirmed by the chord length distribution in the pore space, as
 600 shown in Figure 13(b). This implies that at the transition region between the layers,
 601 each pristine particle is more likely to be connected to a RP fragment than vice versa.
 602 Consequently, transport paths from the RP fragment layer to the pristine particle layer
 603 exhibit larger deviations than those in the opposite direction.

604 Additionally, the mean geodesic tortuosity was determined within the pore space in

605 the top-to-bottom direction as well as the bottom-to-top direction (Figure 8(b)). Here,
606 an increasing recycling fraction η results in longer paths for both structuring strategies,
607 since the initially unobstructed pore space becomes increasingly filled with obstacles (RP
608 fragments). Again, in the “uniform” scenario there is a high similarity between both
609 directions. However, these tortuosities are clearly smaller than the ones corresponding to
610 the “gradient” scenario. Particularly, tortuosities corresponding to the “gradient” scenario
611 in the bottom-to-top direction exhibit the highest values. Note that the mean geodesic
612 tortuosity accounts only for the shortest paths from the starting plane to the target plane.
613 It provides no information about the number of such paths. The low geodesic tortuosity
614 values are in agreement with those determined geometrically in previous work for real
615 electrodes [21].

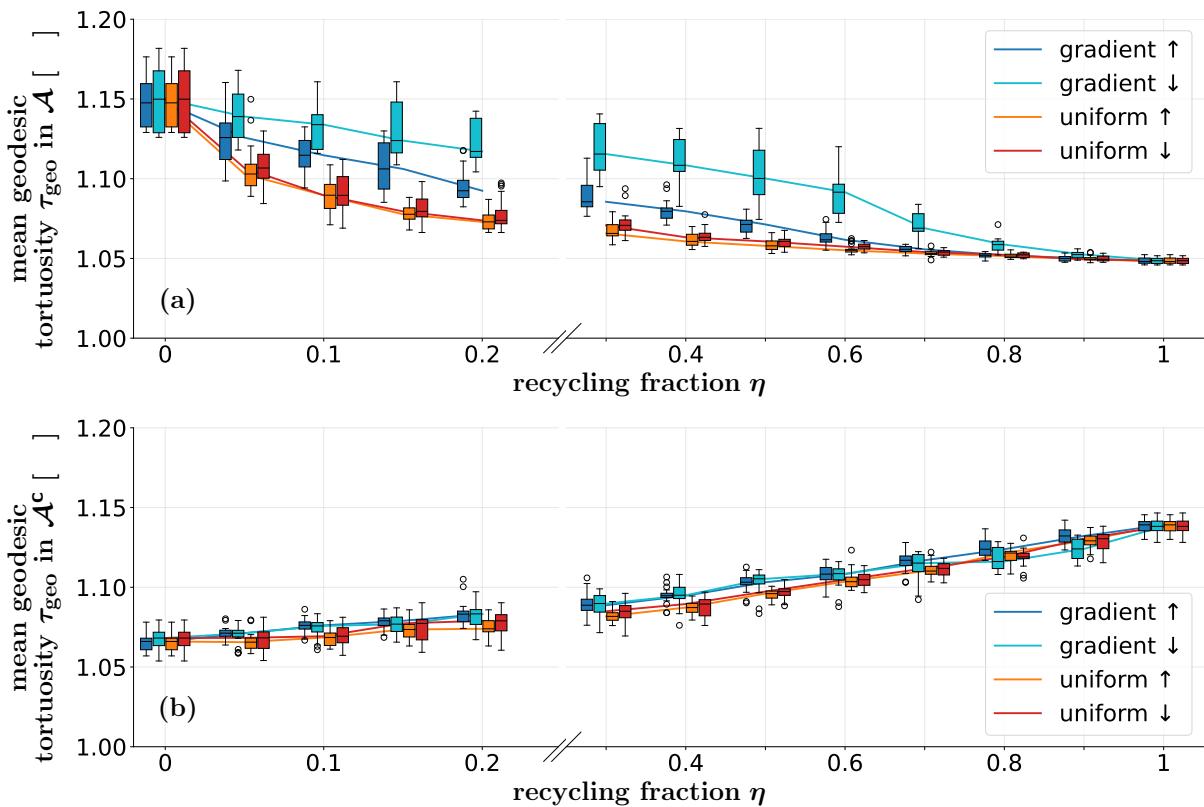


Figure 8: Box plots showing the distribution of mean geodesic tortuosity for various recycling fractions η in the active material phase (a) and pore space (b). Blue and cyan boxes correspond to the “gradient” scenario, while red and orange boxes represent the “uniform” scenario. The arrows indicate the direction of transport: upward-pointing arrows correspond bottom-to-top direction, and downward-pointing arrows to top-to-bottom direction.

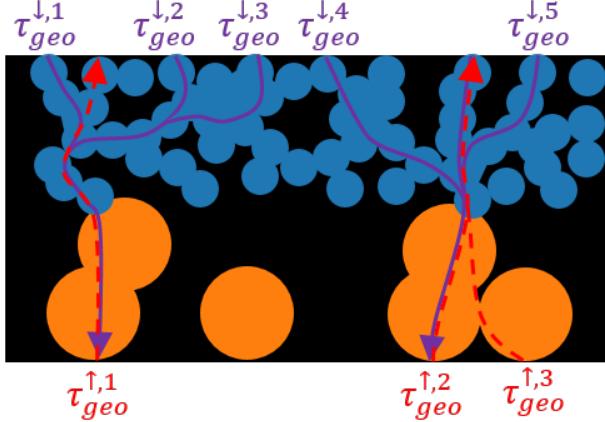


Figure 9: Sketch of 2D geodesic tortuosity asymmetry illustrated for the active material phase of the “gradient” scenario. Purple solid lines represent a selection of the shortest paths from top to bottom. Red dashed lines represent all shortest paths from bottom to top.

616 The **maximum inscribed radius** r_{\max} , determined in the active material phase,
 617 decreases with increasing recycling fraction η , as shown in Figure 10(a). A rapid drop is
 618 observable between $\eta = 0.4$ and $\eta = 0.5$. Since r_{\max} describes the maximum radius of
 619 spheres that can cover at least 50% of the active material phase, the decline is expected.
 620 At $\eta = 0.5$ half of the active materials consists of RP fragments, which can only be
 621 covered by significantly smaller spheres. Similarly, r_{\max} determined within the pore space
 622 also decreases for increasing recycling fractions of both structuring scenarios, see Figure 10
 623 (b). However, the decrease is more pronounced for the “uniform” scenario. In this case,
 624 RP fragments are more likely to be inserted into large pores, whereas in the “gradient”
 625 scenario, RP fragments are introduced progressively from top to bottom, resulting in less
 626 disruption to large pores at lower layers.

627 The influence of different recycling fractions η on the **minimum intrusion radius**
 628 r_{\min} is presented in Figure 11. As expected, values of r_{\min} corresponding to the “uni-
 629 form” scenario, determined in both transport directions, show a similar decrease for both
 630 phases, active material (Figure 11(a)) and pore space (Figure 11(b)). In contrast, for the
 631 “gradient” scenario, the top-to-bottom direction exhibits for both phases consequently
 632 smaller values compared to the bottom-to-top direction. This effect can be attributed to
 633 the layered structure of the “gradient” cathode, where for low recycling fractions only the
 634 top layers of the cathode are altered, e.g., pristine particles are removed and RP fragments
 635 are introduced. In particular, neither active material nor pore space at the bottom of the
 636 cathode is modified. Consequently, the intrusion of spheres into both the active material
 637 and pore space from the bottom is less affected compared to the “uniform” scenario, in
 638 which modifications occur throughout the entire volume.

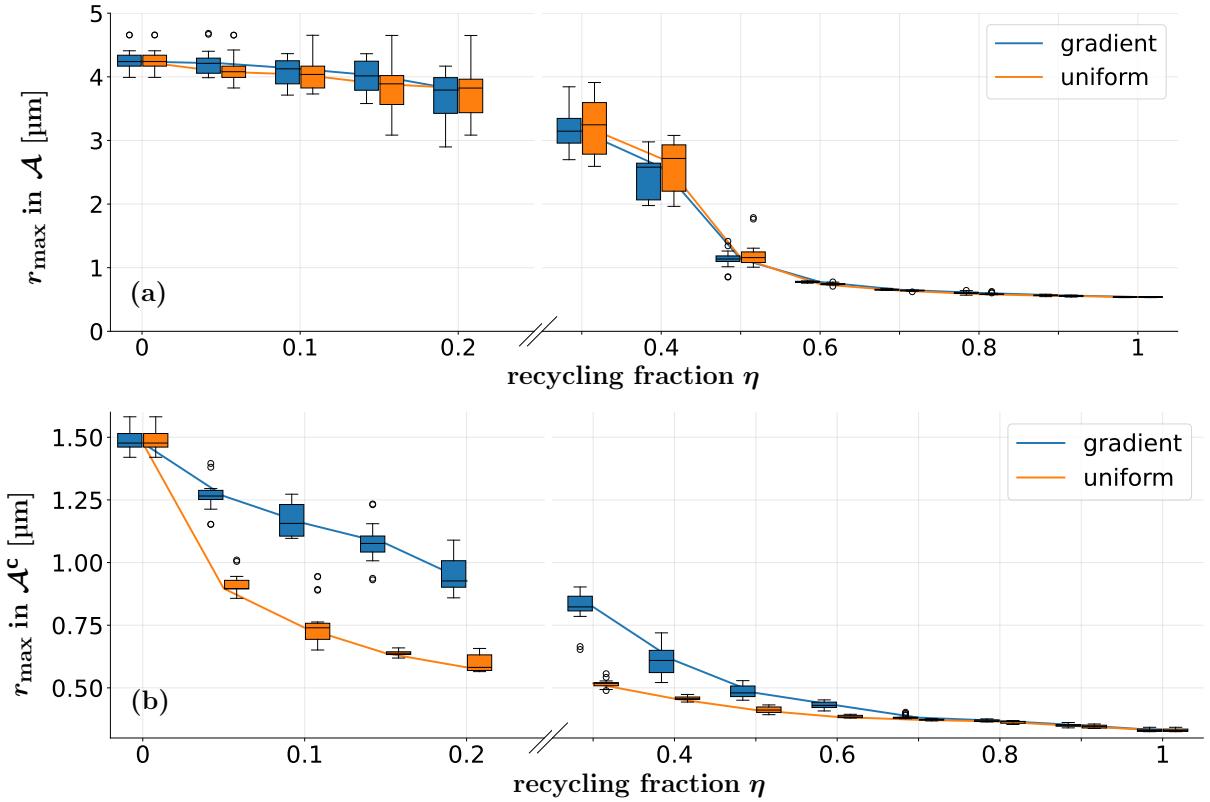


Figure 10: Box plots indicating the distribution of r_{\max} depending on the recycling fraction η within the active material phase (a) and pore space (b). Blue boxes indicate the “gradient” scenario, whereas orange ones corresponds to the “uniform” scenario.

639 The **constrictivity** determined in the active material phase shows a similar behavior
 640 for cathodes generated using both the “uniform” and “gradient” scenarios, as well as
 641 for both transport directions, see Figure 12(a). For recycling fractions $\eta \in [0, 0.4]$, the
 642 constrictivity remains around 0.05, indicating very strong bottleneck effects. This can be
 643 attributed to the fact that in this range more than 50% of the active material volume is
 644 present in pristine NMC particles.

645 Although these particles exhibit a large diameter, their near-spherical shape leads
 646 to only comparatively small contact areas with each other, which results in pronounced
 647 bottleneck effects. When the fraction of added RP fragment exceeds 50%, meaning that
 648 more than half of the active material phase is present in the fine-granular structure of the
 649 RP fragment phase, the bottleneck effects are reduced. This reduction arises from the
 650 absence of regions in the RP fragment phase in which balls with a large radius r_{\max} fit.

651 In contrast, the constrictivity determined within the pore space shows pronounced dif-
 652 ferences between the “uniform” and “gradient” scenarios, see Figure 12(b). For the “uni-
 653 form” cathodes, no clear directional trends are visible. In both directions, a monotonous
 654 decrease in bottleneck effects can be observed, which is associated with the reduction
 655 of extremely large pores. In the “gradient” cathode, however, much stronger bottleneck
 656 effects occur from top to bottom compared to the “uniform” case, as long as the fraction

657 of recycled material remains below 50%. This effect can be explained by the presence of
 658 large pores, that account for more than 50% of the total pore volume, in the lower half of
 659 the cathode. These pores are separated from the top of the cathode by a fine porous RP
 660 fragment layer, which forms the bottleneck towards large pores. For bottleneck effects in
 661 the opposite direction, i.e., from bottom to top, the situation differs: here, no fine porous
 662 barrier has to be traversed, and thus, no significant bottleneck effects arise. Moreover,
 663 since no scattered small RP fragments are present in the large pores between pristine
 664 particles, the bottleneck effects are even weaker than in the “uniform” scenario. This
 665 holds true even for small fractions of recycled material.

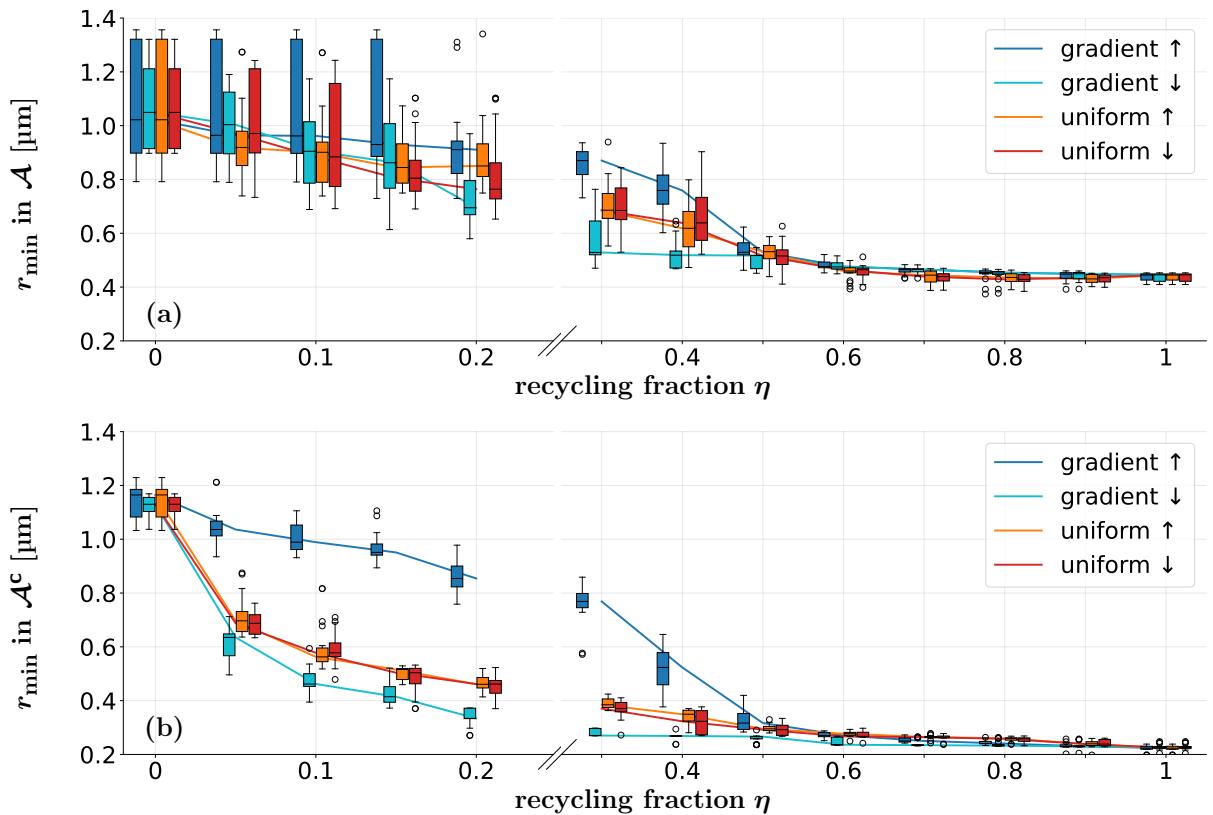


Figure 11: Box plots showing the distribution of r_{\min} within active material (a) and pore space (b). Blue and cyan boxes represent the “gradient” scenario, while red and orange boxes correspond to the “uniform” scenario.

666 The **chord length** distribution was determined for both the active material (Figure
 667 13(a)) and the pore space (Figure 13(b)). In both phases, the chord length distri-
 668 bution shows similar behavior for the “uniform” and the “gradient” scenarios, whereas
 669 chords in the pore space are on average slightly smaller for the uniform scenario than for
 670 the gradient scenario.

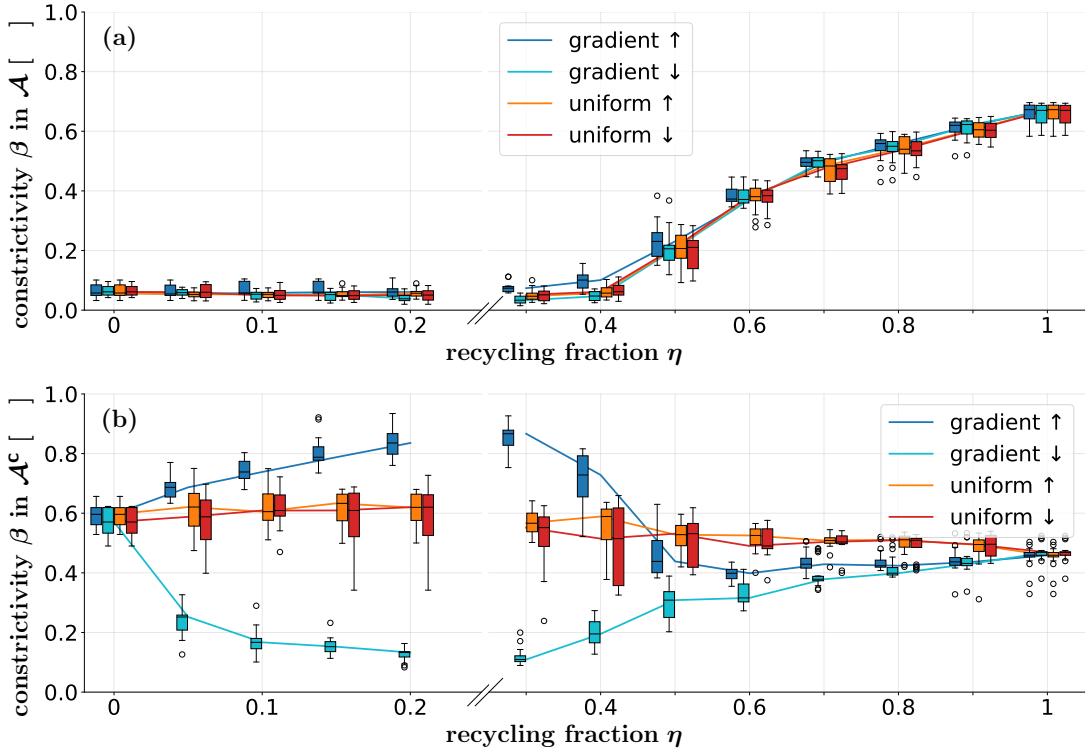


Figure 12: Box plots indication the distribution of constrictivity values for the “gradient” (blue and cyan) and “uniform” (red and orange) scenario for increasing recycling fractions m . Constrictivity values determined in the active material phase are presented in (a), while (b) considers the pore space.

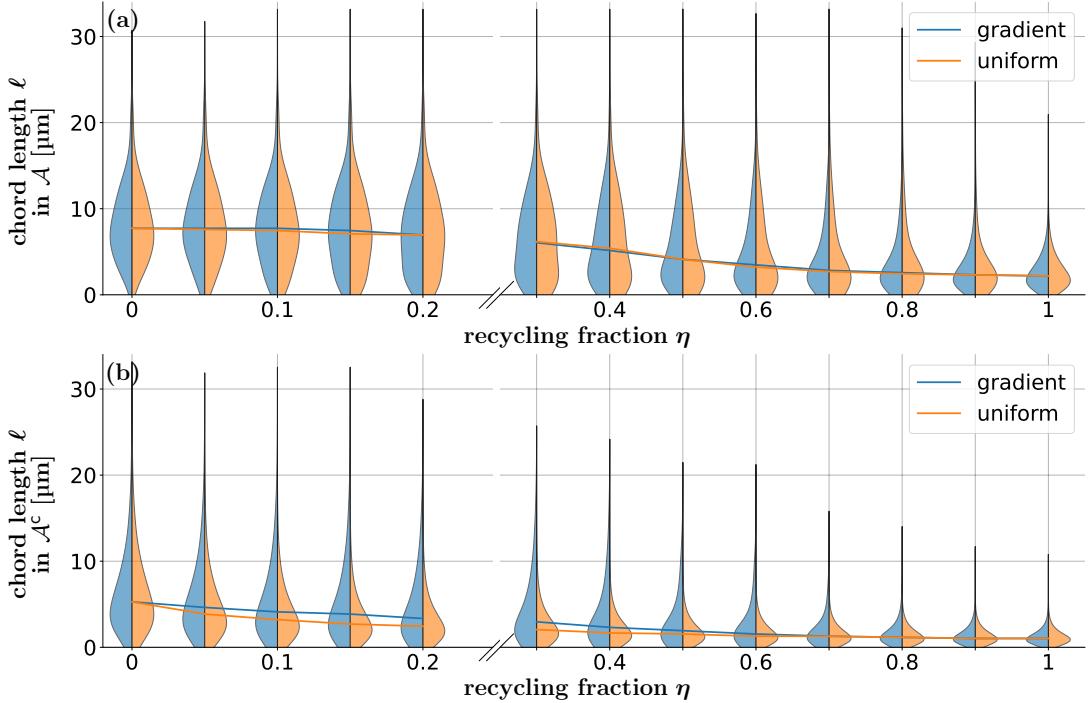


Figure 13: Violin plots visualizing the chord length distribution for both structuring scenarios, namely “gradient” (blue) and “uniform” (orange), in the active material (a) and the pore space (b). The blue and orange lines show the corresponding median values.

671 4 Conclusion

672 This work presented a novel computational framework for systematically investigating
673 structure-property relationships of lithium-ion battery cathodes containing mixtures of
674 pristine and recycled NMC particles. Recycled particle fragments are generally smaller
675 than pristine particles, as they arise from recycling processes that break EOL particles into
676 clusters of, or even individual, primary particles. A stochastic 3D microstructure model
677 combines spherical harmonic-based representations for pristine particles with marked
678 Voronoi tessellation-based representations for recycled particle fragments, enabling the
679 generation of cathodes with arbitrary mixing ratios of both active material types. Ad-
680 ditionally, the model allows for different structural configurations, as demonstrated by
681 two types of mixing considered in this paper, namely, uniform and gradient mixtures
682 of particles. The proposed microstructure model is embedded within a virtual material
683 testing framework that quantifies the morphology and effective transport-related proper-
684 ties of generated microstructures, assuming that pristine particles and recycled particle
685 fragments do not differ in their chemical or electrochemical properties.

686 This statistical analysis revealed several key insights into how the incorporation of recy-
687 cled active material affects cathode microstructure and transport properties. The results
688 demonstrate that even low recycling fractions (below 20%) induce substantial changes in
689 transport-related descriptors within the pore space, while the transport properties of the
690 active material phase remain relatively stable in this range. In particular, the specific sur-
691 face area increased monotonically with increasing recycling fraction for both structuring
692 scenarios, with the “uniform” scenario consistently yielding larger values due to reduced
693 inter-particle contact between recycled particle fragments. This increased interfacial area
694 potentially enhance charge transfer kinetics, as a greater reactive surface is available for
695 electrochemical reactions.

696 The analysis of the tortuosity factor revealed contrasting trends between the two
697 phases. In the active material phase, the tortuosity factor decreased substantially with
698 increasing fraction of recycled particles, especially for small recycling fractions, indicat-
699 ing improved electronic transport pathways as pristine particles were replaced by the
700 finer-grained RP fragment network. Conversely, the tortuosity factor in the pore space
701 increased with increasing recycling fraction, reflecting a shift from nearly ideal spherical
702 particle morphology (Bruggeman exponent ≈ 1.5 for pure pristine cathodes) toward more
703 complex, broken particle geometries. Notably, the “uniform” scenario exhibits lower tor-
704 tuosities in the active material phase and higher tortuosities in the pore space compared
705 to the “gradient” scenario, highlighting the importance of the spatial arrangement of the
706 RP fragments.

707 The analysis of the mean geodesic tortuosity revealed that transport paths in the active
708 material phase become shorter and less tortuous with increasing recycling fraction, as

709 smaller RP fragments promote more direct particle connectivity. However, the “gradient”
710 scenario exhibits pronounced directional asymmetry, with paths originating from the RP
711 fragment-rich layer showing higher tortuosity values. This asymmetry, caused by the size
712 mismatch between pristine particles and RP fragments, suggests that orientation of such
713 layers could be optimized to favor specific transport directions in electrode designs.

714 From a sustainability perspective, especially in view of European Union recycling quo-
715 tas requiring batteries to contain at least 6% recycled lithium, 6% recycled nickel, and
716 16% recycled cobalt by 2031, the presented findings have important implications. Our
717 results indicate that even low fractions of recycled NMC can substantially affect trans-
718 port properties within the pore space while potentially enhancing connectivity within the
719 active material. Furthermore, different structuring strategies offer optimization oppor-
720 tunities: the “uniform” scenario provides relatively homogeneous properties and a larger
721 reactive surface area, while the “gradient” approach enables targeted directional transport
722 optimization.

723 The carbon-binder domain was intentionally excluded from the presented model to
724 reduce variability and isolate the effects arising solely from differences in the composition
725 and arrangement of the active material phase. Future work should investigate the spatial
726 distribution of the carbon-binder domain within mixed cathodes and evaluate its influ-
727 ence on electronic conductivity and mechanical integrity. Additionally, while this study
728 focused on geometric and effective transport descriptors, electrochemical performance
729 metrics such as rate capability and cycling stability remain to be investigated through
730 coupled electrochemical-microstructural simulations. The presented computational frame-
731 work could directly be extended to other cathode chemistries, enabling broader applica-
732 bility. Summing up, the observed sensitivity of transport properties to both recycling
733 fraction and structuring strategy emphasizes the importance of careful microstructure
734 design in sustainable battery manufacturing.

735 Author contributions

736 **Lukas Fuchs** Writing – original draft, Visualization, Software, Methodology, Investi-
737 gation, Formal analysis, Conceptualization. **Philipp Rieder** Writing – original draft,
738 Visualization, Software, Methodology, Investigation, Formal analysis, Conceptualization.
739 **Donal P. Finegan** Writing – review & editing, Supervision, Conceptualization, Data cu-
740 ration. **Francois Usseglio-Viretta** Writing – review & editing, Visualization, Method-
741 ology. **Jeffrey Allen** Writing – review & editing, Methodology. **Melissa Popeil** Data
742 curation, Writing – review & editing. **Orkun Furat** Writing – review & editing, Su-
743 pervision, Conceptualization. **Volker Schmidt** Writing – review & editing, Supervision,
744 Resources, Project administration, Conceptualization.

745 Acknowledgments

746 This work was authored in part by the Alliance for Energy Innovation, LLC, the manager
747 and operator of the National Laboratory of the Rockies for the U.S. Department of Energy
748 (DOE) under Contract No. DE-AC36-08GO28308. Funding was provided by the DOE's
749 Vehicle Technologies Office, Extreme Fast Charge, and Cell Evaluation of Lithium-ion
750 Batteries Program, Jake Herb, Technology Manager. The views expressed in the article
751 do not necessarily represent the views of the DOE or the U.S. Government. The U.S.
752 Government retains and the publisher, by accepting the article for publication, acknowl-
753 edges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide
754 license to publish or reproduce the published form of this work, or allow others to do so,
755 for U.S. Government purposes.

756 Data Availability Statement

757 The datasets generated during and/or analyzed during the current study are available
758 from the corresponding authors on reasonable request.

759 References

- 760 [1] International Energy Agency. Global EV outlook 2025: Electric vehi-
761 cle batteries. Technical report, International Energy Agency, 2025. URL
762 <https://www.iea.org/reports/global-ev-outlook-2025/electric-vehicle->
763 batteries. Accessed: 2025-10-16.
- 764 [2] International Energy Agency. Global EV outlook 2023: Trends in bat-
765 teries. Technical report, International Energy Agency, 2023. URL
766 <https://www.iea.org/reports/global-ev-outlook-2023/trends-in-batteries>.
767 Accessed: 2025-10-16.
- 768 [3] X. Lu, A. Bertei, D. P. Finegan, C. Tan, S. R. Daemi, J. S. Weaving, K. B.
769 O'Regan, T. M. Heenan, G. Hinds, E. Kendrick, D. J. L. Brett, and P. R. Shear-
770 ing. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray
771 nano-computed tomography and modelling. *Nature Communications*, 11:2079, 2020.
- 772 [4] E. A. Olivetti, G. Ceder, G. G. Gaustad, and X. Fu. Lithium-ion battery supply
773 chain considerations: Analysis of potential bottlenecks in critical metals. *Joule*, 1:
774 229–243, 2017.
- 775 [5] International Energy Agency. Growing geopolitical tensions underscore
776 the need for stronger action on critical minerals security, 2025. URL

777 <https://www.iea.org/commentaries/growing-geopolitical-tensions-underscore-the-need-for-stronger-action-on-critical-minerals-security>.
778 Accessed: 2025-10-16.

780 [6] Y. Miao, L. Liu, Y. Zhang, Q. Tan, and J. Li. An overview of global power lithium-
781 ion batteries and associated critical metal recycling. *Journal of Hazardous Materials*,
782 425:127900, 2022.

783 [7] J. Lin, E. Fan, X. Zhang, R. Chen, F. Wu, and L. Li. Sustainable recycling of cath-
784 ode scrap towards high-performance anode materials for Li-ion batteries. *Advanced
785 Energy Materials*, 12:2103288, 2022.

786 [8] European Union. Regulation (EU) 2023/1542 of the European Parliament and of the
787 Council of 12 July 2023 concerning batteries and waste batteries, amending Directive
788 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC.
789 <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32023R1542>,
790 2023.

791 [9] J. Xiao, J. Li, and Z. Xu. Challenges to future development of spent lithium ion
792 batteries recovery from environmental and technological perspectives. *Environmental
793 Science & Technology*, 54:9–25, 2019.

794 [10] M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, and Y. Wang.
795 Recycling end-of-life electric vehicle lithium-ion batteries. *Joule*, 3:2622–2646, 2019.

796 [11] B. Makuza, Q. Tian, X. Guo, K. Chattopadhyay, and D. Yu. Pyrometallurgical
797 options for recycling spent lithium-ion batteries: A comprehensive review. *Journal
798 of Power Sources*, 491:229622, 2021.

799 [12] J.-P. Harvey, W. Courchesne, M. D. Vo, K. Oishi, C. Robelin, U. Mahue, P. Leclerc,
800 and A. Alhaiak. Greener reactants, renewable energies and environmental impact
801 mitigation strategies in pyrometallurgical processes: A review. *MRS Energy & Sust-
802 tainability*, 9:212–247, 2022.

803 [13] Y. Yao, M. Zhu, Z. Zhao, B. Tong, Y. Fan, and Z. Hua. Hydrometallurgical pro-
804 cesses for recycling spent lithium-ion batteries: A critical review. *ACS Sustainable
805 Chemistry & Engineering*, 6:13611–13627, 2018.

806 [14] N. Hayagan, C. Aymonier, L. Croguennec, M. Morcrette, R. Dedryvère, J. Olchowka,
807 and G. Philippot. A holistic review on the direct recycling of lithium-ion batteries
808 from electrolytes to electrodes. *Journal of Materials Chemistry A*, 12:31685–31716,
809 2024.

810 [15] P. Tembo, C. Dyer, and V. Subramanian. Lithium-ion battery recycling—a review
811 of the material supply and policy infrastructure. *NPG Asia Materials*, 16:43, 2024.

812 [16] M. Popeil, F. Usseglio-Viretta, X. Pu, P. Gasper, N. Dutta, E. Wang, E. Allen,
813 J. Mangum, N. Sunderlin, K. Fink, J. Allen, P. Weddle, S. DeCaluwe, and D. Finegan.
814 Heterogeneity of the dominant causes of performance loss in end-of-life cathodes and
815 their consequences for direct recycling. *Advanced Energy Materials*, 15:2405371, 2025.

816 [17] D. P. Finegan, A. Vamvakeros, C. Tan, T. M. M. Heenan, S. R. Daemi, N. Seitz-
817 man, M. Di Michiel, S. Jacques, A. M. Beale, D. J. L. Brett, P. R. Shearing, and
818 K. Smith. Spatial quantification of dynamic inter and intra particle crystallographic
819 heterogeneities within lithium ion electrodes. *Nature Communications*, 11:631, 2020.

820 [18] M. Ebner, F. Marone, M. Stampaoni, and V. Wood. Visualization and quantification
821 of electrochemical and mechanical degradation in Li ion batteries. *Science*, 342:716–
822 720, 2013.

823 [19] B. Prifling, L. Fuchs, A. Yessim, M. Osenberg, M. Paulisch-Rinke, P. Zimmer, M. D.
824 Hager, U. S. Schubert, I. Manke, T. Carraro, and V. Schmidt. Correlating the 3D
825 morphology of polymer-based battery electrodes with effective transport properties.
826 *ACS Applied Materials & Interfaces*, 16:66571–66583, 2024.

827 [20] M. Neumann, M. Ademmer, M. Osenberg, A. Hilger, F. Wilde, S. Muench, M. D.
828 Hager, U. S. Schubert, I. Manke, and V. Schmidt. 3D microstructure characterization
829 of polymer battery electrodes by statistical image analysis based on synchrotron X-
830 ray tomography. *Journal of Power Sources*, 542:231783, 2022.

831 [21] F. L. Usseglio-Viretta, D. P. Finegan, A. Colclasure, T. M. Heenan, D. Abraham,
832 P. Shearing, and K. Smith. Quantitative relationships between pore tortuosity, pore
833 topology, and solid particle morphology using a novel discrete particle size algorithm.
834 *Journal of The Electrochemical Society*, 167:100513, 2020.

835 [22] J. Song, R. C. Ihuaenyi, J. Lim, Z. Wang, W. Li, R. Fang, A. K. Ghamsari, H. Xu,
836 Y. M. Lee, and J. Zhu. A microstructural electrochemo-mechanical model of high-
837 nickel composite electrodes towards digital twins to bridge the particle and electrode-
838 level characterizations. *Energy & Environmental Science*, 18:3129–3147, 2025.

839 [23] S. J. Cooper, A. Bertei, P. R. Shearing, J. Kilner, and N. P. Brandon. Taufactor:
840 An open-source application for calculating tortuosity factors from tomographic data.
841 *SoftwareX*, 5:203–210, 2016.

842 [24] A. G. Kashkooli, A. Amirfazli, S. Farhad, D. U. Lee, S. Felicelli, H. W. Park, K. Feng,
843 V. De Andrade, and Z. Chen. Representative volume element model of lithium-ion

844 battery electrodes based on X-ray nano-tomography. *Journal of Applied Electrochemistry*, 47:281–293, 2017.

845

846 [25] T.-T. Nguyen, A. Demortière, B. Fleutot, B. Delobel, C. Delacourt, and S. J. Cooper.
847 The electrode tortuosity factor: why the conventional tortuosity factor is not well
848 suited for quantifying transport in porous Li-ion battery electrodes and what to use
849 instead. *npj Computational Materials*, 6:123, 2020.

850 [26] M. E. Ferraro, B. L. Trembacki, V. E. Brunini, D. R. Noble, and S. A. Roberts. Elec-
851 trode mesoscale as a collection of particles: Coupled electrochemical and mechanical
852 analysis of NMC cathodes. *Journal of The Electrochemical Society*, 167:013543, 2020.

853 [27] Y. Takagishi, T. Yamanaka, and T. Yamaue. Quasi-3D modeling of Li-ion batteries
854 based on single 2D image. *SN Applied Sciences*, 3:633, 2021.

855 [28] S. Cooper, D. Eastwood, J. Gelb, G. Damblanc, D. Brett, R. Bradley, P. Withers,
856 P. Lee, A. Marquis, N. Brandon, and P. Shearing. Image based modelling of mi-
857 crostructural heterogeneity in LiFePO₄ electrodes for Li-ion batteries. *Journal of*
858 *Power Sources*, 247:1033–1039, 2014.

859 [29] J. Joos, A. Buchele, A. Schmidt, A. Weber, and E. Ivers-Tiffée. Virtual electrode
860 design for lithium-ion battery cathodes. *Energy Technology*, 9:2000891, 2021.

861 [30] L. Fuchs, O. Furat, D. P. Finegan, J. Allen, F. L. Usseglio-Viretta, B. Ozdogru, P. J.
862 Weddle, K. Smith, and V. Schmidt. Generating multi-scale Li-ion battery cathode
863 particles with radial grain architectures using stereological generative adversarial
864 networks. *Communications Materials*, 6:4, 2025.

865 [31] P. Rieder, O. Furat, F. L. Usseglio-Viretta, J. Allen, P. J. Weddle, D. P. Finegan,
866 K. Smith, and V. Schmidt. Stochastic 3D reconstruction of cracked polycrystalline
867 NMC particles using 2D SEM data. *npj Computational Materials*, 11:232, 2025.

868 [32] F. Cadiou, T.-T. Nguyen, M. Bettge, Z. Su, J. Ando, V. De Andrade, D. Miller, and
869 A. Demortière. Morphological evolution of NMC secondary particles through in situ
870 electrochemical FIB/SEM experiment. *Preprint available at arXiv:2208.00878*, 2022.

871 [33] R. Martineau. A deeper look at hidden damage: Nano-CT imaging maps internal
872 battery degradation. *Advanced Manufacturing Research — NREL*, June 2025. URL
873 [https://www.nrel.gov/manufacturing/news/program/2025/a-deeper-look-
at-hidden-damage--nano-ct-imaging-maps-internal-battery-degradation](https://www.nrel.gov/manufacturing/news/program/2025/a-deeper-look-at-hidden-damage--nano-ct-imaging-maps-internal-battery-degradation).

874 Last updated: January 9, 2025.

875

876 [34] C. Cheng, R. Drummond, S. R. Duncan, and P. S. Grant. Micro-scale graded elec-
877 trodes for improved dynamic and cycling performance of Li-ion batteries. *Journal of*
878 *Power Sources*, 413:59–67, 2019.

879 [35] P. Gräfensteiner, E. Löwer, O. Furat, U. A. Peuker, and V. Schmidt. Artificial filter
880 cake generation: Digital twins via stochastic 3D modeling based on μ -CT image data.
881 *Powder Technology*, 452:120550, 2025.

882 [36] J. Mościński, M. Bargiel, Z. A. Rycerz, and P. W. M. Jacobs. The force-biased
883 algorithm for the irregular close packing of equal hard spheres. *Molecular Simulation*,
884 3:201–212, 1989.

885 [37] A. Bezrukov, M. Bargiel, and D. Stoyan. Statistical analysis of simulated random
886 packings of spheres. *Particle & Particle Systems Characterization*, 19:111–118, 2002.

887 [38] S. Asmussen and P. W. Glynn. *Stochastic Simulation: Algorithms and Analysis*.
888 Springer, 2007.

889 [39] Y. Bai, L. Yu, and I. Belharouak. Sequential separation of battery electrode materials
890 and metal foils in aqueous media. *Journal of Power Sources*, 592:233954, 2024.

891 [40] S. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke. *Stochastic Geometry and its*
892 *Applications*. J. Wiley & Sons, 3rd edition, 2013.

893 [41] Z. Pawlas, I. Karafiátová, and L. Heller. Random tessellations marked with crystal-
894 lographic orientations. *Spatial Statistics*, 39:100469, 2020.

895 [42] O. Furat, L. Petrich, D. P. Finegan, D. Diercks, F. Usseglio-Viretta, K. Smith, and
896 V. Schmidt. Artificial generation of representative single Li-ion electrode particle
897 architectures from microscopy data. *npj Computational Materials*, 7:105, 2021.

898 [43] P. Rieder, M. Neumann, L. Monteiro Fernandes, A. Mular, H. Proudhon, F. Willot,
899 and V. Schmidt. Stochastic 3D microstructure modeling of twinned polycrystals
900 for investigating the mechanical behavior of γ -TiAl intermetallics. *Computational*
901 *Materials Science*, 238:112922, 2024.

902 [44] L. Petrich, O. Furat, M. Wang, C. E. Krill III, and V. Schmidt. Efficient fitting of
903 3D tessellations to curved polycrystalline grain boundaries. *Frontiers in Materials*,
904 8:760602, 2021.

905 [45] S. Bock, J. Goppold, and M. Weiß. An improvement of the convergence proof of the
906 ADAM-Optimizer. *Preprint available at arXiv:1804.10587*, 2018.

907 [46] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
908 Wu. An efficient k-means clustering algorithm: Analysis and implementation. *IEEE*
909 *Transactions on Pattern Analysis and Machine Intelligence*, 24:881–892, 2002.

910 [47] M. Fiedler and A. Alpers. Power-SLIC: Fast superpixel segmentations by diagrams.
911 *Preprint available at arXiv:2012.11772*, 2020.

912 [48] M. Cheriet, J. N. Said, and C. Y. Suen. A recursive thresholding technique for image
913 segmentation. *IEEE Transactions on Image Processing*, 7:918–921, 1998.

914 [49] M. Mafi, H. Martin, M. Cabrerizo, J. Andrian, A. Barreto, and M. Adjouadi. A
915 comprehensive survey on impulse and gaussian denoising filters for digital images.
916 *Signal Processing*, 157:236–260, 2019.

917 [50] R. Docherty, I. Squires, A. Vamvakeros, and S. J. Cooper. SAMBA: A trainable
918 segmentation web-app with smart labelling. *Journal of Open Source Software*, 9:
919 6159, 2024.

920 [51] S. Berg, D. Kutra, T. Kroeger, C. N. Straehle, B. X. Kausler, C. Haubold, M. Schiegg,
921 J. Ales, T. Beier, M. Rudy, et al. Ilastik: interactive machine learning for (bio) image
922 analysis. *Nature Methods*, 16:1226–1232, 2019.

923 [52] T. Dabat, A. Mazurier, F. Hubert, E. Tertre, B. Grégoire, B. Dazas, and E. Ferrage.
924 Mesoscale anisotropy in porous media made of clay minerals. A numerical study
925 constrained by experimental data. *Materials*, 11:1972, 2018.

926 [53] L. Holzer, P. Marmet, M. Fingerle, A. Wiegmann, M. Neumann, and V. Schmidt.
927 *Tortuosity and Microstructure Effects in Porous Media: Classical Theories, Empiri-
928 cal Data and Modern Methods*. Springer Nature, 2023.

929 [54] D. Wiedenmann, L. Keller, L. Holzer, J. Stojadinović, B. Münch, L. Suarez,
930 B. Fumey, H. Hagendorfer, R. Brönnimann, P. Modregger, M. Gorbar, U. F. Vogt,
931 A. Züttel, F. La Mantia, R. Wepf, and B. Grobéty. Three-dimensional pore structure
932 and ion conductivity of porous ceramic diaphragms. *AIChE Journal*, 59:1446–1457,
933 2013.

934 [55] M. Doyle. Modeling of galvanostatic charge and discharge of the
935 lithium/polymer/insertion cell. *Journal of The Electrochemical Society*, 140:
936 1526, 1993.

937 [56] M. Doyle and J. Newman. The use of mathematical modeling in the design of
938 lithium/polymer battery systems. *Electrochimica Acta*, 40:2191–2196, 1995.

939 [57] K. Schladitz, J. Ohser, and W. Nagel. Measuring intrinsic volumes in digital 3D
940 images. In A. Kuba, L. Ny  l, and K. Pal  gyi, editors, *13th International Conference
941 on Discrete Geometry for Computer Imagery*, pages 247–258. Springer, 2007.

942 [58] B. Prifling, M. R  ding, P. Townsend, M. Neumann, and V. Schmidt. Large-scale
943 statistical learning for mass transport prediction in porous materials using 90,000
944 artificially generated microstructures. *Frontiers in Materials*, 8:786502, 2021.

945 [59] M. F. Lagadec, R. Zahn, and V. Wood. Characterization and performance evaluation
946 of lithium-ion battery separators. *Nature Energy*, 4:16–25, 2019.

947 [60] J. Le Houx, M. Osenberg, M. Neumann, J. R. Binder, V. Schmidt, I. Manke, T. Carraro,
948 and D. Kramer. Effect of tomography resolution on calculation of microstructural
949 properties for lithium ion porous electrodes. *ECS Transactions*, 97:255, 2020.

950 [61] A. M. Colclasure, A. R. Dunlop, S. E. Trask, B. J. Polzin, A. N. Jansen, and K. Smith.
951 Requirements for enabling extreme fast charging of high energy density Li-ion cells
952 while avoiding lithium plating. *Journal of The Electrochemical Society*, 166:A1412–
953 A1424, 2019.

954 [62] J. Laurencin, R. Quey, G. Delette, H. Suhonen, P. Cloetens, and P. Bleuet. Characterisation
955 of solid oxide fuel cell Ni–8YSZ substrate by synchrotron X-ray nano-tomography: from 3D
956 reconstruction to microstructure quantification. *Journal of Power Sources*, 198:182–189, 2011.

957 [63] T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin. Determination of the
958 size of the representative volume element for random composites: statistical and
959 numerical approach. *International Journal of Solids and Structures*, 40:3647–3679,
960 2002.

961 [64] L. Holzer, D. Wiedenmann, B. M  nch, L. Keller, M. Prestat, P. Gasser, I. Robertson,
962 and B. Grob  ty. The influence of constrictivity on the effective transport properties
963 of porous layers in electrolysis and fuel cells. *Journal of Materials Science*, 48:2934–
964 2952, 2013.

965 [65] A. Vadakkepatt, B. Trembacki, S. R. Mathur, and J. Y. Murthy. Bruggeman’s
966 exponents for effective thermal conductivity of lithium-ion battery electrodes. *Journal
967 of The Electrochemical Society*, 163:A119, 2015.

968 [66] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction to Algorithms*.
969 MIT Press, 2022.

970 [67] L. D. Gelb and K. Gubbins. Pore size distributions in porous glasses: A computer
971 simulation study. *Langmuir*, 15:305–308, 1999.

973 [68] M. Neumann, C. Hirsch, J. Staněk, V. Beneš, and V. Schmidt. Estimation of geodesic
974 tortuosity and constrictivity in stationary random closed sets. *Scandinavian Journal*
975 *of Statistics*, 46:848–884, 2019.

976 [69] F. A. Dullien. *Porous Media: Fluid Transport and Pore Structure*. Academic Press,
977 1991.

978 [70] F. L. Usseglio-Viretta, A. Colclasure, A. N. Mistry, K. Claver, F. Pouraghajan, D. P.
979 Finegan, T. M. Heenan, D. Abraham, P. P. Mukherjee, D. Wheeler, P. Shearing, S. J.
980 Cooper, and K. Smith. Resolving the discrepancy in tortuosity factor estimation for
981 Li-ion battery electrodes through micro-macro modeling and experiment. *Journal of*
982 *The Electrochemical Society*, 165:A3403–A3426, 2018.

983 [71] J. Wang, J. K. Carson, M. F. North, and D. J. Cleland. A new approach to modelling
984 the effective thermal conductivity of heterogeneous materials. *International Journal*
985 *of Heat and Mass Transfer*, 49:3075–3083, 2005.