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Abstract17

The increasing demand for sustainable battery technologies requires effective recycling18

strategies for end-of-life lithium-ion battery cathodes. In this study, virtual materials19

testing, a well-established framework for modeling conventionally manufactured NMC-20

based cathodes, is applied to partially recycled cathodes. To this end, virtual cathodes21

consisting of mixtures of pristine and recycled NMC particles are utilized to systemati-22

cally analyze structure-property relationships in dependence of mixing ratios and different23

spatial arrangement strategies. For this purpose a stochastic 3D model is developed that24

is capable of generating virtual cathodes with arbitrary volume fractions of active materi-25
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als, and mixing ratios of pristine and recycled NMC particles. Particularly, the stochastic26

3D model can mimic the different size distributions of pristine and recycled particles that27

are observed in image data. Additionally, the model allows the structuring of pristine and28

recycled NMC either uniformly mixed or layer-wise arranged. Subsequently, a systematic29

computational analysis is conducted to assess the influence of increasing active material30

ratios of recycled particles, ranging from 0 % to 100 %, while maintaining a constant31

overall active material volume fraction. The impact of particle mixing on cathode perfor-32

mance is evaluated by examining transport-relevant geometrical descriptors and effective33

properties, such as geodesic tortuosity, specific surface area, and tortuosity factor.34

1 Introduction35

The rapid growth in demand for electric vehicles (EVs) and energy storage systems has36

driven an unprecedented increase in battery production, with global EV battery output37

projected to reach 3 TWh by 2030 [1]. Especially, lithium-ion batteries are widely used38

due to their high energy density accounted for about 60% of EV battery capacity in 202239

[2, 3]. However, their popularity results in an increasing demand for raw materials, which40

poses several challenges, including the need to scale in the mining industry and geopolitical41

concerns associated with the concentration of these materials. This is especially critical42

for materials such as lithium and cobalt [4, 5].43

As battery manufacturing accelerates, managing end-of-life (EOL) lithium-ion batter-44

ies becomes critical. By 2030, EV batteries with a cumulative storage capacity of 100–12045

GWh are expected to reach EOL [6], corresponding to approximately 1.2 million metric46

tons of material from batteries of electric vehicles alone [7]. Additionally, the European47

Union plans to introduce mandatory recycling quotas for lithium-ion batteries by 2031,48

requiring new batteries to consist of at least 6 % recycled lithium, 6 % recycled nickel, and49

16 % recycled cobalt [8]. These two developments, large volumes of EOL batteries and50

upcoming recycling requirements, necessitates the development of sustainable recycling51

technologies to address both limitations in new materials and environmental concerns of52

the disposal of end-of-life batteries [9].53

Current battery recycling approaches can be categorized into three main processes:54

pyrometallic, hydrometallurgical, and direct recycling methods [10]. In pyrometallurgical55

processes, high-temperature melting is utilized to extract and recover the active materials56

of lithium-ion batteries, offering, among other benefits, a relatively simple operation and57

comparatively low environmental impacts [11]. Nevertheless, a major drawback of py-58

rometallurgical processes is their high energy demand [12]. Hydrometallurgical methods59

rely on chemical leaching to dissolve valuable metals from end-of-life batteries, generally60

achieving higher recovery rates than pyrometallurgical processes. However, they also gen-61

erate significant amounts of chemical waste [11, 13]. Non destructive direct recycling aims62
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to recycle not only specific or valuable elements but also to recover complete battery com-63

ponents, such as current collectors and electrode materials, binder and electrolyte. These64

components undergo purification, cleaning and optional regeneration processes before be-65

ing reused in new batteries [14]. Direct recycling, while potentially the most sustainable66

approach, faces challenges in maintaining desired structural and electrochemical prop-67

erties of recovered materials [15]. Recent studies have further highlighted the influence68

of micostructural damage of LiNixMnyCozO2 (NMCxyz, hereafter referred to as NMC)69

cathode particles in Li-ion batteries, such as severe cracks in active materials in cathode70

recycling [16].71

The performance of battery cathodes, such as Li-ion cathodes, is determined in parts72

by microstructural features, e.g., the size and shape distribution of active particles and73

their spatial arrangement within the electrodes. For example, Li-ion transport and charge74

reactions depend on geometric factors like porosity, pore connectivity (tortuosity), inter-75

facial area, and particle arrangement. In literature, the relationship between microstruc-76

ture and effective properties in porous electrode materials has been extensively studied77

using both experimental and computational approaches [3]. Advanced characterization78

techniques, including X-ray computed tomography and focused ion beam scanning elec-79

tron microscopy, have enabled detailed three-dimensional visualization of electrode mi-80

crostructures [17, 18]. These 3D images enable computational analyses; for example,81

volume fractions, specific surface areas, mean chord lengths, and tortuosities directly82

from tomographic image stacks. Such metrics have been shown to strongly correlate with83

effective transport properties, e.g. high tortuosity or bottle neck effects slow ion diffusion84

[19–21]. Complementary numerical modeling approaches have further advanced the un-85

derstanding through simulations that connect microstructural features to electrochemical86

performance [22–25].87

Previously mentioned computational modeling approaches have primarily focused on88

pristine cathode materials, establishing fundamental structure-property relationships for89

cathodes derived from measured image data [3, 26–28]. In most of these studies, the90

analysis concentrates on the geometry of the active material phase, while neglecting the91

carbon–binder domain (CBD) for simplicity. This simplification is justified, as the active92

material particle arrangement largely determines the pore network through which lithium93

ions diffuse, whereas the CBD occupies a comparatively small volume and primarily pro-94

vides electronic conductivity and mechanical integrity.95

Building on these foundations, recent advances in virtual materials testing have proven96

their large potential by integrating stochastic microstructure models [29, 30] for virtual97

material generation with tools for predicting transport properties [23]. However, cycled98

cathode materials often exhibit fundamentally different microstructural features compared99

to their pristine counterparts, including altered primary particle morphology and the ex-100

istence of cracks [31–33]. Moreover, the incorporation of recycled materials into mixed101
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cathode systems introduces additional complexity, which has not yet been systematically102

investigated. For instance, uniformly mixing recycled and new particles could lead to103

different pore space morphologies than segregating them in layers. In analogous contexts,104

graded or layered electrode designs are known to influence performance. While grading105

has been studied for optimizing electrodes [34], the impact of integrating recycled materi-106

als on the microstructure and resulting effective properties has not yet been systematically107

explored. In particular, the spatial distribution of recycled versus pristine particles rep-108

resents a critical design parameter influencing electrode performance. Uniformly mixed109

and layered cathodes show very distinct pore architectures and transport pathways.110

This work introduces a 3D model for the stochastic generation of uniformly mixed111

and layered virtual cathodes, consisting of varying ratios of pristine and recycled NMC112

particles. The model comprises two components: the stochastic 3D model for generating113

pristine particles described in [30], which has been calibrated to experimentally measured114

data as well as a stochastic 3D model for the EOL phase which is calibrated to 3D115

CT images in this paper. Note that pristine and recycled particles follow different size116

distributions, as the smaller recycled particles are assumed to have undergone direct117

recycling processes, in which secondary particles break down into clusters of, or even118

individual, primary particles. Further, it is assumed that pristine and recycled particles119

differ only in their morphology, while being similar in their chemical and electrochemical120

properties.121

This study aims to establish quantitative structure-property relationships for virtual122

cathode microstructures exhibiting different mixing ratios of active materials. The pri-123

mary objectives are: (1) to develop a computational framework for generating realistic124

mixed pristine-recycled cathode microstructures with controlled spatial arrangements, (2)125

to quantify the impact of the ratio of recycled active material and arrangement strategy on126

key transport properties, and (3) to identify optimal integration strategies that maintain127

cathode performance while maximizing the recycling active material fraction.128

The novelty of this work lies in the systematic computational approach to mixed ma-129

terial microstructure generation and the analysis of geometric and transport descriptors130

as functions of recycled content and its spatial distribution, providing guidelines for sus-131

tainable battery manufacturing.132

2 Materials and Methods133

The focus of this section is on the generation of virtual mixed cathodes, consisting of134

pristine and recycled active material particles consisting of LiNixMnyCozO2 (NMCxyz).135

In the context of the present paper, a cathode is characterized by its active material136

phase and pore space. First, in Section 2.1 virtual pristine NMC811 particles are gener-137

ated utilizing the stochastic microstructure model introduced in [30]. These particles are138
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subsequently packed to represent a pristine cathode.139

In Section 2.2, a virtual cathode consisting of recycled active material is generated by140

means of a marked tessellation, i.e., a partition of the three-dimensional space into disjoint141

subsets, each assigned a scalar-valued mark. The so-called cells of this tessellation mimic142

fragments of recycled NMC111, which have been fractured as a result of cycling and143

chemical treatments during the recycling process.144

These two virtual cathodes are combined in Section 2.3 by iteratively removing pris-145

tine particles from the pristine cathode and replacing them with recycled particle (RP)146

fragments. This replacement is performed according to two different structuring scenarios147

occurring in real world cathode manufacturing [34], enabling either a uniform or layered148

distribution of RP fragments within the virtual cathode, while keeping the overall active149

material volume fraction constant.150

Lastly, in Section 2.4, several microstructure descriptors are introduced, which are151

used in Section 3 for a statistical analysis of the geometry and effective properties of152

differently structured mixed cathodes.153

2.1 Pristine NMC811 particles154

The pristine particles considered in this work are generated by the stochastic microstruc-155

ture model introduced in a previous study [30]. There, the 3D microstructure of a pristine156

NMC811 cathode was imaged using X-ray nano-computed tomography, and individual157

particles have been segmented. To statistically capture the observed particle shapes, a158

stochastic 3D model based on random fields on the sphere has been fitted to the seg-159

mented image data. Specifically, particle surfaces were stochastically modeled using a160

series expansion with random coefficients, which implicitly model both particle size and161

shape distribution. The stochastic 3D model enables the generation of synthetic parti-162

cle surfaces that are statistically consistent with the experimental observations. In [30],163

a high degree of agreement between the model realizations and the measured particle164

geometries was observed.165

In the present work, particles generated by this model are packed into a virtual cath-166

ode, following the approach described in [35]. More precisely, in a first step, a certain167

number of volume-equivalent placeholder spheres are randomly positioned in a cubic sam-168

pling window. To eliminate the overlaps between the spheres, a force-biased algorithm169

[36, 37] is applied. Finally, each sphere is replaced by its corresponding NMC particle170

counterpart, i.e., by a virtual particle generated by the stochastic 3D model.171

More formally, let P1, P2, . . . be a sequence of independent realizations of the particle172

model described in [30], where Pi = {x ∈ R3 : x belongs to the i-th particle} ⊂ R3 de-173

notes a particle, whose barycenter is aligned with the origin of the coordinate system. Let174

W = [0, 250)3 ⊂ R3 denote a cubic, unitless sampling window. In the present work W175
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corresponds to a cubic observation window of side length of 250 ·128 nm=32 µm. Further,176

let n ∈ N = {1, 2, 3, . . .} denote the number of particles to be placed within W . The value177

of n is determined as178

n = max
{
i ∈ N :

∑i
j=1 ν3(Pj)

ν3(W )
≤ εmax

}
,

where ν3(Pj) denotes the volume of Pj ⊂ R3 and εmax ∈ [0, 1] the desired maximum active179

material volume fraction. In the present work, εmax = 0.65 is set.180

For each particle Pj, let Sj ⊂ R3 denote a corresponding volume-equivalent placeholder181

sphere, i.e., ν3(Pj) = ν3(Sj). To initialize the packing, uniformly distributed points182

c′1, . . . , c
′
n ∈ W are used as initial centers of the placeholder spheres.183

The spheres are then packed, under periodic boundary conditions, minimizing their184

mutual overlap within W utilizing a force-biased algorithm [36, 37]. That is, the spheres185

are iteratively moved according to repulsive forces proportional to their overlap with186

neighboring spheres. Consequently, an overlap-free sphere remains at its position unless187

it is displaced in subsequent iterations by interactions with moving neighbors.188

This procedure yields new center points c1, . . . , cn ∈ W , resulting in a packed place-189

holder sphere system ∪n
i=1(Si + ci), where Si + ci = {s + ci for all s ∈ Si}. An exemplary190

cross section of a packed sphere system is shown in Figure 1(a).191

(a) (b)

Figure 1: Placeholder spheres packed with minimal overlap within the sampling window
(a). Subsequently, these spheres are replaced by volume-equivalent particles by aligning
their barycenters with the centers of the respective sphere (b). Each individual sphere
and its corresponding particle are shown in false colors for visualization purposes, i.e., the
colors have no physical meaning.

Subsequently, the placeholder spheres S1, . . . , Sn are replaced by the corresponding192

virtual pristine NMC particles P1, . . . , Pn, which are positioned at their respective center193

6



points c1, . . . , cn ∈ W . Formally, this replacement yields a particle system, given by194

Pn = ∪n
i=1(Pi + ci), (1)

which will hereafter be referred to as the particle phase. Further, the particle phase can195

be considered as a virtual cathode, consisting of pristine NMC particles. A visualization196

of the particle phase is presented in Figure 1(b).197

Note that this replacement procedure may introduce new overlaps or remove existing198

ones, thereby decreasing or increasing the actual active material volume fraction ε, which199

is defined as200

ε(Pn) =
ν3(Pn)

ν3(W )
.

The resulting particle phase is rejected whenever ε falls below a predefined threshold201

εmin ∈ [0, εmax) or exceeds the maximum allowed active material fraction εmax. In this202

work εmin = 0.62, which ensures that the resulting active material volume fraction satisfies203

0.62 ≤ ε ≤ 0.65 = εmax. In the case of rejection, the modeling procedure is repeated with204

new particle realizations P ′
1, P

′
2, . . .. This simulation strategy is well-known in literature205

as “rejection sampling” or “acceptance-rejection method” [38].206

Recall that the particles are packed using periodic boundary conditions. However,207

from now on, we consider the particle system under non-periodic boundary conditions.208

Consequently, only the representative in W of each particle is considered, and any particle209

that is split into multiple disconnected components is relabeled so that each connected210

component of Pn receives a unique label. This results in ñ ≥ n labeled connected com-211

ponents. Note that this also influences the number and position of the barycenters of the212

particles. For simplicity, each connected component is hereafter referred to as a “parti-213

cle”, and the notation n is used instead of ñ. Accordingly, the particle phase is denoted214

by Pn = ∪n
i=1(Pi + ci) with particles P1, . . . , Pn centered at c1, . . . , cn.215

2.2 Recycled NMC111 particles216

As a basis for the RP fragment model, a cathode consisting of recycled particles was217

manufactured experimentally.218

To obtain recycled particle (RP) fragments, a commercial large-format pouch cell with219

a capacity of 64 Ah consisting of a NMC111 cathode, a graphite anode, and a carbonate220

electrolyte was cycled to EOL. The cell was charged and discharged at 30◦ with a 1.8 C221

rate to 80% depth of discharge and a 50% duty cycle, as described in [16]. After cycling,222

the cathode sheets were removed from the spent pouch cell and cut into small pieces.223

The NMC particles were removed from the current collector utilizing a solution process224

at Oak Ridge National Lab, similar to the approach described in [39], employing a 0.1225
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M KH2PO4 buffer solution with an added volume of TritonTM X-100 surfactant. The226

recovered particles were then dried and stored as powder.227

Subsequently, a cathode was manufactured from these RP fragments, containing 4 wt%228

conductive carbon, 4 wt% PVDF binder, and 92 wt% RP fragments serving as cathode229

active material. The slurry was dried and calendared to a coating thickness of 50 µm,230

yielding a loading of approximately 1.5 mAh/cm2.231

To asses the microstructure of this cathode X-ray nano-CT images were acquired using232

a Zeiss Ultra 810 system. A binning factor of 2 was applied to achieve a voxel size of 128233

nm, matching the resolution used for the generation of the pristine particles in Section 2.1.234

The radiographs for the CT reconstructions were obtained in phase contrast mode using235

the large-field-of-view setting, where the field of view was 64 µm × 64 µm. Figure 2(a)236

shows a cross-section of the resulting 3D image, where the RP fragments appear brighter,237

while the pore space is darker. As with pristine NMC particles, the RP fragments retain a238

polycrystalline structure. However, they are generally not spherical, and some fragments239

have broken down into individual crystals.240

Note that the image data of the RP fragment phase, shown in Figure 2(a), does241

not allow for a straight-forward 3D segmentation of individual RP fragments, due to242

insufficient resolution. Consequently, a subsequent virtual packing of fragments, similar243

to the procedure described in Section 2.1 for pristine particles, is not feasible. Moreover, a244

phase-wise segmentation based on simple (local) thresholding does not yield satisfactory245

results because of the noise present in the image data. To overcome these limitations, a246

different approach based on a marked tessellation is utilized to model the RP fragment247

phase. Instead of identifying individual particles, a two-phase representation is employed,248

distinguishing only between the pore space and the RP fragment phase. For this purpose,249

the gray scale image data is first approximated by a marked Voronoi tessellation-based250

representation [40]. A Voronoi tessellation is a low-parametric mathematical concept251

that is widely used to effectively represent polycrystalline materials and, consequently,252

the inner grain architecture of NMC particles [31, 41–43]. To mimic a grayscale image,253

each Voronoi cell is assigned a scalar value representing its grayscale level. To obtain a254

phase-wise segmentation, the marks of the tessellation are thresholded such that certain255

cells represent RP fragments, while the remaining cells correspond to the pore space,256

resulting in a two-phase representation of the virtual cathode. This approach reduces257

both the noise in the image data as well as the dimensionality and complexity of the258

measured microstructure.259

Formally, the modeling procedure is defined as follows. The marked Voronoi tes-260

sellation is given by a set of tuples T = {(si, ti) : i = 1, . . . ,m}, where each tuple261

(si, ti) ∈ R3 × [0, 1] consists of a so-called seed point si and an associated mark ti. The262

set T induces a partition of the observation window W into pairwise internally disjoint263
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sets C1, . . . , Cn ⊂ R3, often referred to as cells, where264

Ci = {x ∈ W : |x− si| ≤ |x− sj| for all j = 1, . . . ,m}.

Thereby, | · | : R3 → [0,∞) denotes the Euclidean norm. Note that the cells Ci for265

i = 1, . . . ,m exhibit piecewise planar boundaries, a frequently observed characteristic of266

NMC grains [42]. Furthermore, the marked tessellation T implicitly assigns the mark ti267

to each point within Ci. To generate an adequate representation of a cathode consisting268

of RP fragments, the parameters (si, ti) for i = 1, . . . ,m are fitted to the image data.269

To do so, the seed points and marks are optimized such that the resulting tessellation270

resembles a 3D gray scale image of a cathode Z : {1, . . . , 250}3 → [0, 1]. Thereby, a271

cell Ci of the tessellation contains voxels of relatively homogeneous gray scale values272

Z(x). The corresponding mark ti can be interpreted as the representative gray scale273

value of the voxels x ∈ Ci ∩ {1, . . . , 250}3. Thereby, the optimization aims to minimize274

the discrepancy between ti and the mean grayscale value of all voxels in Ci∩{1, . . . , 250}3275

for all i = 1, . . . ,m.276

Mathematically, the minimization problem states277

T ∗ = argmin
T ∈T

∑
x∈{1,...,250}3

(
m∑
i=1

ti exp(−|x− si|)∑m
j=1 exp(−|x− sj|)

− Z(x)

)2

, (2)

where T denotes the space of tessellations.278

Intuitively speaking, the expression within the outer parenthesis quantifies the discrep-279

ancy between the mark ti at a voxel x ∈ Ci ∩{1, . . . , 250}3 and its actual gray scale value280

Z(x), whereas the outer sum accumulates these discrepancies over the entire voxel grid.281

The exponential terms in the fraction ensure differentiability, allowing the use of gradi-282

ent descent-based optimization schemes to solve the minimization problem. For further283

details on Eq. (2), the reader is referred to [30, 44].284

For this purpose, initially, m = 60 000 tuples (si, ti) are sampled uniformly and inde-285

pendently within the domain W × [0, 1], forming the initial marked tessellation T . The286

minimization problem in Eq. (2) is then numerically solved using the Adam optimizer [45]287

with a learning rate of 0.3. The number of cells, m = 60 000, was chosen heuristically288

to balance the preservation of granular features observed in the CT image Z with a289

relatively low cell/ parameter count. This choice allows for substantial dimensionality290

reduction (reducing the number of parameters by a factor of 60 000 · 4/2503 ≈ 0.015),291

improves computational efficiency, and effectively suppresses noise.292

Figure 2(b) shows an exemplary cross section of the fitted tessellation T ∗, where each293

displayed voxel is colored by its corresponding mark. The tessellation-based parametric294

representation inherently suppresses noise in the raw data by grouping spatially close295

voxels with similar gray scale values into homogeneous regions, i.e., cells. Note that there296
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is a high similarity between this procedure and k-means clustering [46] and super-pixel297

clustering [47].298

To obtain a two-phase representation distinguishing between the RP fragment phase299

and pore space, a threshold t ∈ [0, 1] is applied to the marks t1, . . . , tm to determine300

whether the corresponding cells C1, . . . , Cm belong to the RP fragment phase. More301

precisely, the RP fragment phase E(t) ⊂ W based on the fitted marked tessellation T ∗ is302

given by303

E(t) =
⋃
i∈I

Ci,

where I = {i : ti ≥ t for i = 1, . . . ,m}.304

Note that E(t) preserves key structural features of both the tessellation and the original305

3D grayscale image, such as the granular structure and the piecewise-planar boundaries.306

For a suitable t ∈ [0, 1], E(t) can be considered a virtual cathode consisting of RP frag-307

ments. Moreover, this unsupervised approach does not require manual segmentation and308

avoids several limitations of conventional segmentation techniques. For example, classical309

thresholding methods [48] are highly sensitive to image noise and may result in pores310

in RP fragments that contradict model assumptions. More advanced thresholding ap-311

proaches attempt to address this problem through image smoothing, e.g., by applying312

Gaussian kernels. However, they tend to produce overly rounded phase interfaces [49].313

Similar drawbacks are observed for black-box methods such as neural network- or ran-314

dom forest–based segmentation techniques [50, 51], which additionally require manually315

annotated training data.316

(a) (b) (c)

Figure 2: Modeling of RP fragment phase. (a) Cross-section of measured gray scale image.
(b) Cross-section of corresponding fitted parametric gray scale image. (c) Visualization of
a cross-section of E(t) for a t ∈ [0, 1] corresponding to (b). Note for comparison purposes
a grid was added to each figure.
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2.3 Virtual Cathode Generation317

The virtual cathode microstructures considered in the present paper are generated by a318

systematic combination of the pristine particle phase, derived by packing pristine particles319

(see Section 2.1), and the tessellation-based representation of the RP fragment phase (see320

Section 2.2). To achieve this, pristine NMC particles are iteratively removed and replaced321

by RP fragments according to different structuring scenarios. In each iteration, the local322

active material volume fraction is kept constant, while the mixing ratio of pristine particles323

and RP fragments is systematically varied, thereby ensuring comparability among the324

evolving microstructures.325

This procedure can be mathematically described as follows. Let P1, . . . , Pn ⊂ R3
326

be a sequence of pristine particles, c1, . . . , cn ∈ W the corresponding positions of their327

barycenters, and Pn the pristine particle phase as introduced in Eq. (1). To generate328

cathodes with varying ratios of pristine particles and RP fragments, a sequence of pristine329

particle phases with a successively reduced number of pristine particles are defined. To330

uphold an overall constant volume fraction of the active material phase, any loss of active331

material by the removal of pristine particles is compensated by filling the microstructure332

with RP fragments.333

For that, let P0, . . . ,Pn be a sequence of pristine particle phases, given by P0 = ∅ and334

Pj = ∪j
i=1(P(i) + c(i)) for j = 1, . . . , n, where P(i) denotes the i-th particle with respect335

to some ordering, and c(i) the respective barycenter. Note that the particle phases are336

nested, i.e., P0 ⊂ . . . ⊂ Pn. To obtain differently structured active material phases, let337

the particles P1, . . . , Pn be ordered according to one of the following scenarios:338

(i) Uniform: The sequence P(1), . . . , P(n) is derived by a random permutation of the339

particles P1, . . . , Pn. Consequently, the obtained particle phases P0, . . . ,Pn−1 can be con-340

sidered as spatially homogeneous thinning of Pn.341

(ii) Gradient: To generate particle phases exhibiting a structural gradient, let the par-342

ticles P(1), . . . , P(n) with barycenters c(1) = (x(1), y(1), z(1)), . . . , c(n) = (x(n), y(n), z(n)) be343

ordered such that y(1) ≤ . . . ≤ y(n), where the y-coordinate corresponds to the direction344

of charge transport. In this case, Pj is obtained by only considering the j particles whose345

centers have the smallest y-coordinates. This strategy results in a vertical gradient along346

the cathode thickness: the upper region of the sampling window W becomes increasingly347

depleted of pristine particles with increasing j, while the lower region contains only pris-348

tine particles with a packing density similar to Pn. Note that the transition between these349

regions is gradual, as particles are removed in their entirety rather than partially.350

To keep the active material volume fraction constant, RP fragments have to be added351

to Pj. Recall Section 2.2, where the RP fragment phase E(t) was introduced, depending on352

some threshold t ∈ [0, 1], which controls the number of RP fragments in E(t) and hence its353

volume fraction ε(E(t)). To ensure that all observed differences between different virtual354
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cathodes rely only on the differently structured active material and not on local variations355

of active material volume fraction, the local volume fraction is kept constant. For that,356

let the observation window W be partitioned into ten horizontal layers perpendicular to357

the y-direction, defined as358

Wi = {(x, y, z) ∈ W : (i− 1) · 25 ≤ y < i · 25} for i = 1, . . . , 10.

Further, let Ei(t) ⊂ E(t) denote the i-th layer of the RP phase E(t), containing those RP359

fragments Ck, k = 1, . . . ,m, whose seed point is located in layer Wi. Formally, Ei(t) is360

given by361

Ei(t) =
m⋃
k=1

{
Ck : tk ≥ t and sk ∈ Wi

}
⊂ E(t),

where (sk, tk) denotes the tuple of seed point sk and mark tk inducing the Voronoi cell362

Ck.363

Then, the (combined) active material phases are defined as364

Bj(ℓ) = Pj ∪
( 10⋃

i=1

Ei(ℓ(i))
)

for j = 0, . . . , n,

with the local threshold vector ℓ = (ℓ(1), . . . , ℓ(10)) ∈ [0, 1]10. Since Pj is fixed, the active365

material volume fraction of Bj(ℓ) depends solely on ℓ. To ensure that all active material366

phases Bj(ℓj) for j = 0, . . . , n exhibit a layer-wise similar active material volume fraction,367

the threshold ℓj is determined as the minimizer368

ℓ̂j = argmin
ℓ∈[0,1]10

10∑
i=1

∣∣ε(Pn ∩Wi) − ε(Bj(ℓj) ∩Wi

)∣∣, (3)

i.e., as vector of thresholds that minimizes the deviation in layer-wise volume fractions369

between Bj and the reference particle phase Pn, in which no particles are removed. Note370

that for j = n it holds ℓ̂n = 0, where 0 ∈ R10 denotes the ten-dimensional zero-vector. In371

this case Pn = Bn(ℓ̂n) and consequently εi(Pn)−εi(Bn(ℓ̂n)) = 0 for all layers i = 1, . . . , 10.372

Due to computational efficiency, the minimization problem stated in Eq. (3) was solved373

utilizing a greedy optimization scheme. More precisely, to obtain the threshold vector374

ℓ̂j = (ℓ̂
(1)
j , . . . , ℓ̂

(10)
j ), each component ℓ̂

(i)
j was determined iteratively by assuming the375

previously computed ℓ̂
(i′)
j as fixed and solving solving the layer-wise minimization problem376

ℓ̂
(i′)
j = argmin

ℓ∈[0,1]
|ε
(
Pn ∩Wi) − ε(Bj(ℓ) ∩Wi

)
|,

for i, i′ = 1, . . . , 10 and i′ < i. Note that the greedy approach does not necessarily result377
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in the optimal solution; however, it provides substantial computational benefits in time378

and memory.379

The whole procedure results in a sequence of active material phases B0(ℓ̂0), . . . ,Bn(ℓ̂n)380

exhibiting a decreasing proportion of RP fragments compared to pristine particles, how-381

ever showing layer-wise constant active material fractions. The portion of RP fragments382

compared to pristine particles is quantified by the recycling fractions ηj ∈ [0, 1], given by383

ηj =
ε(Bj(ℓ̂j)) − ε(Pj)

ε(Bj(ℓ̂j))
.

By construction, it holds ηn = 0 and η0 = 1, i.e., Bn(ℓ̂n) contains only pristine particles,384

while B0(ℓ̂0) consists exclusively of RP fragments.385

In Section 3, the influence of the two structuring scenarios, “uniform” and “gradient”,386

and different recycling fractions η on cathode performance-related descriptors is investi-387

gated. For this purpose, the active material phase Aη with a specific recycling fraction388

η ∈ [0, 1] is defined as Aη = Bj∗(ℓ̂j∗), where the index j∗ is chosen as389

j∗ = argmin
j∈{0,...,n}

|η − ηj|.

This ensures that the selected active material phase Aη represents the structure whose390

recycling fraction ηj most closely matches the desired value η.391

Exemplary cross sections of active material phases Aη, generated using both structur-392

ing strategies and corresponding to recycling fractions η ∈ {0, 0.2, . . . , 0.8, 1} are presented393

in Figure 3.394

2.4 Geometric Descriptors and Properties of Microstructures395

To analyze the effects of differently structured active material an extensive microstruc-396

tural characterization of the virtual two-phase cathodes was performed, using well-known397

geometric descriptors and effective properties [19, 23, 52–54]. These descriptors quantify398

the geometry of an active material phase A ⊂ W and corresponding pore space Ac ⊂ W ,399

given by the complement of the active material phase. In the following, all descriptors400

are defined for some phase A ∈ {A,Ac}. In this work, we focus on descriptors that are401

known to influence the performances of battery electrodes [55, 56].402

Specific surface area: A basic geometric descriptor for two-phase materials, besides403

the already considered volume fraction ε(A) of a phase A, is the specific surface area σ.404

This descriptor quantifies the interface area between A and Ac per unit volume, i.e., σ(A)405
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is given by406

σ(A) =
H2(∂A \ ∂W )

ν3(W )
,

where ∂ denotes the boundary of a set, ν3(W ) the volume of the observation window, and407

H2(·) the 2D Hausdorff measure. Since the interface between A and Ac is quantified, it408

holds σ(A) = σ(Ac). Applied to an electrode battery, it is used to scale the current density409

of the charge transfer reaction that occurs at the interface between the electrolyte and the410

active material. To compute a numerical estimation of σ, we apply the convolution-based411

method of [57].412
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Pristine NMC Recycled NMC

Figure 3: Exemplary cross sections of virtual cathodes Aη generated according to the
“uniform” (top row) and “gradient” (bottom row) scenario utilizing a fixed pristine parti-
cle phase Pn. The columns show increasing recycling fractions η. The pore space, pristine
phase and RP fragment phases are represented in black, orange and blue, respectively.
By construction both rows coincide for A0 and A1.

Tortuosity factor: The tortuosity factor τfac is a commonly used measure to describe413

the diffusivity of porous media [58–60]. It is a key parameter to improve battery per-414

formances, especially for fast charging [61]. In this work, it is calculated by using the415

open-source software TauFactor [23]. TauFactor solves Laplace’s equation for steady-state416

diffusion using a finite difference numerical scheme with Dirichlet-Dirichlet boundary con-417

ditions. Because of this, the tortuosity factors calculated here are slightly biased toward418

lower values, as homogenization calculations are impacted by the choice of the boundary419

conditions (this dependence eventually vanishes for large enough domains) [62, 63]. The420

tortuosity factor is given by421

τfac(A) =
D0 · ε(A)

Deff

∈ [1,∞)
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with Deff > 0 being the effective diffusivity in the transport direction (vertical direction422

in Figure 3), D0 > 0 is the bulk diffusivity of the considered phase and ε ∈ (0, 1) the423

volume fraction of the considered phase. In this work, the bulk conductivity is set to 1 so424

that the analysis is agnostic with the material property (i.e., Deff is a relative metric). In425

such a case Deff ∈ [0, 1]. Note that while τfac depends on the axis along which transport426

is considered, it does not take the transport direction into account, unlike the geodesic427

tortuosity introduced later. A value of τfac = 1 corresponds to the ideal case of straight,428

unobstructed diffusion paths. Larger values of τfac indicate increasingly tortuous transport429

paths, i.e., diffusing electrons or ions need to travel longer effective distances compared430

to diffusion in solid bulk medium. It is important to note that almost all transport of431

ions is present in the pore phase, however to give a comprehensive analysis of the virtual432

cathodes, τfac is determined for both phases A ∈ {A,Ac}.433

While the tortuosity factor quantifies the penalty induced by the heterogeneous mi-434

crostructure on the effective diffusion, it does not provide insights on the geometric fea-435

tures responsible for its particular value. Tortuosity factor is an all-in-one parameter that436

encompasses the contributions of several features of the pore domain. In addition to the437

volume available for the diffusion itself (i.e., the porosity), two other metrics quantifying438

geometrically the sinuosity and the constriction of the diffusion paths have been intro-439

duced in the literature [21, 64] in an attempt to deconvolute their respective contributions440

to the effective diffusivity. Both are defined in the following.441

Bruggeman exponent: An additional transport-related descriptor, directly derived442

from the tortuosity factor τfac and the volume fraction ε, is the so called Bruggeman443

exponent α, which is given by444

α(A) =
log
(
ε(A)/τfac(A)

)
log(ε(A))

.

Note that this descriptor can be directly obtained from the previously introduced descrip-445

tors, however it provides a more accessible interpretation. A value of α = 1.5 corresponds446

to a medium composed of spherical, non-touching particles within A, whereas increasing447

values of α indicate less regular and more complex morphologies [65].448

Geodesic tortuosity: The mean geodesic tortuosity τgeo of a phase A quantifies the449

deviation of shortest paths within A from straight lines [53]. The tortuosity of a path450

is defined as the ratio of the actual path length to the straight-line distance between its451

endpoints. By definition, this ratio is always at least 1, with higher values indicating452

more tortuous paths. In this paper, the mean geodesic tortuosity τgeo is computed as the453

average tortuosity of all shortest paths starting on a designated plane (e.g., the top or454

bottom) of the cathode and ending at the opposite side.455
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To take structural gradients into account, τgeo is calculated separately for both direc-456

tions (top-to-bottom and bottom-to-top). For a given direction, the shortest path from457

each integer-valued position of the phase on the starting plane to the target plane of the458

cathode is determined using Dijkstra’s algorithm [66]. Starting positions that are not459

connected to the opposite side are excluded from the computation of τgeo, i.e., τgeo reflects460

only the tortuosity and not the number of paths. Each path length is then normalized by461

the straight-line distance between the two opposing planes. The mean geodesic tortuosity462

τgeo is defined as the average of these normalized path lengths.463

Analogous to the tortuosity factor τfac, the mean geodesic tortuosity τgeo is determined464

for both phases A ∈ {A,Ac}.465

Maximum inscribed radius: To characterize the typical size of a phase, the maximum466

inscribed radius rmax is utilized. This descriptor represents the largest radius of spheres467

that can cover at least 50% of the volume fraction of the considered phase, with the spheres468

being fully contained within that phase. This metric is derived from the calculation of the469

so-called continuum particle- or phase-size distribution [67]. More precisely, for a phase470

A ⊂ W let471

Or(A) = {x ∈ A : B(x, r) ∩ Ac = ∅},

denote the set of centers x ∈ A where balls B(x, r) of radius r > 0 can be placed while472

not intersecting the other phase Ac. The corresponding set, which is coverable with balls473

of radius r is obtained by dilating Or(A) with a ball of radius r, i.e.,474

Or(A) ⊕B(0, r) = {x ∈ W : there is a y ∈ Or(A) with x ∈ B(y, r)},

where ⊕ denotes the dilation operator. Then the maximum inscribed radius rmax is given475

by476

rmax(A) = sup
{
r > 0: ε

(
Or(A) ⊕B(0, r)

)
≥ 0.5

}
.

The maximum inscribed radius rmax and the subsequently introduced minimum intrusion477

radius rmin are numerically estimated utilizing the algorithm provided in [68].478

Minimum intrusion radius: The minimum intrusion radius rmin quantifies the effect479

of narrow constrictions or bottlenecks in a phase along a given direction. It is defined as the480

largest radius of balls such that at least 50% of the phase volume can be covered by balls481

intruded from one side. More precisely, for an intrusion plane Π = [0, 250]×{y}× [0, 250]482

(with y = 0 for the bottom or y = 250 for the top of the observation window W ), consider483
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the set of centers connected to Π, i.e.,484

Qr(A,Π) = {x ∈ Or(A) : there exists a path in Or(A) from x to Π},

for an r > 0. The corresponding set of points coverable with the intrusion of balls with485

radius r from Π is derived by dilation of Qr(A,Π). Thus, rmin is given by486

rmin(A,Π) = sup{r > 0: ε
(
(Qr(A,Π) ⊕B(0, r)) ∩W

)
≥ 0.5}.

By construction, rmin(A,Π) ≤ rmax(A).487

In applications due to computational efficiency, Or and Qr are evaluated only on an488

integer-valued grid.489

Constrictivity: Constrictivity aims at quantifying the impact of section area variation490

along the diffusion paths on the effective diffusivity. Note that the constrictivity is a491

challenging metric to calculate, since the lack of a unique definition of large (bulge) and492

small (bottleneck) regions in a continuous domain. Because of this, several definitions493

have been provided in the literature [21, 64]. In this work, the constrictivity β(A) =494

rmin(A,Π)2

rmax(A)2
∈ (0, 1] of a phase A ⊂ W and an intrusion plane Π ⊂ W is defined as the495

squared ratio between the minimum intrusion radius rmin and the maximum inscribed496

radius rmax, providing a normalized measure of how restrictive the narrowest bottlenecks497

are relative to the overall phase size [54]. A value of 1 corresponds to no bottleneck effects498

at all, while a value close to 0 corresponds to extreme bottleneck effects [58].499

Chord length: Another insightful geometric characteristic for transport is the chord500

length distribution. A chord is a line segment lying entirely within a given phase A that501

cannot be extended in either direction without crossing into the complementary phase.502

The chord length distribution captures the spatial extent of the phase. In particular,503

longer chords correlate positively with favorable transport properties.504

Since the present paper considers transport only in the vertical direction, only ver-505

tically aligned chords are investigated. In practice, due to computational efficiency,506

the chord length distribution is estimated through discretization. For this purpose, let507

c = {(x, y, z), (x, y + 1, z), . . . , (x, y′, z)} ⊂ A with x, y, y′, z ∈ {1, . . . , 250}, y ≤ y′,508

(x, y − 1, z), (x, y′ + 1, z) /∈ A, be a discretized chord. Then, its length ℓ is given by509

ℓ(c) = y′ − y + 1. The empirical probability distribution of these chord lengths then510

serves as an estimator for the chord length distribution. Considering the length-weighted511

distribution of these chords gives the chord length distribution; i.e., a chord of length ℓ(c)512

is counted ℓ(c) times, thereby accounting for the stronger influence of longer chords on513

geometry and transport. For a formal definition, refer to [40, 69].514
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3 Results and Discussion515

In this section, the transport-related descriptors and effective properties defined in Sec-516

tion 2.4 are analyzed for differently structured cathodes. Due to the limited field of view of517

the experimentally imaged RP cathode, only one marked tessellation T of reasonable size518

could be fitted. The RP fragment phase and consequently T , exhibit minor anisotropy519

with respect to the transport direction (y-direction), caused by manufacturing, particu-520

larly drying and calendaring. To avoid transferring this anisotropy onto the geometric521

and effective descriptors, we additionally consider virtual cathodes, based on T ′, which522

is derived by reflecting T at the x-z plane. Complementarily, ten pristine particle phases523

P(1), . . . ,P(10) were generated. For both structuring scenarios, “uniform” and “gradient”,524

20 realizations per recycling fraction η ∈ {0, 0, 05, 0.1, 0.15, 0.2, 0.3, . . . , 0.9, 1} were ob-525

tained by combining the two RP fragment phases T , T ′ with the ten pristine particle526

phases P(1), . . . ,P(10).527

Note that low recycling fractions η are of particular relevance in view of the recycling528

quotas for Li-ion batteries planned by the European Union, which require at least 6 %529

recycled lithium, 6 % recycled nickel, and 16 % recycled cobalt in new batteries starting530

in 2031 [8]. Therefore, a finer subdivision of η in the low range is applied, while a larger531

step size is used for higher recycling fractions. However, the stochastic 3D microstructure532

model, described in Sections 2.1-2.3 is capable of generating virtual cathodes for any533

recycling fraction η ∈ [0, 1].534

In Figure 4, the deviation of the volume fractions of the pristine particle phase,535

RP fragment phase, and pore space is presented. The box plots indicate a low variance536

across the 20 realizations for each recycling fraction η. Further, the constant pore volume537

fraction implicitly confirms the constant total active material fraction. In addition, the538

volume fraction of pristine particles and RP fragments exhibits converse linear behavior,539

summing to 1 − ε(Aη) for all η.540
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Figure 4: Box plots representing the distributions of the volume fractions of the pristine
particle phase (orange), RP fragment phase (blue) and pore space (black). The “gradient”
scenario is indicated utilizing solid lines and the “uniform” scenario with dashed lines
(dashed and solid lines are nearly overlapping).
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The box plots in Figure 5 show an increasing specific surface area for rising recycling541

fractions η for both structuring scenarios. This trend was expected, as the specific surface542

area is inversely correlated with the particle size [56]. Moreover, cathodes generated543

utilizing the “uniform” scenario consequently exhibit larger specific surface areas. This544

observation can be attributed to the fact that in the “gradient” scenario, the iterative545

replacement of pristine particles by RP fragments occurs predominantly layer by layer.546

As a result, many of the inserted RP fragments come into contact with others, which547

reduces the overall specific surface area. In contrast, the “uniform” scenario introduces548

RP fragments more evenly throughout the entire observation window W , leading to a549

more homogeneous distribution and fewer inter-particle contacts, thereby increasing the550

(specific) surface area.551
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Figure 5: Box plots indicating the distribution of specific surface area for cathodes gener-
ated using both structuring scenarios, namely “gradient” (blue) and “uniform” (orange).
Note that the breakage of the x-axis at η = 0.25 indicates differently scales of the intervals
[0,0.25) and (0.25,1].

Figure 6 shows the tortuosity factor as a function of the recycling fraction η. For552

transport within the active material phase (Figure 6(a)), the tortuosity factor decreases553

monotonically with increasing η, indicating reduced diffusivity. Note that values corre-554

sponding to the “uniform” scenario are generally smaller than those of the “gradient”555

scenario.556

In contrast, for transport within the pore space (Figure 6(b)), the tortuosity factor557

increases with increasing η, where values corresponding to the “uniform” scenario are558

larger than those of the “gradient” scenario.559

It is important to note that the tortuosity factor of the active material phase decreases560

rapidly for η ∈ [0, 0.2], compared to η ∈ [0.2, 1]. This implies that a low recycling fraction561

within the cathode can significantly increase the effective transport properties.562

Complementarily, for low η the tortuosity factor in pore space increases only slightly,563

indicating a moderate deterioration of tortuosity factor properties. The tortuosity factor564

in the pore space increases with the recycling fraction (Figure 6(b)) at constant porosity565
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(Figure 4), which indicates a shift in the pore topology domain. That is, a transition from566

roughly spherical particles to a less ideal morphology is expected since the RP fragments567

are not spherical but polyhedral due to the underlying Voronoi tessellation. This shape568

transition is also confirmed by the Bruggeman exponent of the pore space, which is ≈ 1.5569

for η = 0, and increases for increasing recycling fractions, see Figure 7.570
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Figure 6: Box plots showing the change of the tortuosity factor for increasing recycling
fraction η, where (a) indicates transport within the active material phase and (b) within
the pore space. Results derived from the “gradient” scenario are indicated blue, whereas
orange boxes represent the “uniform” scenario. The dashed lines indicate the theoretical
values for a cathodes consisting of two well-separated layers.

The very high tortuosity factors calculated for large values of η, are slightly above the571

values calculated or measured for real NMC cathodes [21, 70]. This indicates that the572

voxel-based and tessellation-based representations of the RP phase somewhat underesti-573

mate the diffusivity in the pore space compared to experiments.574

Additionally, in Figure 6, the tortuosity factor of a cathode, consisting of two well-575

separated layers with a recycling fraction η ∈ [0, 1] is indicated by a dashed line. Formally,576

it is given by577

τ layeredfac (η, A0, A1) =
1

η
τfac(A1)

+ 1−η
τfac(A0)

,

where τfac(A0), τfac(A1) denotes the tortuosity factor of a cathode made solely out of578
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pristine particles and RP, respectively [71]. This theoretical line shows higher tortuosity579

factor values than those for both scenarios in the active material phase A. For transport580

in pore space Ac the tortuosity factor τfac is slightly larger than the theoretical value of581

the layered cathode. This indicates that the influence of the interface between the two582

layers is not negligible.583
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Figure 7: Boxplots indicating the distribution of the Bruggeman exponent for increasing
recycling fractions η within the pore space. Results derived from the “gradient” scenario
are indicated blue, whereas orange boxes represent the “uniform” scenario.

The mean geodesic tortuosity was determined within the active material phase584

in both the top-to-bottom direction and the bottom-to-top direction, see Figure 8(a).585

For both structuring scenarios, “uniform” and “gradient”, the mean geodesic tortuosity586

decreases with increasing recycling fraction η. Indeed, as the particles get smaller, mov-587

ing from one side to the other within the solid domain requires less direction changes as588

particles are closer to each other. However, tortuosity values corresponding to the “uni-589

form” scenario are consistently smaller than those of the “gradient” scenario. While the590

“uniform” scenario exhibits directional symmetry, the “gradient” scenario reveals larger591

values for the top-to-bottom direction, corresponding to transport originating in the RP592

fragment-rich layer.593

This asymmetry can be explained by the large difference in size between the pristine594

particles and RP fragments. There are fewer transport paths starting at the pristine-595

rich layer (bottom) to the RP fragment-rich layer (top) than vise versa. This effect is596

illustrated in Figure 9.597

Additionally, pores tend to be larger between large pristine particles than between598

small RP fragments, as confirmed by the chord length distribution in the pore space, as599

shown in Figure 13(b). This implies that at the transition region between the layers,600

each pristine particle is more likely to be connected to a RP fragment than vice versa.601

Consequently, transport paths from the RP fragment layer to the pristine particle layer602

exhibit larger deviations than those in the opposite direction.603

Additionally, the mean geodesic tortuosity was determined within the pore space in604
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the top-to-bottom direction as well as the bottom-to-top direction (Figure 8(b)). Here,605

an increasing recycling fraction η results in longer paths for both structuring strategies,606

since the initially unobstructed pore space becomes increasingly filled with obstacles (RP607

fragments). Again, in the “uniform” scenario there is a high similarity between both608

directions. However, these tortuosities are clearly smaller than the ones corresponding to609

the “gradient” scenario. Particularly, tortuosities corresponding to the “gradient” scenario610

in the bottom-to-top direction exhibit the highest values. Note that the mean geodesic611

tortuosity accounts only for the shortest paths from the starting plane to the target plane.612

It provides no information about the number of such paths. The low geodesic tortuosity613

values are in agreement with those determined geometrically in previous work for real614

electrodes [21].615
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Figure 8: Box plots showing the distribution of mean geodesic tortuosity for various recy-
cling fractions η in the active material phase (a) and pore space (b). Blue and cyan boxes
correspond to the “gradient” scenario, while red and orange boxes represent the “uni-
form” scenario. The arrows indicate the direction of transport: upward-pointing arrows
correspond bottom-to-top direction, and downward-pointing arrows to top-to-bottom di-
rection.
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Figure 9: Sketch of 2D geodesic tortuosity asymmetry illustrated for the active material
phase of the “gradient” scenario. Purple solid lines represent a selection of the shortest
paths from top to bottom. Red dashed lines represent all shortest paths from bottom to
top.

The maximum inscribed radius rmax, determined in the active material phase,616

decreases with increasing recycling fraction η, as shown in Figure 10(a). A rapid drop is617

observable between η = 0.4 and η = 0.5. Since rmax describes the maximum radius of618

spheres that can cover at least 50% of the active material phase, the decline is expected.619

At η = 0.5 half of the active materials consists of RP fragments, which can only be620

covered by significantly smaller spheres. Similarly, rmax determined within the pore space621

also decreases for increasing recycling fractions of both structuring scenarios, see Figure 10622

(b). However, the decrease is more pronounced for the “uniform” scenario. In this case,623

RP fragments are more likely to be inserted into large pores, whereas in the “gradient”624

scenario, RP fragments are introduced progressively from top to bottom, resulting in less625

disruption to large pores at lower layers.626

The influence of different recycling fractions η on the minimum intrusion radius627

rmin is presented in Figure 11. As expected, values of rmin corresponding to the “uni-628

form” scenario, determined in both transport directions, show a similar decrease for both629

phases, active material (Figure 11(a)) and pore space (Figure 11(b)). In contrast, for the630

“gradient” scenario, the top-to-bottom direction exhibits for both phases consequently631

smaller values compared to the bottom-to-top direction. This effect can be attributed to632

the layered structure of the “gradient” cathode, where for low recycling fractions only the633

top layers of the cathode are altered, e.g., pristine particles are removed and RP fragments634

are introduced. In particular, neither active material nor pore space at the bottom of the635

cathode is modified. Consequently, the intrusion of spheres into both the active material636

and pore space from the bottom is less affected compared to the “uniform” scenario, in637

which modifications occur throughout the entire volume.638
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Figure 10: Box plots indicating the distribution of rmax depending on the recycling fraction
η within the active material phase (a) and pore space (b). Blue boxes indicate the
“gradient” scenario, whereas orange ones corresponds to the “uniform” scenario.

The constrictivity determined in the active material phase shows a similar behavior639

for cathodes generated using both the “uniform” and “gradient” scenarios, as well as640

for both transport directions, see Figure 12(a). For recycling fractions η ∈ [0, 0.4], the641

constrictivity remains around 0.05, indicating very strong bottleneck effects. This can be642

attributed to the fact that in this range more than 50% of the active material volume is643

present in pristine NMC particles.644

Although these particles exhibit a large diameter, their near-spherical shape leads645

to only comparatively small contact areas with each other, which results in pronounced646

bottleneck effects. When the fraction of added RP fragment exceeds 50%, meaning that647

more than half of the active material phase is present in the fine-granular structure of the648

RP fragment phase, the bottleneck effects are reduced. This reduction arises from the649

absence of regions in the RP fragment phase in which balls with a large radius rmax fit.650

In contrast, the constrictivity determined within the pore space shows pronounced dif-651

ferences between the “uniform” and “gradient” scenarios, see Figure 12(b). For the “uni-652

form” cathodes, no clear directional trends are visible. In both directions, a monotonous653

decrease in bottleneck effects can be observed, which is associated with the reduction654

of extremely large pores. In the “gradient” cathode, however, much stronger bottleneck655

effects occur from top to bottom compared to the “uniform” case, as long as the fraction656
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of recycled material remains below 50%. This effect can be explained by the presence of657

large pores, that account for more than 50% of the total pore volume, in the lower half of658

the cathode. These pores are separated from the top of the cathode by a fine porous RP659

fragment layer, which forms the bottleneck towards large pores. For bottleneck effects in660

the opposite direction, i.e., from bottom to top, the situation differs: here, no fine porous661

barrier has to be traversed, and thus, no significant bottleneck effects arise. Moreover,662

since no scattered small RP fragments are present in the large pores between pristine663

particles, the bottleneck effects are even weaker than in the “uniform” scenario. This664

holds true even for small fractions of recycled material.665
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Figure 11: Box plots showing the distribution of rmin within active material (a) and pore
space (b). Blue and cyan boxes represent the “gradient” scenario, while red and orange
boxes correspond to the “uniform” scenario.

The chord length distribution was determined for both the active material (Fig-666

ure 13(a)) and the pore space (Figure 13(b)). In both phases, the chord length distri-667

bution shows similar behavior for the “uniform” and the “gradient” scenarios, whereas668

chords in the pore space are on average slightly smaller for the uniform scenario than for669

the gradient scenario.670
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Figure 12: Box plots indication the distribution of constrictivity values for the “gradient”
(blue and cyan) and “uniform” (red and orange) scenario for increasing recycling fractions
m. Constrictivity values determined in the active material phase are presented in (a),
while (b) considers the pore space.
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Figure 13: Violin plots visualizing the chord length distribution for both structuring
scenarios, namely “gradient” (blue) and “uniform” (orange), in the active material (a)
and the pore space (b). The blue and orange lines show the corresponding median values.
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4 Conclusion671

This work presented a novel computational framework for systematically investigating672

structure-property relationships of lithium-ion battery cathodes containing mixtures of673

pristine and recycled NMC particles. Recycled particle fragments are generally smaller674

than pristine particles, as they arise from recycling processes that break EOL particles into675

clusters of, or even individual, primary particles. A stochastic 3D microstructure model676

combines spherical harmonic-based representations for pristine particles with marked677

Voronoi tessellation-based representations for recycled particle fragments, enabling the678

generation of cathodes with arbitrary mixing ratios of both active material types. Ad-679

ditionally, the model allows for different structural configurations, as demonstrated by680

two types of mixing considered in this paper, namely, uniform and gradient mixtures681

of particles. The proposed microstructure model is embedded within a virtual material682

testing framework that quantifies the morphology and effective transport-related proper-683

ties of generated microstructures, assuming that pristine particles and recycled particle684

fragments do not differ in their chemical or electrochemical properties.685

This statistical analysis revealed several key insights into how the incorporation of recy-686

cled active material affects cathode microstructure and transport properties. The results687

demonstrate that even low recycling fractions (below 20%) induce substantial changes in688

transport-related descriptors within the pore space, while the transport properties of the689

active material phase remain relatively stable in this range. In particular, the specific sur-690

face area increased monotonically with increasing recycling fraction for both structuring691

scenarios, with the “uniform” scenario consistently yielding larger values due to reduced692

inter-particle contact between recycled particle fragments. This increased interfacial area693

potentially enhance charge transfer kinetics, as a greater reactive surface is available for694

electrochemical reactions.695

The analysis of the tortuosity factor revealed contrasting trends between the two696

phases. In the active material phase, the tortuosity factor decreased substantially with697

increasing fraction of recycled particles, especially for small recycling fractions, indicat-698

ing improved electronic transport pathways as pristine particles were replaced by the699

finer-grained RP fragment network. Conversely, the tortuosity factor in the pore space700

increased with increasing recycling fraction, reflecting a shift from nearly ideal spherical701

particle morphology (Bruggeman exponent ≈ 1.5 for pure pristine cathodes) toward more702

complex, broken particle geometries. Notably, the “uniform” scenario exhibits lower tor-703

tuosities in the active material phase and higher tortuosities in the pore space compared704

to the “gradient” scenario, highlighting the importance of the spatial arrangement of the705

RP fragments.706

The analysis of the mean geodesic tortuosity revealed that transport paths in the active707

material phase become shorter and less tortuous with increasing recycling fraction, as708
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smaller RP fragments promote more direct particle connectivity. However, the “gradient”709

scenario exhibits pronounced directional asymmetry, with paths originating from the RP710

fragment-rich layer showing higher tortuosity values. This asymmetry, caused by the size711

mismatch between pristine particles and RP fragments, suggests that orientation of such712

layers could be optimized to favor specific transport directions in electrode designs.713

From a sustainability perspective, especially in view of European Union recycling quo-714

tas requiring batteries to contain at least 6% recycled lithium, 6% recycled nickel, and715

16% recycled cobalt by 2031, the presented findings have important implications. Our716

results indicate that even low fractions of recycled NMC can substantially affect trans-717

port properties within the pore space while potentially enhancing connectivity within the718

active material. Furthermore, different structuring strategies offer optimization oppor-719

tunities: the “uniform” scenario provides relatively homogeneous properties and a larger720

reactive surface area, while the “gradient” approach enables targeted directional transport721

optimization.722

The carbon-binder domain was intentionally excluded from the presented model to723

reduce variability and isolate the effects arising solely from differences in the composition724

and arrangement of the active material phase. Future work should investigate the spatial725

distribution of the carbon-binder domain within mixed cathodes and evaluate its influ-726

ence on electronic conductivity and mechanical integrity. Additionally, while this study727

focused on geometric and effective transport descriptors, electrochemical performance728

metrics such as rate capability and cycling stability remain to be investigated through729

coupled electrochemical-microstructural simulations. The presented computational frame-730

work could directly be extended to other cathode chemistries, enabling broader applica-731

bility. Summing up, the observed sensitivity of transport properties to both recycling732

fraction and structuring strategy emphasizes the importance of careful microstructure733

design in sustainable battery manufacturing.734
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