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Abstract

The increasing demand for sustainable battery technologies requires effective recycling
strategies for end-of-life lithium-ion battery cathodes. In this study, virtual materials
testing, a well-established framework for modeling conventionally manufactured NMC-
based cathodes, is applied to partially recycled cathodes. To this end, virtual cathodes
consisting of mixtures of pristine and recycled NMC particles are utilized to systemati-
cally analyze structure-property relationships in dependence of mixing ratios and different
spatial arrangement strategies. For this purpose a stochastic 3D model is developed that

is capable of generating virtual cathodes with arbitrary volume fractions of active materi-
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als, and mixing ratios of pristine and recycled NMC particles. Particularly, the stochastic
3D model can mimic the different size distributions of pristine and recycled particles that
are observed in image data. Additionally, the model allows the structuring of pristine and
recycled NMC either uniformly mixed or layer-wise arranged. Subsequently, a systematic
computational analysis is conducted to assess the influence of increasing active material
ratios of recycled particles, ranging from 0 % to 100 %, while maintaining a constant
overall active material volume fraction. The impact of particle mixing on cathode perfor-
mance is evaluated by examining transport-relevant geometrical descriptors and effective

properties, such as geodesic tortuosity, specific surface area, and tortuosity factor.

1 Introduction

The rapid growth in demand for electric vehicles (EVs) and energy storage systems has
driven an unprecedented increase in battery production, with global EV battery output
projected to reach 3 TWh by 2030 [1]. Especially, lithium-ion batteries are widely used
due to their high energy density accounted for about 60% of EV battery capacity in 2022
[2, 3]. However, their popularity results in an increasing demand for raw materials, which
poses several challenges, including the need to scale in the mining industry and geopolitical
concerns associated with the concentration of these materials. This is especially critical
for materials such as lithium and cobalt [4, 5].

As battery manufacturing accelerates, managing end-of-life (EOL) lithium-ion batter-
ies becomes critical. By 2030, EV batteries with a cumulative storage capacity of 100-120
GWh are expected to reach EOL [6], corresponding to approximately 1.2 million metric
tons of material from batteries of electric vehicles alone [7]. Additionally, the European
Union plans to introduce mandatory recycling quotas for lithium-ion batteries by 2031,
requiring new batteries to consist of at least 6 % recycled lithium, 6 % recycled nickel, and
16 % recycled cobalt [8]. These two developments, large volumes of EOL batteries and
upcoming recycling requirements, necessitates the development of sustainable recycling
technologies to address both limitations in new materials and environmental concerns of
the disposal of end-of-life batteries [9].

Current battery recycling approaches can be categorized into three main processes:
pyrometallic, hydrometallurgical, and direct recycling methods [10]. In pyrometallurgical
processes, high-temperature melting is utilized to extract and recover the active materials
of lithium-ion batteries, offering, among other benefits, a relatively simple operation and
comparatively low environmental impacts [11]. Nevertheless, a major drawback of py-
rometallurgical processes is their high energy demand [12]. Hydrometallurgical methods
rely on chemical leaching to dissolve valuable metals from end-of-life batteries, generally
achieving higher recovery rates than pyrometallurgical processes. However, they also gen-

erate significant amounts of chemical waste [11, 13]. Non destructive direct recycling aims
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to recycle not only specific or valuable elements but also to recover complete battery com-
ponents, such as current collectors and electrode materials, binder and electrolyte. These
components undergo purification, cleaning and optional regeneration processes before be-
ing reused in new batteries [14]. Direct recycling, while potentially the most sustainable
approach, faces challenges in maintaining desired structural and electrochemical prop-
erties of recovered materials [15]. Recent studies have further highlighted the influence
of micostructural damage of LiNi,Mn,Co,Os (NMCxyz, hereafter referred to as NMC)
cathode particles in Li-ion batteries, such as severe cracks in active materials in cathode
recycling [16].

The performance of battery cathodes, such as Li-ion cathodes, is determined in parts
by microstructural features, e.g., the size and shape distribution of active particles and
their spatial arrangement within the electrodes. For example, Li-ion transport and charge
reactions depend on geometric factors like porosity, pore connectivity (tortuosity), inter-
facial area, and particle arrangement. In literature, the relationship between microstruc-
ture and effective properties in porous electrode materials has been extensively studied
using both experimental and computational approaches [3]. Advanced characterization
techniques, including X-ray computed tomography and focused ion beam scanning elec-
tron microscopy, have enabled detailed three-dimensional visualization of electrode mi-
crostructures [17, 18]. These 3D images enable computational analyses; for example,
volume fractions, specific surface areas, mean chord lengths, and tortuosities directly
from tomographic image stacks. Such metrics have been shown to strongly correlate with
effective transport properties, e.g. high tortuosity or bottle neck effects slow ion diffusion
[19-21]. Complementary numerical modeling approaches have further advanced the un-
derstanding through simulations that connect microstructural features to electrochemical
performance [22-25].

Previously mentioned computational modeling approaches have primarily focused on
pristine cathode materials, establishing fundamental structure-property relationships for
cathodes derived from measured image data [3, 26-28]. In most of these studies, the
analysis concentrates on the geometry of the active material phase, while neglecting the
carbon-binder domain (CBD) for simplicity. This simplification is justified, as the active
material particle arrangement largely determines the pore network through which lithium
ions diffuse, whereas the CBD occupies a comparatively small volume and primarily pro-
vides electronic conductivity and mechanical integrity.

Building on these foundations, recent advances in virtual materials testing have proven
their large potential by integrating stochastic microstructure models [29, 30| for virtual
material generation with tools for predicting transport properties [23]. However, cycled
cathode materials often exhibit fundamentally different microstructural features compared
to their pristine counterparts, including altered primary particle morphology and the ex-

istence of cracks [31-33]. Moreover, the incorporation of recycled materials into mixed
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cathode systems introduces additional complexity, which has not yet been systematically
investigated. For instance, uniformly mixing recycled and new particles could lead to
different pore space morphologies than segregating them in layers. In analogous contexts,
graded or layered electrode designs are known to influence performance. While grading
has been studied for optimizing electrodes [34], the impact of integrating recycled materi-
als on the microstructure and resulting effective properties has not yet been systematically
explored. In particular, the spatial distribution of recycled versus pristine particles rep-
resents a critical design parameter influencing electrode performance. Uniformly mixed
and layered cathodes show very distinct pore architectures and transport pathways.

This work introduces a 3D model for the stochastic generation of uniformly mixed
and layered virtual cathodes, consisting of varying ratios of pristine and recycled NMC
particles. The model comprises two components: the stochastic 3D model for generating
pristine particles described in [30], which has been calibrated to experimentally measured
data as well as a stochastic 3D model for the EOL phase which is calibrated to 3D
CT images in this paper. Note that pristine and recycled particles follow different size
distributions, as the smaller recycled particles are assumed to have undergone direct
recycling processes, in which secondary particles break down into clusters of, or even
individual, primary particles. Further, it is assumed that pristine and recycled particles
differ only in their morphology, while being similar in their chemical and electrochemical
properties.

This study aims to establish quantitative structure-property relationships for virtual
cathode microstructures exhibiting different mixing ratios of active materials. The pri-
mary objectives are: (1) to develop a computational framework for generating realistic
mixed pristine-recycled cathode microstructures with controlled spatial arrangements, (2)
to quantify the impact of the ratio of recycled active material and arrangement strategy on
key transport properties, and (3) to identify optimal integration strategies that maintain
cathode performance while maximizing the recycling active material fraction.

The novelty of this work lies in the systematic computational approach to mixed ma-
terial microstructure generation and the analysis of geometric and transport descriptors
as functions of recycled content and its spatial distribution, providing guidelines for sus-

tainable battery manufacturing.

2 Materials and Methods

The focus of this section is on the generation of virtual mixed cathodes, consisting of
pristine and recycled active material particles consisting of LiNi,Mn,Co,Oy (NMCzyz).
In the context of the present paper, a cathode is characterized by its active material
phase and pore space. First, in Section 2.1 virtual pristine NMC811 particles are gener-

ated utilizing the stochastic microstructure model introduced in [30]. These particles are
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subsequently packed to represent a pristine cathode.

In Section 2.2, a virtual cathode consisting of recycled active material is generated by
means of a marked tessellation, i.e., a partition of the three-dimensional space into disjoint
subsets, each assigned a scalar-valued mark. The so-called cells of this tessellation mimic
fragments of recycled NMC111, which have been fractured as a result of cycling and
chemical treatments during the recycling process.

These two virtual cathodes are combined in Section 2.3 by iteratively removing pris-
tine particles from the pristine cathode and replacing them with recycled particle (RP)
fragments. This replacement is performed according to two different structuring scenarios
occurring in real world cathode manufacturing [34], enabling either a uniform or layered
distribution of RP fragments within the virtual cathode, while keeping the overall active
material volume fraction constant.

Lastly, in Section 2.4, several microstructure descriptors are introduced, which are
used in Section 3 for a statistical analysis of the geometry and effective properties of

differently structured mixed cathodes.

2.1 Pristine NMCS811 particles

The pristine particles considered in this work are generated by the stochastic microstruc-
ture model introduced in a previous study [30]. There, the 3D microstructure of a pristine
NMCS811 cathode was imaged using X-ray nano-computed tomography, and individual
particles have been segmented. To statistically capture the observed particle shapes, a
stochastic 3D model based on random fields on the sphere has been fitted to the seg-
mented image data. Specifically, particle surfaces were stochastically modeled using a
series expansion with random coefficients, which implicitly model both particle size and
shape distribution. The stochastic 3D model enables the generation of synthetic parti-
cle surfaces that are statistically consistent with the experimental observations. In [30],
a high degree of agreement between the model realizations and the measured particle
geometries was observed.

In the present work, particles generated by this model are packed into a virtual cath-
ode, following the approach described in [35]. More precisely, in a first step, a certain
number of volume-equivalent placeholder spheres are randomly positioned in a cubic sam-
pling window. To eliminate the overlaps between the spheres, a force-biased algorithm
[36, 37| is applied. Finally, each sphere is replaced by its corresponding NMC particle
counterpart, i.e., by a virtual particle generated by the stochastic 3D model.

More formally, let P, P, ... be a sequence of independent realizations of the particle
model described in [30], where P, = {x € R3: z belongs to the i-th particle} C R? de-
notes a particle, whose barycenter is aligned with the origin of the coordinate system. Let

W = [0,250)> C R? denote a cubic, unitless sampling window. In the present work W
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corresponds to a cubic observation window of side length of 250 - 128 nm=32 pm. Further,
let n € N=1{1,2,3,...} denote the number of particles to be placed within W. The value

of n is determined as

22:1 v3(F)

n:max{z e N: v (V)

< smax},
where v3(P;) denotes the volume of P; C R? and eyax € [0, 1] the desired maximum active
material volume fraction. In the present work, £, = 0.65 is set.

For each particle P;, let S; C R? denote a corresponding volume-equivalent placeholder
sphere, ie., v3(P;) = v3(5;). To initialize the packing, uniformly distributed points
Ay ..., c, €W are used as initial centers of the placeholder spheres.

The spheres are then packed, under periodic boundary conditions, minimizing their
mutual overlap within W utilizing a force-biased algorithm [36, 37]. That is, the spheres
are iteratively moved according to repulsive forces proportional to their overlap with
neighboring spheres. Consequently, an overlap-free sphere remains at its position unless
it is displaced in subsequent iterations by interactions with moving neighbors.

This procedure yields new center points cq,...,c, € W, resulting in a packed place-
holder sphere system U™, (S; + ¢;), where S; + ¢; = {s + ¢; for all s € S;}. An exemplary

cross section of a packed sphere system is shown in Figure 1(a).

o
oo

L

Figure 1: Placeholder spheres packed with minimal overlap within the sampling window
(a). Subsequently, these spheres are replaced by volume-equivalent particles by aligning
their barycenters with the centers of the respective sphere (b). Each individual sphere
and its corresponding particle are shown in false colors for visualization purposes, i.e., the
colors have no physical meaning.

Subsequently, the placeholder spheres Si,...,.5, are replaced by the corresponding

virtual pristine NMC particles Py, ..., P,, which are positioned at their respective center



194

195

196

197

198

199

200

201

202

203

204

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

points cy,...,c, € W. Formally, this replacement yields a particle system, given by
Pn - U?:l(-Pz + Ci)a (1)

which will hereafter be referred to as the particle phase. Further, the particle phase can
be considered as a virtual cathode, consisting of pristine NMC particles. A visualization
of the particle phase is presented in Figure 1(b).

Note that this replacement procedure may introduce new overlaps or remove existing
ones, thereby decreasing or increasing the actual active material volume fraction ¢, which

is defined as

v3(Py)
(W)’

e(Pn) =

The resulting particle phase is rejected whenever ¢ falls below a predefined threshold
Emin € [0, Emax) OF exceeds the maximum allowed active material fraction ep.y. In this
work e, = 0.62, which ensures that the resulting active material volume fraction satisfies
0.62 < e <0.65 = eax. In the case of rejection, the modeling procedure is repeated with
new particle realizations P/, Py, .... This simulation strategy is well-known in literature
as “rejection sampling” or “acceptance-rejection method” [38].

Recall that the particles are packed using periodic boundary conditions. However,
from now on, we consider the particle system under non-periodic boundary conditions.
Consequently, only the representative in W of each particle is considered, and any particle
that is split into multiple disconnected components is relabeled so that each connected
component of P, receives a unique label. This results in n > n labeled connected com-
ponents. Note that this also influences the number and position of the barycenters of the
particles. For simplicity, each connected component is hereafter referred to as a “parti-

79

cle”, and the notation n is used instead of n. Accordingly, the particle phase is denoted

by P, = U (P; + ¢;) with particles Py, ..., P, centered at ¢y, ..., ¢c,.

2.2 Recycled NMC111 particles

As a basis for the RP fragment model, a cathode consisting of recycled particles was
manufactured experimentally.

To obtain recycled particle (RP) fragments, a commercial large-format pouch cell with
a capacity of 64 Ah consisting of a NMC111 cathode, a graphite anode, and a carbonate
electrolyte was cycled to EOL. The cell was charged and discharged at 30° with a 1.8 C
rate to 80% depth of discharge and a 50% duty cycle, as described in [16]. After cycling,
the cathode sheets were removed from the spent pouch cell and cut into small pieces.
The NMC particles were removed from the current collector utilizing a solution process

at Oak Ridge National Lab, similar to the approach described in [39], employing a 0.1
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M KH,PO, buffer solution with an added volume of Triton™ X-100 surfactant. The
recovered particles were then dried and stored as powder.

Subsequently, a cathode was manufactured from these RP fragments, containing 4 wt%
conductive carbon, 4 wt% PVDF binder, and 92 wt% RP fragments serving as cathode
active material. The slurry was dried and calendared to a coating thickness of 50 nm,
yielding a loading of approximately 1.5 mAh/cm?.

To asses the microstructure of this cathode X-ray nano-C'T images were acquired using
a Zeiss Ultra 810 system. A binning factor of 2 was applied to achieve a voxel size of 128
nm, matching the resolution used for the generation of the pristine particles in Section 2.1.
The radiographs for the CT reconstructions were obtained in phase contrast mode using
the large-field-of-view setting, where the field of view was 64pm x 64 pm. Figure 2(a)
shows a cross-section of the resulting 3D image, where the RP fragments appear brighter,
while the pore space is darker. As with pristine NMC particles, the RP fragments retain a
polycrystalline structure. However, they are generally not spherical, and some fragments
have broken down into individual crystals.

Note that the image data of the RP fragment phase, shown in Figure 2(a), does
not allow for a straight-forward 3D segmentation of individual RP fragments, due to
insufficient resolution. Consequently, a subsequent virtual packing of fragments, similar
to the procedure described in Section 2.1 for pristine particles, is not feasible. Moreover, a
phase-wise segmentation based on simple (local) thresholding does not yield satisfactory
results because of the noise present in the image data. To overcome these limitations, a
different approach based on a marked tessellation is utilized to model the RP fragment
phase. Instead of identifying individual particles, a two-phase representation is employed,
distinguishing only between the pore space and the RP fragment phase. For this purpose,
the gray scale image data is first approximated by a marked Voronoi tessellation-based
representation [40]. A Voronoi tessellation is a low-parametric mathematical concept
that is widely used to effectively represent polycrystalline materials and, consequently,
the inner grain architecture of NMC particles [31, 41-43]. To mimic a grayscale image,
each Voronoi cell is assigned a scalar value representing its grayscale level. To obtain a
phase-wise segmentation, the marks of the tessellation are thresholded such that certain
cells represent RP fragments, while the remaining cells correspond to the pore space,
resulting in a two-phase representation of the virtual cathode. This approach reduces
both the noise in the image data as well as the dimensionality and complexity of the
measured microstructure.

Formally, the modeling procedure is defined as follows. The marked Voronoi tes-
sellation is given by a set of tuples 7 = {(s;,t;): ¢ = 1,...,m}, where each tuple
(si,t;) € R® x [0,1] consists of a so-called seed point s; and an associated mark ¢;. The

set T induces a partition of the observation window W into pairwise internally disjoint
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sets C1, ..., C, C R3, often referred to as cells, where
Ci={zeW:|lz—s|<|r—s;|forall j=1,...,m}.

Thereby, | - [: R? — [0,00) denotes the Euclidean norm. Note that the cells C; for
t = 1,...,m exhibit piecewise planar boundaries, a frequently observed characteristic of
NMC grains [42]. Furthermore, the marked tessellation 7 implicitly assigns the mark ¢;
to each point within C;. To generate an adequate representation of a cathode consisting
of RP fragments, the parameters (s;, ;) for i = 1,...,m are fitted to the image data.

To do so, the seed points and marks are optimized such that the resulting tessellation
resembles a 3D gray scale image of a cathode Z: {1,...,250}3 — [0,1]. Thereby, a
cell C; of the tessellation contains voxels of relatively homogeneous gray scale values

Z(x). The corresponding mark ¢; can be interpreted as the representative gray scale

value of the voxels z € C; N {1,...,250}3. Thereby, the optimization aims to minimize
the discrepancy between ¢; and the mean grayscale value of all voxels in C;N{1,...,250}>
foralle=1,...,m

Mathematically, the minimization problem states

* = argmin L exp(= sil) x 2
T =arg Z (ZZJ Lexp( |ZE—8]|) — Z( )) ) (2)

TET  e(1,..25003 \i=1

where T denotes the space of tessellations.

Intuitively speaking, the expression within the outer parenthesis quantifies the discrep-
ancy between the mark ¢; at a voxel x € C;N{1,...,250}3 and its actual gray scale value
Z(x), whereas the outer sum accumulates these discrepancies over the entire voxel grid.
The exponential terms in the fraction ensure differentiability, allowing the use of gradi-
ent descent-based optimization schemes to solve the minimization problem. For further
details on Eq. (2), the reader is referred to [30, 44].

For this purpose, initially, m = 60000 tuples (s;,t;) are sampled uniformly and inde-
pendently within the domain W x [0, 1], forming the initial marked tessellation 7. The
minimization problem in Eq. (2) is then numerically solved using the Adam optimizer [45]
with a learning rate of 0.3. The number of cells, m = 60000, was chosen heuristically
to balance the preservation of granular features observed in the CT image Z with a
relatively low cell/ parameter count. This choice allows for substantial dimensionality
reduction (reducing the number of parameters by a factor of 60000 - 4/250% ~ 0.015),
improves computational efficiency, and effectively suppresses noise.

Figure 2(b) shows an exemplary cross section of the fitted tessellation 7*, where each
displayed voxel is colored by its corresponding mark. The tessellation-based parametric
representation inherently suppresses noise in the raw data by grouping spatially close

voxels with similar gray scale values into homogeneous regions, i.e., cells. Note that there
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is a high similarity between this procedure and k-means clustering [46] and super-pixel
clustering [47].

To obtain a two-phase representation distinguishing between the RP fragment phase
and pore space, a threshold ¢ € [0,1] is applied to the marks t¢q,...,t, to determine
whether the corresponding cells C4,...,C,, belong to the RP fragment phase. More
precisely, the RP fragment phase £(¢t) C W based on the fitted marked tessellation 7* is
given by

e =J¢;
iel
where [ = {i: t; > tfori=1,...,m}.

Note that £(t) preserves key structural features of both the tessellation and the original
3D grayscale image, such as the granular structure and the piecewise-planar boundaries.
For a suitable ¢ € [0, 1], £(t) can be considered a virtual cathode consisting of RP frag-
ments. Moreover, this unsupervised approach does not require manual segmentation and
avoids several limitations of conventional segmentation techniques. For example, classical
thresholding methods [48] are highly sensitive to image noise and may result in pores
in RP fragments that contradict model assumptions. More advanced thresholding ap-
proaches attempt to address this problem through image smoothing, e.g., by applying
Gaussian kernels. However, they tend to produce overly rounded phase interfaces [49].
Similar drawbacks are observed for black-box methods such as neural network- or ran-
dom forest—based segmentation techniques [50, 51], which additionally require manually

annotated training data.

Figure 2: Modeling of RP fragment phase. (a) Cross-section of measured gray scale image.
(b) Cross-section of corresponding fitted parametric gray scale image. (c) Visualization of
a cross-section of £(t) for a t € [0, 1] corresponding to (b). Note for comparison purposes
a grid was added to each figure.
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2.3 Virtual Cathode Generation

The virtual cathode microstructures considered in the present paper are generated by a
systematic combination of the pristine particle phase, derived by packing pristine particles
(see Section 2.1), and the tessellation-based representation of the RP fragment phase (see
Section 2.2). To achieve this, pristine NMC particles are iteratively removed and replaced
by RP fragments according to different structuring scenarios. In each iteration, the local
active material volume fraction is kept constant, while the mixing ratio of pristine particles
and RP fragments is systematically varied, thereby ensuring comparability among the
evolving microstructures.

This procedure can be mathematically described as follows. Let Py,...,P, C R?
be a sequence of pristine particles, c¢1,...,c, € W the corresponding positions of their
barycenters, and P, the pristine particle phase as introduced in Eq. (1). To generate
cathodes with varying ratios of pristine particles and RP fragments, a sequence of pristine
particle phases with a successively reduced number of pristine particles are defined. To
uphold an overall constant volume fraction of the active material phase, any loss of active
material by the removal of pristine particles is compensated by filling the microstructure
with RP fragments.

For that, let Py, ..., P, be a sequence of pristine particle phases, given by Py = () and
P; = ngl(P(i) + cq)) for j = 1,...,n, where P denotes the i-th particle with respect

to some ordering, and c(; the respective barycenter. Note that the particle phases are

nested, i.e., Py C ... C P,. To obtain differently structured active material phases, let
the particles Py, ..., P, be ordered according to one of the following scenarios:
(i) Uniform: The sequence Pp),..., Py is derived by a random permutation of the

particles P,..., P,. Consequently, the obtained particle phases Py, ..., P,_1 can be con-
sidered as spatially homogeneous thinning of P,,.
(ii) Gradient: To generate particle phases exhibiting a structural gradient, let the par-
ticles Py, ..., Pyy with barycenters ¢y = (zqa), Yy, 2(1))s -+ > Cm) = (Zm)s Yn)» Z(n)) be
ordered such that yi) < ... < y(,), where the y-coordinate corresponds to the direction
of charge transport. In this case, P; is obtained by only considering the j particles whose
centers have the smallest y-coordinates. This strategy results in a vertical gradient along
the cathode thickness: the upper region of the sampling window W becomes increasingly
depleted of pristine particles with increasing j, while the lower region contains only pris-
tine particles with a packing density similar to P,,. Note that the transition between these
regions is gradual, as particles are removed in their entirety rather than partially.

To keep the active material volume fraction constant, RP fragments have to be added
to P;. Recall Section 2.2, where the RP fragment phase £(t) was introduced, depending on
some threshold ¢ € [0, 1], which controls the number of RP fragments in £(¢) and hence its

volume fraction €(€(t)). To ensure that all observed differences between different virtual

11
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cathodes rely only on the differently structured active material and not on local variations
of active material volume fraction, the local volume fraction is kept constant. For that,
let the observation window W be partitioned into ten horizontal layers perpendicular to

the y-direction, defined as
Wy ={(z,y,2) e W: (i—1)-25<y<i-25} fori=1,...,10.

Further, let &(t) C £(t) denote the i-th layer of the RP phase £(t), containing those RP
fragments Cy, k = 1,...,m, whose seed point is located in layer W;. Formally, &;(t) is
given by

(C/‘Z(t) = U{Ck tr, >t and s, € VVZ} C g(t),

k=1

where (sg,t;) denotes the tuple of seed point s and mark ¢, inducing the Voronoi cell
Ch.

Then, the (combined) active material phases are defined as
10
B;(() = P; U (U gi(w)) for j=0,...,n,
i=1

with the local threshold vector ¢ = (¢(V ... ¢19) € [0,1]*. Since P; is fixed, the active
material volume fraction of B;(¢) depends solely on ¢. To ensure that all active material
phases B;(¢;) for j =0, ..., n exhibit a layer-wise similar active material volume fraction,

the threshold ¢; is determined as the minimizer

10

(; = argmin » _|e(P, NW;) — (B;(4;) N W)
=1

£€(0,1]10

: (3)

i.e., as vector of thresholds that minimizes the deviation in layer-wise volume fractions
between B; and the reference particle phase P, in which no particles are removed. Note
that for 7 = n it holds 0, = 0, where 0 € R denotes the ten-dimensional zero-vector. In
this case P, = B,({,) and consequently &;(P,) —&;(Bn(£,)) = 0 for all layers i = 1,. .., 10.

Due to computational efficiency, the minimization problem stated in Eq. (3) was solved
utilizing a greedy optimization scheme. More precisely, to obtain the threshold vector
gj _ (g(l) §(10)

PRPTRN
previously computed Ky ) as fixed and solving solving the layer-wise minimization problem

), each component égl) was determined iteratively by assuming the

égi) = argmin |e(P, N W;) — e(B;(0) N W;)],

£€]0,1]

for i,/ =1,...,10 and i < i. Note that the greedy approach does not necessarily result
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in the optimal solution; however, it provides substantial computational benefits in time
and memory.

The whole procedure results in a sequence of active material phases By (50), ce Bn(@n)
exhibiting a decreasing proportion of RP fragments compared to pristine particles, how-
ever showing layer-wise constant active material fractions. The portion of RP fragments

compared to pristine particles is quantified by the recycling fractions n; € [0, 1], given by

By construction, it holds n, = 0 and ny = 1, i.e., Bn(gn) contains only pristine particles,
while By(fy) consists exclusively of RP fragments.

In Section 3, the influence of the two structuring scenarios, “uniform” and “gradient”,
and different recycling fractions 7 on cathode performance-related descriptors is investi-
gated. For this purpose, the active material phase A, with a specific recycling fraction

~

n € [0,1] is defined as A,) = B;+({;+), where the index j* is chosen as

j* = argmin |1 — ;.
5€10,...,n}
This ensures that the selected active material phase A, represents the structure whose
recycling fraction n; most closely matches the desired value 7.
Exemplary cross sections of active material phases A,, generated using both structur-
ing strategies and corresponding to recycling fractions n € {0,0.2,...,0.8, 1} are presented

in Figure 3.

2.4 Geometric Descriptors and Properties of Microstructures

To analyze the effects of differently structured active material an extensive microstruc-
tural characterization of the virtual two-phase cathodes was performed, using well-known
geometric descriptors and effective properties [19, 23, 52-54]. These descriptors quantify
the geometry of an active material phase A C W and corresponding pore space A C W,
given by the complement of the active material phase. In the following, all descriptors
are defined for some phase A € {A, A°}. In this work, we focus on descriptors that are

known to influence the performances of battery electrodes [55, 56].
Specific surface area: A basic geometric descriptor for two-phase materials, besides

the already considered volume fraction £(A) of a phase A, is the specific surface area o.

This descriptor quantifies the interface area between A and A° per unit volume, i.e., o0(A)
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is given by

Ho(DA\ OW)

U(A):W»

where 0 denotes the boundary of a set, v5(1V) the volume of the observation window, and
Hs(-) the 2D Hausdorff measure. Since the interface between A and A€ is quantified, it
holds o(A) = 0(A). Applied to an electrode battery, it is used to scale the current density
of the charge transfer reaction that occurs at the interface between the electrolyte and the

active material. To compute a numerical estimation of o, we apply the convolution-based
method of [57].

] Pristine NMC I Recycled NMC

Uniform

n=0.6 n=0.8

n=1

Gradient

n=0 n=0.4

Figure 3: Exemplary cross sections of virtual cathodes A, generated according to the
“uniform” (top row) and “gradient” (bottom row) scenario utilizing a fixed pristine parti-
cle phase P,,. The columns show increasing recycling fractions 7. The pore space, pristine
phase and RP fragment phases are represented in black, orange and blue, respectively.
By construction both rows coincide for Ay and A;.

Tortuosity factor: The tortuosity factor 7. is a commonly used measure to describe
the diffusivity of porous media [58-60]. It is a key parameter to improve battery per-
formances, especially for fast charging [61]. In this work, it is calculated by using the
open-source software TauFactor [23]. TauFactor solves Laplace’s equation for steady-state
diffusion using a finite difference numerical scheme with Dirichlet-Dirichlet boundary con-
ditions. Because of this, the tortuosity factors calculated here are slightly biased toward
lower values, as homogenization calculations are impacted by the choice of the boundary
conditions (this dependence eventually vanishes for large enough domains) [62, 63]. The

tortuosity factor is given by

DO : 8(14.)

Tfac (A) = D R

€ [1,00)
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with Deg > 0 being the effective diffusivity in the transport direction (vertical direction
in Figure 3), Dy > 0 is the bulk diffusivity of the considered phase and ¢ € (0,1) the
volume fraction of the considered phase. In this work, the bulk conductivity is set to 1 so
that the analysis is agnostic with the material property (i.e., Deg is a relative metric). In
such a case Dqg € [0,1]. Note that while 7¢,. depends on the axis along which transport
is considered, it does not take the transport direction into account, unlike the geodesic
tortuosity introduced later. A value of 74, = 1 corresponds to the ideal case of straight,
unobstructed diffusion paths. Larger values of ¢, indicate increasingly tortuous transport
paths, i.e., diffusing electrons or ions need to travel longer effective distances compared
to diffusion in solid bulk medium. It is important to note that almost all transport of
ions is present in the pore phase, however to give a comprehensive analysis of the virtual
cathodes, 7¢,. is determined for both phases A € {A, A°}.

While the tortuosity factor quantifies the penalty induced by the heterogeneous mi-
crostructure on the effective diffusion, it does not provide insights on the geometric fea-
tures responsible for its particular value. Tortuosity factor is an all-in-one parameter that
encompasses the contributions of several features of the pore domain. In addition to the
volume available for the diffusion itself (i.e., the porosity), two other metrics quantifying
geometrically the sinuosity and the constriction of the diffusion paths have been intro-
duced in the literature [21, 64] in an attempt to deconvolute their respective contributions

to the effective diffusivity. Both are defined in the following.

Bruggeman exponent: An additional transport-related descriptor, directly derived
from the tortuosity factor 7. and the volume fraction e, is the so called Bruggeman

exponent «, which is given by

_ 10g<€<A)/TfaC(A))
=)

Note that this descriptor can be directly obtained from the previously introduced descrip-
tors, however it provides a more accessible interpretation. A value of a = 1.5 corresponds
to a medium composed of spherical, non-touching particles within A, whereas increasing

values of « indicate less regular and more complex morphologies [65].

Geodesic tortuosity: The mean geodesic tortuosity 7., of a phase A quantifies the
deviation of shortest paths within A from straight lines [53]. The tortuosity of a path
is defined as the ratio of the actual path length to the straight-line distance between its
endpoints. By definition, this ratio is always at least 1, with higher values indicating
more tortuous paths. In this paper, the mean geodesic tortuosity 74, is computed as the
average tortuosity of all shortest paths starting on a designated plane (e.g., the top or

bottom) of the cathode and ending at the opposite side.

15



456

457

458

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

To take structural gradients into account, 7, is calculated separately for both direc-
tions (top-to-bottom and bottom-to-top). For a given direction, the shortest path from
each integer-valued position of the phase on the starting plane to the target plane of the
cathode is determined using Dijkstra’s algorithm [66]. Starting positions that are not
connected to the opposite side are excluded from the computation of Ty, i.€., Tgeo reflects
only the tortuosity and not the number of paths. Each path length is then normalized by
the straight-line distance between the two opposing planes. The mean geodesic tortuosity
Tgeo 18 defined as the average of these normalized path lengths.

Analogous to the tortuosity factor 7¢,., the mean geodesic tortuosity 74, is determined
for both phases A € {A, A}.

Maximum inscribed radius: To characterize the typical size of a phase, the maximum
inscribed radius ry.x is utilized. This descriptor represents the largest radius of spheres
that can cover at least 50% of the volume fraction of the considered phase, with the spheres
being fully contained within that phase. This metric is derived from the calculation of the

so-called continuum particle- or phase-size distribution [67]. More precisely, for a phase
ACW let

O,(A) ={x € A: B(z,r) N A° = 0},

denote the set of centers © € A where balls B(x,r) of radius > 0 can be placed while
not intersecting the other phase A°. The corresponding set, which is coverable with balls

of radius r is obtained by dilating O,(A) with a ball of radius r, i.e.,
O,.(A)® B(0,r) ={z € W: thereisay € O,.(A) with x € B(y,r)},

where @ denotes the dilation operator. Then the maximum inscribed radius 7., is given
by

Fmax(A) = sup{r > 0: £(O,(A) ® B(0,r)) > 0.5}.

The maximum inscribed radius 7.« and the subsequently introduced minimum intrusion

radius 7, are numerically estimated utilizing the algorithm provided in [68].

Minimum intrusion radius: The minimum intrusion radius r.;, quantifies the effect
of narrow constrictions or bottlenecks in a phase along a given direction. It is defined as the
largest radius of balls such that at least 50% of the phase volume can be covered by balls
intruded from one side. More precisely, for an intrusion plane IT = [0, 250] x {y} x [0, 250]
(with y = 0 for the bottom or y = 250 for the top of the observation window W), consider
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the set of centers connected to I, i.e.,
Qr(AII) = {z € O,(A): there exists a path in O,(A) from z to II},

for an r > 0. The corresponding set of points coverable with the intrusion of balls with

radius 7 from I is derived by dilation of @,.(A,II). Thus, ry, is given by
Pmin(A, 1) = sup{r > 0: £((Q,(A,1I) ® B(0,r)) N W) > 0.5}.

By construction, ryi, (A, 1) < rpa(A).

In applications due to computational efficiency, O, and @), are evaluated only on an

integer-valued grid.

Constrictivity: Constrictivity aims at quantifying the impact of section area variation
along the diffusion paths on the effective diffusivity. Note that the constrictivity is a
challenging metric to calculate, since the lack of a unique definition of large (bulge) and
small (bottleneck) regions in a continuous domain. Because of this, several definitions
have been provided in the literature [21, 64]. In this work, the constrictivity S(A) =
% € (0,1] of a phase A C W and an intrusion plane II C W is defined as the
squared ratio between the minimum intrusion radius 7.,;, and the maximum inscribed
radius ryayx, providing a normalized measure of how restrictive the narrowest bottlenecks
are relative to the overall phase size [54]. A value of 1 corresponds to no bottleneck effects

at all, while a value close to 0 corresponds to extreme bottleneck effects [58].

Chord length: Another insightful geometric characteristic for transport is the chord
length distribution. A chord is a line segment lying entirely within a given phase A that
cannot be extended in either direction without crossing into the complementary phase.
The chord length distribution captures the spatial extent of the phase. In particular,
longer chords correlate positively with favorable transport properties.

Since the present paper considers transport only in the vertical direction, only ver-
tically aligned chords are investigated. In practice, due to computational efficiency,
the chord length distribution is estimated through discretization. For this purpose, let
c = {(x,y,2),(z,y + 1,2),...,(x,¢/,2)} € A with z,y,v',z € {1,...,250}, v < ¢/,
(x,y — 1,2),(x,y + 1,2) ¢ A, be a discretized chord. Then, its length ¢ is given by
l(c) =y —y+ 1. The empirical probability distribution of these chord lengths then
serves as an estimator for the chord length distribution. Considering the length-weighted
distribution of these chords gives the chord length distribution; i.e., a chord of length ¢(c)
is counted ¢(c) times, thereby accounting for the stronger influence of longer chords on

geometry and transport. For a formal definition, refer to [40, 69].
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3 Results and Discussion

In this section, the transport-related descriptors and effective properties defined in Sec-
tion 2.4 are analyzed for differently structured cathodes. Due to the limited field of view of
the experimentally imaged RP cathode, only one marked tessellation 7 of reasonable size
could be fitted. The RP fragment phase and consequently 7, exhibit minor anisotropy
with respect to the transport direction (y-direction), caused by manufacturing, particu-
larly drying and calendaring. To avoid transferring this anisotropy onto the geometric
and effective descriptors, we additionally consider virtual cathodes, based on 7, which
is derived by reflecting 7 at the x-z plane. Complementarily, ten pristine particle phases
PO P9 were generated. For both structuring scenarios, “uniform” and “gradient”,
20 realizations per recycling fraction n € {0,0,05,0.1,0.15,0.2,0.3,...,0.9,1} were ob-
tained by combining the two RP fragment phases 7,7’ with the ten pristine particle
phases P, ... P10,

Note that low recycling fractions 7 are of particular relevance in view of the recycling
quotas for Li-ion batteries planned by the European Union, which require at least 6 %
recycled lithium, 6 % recycled nickel, and 16 % recycled cobalt in new batteries starting
in 2031 [8]. Therefore, a finer subdivision of 7 in the low range is applied, while a larger
step size is used for higher recycling fractions. However, the stochastic 3D microstructure
model, described in Sections 2.1-2.3 is capable of generating virtual cathodes for any
recycling fraction 7 € [0, 1].

In Figure 4, the deviation of the volume fractions of the pristine particle phase,
RP fragment phase, and pore space is presented. The box plots indicate a low variance
across the 20 realizations for each recycling fraction n. Further, the constant pore volume
fraction implicitly confirms the constant total active material fraction. In addition, the
volume fraction of pristine particles and RP fragments exhibits converse linear behavior,

summing to 1 — e(A,) for all .

1.0
- gradient: pristine uniform: pristine
— —— gradient: RP --=uniform: RP
w 0.75 . ]
o —— gradient: pore -=-=-- uniform: pore
Qo ==
o= =
e} =
8 05 ° %% L= °
“s:ﬁ g———ﬁ'
g 025 ° -—
—_— °
= =
g 0 L] -
0 0.2 0.4 0.6 0.8 1.0

recycling fraction n

Figure 4: Box plots representing the distributions of the volume fractions of the pristine
particle phase (orange), RP fragment phase (blue) and pore space (black). The “gradient”
scenario is indicated utilizing solid lines and the “uniform” scenario with dashed lines
(dashed and solid lines are nearly overlapping).
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The box plots in Figure 5 show an increasing specific surface area for rising recycling
fractions n for both structuring scenarios. This trend was expected, as the specific surface
area is inversely correlated with the particle size [56]. Moreover, cathodes generated
utilizing the “uniform” scenario consequently exhibit larger specific surface areas. This
observation can be attributed to the fact that in the “gradient” scenario, the iterative
replacement of pristine particles by RP fragments occurs predominantly layer by layer.
As a result, many of the inserted RP fragments come into contact with others, which
reduces the overall specific surface area. In contrast, the “uniform” scenario introduces
RP fragments more evenly throughout the entire observation window W, leading to a
more homogeneous distribution and fewer inter-particle contacts, thereby increasing the

(specific) surface area.

1.50 —— gradient
= uniform
o
o
& i 1.25
5\
n.,
21.00
o ©
.- d
$ ¢ 0.75
2
0.50

0.4 0.6 0.8 1
recycling fraction 7

Figure 5: Box plots indicating the distribution of specific surface area for cathodes gener-
ated using both structuring scenarios, namely “gradient” (blue) and “uniform” (orange).
Note that the breakage of the x-axis at n = 0.25 indicates differently scales of the intervals
[0,0.25) and (0.25,1].

Figure 6 shows the tortuosity factor as a function of the recycling fraction n. For
transport within the active material phase (Figure 6(a)), the tortuosity factor decreases
monotonically with increasing 7, indicating reduced diffusivity. Note that values corre-
sponding to the “uniform” scenario are generally smaller than those of the “gradient”
scenario.

In contrast, for transport within the pore space (Figure 6(b)), the tortuosity factor
increases with increasing 7, where values corresponding to the “uniform” scenario are
larger than those of the “gradient” scenario.

It is important to note that the tortuosity factor of the active material phase decreases
rapidly for n € [0,0.2], compared to n € [0.2,1]. This implies that a low recycling fraction
within the cathode can significantly increase the effective transport properties.

Complementarily, for low 7 the tortuosity factor in pore space increases only slightly,
indicating a moderate deterioration of tortuosity factor properties. The tortuosity factor

in the pore space increases with the recycling fraction (Figure 6(b)) at constant porosity
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(Figure 4), which indicates a shift in the pore topology domain. That is, a transition from
roughly spherical particles to a less ideal morphology is expected since the RP fragments
are not spherical but polyhedral due to the underlying Voronoi tessellation. This shape
transition is also confirmed by the Bruggeman exponent of the pore space, which is ~ 1.5

for n = 0, and increases for increasing recycling fractions, see Figure 7.

5
g —— gradient
& uniform
S 4
Qr—
=
Q
Lg._.
= 3
=
‘%8
o)
=
s 2
S)
=

0 0.1 0.2 0.4 0.6 0.8 1
recycling fraction n

B
o

(b)

—— gradient
uniform

]

w
o

N
o

tortuosity factor 7y,
in A€ [
N
[O,}

=
(5}

0.4 0.6 0.8 1
recycling fraction n

Figure 6: Box plots showing the change of the tortuosity factor for increasing recycling
fraction 7, where (a) indicates transport within the active material phase and (b) within
the pore space. Results derived from the “gradient” scenario are indicated blue, whereas
orange boxes represent the “uniform” scenario. The dashed lines indicate the theoretical
values for a cathodes consisting of two well-separated layers.

The very high tortuosity factors calculated for large values of 7, are slightly above the
values calculated or measured for real NMC cathodes [21, 70]. This indicates that the
voxel-based and tessellation-based representations of the RP phase somewhat underesti-
mate the diffusivity in the pore space compared to experiments.

Additionally, in Figure 6, the tortuosity factor of a cathode, consisting of two well-
separated layers with a recycling fraction n € [0, 1] is indicated by a dashed line. Formally,
it is given by

7_layered(n,‘AO"Al) _

fac 11—y

Tfac (Al) + Tfac (AO)

where Tg..(Ap), Trac (A1) denotes the tortuosity factor of a cathode made solely out of
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pristine particles and RP, respectively [71]. This theoretical line shows higher tortuosity
factor values than those for both scenarios in the active material phase A. For transport
in pore space A€ the tortuosity factor 7, is slightly larger than the theoretical value of
the layered cathode. This indicates that the influence of the interface between the two

layers is not negligible.
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Figure 7: Boxplots indicating the distribution of the Bruggeman exponent for increasing
recycling fractions n within the pore space. Results derived from the “gradient” scenario
are indicated blue, whereas orange boxes represent the “uniform” scenario.

The mean geodesic tortuosity was determined within the active material phase
in both the top-to-bottom direction and the bottom-to-top direction, see Figure 8(a).
For both structuring scenarios, “uniform” and “gradient”, the mean geodesic tortuosity
decreases with increasing recycling fraction 7. Indeed, as the particles get smaller, mov-
ing from one side to the other within the solid domain requires less direction changes as
particles are closer to each other. However, tortuosity values corresponding to the “uni-
form” scenario are consistently smaller than those of the “gradient” scenario. While the
“uniform” scenario exhibits directional symmetry, the “gradient” scenario reveals larger
values for the top-to-bottom direction, corresponding to transport originating in the RP
fragment-rich layer.

This asymmetry can be explained by the large difference in size between the pristine
particles and RP fragments. There are fewer transport paths starting at the pristine-
rich layer (bottom) to the RP fragment-rich layer (top) than vise versa. This effect is
illustrated in Figure 9.

Additionally, pores tend to be larger between large pristine particles than between
small RP fragments, as confirmed by the chord length distribution in the pore space, as
shown in Figure 13(b). This implies that at the transition region between the layers,
each pristine particle is more likely to be connected to a RP fragment than vice versa.
Consequently, transport paths from the RP fragment layer to the pristine particle layer
exhibit larger deviations than those in the opposite direction.

Additionally, the mean geodesic tortuosity was determined within the pore space in
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the top-to-bottom direction as well as the bottom-to-top direction (Figure 8(b)). Here,
an increasing recycling fraction n results in longer paths for both structuring strategies,
since the initially unobstructed pore space becomes increasingly filled with obstacles (RP
fragments). Again, in the “uniform” scenario there is a high similarity between both
directions. However, these tortuosities are clearly smaller than the ones corresponding to
the “gradient” scenario. Particularly, tortuosities corresponding to the “gradient” scenario
in the bottom-to-top direction exhibit the highest values. Note that the mean geodesic
tortuosity accounts only for the shortest paths from the starting plane to the target plane.
It provides no information about the number of such paths. The low geodesic tortuosity
values are in agreement with those determined geometrically in previous work for real
electrodes [21].
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Figure 8: Box plots showing the distribution of mean geodesic tortuosity for various recy-
cling fractions 7 in the active material phase (a) and pore space (b). Blue and cyan boxes
correspond to the “gradient” scenario, while red and orange boxes represent the “uni-
form” scenario. The arrows indicate the direction of transport: upward-pointing arrows
correspond bottom-to-top direction, and downward-pointing arrows to top-to-bottom di-
rection.
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Figure 9: Sketch of 2D geodesic tortuosity asymmetry illustrated for the active material
phase of the “gradient” scenario. Purple solid lines represent a selection of the shortest
paths from top to bottom. Red dashed lines represent all shortest paths from bottom to
top.

The maximum inscribed radius r,.,, determined in the active material phase,
decreases with increasing recycling fraction 7, as shown in Figure 10(a). A rapid drop is
observable between 1 = 0.4 and n = 0.5. Since ry.x describes the maximum radius of
spheres that can cover at least 50% of the active material phase, the decline is expected.
At n = 0.5 half of the active materials consists of RP fragments, which can only be
covered by significantly smaller spheres. Similarly, 7., determined within the pore space
also decreases for increasing recycling fractions of both structuring scenarios, see Figure 10
(b). However, the decrease is more pronounced for the “uniform” scenario. In this case,
RP fragments are more likely to be inserted into large pores, whereas in the “gradient”
scenario, RP fragments are introduced progressively from top to bottom, resulting in less
disruption to large pores at lower layers.

The influence of different recycling fractions 7 on the minimum intrusion radius
Tmin 1S presented in Figure 11. As expected, values of ry;, corresponding to the “uni-
form” scenario, determined in both transport directions, show a similar decrease for both
phases, active material (Figure 11(a)) and pore space (Figure 11(b)). In contrast, for the
“oradient” scenario, the top-to-bottom direction exhibits for both phases consequently
smaller values compared to the bottom-to-top direction. This effect can be attributed to
the layered structure of the “gradient” cathode, where for low recycling fractions only the
top layers of the cathode are altered, e.g., pristine particles are removed and RP fragments
are introduced. In particular, neither active material nor pore space at the bottom of the
cathode is modified. Consequently, the intrusion of spheres into both the active material
and pore space from the bottom is less affected compared to the “uniform” scenario, in

which modifications occur throughout the entire volume.
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Figure 10: Box plots indicating the distribution of r,,,, depending on the recycling fraction
n within the active material phase (a) and pore space (b). Blue boxes indicate the
“ogradient” scenario, whereas orange ones corresponds to the “uniform” scenario.

The constrictivity determined in the active material phase shows a similar behavior
for cathodes generated using both the “uniform” and “gradient” scenarios, as well as
for both transport directions, see Figure 12(a). For recycling fractions n € [0,0.4], the
constrictivity remains around 0.05, indicating very strong bottleneck effects. This can be
attributed to the fact that in this range more than 50% of the active material volume is
present in pristine NMC particles.

Although these particles exhibit a large diameter, their near-spherical shape leads
to only comparatively small contact areas with each other, which results in pronounced
bottleneck effects. When the fraction of added RP fragment exceeds 50%, meaning that
more than half of the active material phase is present in the fine-granular structure of the
RP fragment phase, the bottleneck effects are reduced. This reduction arises from the
absence of regions in the RP fragment phase in which balls with a large radius 7. fit.

In contrast, the constrictivity determined within the pore space shows pronounced dif-

4 ¢

ferences between the “uniform” and “gradient” scenarios, see Figure 12(b). For the “uni-
form” cathodes, no clear directional trends are visible. In both directions, a monotonous
decrease in bottleneck effects can be observed, which is associated with the reduction
of extremely large pores. In the “gradient” cathode, however, much stronger bottleneck

effects occur from top to bottom compared to the “uniform” case, as long as the fraction
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of recycled material remains below 50%. This effect can be explained by the presence of
large pores, that account for more than 50% of the total pore volume, in the lower half of
the cathode. These pores are separated from the top of the cathode by a fine porous RP
fragment layer, which forms the bottleneck towards large pores. For bottleneck effects in
the opposite direction, i.e., from bottom to top, the situation differs: here, no fine porous
barrier has to be traversed, and thus, no significant bottleneck effects arise. Moreover,
since no scattered small RP fragments are present in the large pores between pristine
particles, the bottleneck effects are even weaker than in the “uniform” scenario. This

holds true even for small fractions of recycled material.
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Figure 11: Box plots showing the distribution of 7, within active material (a) and pore
space (b). Blue and cyan boxes represent the “gradient” scenario, while red and orange
boxes correspond to the “uniform” scenario.

The chord length distribution was determined for both the active material (Fig-
ure 13(a)) and the pore space (Figure 13(b)). In both phases, the chord length distri-
bution shows similar behavior for the “uniform” and the “gradient” scenarios, whereas
chords in the pore space are on average slightly smaller for the uniform scenario than for

the gradient scenario.
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Figure 12: Box plots indication the distribution of constrictivity values for the “gradient”
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m. Constrictivity values determined in the active material phase are presented in (a),
while (b) considers the pore space.
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Figure 13: Violin plots visualizing the chord length distribution for both structuring
scenarios, namely “gradient” (blue) and “uniform” (orange), in the active material (a)
and the pore space (b). The blue and orange lines show the corresponding median values.
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4 Conclusion

This work presented a novel computational framework for systematically investigating
structure-property relationships of lithium-ion battery cathodes containing mixtures of
pristine and recycled NMC particles. Recycled particle fragments are generally smaller
than pristine particles, as they arise from recycling processes that break EOL particles into
clusters of, or even individual, primary particles. A stochastic 3D microstructure model
combines spherical harmonic-based representations for pristine particles with marked
Voronoi tessellation-based representations for recycled particle fragments, enabling the
generation of cathodes with arbitrary mixing ratios of both active material types. Ad-
ditionally, the model allows for different structural configurations, as demonstrated by
two types of mixing considered in this paper, namely, uniform and gradient mixtures
of particles. The proposed microstructure model is embedded within a virtual material
testing framework that quantifies the morphology and effective transport-related proper-
ties of generated microstructures, assuming that pristine particles and recycled particle
fragments do not differ in their chemical or electrochemical properties.

This statistical analysis revealed several key insights into how the incorporation of recy-
cled active material affects cathode microstructure and transport properties. The results
demonstrate that even low recycling fractions (below 20%) induce substantial changes in
transport-related descriptors within the pore space, while the transport properties of the
active material phase remain relatively stable in this range. In particular, the specific sur-
face area increased monotonically with increasing recycling fraction for both structuring
scenarios, with the “uniform” scenario consistently yielding larger values due to reduced
inter-particle contact between recycled particle fragments. This increased interfacial area
potentially enhance charge transfer kinetics, as a greater reactive surface is available for
electrochemical reactions.

The analysis of the tortuosity factor revealed contrasting trends between the two
phases. In the active material phase, the tortuosity factor decreased substantially with
increasing fraction of recycled particles, especially for small recycling fractions, indicat-
ing improved electronic transport pathways as pristine particles were replaced by the
finer-grained RP fragment network. Conversely, the tortuosity factor in the pore space
increased with increasing recycling fraction, reflecting a shift from nearly ideal spherical
particle morphology (Bruggeman exponent ~ 1.5 for pure pristine cathodes) toward more
complex, broken particle geometries. Notably, the “uniform” scenario exhibits lower tor-
tuosities in the active material phase and higher tortuosities in the pore space compared
to the “gradient” scenario, highlighting the importance of the spatial arrangement of the
RP fragments.

The analysis of the mean geodesic tortuosity revealed that transport paths in the active

material phase become shorter and less tortuous with increasing recycling fraction, as
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smaller RP fragments promote more direct particle connectivity. However, the “gradient”
scenario exhibits pronounced directional asymmetry, with paths originating from the RP
fragment-rich layer showing higher tortuosity values. This asymmetry, caused by the size
mismatch between pristine particles and RP fragments, suggests that orientation of such
layers could be optimized to favor specific transport directions in electrode designs.

From a sustainability perspective, especially in view of European Union recycling quo-
tas requiring batteries to contain at least 6% recycled lithium, 6% recycled nickel, and
16% recycled cobalt by 2031, the presented findings have important implications. Our
results indicate that even low fractions of recycled NMC can substantially affect trans-
port properties within the pore space while potentially enhancing connectivity within the
active material. Furthermore, different structuring strategies offer optimization oppor-
tunities: the “uniform” scenario provides relatively homogeneous properties and a larger
reactive surface area, while the “gradient” approach enables targeted directional transport
optimization.

The carbon-binder domain was intentionally excluded from the presented model to
reduce variability and isolate the effects arising solely from differences in the composition
and arrangement of the active material phase. Future work should investigate the spatial
distribution of the carbon-binder domain within mixed cathodes and evaluate its influ-
ence on electronic conductivity and mechanical integrity. Additionally, while this study
focused on geometric and effective transport descriptors, electrochemical performance
metrics such as rate capability and cycling stability remain to be investigated through
coupled electrochemical-microstructural simulations. The presented computational frame-
work could directly be extended to other cathode chemistries, enabling broader applica-
bility. Summing up, the observed sensitivity of transport properties to both recycling
fraction and structuring strategy emphasizes the importance of careful microstructure

design in sustainable battery manufacturing.
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