The morphology of nanoporous glass:
stochastic 3D modeling, stereology and the influence of pore width
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Excursion sets of Gaussian random fields are used to model the 3D morphology of differently
manufactured porous glasses, which vary with respect to their mean pore widths measured by mer-
cury intrusion porosimetry. The stochastic 3D model is calibrated by means of volume fractions and
two-point coverage probability functions estimated from tomographic image data. Model validation
is performed by comparing model realizations and image data in terms of morphological descriptors
which are not used for model fitting. For this purpose, we consider mean geodesic tortuosity and con-
strictivity of the pore space, quantifying the length of shortest transportation paths and the strength
of bottleneck effects, respectively. Additionally, a stereological approach for parameter estimation is
presented, i.e., the 3D model is calibrated using merely 2D cross sections of the 3D image data. Do-
ing so, on average, a comparable goodness-of-fit is achieved as well. The variance of the calibrated
model parameters is discussed, which are estimated on the basis of randomly chosen, individual
2D cross sections. Moreover, interpolating between the model parameters calibrated to differently
manufactured glasses enables the predictive simulation of virtual, but realistic porous glasses with
mean pore widths that have not yet been manufactured. The predictive power is demonstrated by
means of cross-validation. Using the presented approach, relationships between parameters of the
manufacturing process and descriptors of the resulting morphology of porous glasses are quantified,
which opens possibilities for an efficient optimization of the underlying manufacturing process.

I. INTRODUCTION

Porous glass (PG) is characterized by a precisely con-
trollable mean pore width, a narrow distribution of pore
widths as well as a regular interconnected pore struc-
ture [1]. By manufacturing nanoporous glasses, three-
dimensional reaction spaces with mean pore widths rang-
ing from a few (approx. 2 nm) to several thousand
nanometers can be designed [2]. In the pore system, in-
teractions between different substances as well as interac-
tions of substances with the pore wall can be investigated.
This is of particular interest for mechanistic studies on
the interaction, flow and diffusion of liquids as a function
of their complexity [3-5] as well as biologically active
substances, e.g., for enzymes, viruses, bacteria, catalytic
reactions, and protein dynamics [6-8]. Moreover, PG can
be used as a reservoir, e.g., for storage and sustained re-
lease of drugs [9)].

Porous glasses are produced in two ways: by the sol-
gel [10] and the controlled porous glass (CPG) process,
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also known as the VYCOR® process [11]. In both cases,
phase separation is induced in a homogeneous mixture.
The separation can be chemically initiated in case of sol-
gel materials or thermally initiated in CPG. The resulting
porosity and pore width are mainly controlled by three
factors, namely the composition of the homogeneous mix-
ture as well as time and temperature of phase separa-
tion. In the case of CPG, the aim of phase separation
is to create two chemically different phases with an in-
terconnected structure, where one of the phases has a
composition of more than 96 mol-% SiO,. Due to differ-
ent solubility, the non-silicate rich phase can be dissolved,
resulting in an open porous, three-dimensional SiOy com-
ponent after a cleaning and drying step [12, 13]. Since
these pore structures can be reproducibly manufactured
with a high accuracy regarding the pore width, porous
glasses are used as calibration materials for standard pore
structure analytics such as nitrogen adsorption and mer-
cury intrusion. Furthermore, they are suitable as a model
system to investigate volume and surface effects on crys-
tallisation and diffusion processes [14-18].

Besides porosity and mean pore width, further mor-
phological descriptors of the transport phase, i.e., the
pore space in our case, have a strong influence on physi-



cal properties such as, e.g., effective diffusivity. Thus, a
quantitative understanding of relationships between pa-
rameters of the manufacturing process, morphological de-
scriptors of the 3D nanostructure and physical materi-
als properties is required to generate nanoporous glasses
with predefined morphological and physical properties.
Note that this kind of morphological influence has been
quantified for porous silica manufactured by sol-gel pro-
cesses in [19] as well as for larger classes of porous or
composite materials in [20-24].

In the present paper, we use stochastic 3D modeling
to generate digital twins of 3D image data representing
the morphology of nanoporous glass. In this way, we
can quantify the influence of mean pore width, measured
by mercury intrusion porosimetry and adjustable during
the manufacturing process, on further morphological de-
scriptors that are experimentally not accessible. For the
latter, we consider descriptors for the length of trans-
portation paths and the strength of bottleneck effects,
which-in turn-have a strong influence on physical trans-
port properties, like effective diffusivity [22] and liquid
imbibition [25, 26] , where we consider three CPGs with
different mean pore widths and one silica monolith man-
ufactured as described in [27] and [28], respectively.

Our modeling approach is based on excursion sets of
Gaussian random fields, see Chapter 16 in [29]. In par-
ticular, this means that the model can be directly cali-
brated to the materials morphology observed in 3D im-
age data instead of modeling the movement of atoms and
molecules during the manufacturing process. Thus, the
presented approach conceptually differs from previous
models for CPGs, which use molecular dynamics sim-
ulations [30, 31]. Note that excursion sets of Gaussian
random fields have been exploited to model the morphol-
ogy of various functional materials, such as electrodes in
solid oxide fuel cells [32-35], electrodes in gas-diffusion
electrodes [36], aerogels [37], concrete [38], nanoporous
gold [39], and VYCOR® glass [40]. The excursion set
model used in the present paper allows for statistically
mimicking the 3D nanostructure of the considered glasses
with only three model parameters. Model validation
is performed by comparing morphological descriptors of
simulated and measured image data, which have not been
used for model fitting. Since our model calibration is
based on 3D image data, the acquisition of which is costly
and time-consuming, we also show how to use 2D cross
sections to stereologically estimate the model parame-
ters. Moreover, we discuss the quality of these estimates
in detail. In the present paper, we use excursion sets
of Gaussian random fields as the microstructures repre-
sented in image data look rather similar to realizations
of such excursion set models. This visual impression is
formally justified by the model validation, where a good
accordance between model realizations and data is ob-
served. However, note that for morphologically different
micro- or nanostructures, there are further 3D models
available in the literature allowing for an efficient model
fitting based on 2D data. Besides models from stochas-

tic geometry and mathematical morphology [29, 41, 42],
this includes, e.g., machine learning approaches [43], sim-
ulated and hierachical annealing [44, 45|, as well as ap-
proaches based on phase retrieval [46].

Furthermore, we use the model to quantify relation-
ships between mean pore width of the glasses and their
morphology. For this purpose, we perform interpolations
in the parameter space, we can predict the morphology of
CPGs with mean pore widths that have not been investi-
gated by 3D imaging or that have even not been manufac-
tured so far. Thus, the presented data-driven modeling
approach provides a framework to generate a compre-
hensive database of virtual (but, nevertheless, realistic)
nanoporous glasses, which in future work can be used as
an input for numerical simulations of effective physical
properties, such as considered, e.g., in [25, 47]. This al-
lows, in addition to investigating relationships between
parameters of the manufacturing process and descriptors
of the resulting morphology, to quantitatively study re-
lationships between morphology and physical materials
properties with a reduced experimental effort.

In other words, in this paper we present the follow-
ing four main novelties: (i) Model validation is per-
formed with respect to transport-relevant microstructure
descriptors such as constrictivity and geodetic tortuosity,
which is not standard in the literature and provides addi-
tional insight into the goodness of model fit, particularly
with respect to its applicability for investigating relation-
ships between morphology and transport. (ii) A detailed
analysis is performed of how the variance of the estimated
model parameters behaves in the case of estimation from
single 2D image cross-sections and, in particular, how this
affects tortuosity and constrictivity. (iii) Furthermore,
the discussion provided regarding the choice of covari-
ance functions of the underlying Gaussian random fields
is also an important contribution to the state of the art.
In the literature, see for example [39], it is assumed that
spinodally decomposed materials can be modeled by co-
variance functions of the form p(h) = sin(ah)/ah, for
some parameter a > 0. However, our data-driven ap-
proach shows that the microstructures considered in the
present paper cannot be modeled sufficiently well with
this kind of covariance functions. (iv) Last but not least,
using interpolation in the space of model parameters, we
are able to predict the overall morphology of nanoporous
glasses with different pore sizes. Cross-validation shows
that our approach works well.

The rest of this paper is organized as follows. De-
scriptions of materials and 3D imaging are provided in
Section II. Then, in Section III, the stochastic 3D model
for the generation of digital twins of nanoporous glasses
as well as its calibration to 3D image data is explained.
The estimation of model parameters based on 2D cross
sections is discussed in Section IV. In Section V, rela-
tionships between parameters of the manufacturing pro-
cess and descriptors of the 3D morphology is investi-
gated, which is the basis for the predictive simulation
of nanoporous glasses not yet observed by 3D imaging.



Finally, Section VI concludes.

II. MATERIALS AND 3D IMAGING
A. Description of materials

CPGs in shape of thin plates with mean pore widths of
100, 150 and 200 nm, respectively, were prepared as fol-
lows. Glass blocks with compositions in the VYCOR®
range (7Nag0-23B203-70Si02 in wt.-%) are heated at
570°C < T < 700°C for 8 hours to induce phase separa-
tion, which determines the morphology of the pore sys-
tem. These blocks are then cut into rectangular cuboids
with a size of 25 x 25 x 0.1 using a diamond saw. Ultra-
thin plates are extracted in 1 N HC1 at 90 °C for 1 hour to
dissolve the borate-rich phase, followed by a 1 hour treat-
ment with 0.5 N NaOH at room temperature to remove
dispersed silicates. The resulting CPG plates are neu-
tral washed and air-dried overnight between each leach-
ing step. For more information, see [27]. Additionally,
a silica monolith with a mean pore width of 1000 nm
was prepared via a sol-gel process using the procedure
reported in [28]. The mean pore widths have been deter-
mined by means of mercury intrusion porosimetry. For
the 1000 nm sample, a solution of urea and polyethy-
lene oxide (PEO) was prepared in distilled water under
vigorous stirring for 30 min at room temperature. After-
wards, sulfuric acid and tetraethoxysilane (TEOS) were
added. Then, after additional 30 min of vigorous stir-
ring, the mixture was poured into a polytetrafluoroethy-
lene (PTFE) lined stainless steel autoclave. The reaction
mixture, consisting of 17g of HyO, 4.21 g of urea, 2.20g
of PEO, 2.52¢g of H,SO,4 and 15.51 g of TEOS, was sub-
mitted to thermal treatment. In a first step, gelation was
performed at 40-50 for 24 h. In a second step, hydrother-
mal treatment was performed at 120°C for 20h. After
cooling, the wet gel obtained was removed from the au-
toclave and washed with water until the pH was neutral.
The wet gel was then submerged in water inside a plastic
tube and dried at 120°C for 24 h. Thereafter, the xerogel
obtained was calcined at 600 °C for 8 h, using a heating
rate of 3°Cmin~! starting from room temperature. In
the following, we denote the samples described above by
CPG100, CPG150, CPG200, and CPG1000, respectivley,
in dependence on the corresponding mean pore width, see
Figure 1 for visualizations of tomographic image data and
corresponding model realizations.

B. 3D imaging and image preprocessing

Imaging experiments were performed with a X-ray mi-
croscope Zeiss Xradia 810 Ultra that operates with a
chromium X-ray source (5.4 keV) using phase-contrast
imaging mode. For this purpose, a gold phase-ring, with
a thickness designed to produce a phase-shift of 37/2 of
the non-diffracted X-ray beam, was positioned near the

TABLE I. Summary of conditions (exposure time fexp, voxel
size ¥, size of the sampling window W in voxel) under which
3D imaging was performed.
sample texp ¥  size of W [voxel]
CPG100 100 16nm 643 x 595 x 529
CPG150 80 32nm 350 x 316 x 504
CPG200 70 32nm 362 x 317 x 420

CPG1000 75 128nm 358 x 314 x 310

back focal plane of the zone plate. In the imaging ex-
periments, a total of 901 projections was obtained over
180° with exposure time tox, and detector binning de-
pending on the given sample, see Table I. Image recon-
struction was performed by the filtered back-projection
algorithm [48] implemented in the software XMRecon-
structor, which is part of the Xradia 810 Ultra.

FIG. 1. Top row: 3D renderings of tomographic image data
representing cubic cutouts (with a side length of 4.8 pm)
of the samples CPG100 (a), CPG150 (b), CPG200 (c) and
CPG1000 (d). Bottom row: digital twins drawn from the
models fitted to CPG100 (e), CPG150 (f), CPG200 (g),
CPG1000 (h). This visualization shows cutouts of equal phys-
ical size and does not cover all available image data, c.f. Ta-
ble I.

The commercial software Thermo Scientific Avizo (ver-
sion 9.4.0) was used for image preprocessing. First, a
non-local means filter as described in [49] is applied in
3D with a fixed search window of 21 x 21 x 21 and a cu-
bic similarity neighborhood of 5 x 5 x 5 voxel, where the
similarity factor is chosen to be 1. The segmentation of
image data, i.e., the classification of each voxel as either
pore or solid, was performed using the auto threshold
module in Avizo with the IsoData criterion. Note that
this Avizo module was also used in [50] for the segmenta-
tion of image data representing glass foams. For CPG200
as an example, a comparison between the greyscale im-
age after noise reduction by filtering and the segmented
image is shown in Figure 2.



FIG. 2. 2D cross-section of the greyscale image of sample
CPG 200 after noise reduction by filtering (a) and the corre-
sponding segmented cross-section (b), where the solid phase
is represented in blue and the pore space in dark grey.

III. STOCHASTIC 3D MODELING

We now present a stochastic model for mimicking the
3D morphology of the nanoporous glasses described in
Section ITA. The modeling idea, together with some
fundamental formulas, is stated in Section IIT A. These
formulas are then used in Section IIIB for the calibra-
tion of model parameters. In Section IIIC, a physico-
chemical interpretation is given for the parametric co-
variance model considered in Section ITI B. Furthermore,
model validation is explained in Section ITII D, where mor-
phological descriptors not used for model calibration are
compared to each other for image data of real and simu-
lated nanoporous glasses.

A. Model description and some fundamental
formulas

The solid phase of the nanoporous glasses is modeled
by motion-invariant (i.e., stationary and isotropic) excur-
sion sets of Gaussian random fields, see also [29, 41, 42].
For an introduction to Gaussian random fields and their
geometric properties, we refer to [41, 51]. The assump-
tion of motion-invariance is justified, as there is no pre-
ferred direction in the manufacturing process. Moreover,
this assumption is confirmed on image data by use of
the chord-length distributions, see Section 6.3.4 in [41],
provided in the Appendix. Consider a motion-invariant
Gaussian random field X = {X(u): u € R3} such that
EX(u) = 0 and VarX(u) = 1 for each u € R3. Let
p: R3xR3 — R denote the covariance function of X, i.e.,
p(u,v) = Cov(X (u), X (v)) for all u,v € R3. Note that by
the motion invariance of X, the value p(u,v) does only
depend on the distance |u —v| between u,v € R3. Hence,
with some abuse of notation, we write p(h) = p(u,v)
for any h € [0,00), where u,v € R® are arbitrary
points in the three-dimensional Euclidean space R3 with

h=|u—o|.

By considering the (random) subset of R3, where the
random field X exceeds a predefined value A € R, we ob-
tain a so-called excursion set = = {u € R®*: X (u) > A},
which is then used to model the solid phase of the CPGs.
Note that under the conditions mentioned above, the dis-
tribution of X depends only on the covariance function
p: R3 x R® — R. Thus, the distribution of the random
set =2 is uniquely defined by p and the threshold A € R.
This means that in order to properly calibrate the model,
p and X have to be estimated based on information from
the 3D image data described in Section II B.

For this purpose, we make use of some fundamental
formulas, which are true for volume fractions and two-
point coverage probability functions of excursion sets of
motion-invariant Gaussian random fields. First, we con-
sider the volume fraction ¢ = E[v3(Z N [0,1]?)] of the
stationary random set =, where v3 denotes the three-
dimensional Lebesgue measure. It can be easily shown
that ¢ = P(X(0) > ), where o € R? denotes the origin.
Thus, we get that

e=1-d()N), (1)

where ® : R — [0,1] denotes the distribution function
of the standard normal distribution. We can therefore
estimate the threshold A through Equation (1) by esti-
mating the volume fraction € from 3D image data, see
Section ITI B below.

Moreover, we consider the two-point coverage proba-
bility function C': [0,00) — [0,1] of =, which is defined
by C(h) =P(o € Z,u € E) for each h > 0, where u € R3
is an arbitrary point with |u| = h. Note that the random
excursion set = inherits its motion invariance from the
corresponding property of the underlying random field X.
Furthermore, the two-point coverage probability function
C of E can be expressed via an analytical formula by the
covariance function p of X, where

2y ] ph) o= P .
(h)=¢ +%/o N z, (2)

for each h € [0, 00), see Proposition 16.1.1 of [29].

B. Model calibration by 3D image data

The procedure for calibrating the level-set model =
described in Section IIT A is as follows. We first compute
an estimator £ for the volume fraction e of Z from image
data as described in Section 6.4.2 of [41]. Then, in view
of Equation (1), an estimator for X is given by

A=d"1(1-2). (3)
Numerical results for £ and X, which have been obtained

for the four samples CPG100, CPG150, CPG200, and
CPG1000, are shown in Table II.



TABLE II. Estimates for volume fraction and model param-
eters.

sample & p\ @ [1/wm] b [1/um?)
CPG100 0.503 —0.007520 26.88 38.20
CPG150 0.503 —0.007520 19.28 14.87
CPG200 0.487 0.03259 15.32 5.813
CPG1000 0.460 0.1004 3.900 1.270
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FIG. 3. Non-parametric estimator p (blue) for the covari-
ance function p, computed for CPG100 (a), CPG150 (b),
CPG200 (c) and CPG1000 (d), together with its parametric
least squares (LS) fit (red) using Equation (4). For compar-
ison, the best parametric fit for p1(h) = sin(ah)/ah is also
shown.

To obtain an estimator C for C, we use an algorithm
based on the fast Fourier transform, as described in Sec-
tion 6.2.3 of [52]. This algorithm makes use of the as-
sumption of isotropy by averaging over differently ori-
ented vectors of length h when estimating C'(h) for ar-
bitrary h € [0,00). Since the Fourier transform assumes
that the underlying image data is periodic, there are often
undesirable boundary effects. In order to avoid this, we
first mirror the segmented image data along the facets of
the cubic sampling window W in the three axis-directions
of R3, before estimating C. This increases the volume of
the sampling window by a factor of 8, but removes arti-
facts of the boundary in the Fourier domain. Note that
for any h € [0,00) the right-hand side of Equation (2) is
strictly increasing in p(h). Thus, after replacing C(h),
e and A with their respective estimators, we can solve
Equation (2) for p(h) numerically using the method of
bisection for every h € [0,00). This gives us a non-
parametric estimator p for p. The estimator p is then
used as a basis for a parametric covariance model. It
turns out that a good fit can be achieved by assuming

that p is of the form

o(h) = sincfzh)

for each h € (0,00) and some parameters a,b > 0, see
Figure 3.

Here one can observe that the location of the minimum
of p is closely related with the mean pore ~width of the
respective sample. The estimators @ and b for the pa-
rameters a and b are obtained by using a least squares
approach to fit a function ﬁa$ of the form given in Equa-

exp(—bh?) (4)

tion (4) to the (non-parametrically) estimated covariance
function p, see Table II. Recall that the latter one is nu-
merically computed by means of Equation (2), using the

two-point coverage probabilities C(h) directly estimated
from image data. Virtual glass morphologies generated
by the calibrated stochastic 3D model and cutouts of the
corresponding tomographic image data are visualized in
Figure 1. For simulating Gaussian random fields, we use
the Fourier approach described in Section 7 of [32].

C. Interpretation of the parametric covariance
model

The covariance function p(h) in Equation (4) used in
the present paper is the product of the covariance func-
tions p1, p2 : [0,00) — R defined by p;(h) = sin(ah)/ah
and pg(h) = exp(—bh?) for each h > 0 and model param-
eters a,b > 0.

For Gaussian excursion sets, covariance functions of
the form p; lead to dendritic patterns in the modeled
structures, see Section 15.1 and Figure 16.1 in [29]. How-
ever, based on the physico-chemical theory of phase sepa-
ration [53], random fields with such covariance functions
have been used to model the morphology of spinodally
decomposed materials, see, e.g., [39, 54].

The nanoporous glasses considered in the present pa-
per, manufactured as stated in Section IT A, can be de-
scribed as spinodally decomposed materials. Neverthe-
less, one can clearly observe that the non-parametric es-
timator p of p computed from tomographic image data,
see Figure 3, exhibits a faster decay than the best fit with
p1- A qualitatively similar effect has also been observed
in spinodally decomposed VYCOR® glass, see Figure 12
in [40]. Multiplying p; with the Gaussian-type covariance
function py allows for appropriately describing the covari-
ance functions obtained from image data in our case. In
particular, this leads to an exponential decay of p = p1p2,
where the influence of ps is stronger for larger values of
the model parameter b > 0 introduced in Equation (4).

For the expected surface area per unit volume Sz of
the excursion set = with level A > 0, analytical formu-
las are known. It is given by Sz = —4limy o C’'(h), see
Equation (6.164) in [41]. Under the assumption that p is
twice differentiable, this leads to

2 —\2 -
Sz = —exp (2) —p"(0),



see Equation (6.165) in [41]. The covariance functions
considered in the present paper, see Equaution (4), fulfill
the differentiability assumption and we obtain

s2= 2 ew (—2) VETe, ()

This means in particular that for a given threshold )\, the
value of Sz is monotonously increasing in the parameters
a and b, while for given a and b, it takes its maximum at
A =0, i.e., at a porosity of € = 0.5.

D. Model validation by morphological descriptors

The level-set model =, which has been introduced
in Section IITA and calibrated by 3D image data in
Section III B, is evaluated by considering various mor-
phological descriptors of tomographic and simulated im-
age data. More precisely, for each of the four samples
CPG100, CPG150, CPG200 and CPG1000, we compare
morphological descriptors computed from tomographic
image data with the corresponding descriptors computed
from model realizations, where we average over 10 real-
izations drawn from the calibrated model with a size of
400 x 400 x 400 voxel. Note that doing so, we gener-
ate virtual nanostructures of different physical sizes for
each sample, see Table I for voxel and window sizes used
for the different samples. This is reasonable, since larger
window sizes are needed for representativity in case of
larger mean pore widths. The latter effect is illustrated
in Figure 1 and quantitatively represented by the covari-
ance functions shown in Figure 3.
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FIG. 4. Comparison of volume fraction (a) and specific sur-
face area (b) computed from tomographic (blue) and simu-
lated (red) image data. For the specific surface area, we also
show the values (green) which have been obtained by the an-
alytical formula given in Equation (5).

=
>

[l tomographic image data;
[l model realizations
[analytical formula

=3
=

face arca per

o

volume fraction

Q O N
o C?Gq’\\ < GXQQ
<

N
C?G\ c® &3

First, we consider two classical morphological descrip-
tors of binary image data: the volume fraction and the
specific surface area, i.e. the expected surface area per
unit volume, of the foreground phase. Recall that we
use the point-count method in order to estimate volume
fractions from voxelized data, see Section IIIB. Here,
the local contribution to the surface area is determined
based on weighted 2 x 2 x 2 voxel configurations, which
reduces the influence of the voxel size. To do this for the

specific surface area, we exploit the algorithm described
in [52, 55]. For the fitted level-set models, we addition-
ally compute the specific surface area by means of the
analytical formula given in Equation (5). The obtained
results are visualized in Figure 4. The good accordance
between the values estimated from image data and the
analytical ones can also be explained by the fact that the
algorithm to estimate the surface area does not merely
count the faces of voxels at the interface.

—CPG100 simulated
CPG100 tomographic

—CPG150 simulated
CPG150 tomographic

—CPG200 simulated

—~ -CPG200 tomographic

—CPG1000 simulated
CPG1000 tomographic

Distance in nm

FIG. 5. Comparison of spherical contact distribution func-
tions computed from tomographic and simulated image data.

The volume fractions shown in Figure 4 exhibit a
nearly perfect fit. This is not surprising, as they are used
to estimate the model parameter A, see Section IIIB.
The specific surface areas computed from simulated im-
age data also nicely coincide with those computed from
tomographic image data. Furthermore, similar values
have been obtained by means of the analytical formula
given in Equation (5).

Additionally, we evaluate the level-set models by
means of further morphological descriptors which have
not been used for model fitting. To begin with,
we consider the spherical contact distribution function
H: [0,00) — [0,1] of the pore space (see, e.g., [41, 56,
57]), where for each r > 0, the value of H(r) is the (con-
ditional) probability that the minimum distance from a
randomly selected point of the pore phase =€ to the solid
phase = is less or equal than r. Formally,

E[v3(E° © B(o,1))]
1—¢ ’

H(r)=1- (6)
for each r > 0, where B(o, ) denotes the ball with radius
r > 0 centered in the origin and E° S B(o,r) denotes the
morphological erosion of the pores space by the struc-
turing element B(o,r). Comparing the spherical contact
distribution functions computed from tomographic im-
age data with those of simulated data shows an excellent
fit for all four samples, see Figure 5. For simulated data,
the mean values over 10 realizations are shown. Note
that the piecewise constant progression of the functions
shown in Figure 5 is due to the limited resolution of the
underlying image data, cf. Table I.

Finally, we consider the mean geodesic tortuosity T,
which relies on the notion of geodesic distances intro-
duced in [58], and the constrictivity 8 of the pore space,
quantifying the strength of bottleneck effects [59]. Both
quantities have a strong impact on effective transport



properties such as effective diffusivity or permeability,
see, e.g., [22, 23]. The mean geodesic tortuosity is de-
fined as the quotient of the expected length of shortest
paths through the material, which are fully contained in
the phase under consideration, divided by the thickness
of the material. However, note that there are various no-
tions of tortuosity considered in the literature that differ
from this definition, see [60-62] for an overview. Con-
strictivity is a morphological descriptor, which quantifies
the strength of bottleneck effects within the nano- or mi-
crostructure under consideration. For geometrically com-
plex morphologies, this descriptor was introduced in [63],
where it is defined by 8 =12, /r2 ... Here, 7pas > 0 is
the maximum radius such that at least half of the pore
space can be covered by (possibly overlapping) spheres
with radius 7,4, that are fully contained in the pore
space. In other words, 7,4, is defined as median of the
continuous pore size distribution, which is computed via
morphological opening of the pore space. Note that there
is a one-to-one relationship, explicitly given in [36], be-
tween the continuous pore size distribution and the gran-
ulometry function from mathematical morphology [56].

On the other hand, r,,;, > 0 is the maximum value
such that half of the pore space can be reached by
a ball with radius 7,,;, intruding into the pore space
from a predefined starting plane of the material. Thus,
B =12 /r2 .. describes the strength of bottleneck ef-
fects within the pore space [22]. For a formal definition
of the quantities 7, 7ymin, Tmae and B and their respective
estimators in the framework of stationary random sets,
we refer to [64]. Figure 6 shows the values of 7, 7min, "'mas
and 8 computed from tomographic image data compared
to the mean values of these descriptors computed from 10
realizations of the respective model. Again, the quanti-
ties computed from simulated image data nicely coincide
with those computed from tomographic image data. Fur-
thermore, in Table III, the mean values and standard de-
viations of 7, Tymin, Tmaz and B are given, along with the
respective relative error compared to the corresponding
values obtained from tomographic image data. Interest-
ingly, for CPG100, CPG150 and CPG200, the value of
T'man 1S nearly identical to half of the respective mean pore
width, which is measured by mercury intrusion porosime-
try and characterizes the different samples considered in
this paper, cf. Section ITA. This further justifies the
use of 7,,;, for purposes of model validation. A more
detailed model validation is shown in Figure A3 of the
Appendix, where the curves of simulated mercury intru-
sion porosimetries [59] are provided for measured image
data and model realizations. These curves also show a
good accordance between simulated and measured data.
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FIG. 6. Comparison of the transport relevant descriptors T
(a), Tmin (D), Tmaz (¢) and B (d) computed from tomographic
(blue) and simulated (red) image data.

TABLE III. Values of 7, Tmin, Tmaz and B estimated as an
average of 10 model realizations, along with the respective
standard deviations (std.) and the relative errors compared
to the corresponding values obtained from tomographic image
data.

CPG100 CPG150 CPG200 CPG1000

T 1.0693  1.0719  1.0653  1.0610
std.  4.01-107* 1.76.107% 2.50-107* 2.04.1074
error 036 % 1.26% 024% 0.96 %
Tmin|] 52.35 74.09 100.22  380.56

std. [nm] 4.31-107" 3.22.107%  1.32  7.59-1072
error 331 %  1.03% 424% 127%

Prmaz]] 66.60 94.95 131.38  450.12

std. [nm] 6.91-1072 7.39-107® 1.44-1072 6.49-1072

error  016% 010% 853% 254 %
B 0.6179  0.6089  0.5820  0.7148

std.  1.03-1072 4.98-107* 1.50-1072 1.07-10*

error 6.39 % 1.87 % 7.74 % 2.61 %

IV. MODEL CALIBRATION BY 2D IMAGE
DATA

The ability to properly calibrate a stochastic 3D model
by means of 2D image data is a great advantage for real-
life applications, as the acquisition of tomographic 3D
imaging is rather expensive in costs and time. Recall that
the model parameters of random excursion sets induced
by motion-invariant Gaussian random fields, considered
in this paper, are uniquely defined by the volume fraction
and the two-point coverage probabilities of the excursion
sets. Moreover, these descriptors can even be reliably
estimated based on 1D information. Thus, it is possible
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FIG. 7.
E\QD,XQD,aQD and ZQD, respectively, for all 2D cross sections
along the three main axis directions. The vertical lines show
the respective averages p(€2p), M(X2D), u(azp) and ,U/(/I;QD)

(blue), and the values obtained for the corresponding 3D es-
timators (red).

Probability densities of the values obtained for

to fit model parameters using 2D image data. Examples,
where stochastic 3D models are fitted to 2D SEM data of
solid oxide fuell cells and composite silica materials can
be found in [32] and [65], respectively.

We now explain how to calibrate the 3D level-set model
=, which has been introduced in Section IIT A, by means
of individual 2D cross sections of 3D image data and pro-
vide a discussion of the robustness of this procedure in
the case of nanoporous glasses. Furthermore, the esti-
mates obtained in this way for the model parameters are
compared with the estimates obtained from 3D image
data. For this, we fix an arbitrary 2D cross section of the
3D image data (orthogonal to one of the three main axis
directions). Note that the techniques described in Sec-
tion ITI B for estimating the model parameters A, a and b
from 3D image data can be directly applied to 2D data,
since the volume fraction and, due to the motion invari-
ance of the level-set model =, also the two-point coverage

probabilities of = can be estimated from 2D data. The
estimators for e, )\,Aa and b obtaiined in this way will
be denoted by &2p, A2p, aop and bop, respectively. Fur-
thermore, the averages of these 2D estimators for €, A,
a and b over all 2D cross sections along thf three main
axis directions are denoted by p(€ap), w(Aep), w(asp)

o~

and p(b2p).

TABLE IV. Mean values p and standard deviations o of
model parameters estimated from 2D cross sections of tomo-
graphic 3D image data and their respective relative errors
compared to the values obtained for the corresponding 3D es-
timators based on the full tomographic datasets.

CPG100 CPG150 CPG200 CPG1000

11(@2p)[1/wm)] 27.01 189 1531  3.874

o(@2p)[1/um] 0.72 14 022 024
error 048 % 1.70 % 0.04 % 0.66 %
p(p)[l/um?] 3712 1516 5796  1.250
o (bap ) [1/pm?] 3.9 4.1 0.69 0.20
error 282 % 197% 030% 149 %
11(Rap) —0.0072 —0.0083 0.0320  0.1016
o(Rap) 0.041  0.048 0.038  0.032
error 367% 991 % 1.93% 1.20 %
u(Z2p) 0.5029 0.5033 0.4873 0.4596
o(€2p) 0.016 0.019 0.015 0.013
error 0.02% 0.06% 0.06%  0.09 %

Figure 7 shows Ehe estimated probability densities of
€2D, A2p, aop and bop, which we obtained by kernel den-
sity estimation using the method described in [66]. Note
that the estimator for ¢ is in a direct functional relation-
ship to the estimator of A through the cumulative distri-
bution function of the normal distribution. However, this
relationship is non-linear, so that it is a priori unclear how
it affects the variance and expectation of the correspond-
ing estimators. We have therefore included the results
on ¢ to asses the influence of the non-linearity and to al-
low for an easier interpretation of the results through the
more intuitive quantity €. The mean values of these 2D
estimates, together with their standard deviations and
the respective relative errors compared to the values ob-
tained for the corresponding 3D estimators are provided
in Table IV. Here, one can observe that, on average, the
2D estimators lead to nearly identical values as their 3D
counterparts. However, the probability densities of the
2D estimates shown in Figure 7 reveal that for individ-
ual 2D cross sections, the numerical differences between
2D estimators and 3D estimators can be relatively large.
This is not surprising, as an individual 2D cross section
contains significantly less information compared to the
complete 3D image. In this section, we only show the
results which we obtained for the samples CPG150 and
CPG200, since these are the samples with the highest
and lowest sum of relative errors, respectively. The cor-
responding results obtained for CPG100 and CPG1000
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data.

are shown in Figure A2 of the Appendix.

Note that from the results shown in Figure 7 and Ta-
ble IV it can not directly be concluded how the discrepan-
cies in terms of the estimated model parameters A, a and
b influence transport-relevant morphological descriptors,
such as the tortuosity 7 and the constrictivity 3, of sim-
ulated image data draWAn from level-set models for given
values of \op, aop and bop. We quantitatively study this
effect under the assumption that the volume fraction &
and, thus, the model parameter \ are estimated correctly.
This is a reasonable assumption, since in many applica-
tions the porosity € can be reliably determined not only
from image data, but also by means of other experimen-
tal methods. The influence of the estimators asp and byop
is investigated by means of a simulation study as follows.

For each sample, we generate virtual nanostructures
for each of the following five SpecAiﬁcations of the
parameter vector (g\, b): (u(@s=p), pu(bap)), (;L@QD) +
o(dsp), p(bap) + o(bp)), (w(@2p) + o(@2p), p(bep) —
(bap)), (n(az2p) — o(@szp), u(bop) + o (b)), (w(@zp) —
o(asp), p(bap) — o(bep)), where O'(aQD)\ and o(byp) de-
note the standard deviation of @sp and bop, respectively,
given in Table IV. Then, we compute the tortuosity 7 and
the constrictivity 8 for simulated 3D image data drawn
from the level-set models with these five specifications
of (a,b) and compare the obtained values with the val-
ues of 7 and 8 computed for realizations of the level-set
model = calibrated by means of tomographic (3D) image
data, and for the tomographic image data itself. The re-
sults obtained in this way for the samples CPG150 and

CPG200 are shown in Figure 8. The corresponding re-
sults for CPG100 and CPG1000 are shown in Figure Al
of the Appendix.

Except for the constrictivity 5 of sample CPG150, the
values obtained for 7 and 3, when calibrating the level-
set model = by tomographic (3D) image data, are accu-
rately reproduced by the modified models, for which the
parameter vector (a,b) is chosen as described above, i.e.,
by adding or subtracting the corresponding standard de-
viations to/from the averages of the estimators asp and

/b\QD. The good accordance for CPG200, see Figure 8d,
can be attributed to the fact that the values of ayp and

bop computed from individual 2D slices have only small
deviations from the corresponding 3D estimates, see Ta-
ble IV. In general, one can observe that the constrictivity
[ is much more sensitive to changes in the model param-
eters a and b than mean geodesic tortuosity 7. This is
most visible for sample CPG150, see Figure 8. Here, the
difference between the parameters a and b estimated from
2D data and those estimated from 3D data cause consid-
erable deviations in constrictivity 3, while the tortuosity
7 is almost entirely unaffected.

V. RELATIONSHIPS BETWEEN MEAN PORE
WIDTH AND THE ENTIRE 3D MORPHOLOGY

In this section, we use the calibrated stochastic 3D
model to quantify relationships between the mean pore
width, which can be adjusted during the manufacturing
process, and the entire 3D morphology. In doing so, we
aim at simulating the morphology of nanoporous glasses,
for which no 3D image data is available or which have
not even been manufactured so far. For this purpose, we
proceed similarly as in [67, 68], i.e., we quantify relation-
ships between mean pore width and model parameters in
order to predict the 3D morphology of porous glass with
a predefined mean pore width.

Recall that the CPG samples considered in this pa-
per are labeled according to their respective mean pore
widths of 100, 150, 200 and 1000 nm, which have been de-
termined by means of mercury intrusion porosimetry. For
quantifying relationships between the mean pore width
and the parameter vector (a,b) of the covariance func-
tion of the underlying Gaussian random field X, see Sec-
tion III B, it turns out that parametric functions of the
form f :[0,00) — [0,00), given by

f(@) = W exp(—cPz) 4 ), (7)
for each = > 0, are an appropriate tool. Here, = repre-
sents the mean pore width of the material under consider-
ation, and f(z) is the “best” predicted value of the model
parameters a and b, respectively, given that the mean

pore width is equal to z. We determine c,(ll), c,(f), (3) >0

and c,(,l)7 c,(,Q)7 c,(,?’) > 0 for predicting the parameters a and

b, respectively, by least-squares fitting based on the val-
ues given in Table II, which yields c((zl) = 0.04703, c((f) =
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0.007238, ¢t = 0.0039, ¢ = 27911074, ¢{* = 0.02019,
and 01(;3) = 1.158 - 107%. The corresponding prediction
functions are denoted by f, and f;. Moreover, note that
inserting the parameters a = fq(z) and b = fi(x) pre-
dicted by the functions given in Equation (7) with these
regression coefficients into Equation (5) yields a predic-
tion for the specific surface area S=, where we assume a
porosity of e = 0.5 for all mean pore widths, see Figure 9.

Model realizations with intermediate mean pore widths
based on the predicted parameters a and b are visualised
in Figure 10, with an assumed porosity of € = 0.5.

mean pore width [nm)]

100 125 150 175 200 ‘ 250

FIG. 10. Top row: 3D renderings of tomographic image data
for mean pore widths of 100, 150, and 200 nm. Bottom row:
predictively simulated 3D morphologies for mean pore widths
of 125, 175, and 250 nm.

Using the idea of cross-validation, see Section 7.10
in [69], we assess the predictive power of the regres-
sion model given in Equation (7), where the coeffi-
cients c((zl),0512),0513),01()1),01()2),01()3) are now fitted twice,
in each case based on three samples only, i.e., dis-
regarding CPG150 and CPG200, respectively. Then,
we evaluate the accuracy of the relationships given
in Equation (7), where the regression -coefficients
cg”,c&”,cé”,cé”,cé”,cﬁ” are computed as described
above. In particular, we compare the values obtained in
this way for the model parameters a and b for the mean
pore W/i\dthS of 150nm and 200nm with the estimates
a and b computed from tomographic (3D) image data
for CPG150 and CPG200, as described in Section IIIB.
Here we obtain relative errors of 4.27 % and 4.35 % for
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FIG. 11. Comparison of the transport-relevant descriptors 7
(@), rmin (b), Tmaz (¢) and B (d), computed from simulated
3D morphologies for regression-based (red) and image-based
(green) estimates of the model parameters a and b, as well as
directly computed from tomographic image data (blue).

a and b of CPG150, and 7.38 % and 8.00 % for a and
b of CPG200, respectively. This shows that the inter-
polated model parameters are close to those estimated
from tomographic image data. The regression curves fit-
ted without one of the samples CPG150 and CPG200 are
provided in the Appendix, see Figure A4.

Based on the model parameters a and b obtained from
these regression models, we generate new (simulated) 3D
morphologies for CPG150 and CPG20. Furthermore, we
compare the average values of the transport-relevant de-
SCriptors 7T, Tmin, Tmaz and S obtained for 10 realizations
of these 3D morphologies with those obtained for 10 re-
alizations of simulated 3D morphologies, where a and b
have been estimated from tomographic (3D) image data
for CPG150 and CPG20 as described in Section III B, as
well as with those values of 7, rpin, T"mae and B directly
computed from tomographic image data, see Figure 11.



The results obtained in this way show that, the simulated
3D morphologies for regression-based and image-based
estimates of the model parameters a and b are overall
similar to those of tomographic image data. This val-
idates our prediction formulas. However, when apply-
ing the proposed prediction formulas, one should keep in
mind that regression is performed with only four data
points here.

VI. CONCLUSIONS

In the present paper, we developed and calibrated a
stochastic 3D model for differently manufactured nano-
porous glasses based on tomographic X-ray image data.
Model validation is performed by comparing morpholog-
ical descriptors computed from model realizations and
image data, which are not used for model calibration
and are nevertheless matched with a high degree of ac-
curacy. We want to emphasize that the utilized model,
which is based on methods of stochastic geometry, has
certain advantages in comparison to non-parametric or
high-dimensional generative models, see also the discus-
sion in [70]. Namely, it is fully determined by three
parameters only, which allows us to physically interpret
their values. Moreover, we discuss the form of the corre-
lation functions of the underlying Gaussian random field
and relate them to the manufacturing process.

We also show that the model can be reliably calibrated
merely based on 2D information in the form of image
cross sections taken from the complete 3D image data. In
particular, our analysis showed that the average calibra-
tion over multiple cross-sections leads to nearly identical
results compared to the calibration based on 3D image
data. This means that for model calibration, a collec-
tion of sufficiently many 2D images can replace the need
for the acquisition of tomographic 3D image data. How-
ever, the variance among different 2D cross sections is
not negligible and can have a large impact on sensitive
morphological descriptors, such as constrictivity, which
introduces a significant uncertainty if model calibration
is based only on single cross sections.

The available image data covered samples of nano-
porous glass with different mean pore widths. By means
of a parametric regression, we were able to quantify the
relationship between the mean pore width, which can be
adjusted in the manufacturing process, and the result-
ing morphological descriptors. This, in turn, allows us
to interpolate between the available data samples and to
predict virtual 3D morphologies with intermediate mean
pore widths that have not been manufactured so far. We
validated our predictive simulations by means of cross-
validation, which showed that using a subset of the avail-
able samples to predict the properties of the remaining
samples leads to accurate results. A reliable virtual pre-
diction of nanoporous glass with predefined pore widths
opens new possibilities for a resource efficient optimiza-
tion of the 3D morphology of nanoporous glass. More
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precisely, it allows for optimizing the mean pore widths
with respect to morphological descriptors that can not
directly be adjusted during the manufacturing process.
Furthermore, combining stochastic modeling with nu-
merical simulation can be used in future work to optimize
the mean pore width with respect to physical properties
like effective diffusivity.
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Appendix

We provide plots analogous to those of Figures 7 and 8
for the remaining samples CPG100 and CPG1000 which
are not shown in the main text, see Figures Al and A2.
Figure A3 shows curves of simulated mercury intrusion
porosimetry for both tomographic image data and model
realizations. The simulation was performed along each
main axis direction and then averaged for visualization.
The 50-th percentile of this curve is used in the defini-
tion of ryin, Which, in turn, appears in the definition of
the constrictivity 5. The plots of the regression curves
are shown in Figure A4, which are used for cross valida-
tion of the predictive simulations considered in Section
V. In Figure A5, we also provide the chord-length distri-
bution functions, see Section 6.3.4 in [41], computed for
the tomographic image data along the three main axis
directions. For a predefined direction, the chord length
distribution function is the distribution function of the
typical segment in this direction, which is completely con-
tained in the glass phase. In case of isotropy, the chord
length distribution functions in all directions coincide.
Figure A5 shows that for all samples considered in the
present paper, the chord length distribution functions in
the three main axis directions are nearly identical. This
confirms the assumption of structural isotropy motivated
by the manufacturing process.

CPG100 CPG100
1.3 o 0.8 . .
0 (1(@p), p(bp)) _
[ (14(Gan ) + o(@an), #(ﬁ?n) + U(kzn)) 7(51
1o I (8(@0) 40 (@), 1(Boo) — o (Bov) ol
" |W (1(@zp) — o/(@p), p(bp) + o (b2p))
3 [ (42(@2p) — 0(@2p), i(b2p) — o (b2p)) @ 0.4
0.2
0

(a) (b)

CPG1000 CPG1000
1.3 - - - 0.8 —3——— - -
(@D, bsp)
0.6 -
1.2
[ ™. 0.4-
1.1
fom. data) 02-
1 0
(c) (d)

FIG. Al. Tortuosity (a) and constrictivity (b) for CPG100
and as well as tortuosity (c) and constrictivity (d) for
CPG1000, computed from simulated 3D image data drawn
from level-set models with different specifications of (a,b),
together with the corresponding values estimated from tomo-
graphic image data.
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FIG. A3. Simulated mercury intrusion porosimetry computed
from tomographic and simulated image data. The simulation
was performed along the direction of each major axis and
averaged for visualization.
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