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Abstract. A theoretical approach to estimate the Minkowski functionals,
i.e., area fraction, specific boundary length and specific Euler number in 2D,

and their asymptotic covariance matrix proposed by [17], [11] and [12], is

applied to real image data. These two-dimensional images show mammary
gland tissue and should be classified automatically as tumor-free or mammary

cancer, respectively. The estimation procedure is illustrated step-by-step and

the calculations are described in detail. To reduce dependencies from chosen
parameters, a least-squares approach is considered as recommended by [3].

Emphasis is placed on the detailed description of the estimation procedure

and the application of the theory to real image data.

1. Introduction

Breast cancer is the most frequent malignant tumor in women. In routine di-
agnostics, it is usual to perform a histopathological grading, which is based on a
three-tiered scheme with grades I, II, and III, see [2] and [8]. As the reproducibil-
ity of tumor grading is unknown for individual cases, many attempts have been
made to arrive at an objective and quantitative grading of tumor structure. Let us
consider here the tumor texture, which reflects the degree of differentiation of the
tumor. The tissue may be conceived as a random set with different phases, which
all possess a positive volume fraction. This means consideration of the tumor tissue
as a volume process, cf. [5] and [4]. It consists of three phases: tumor cells, stroma
and lumina, which altogether account for 100 % of the tissue.

In diagnostic pathology we deal with histological sections, i.e. very thin slices,
onto which windows, usually of rectangular or quadratic shape, are placed for evalu-
ation under microscopical view. Hence we are faced in practice with random closed
sets in 2D, which may be quantified in terms of the three Minkowski functionals:
AA, the mean area of the interesting phase per unit reference area (area fraction);
BA, the mean boundary length of the interesting phase per unit reference area;
and χA, the mean Euler number of the interesting phase per unit reference area.
Notably all these quantities have a stereological interpretation, hence they can be
used for the estimation of stereological model parameters:

VV = AA(1)

SV =
4
π

BA(2)

MV = 2πχA(3)
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where VV is the volume fraction, SV is the mean surface area per unit reference
volume, and MV is the mean curvature density, see [18]. Equations (1) – (3) are all
fundamental stereological formulae and hold for random closed sets under the con-
ditions of isotropy and stationarity for arbitrary sections. Recently a new approach
has been developed which allows a joint estimation of all three Minkowski function-
als for a given image, cf. [13] and [17]. It provides not only point estimates of VV ,
SV , and MV , but also estimates of their asymptotic variances and covariances. Up
to now the aforementioned estimator has only been applied to simulated images,
but not yet to real image material. As a first application to real images in a simple
situation, we decided to compare mammary cancer tissue to normal (tumor-free)
mammary tissue, see also earlier publications of our group [6], [9], [7] and [10].

The paper is organized as follows. In Section ‘Mathematical Methods’ the no-
tation used throughout the paper is introduced. The specific intrinsic volumes are
defined by means of Steiner’s formula. The method given in [13], [11] and [12] to
estimate these quantities and their asymptotic covariance matrix is described where
some technical details are omitted. Section ‘Application to image data’ deals with
the estimation of specific intrinsic volumes from real image data showing mammary
tissue. The procedure for the two-dimensional case is described in detail. With the
estimated quantities a statistical test is considered to classify an image as tumor-
free or as mammary cancer, respectively. The paper ends with a discussion and an
outlook to further projects.

2. Mathematical Methods

First we introduce some notation. For some fixed d ≥ 2, denote the family of
convex bodies, i.e. compact convex sets, in Rd by K and let R = {K ⊂ Rd :
K = ∪n

i=1Ki, Ki ∈ K, n ∈ N} be the convex ring, i.e. the family of all polyconvex
sets in Rd. By S = {M ⊂ Rd : M ∩ K ∈ R ∀K ∈ K} we denote the extended
convex ring. Then it holds K ⊂ R ⊂ S. Let Br(x) be the closed ball in Rd with
radius r > 0 centered at x and let o ∈ Rd be the origin. Further, kj denotes the
volume of the j-dimensional unit ball for j = 0, . . . , d. For two sets A,B ⊂ Rd

the Minkowski sum A ⊕ B and the Minkowski difference A 	 B are defined by
A⊕ B = {a + b : a ∈ A, b ∈ B} and A	 B = {x ∈ Rd : B̌ + x ⊂ A}, respectively,
where B̌ = {x ∈ Rd : −x ∈ B} denotes the set B reflected at the origin.

For convex bodies K ∈ K it can be proven that there exist d + 1 functionals
Vj : K → [0,∞) for j = 0, . . . , d, such that the volume of the so called parallel body
K ⊕Br(o) for r > 0 is given by Steiner’s formula

(4) |K ⊕Br (o)| =
d∑

j=0

rd−jkd−jVj (K) .

A proof of this formula can be found e.g. in [15, Chapter 2]. The functionals
Vj are called intrinsic volumes. They are related to the Minkowski functionals
Wj : K → [0,∞) in the following way: Wj(K) = kj/

(
d
j

)
Vd−j(K) for all j = 0, . . . , d.

The intrinsic volumes are not restricted to convex bodies. There is a unique additive
extension to the convex ring R given by the inclusion-exclusion-formula. For any
polyconvex set K ∈ R, any n ∈ N and any convex bodies K1, . . . ,Kn ∈ K with
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K = K1 ∪ . . . ∪Kn it holds

(5) Vj (K) =
n∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤n

Vj (Ki1 ∩ . . . ∩Kik
)

for j = 0, . . . , d. Notice that the value of Vj(K) does not depend on the particular
representation of K as the union of convex sets Ki. The proof of existence and
uniqueness of this extension can be found in [14]. The formula itself can be shown
by induction using the fact that the intrinsic volumes are additive, i.e. Vj(∅) = 0
and for all K1,K2 ∈ K with K1∪K2 ∈ K it holds Vj(K1∪K2) = Vj(K1)+Vj(K2)−
Vj(K1 ∩K2). Some of the intrinsic volumes have a nice geometric interpretation:
Vd(K) is the usual volume of K, dVd−1(K) is the surface area of K and V0(K) is
the Euler-Poincaré characteristic of K.

In the following let Ξ be a stationary random closed set in Rd with values in
the extended convex ring S almost surely. Let {Wn} be a monotonically increasing
sequence of compact convex observation windows

(6) Wn = nW

with

(7) W ∈ K, |W | > 0 and o ∈ int (W ) .

Under appropriate assumptions, the expectation EVj(Ξ ∩Wn) is well defined and
the limit

(8) V j (Ξ) = lim
n→∞

EVj (Ξ ∩Wn)
|Wn|

exists for all j = 0, . . . , d, see e.g. [16]. The functionals V j(Ξ) are called specific
intrinsic volumes of Ξ. In the two-dimensional case they are well-known under the
notation AA = V 2, BA = 2V 1 and χA = V 0 and are connected to the stereological
model parameters VV , SV and MV by (1) – (3).

To estimate the specific intrinsic volumes from a binary image we use a method
developed in [17]. It makes use of the local Euler-Poincaré characteristic, which is
defined as the expected Euler number of Ξ in a neighborhood of a point x, i.e. as
EV0(Ξ ∩Br(x)). It can be shown that for any r > 0 and for any x ∈ Rd it holds

(9) EV0 (Ξ ∩Br (x)) =
d∑

j=0

rd−jkd−jV j (Ξ) .

A proof of (9) can be found in [16, Chapter 5], see also [17]. Since this formula
holds for any r > 0 we can plug in d + 1 pairwise different radii 0 < r0 < . . . < rd,
where we have to take care that the edge-corrected observation window W 	Brj (o)
has positive volume for j = 0, . . . , d. Since the radii are numbered in ascending
order this holds if |W 	Brd

(o)| > 0. From (9) we get the following system of d + 1
linear equations

(10) Av = y,
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where

(11) A =


rd
0kd rd−1

0 kd−1 · · · r0k1 1
rd
1kd rd−1

1 kd−1 · · · r1k1 1
...

...
. . .

...
...

rd
dkd rd−1

d kd−1 · · · rdk1 1

 ,

v = (V 0(Ξ), . . . , V d(Ξ))> and y = (EV0(Ξ ∩ Br0(0)), . . . , EV0(Ξ ∩ Brd
(0)))>. The

matrix A is regular because the radii r0, . . . , rd are pairwise different and it can be
computed without problems. With an appropriate estimator ŷ of y we now get an
estimator v̂ of v by

(12) v̂ = A−1ŷ.

Since the local Euler characteristic, i.e. the vector y, can be estimated from one
single image we also can estimate the vector of specific intrinsic volumes, i.e. the
vector v, from one single image. To estimate the vector y of local Euler characteris-
tics for different radii we consider the stationary random field Yj = {Yj(x), x ∈ Rd}
with

(13) Yj (x) = V0

(
Ξ ∩Brj

(x)
)

for j = 0, . . . , d. The stationarity of Yj follows directly from the stationarity of Ξ.
An unbiased estimator ŷj of yj = EYj(o) is given by

(14) ŷj =
∫

W	Brd
(o)

Yj (x) µ (dx) ,

where µ is an arbitrary probability measure concentrated on the reduced observa-
tion window W 	 Brd

(o) to avoid edge effects. If µ is the normalized Lebesgue
measure, i.e.

(15) µ (·) =
|· ∩W 	Brd

(o)|
|W 	Brd

(o)|
,

the estimator ŷj is given by

(16) ŷj =
1

|W 	Brd
(o)|

∫
W	Brd

(o)

Yj (x) dx.

To study the variance of the estimator v̂ of the specific intrinsic volumes we
consider a sequence of observation windows {Wn}, which satisfies condiditions (6)
and (7). For each j = 0, . . . , d and for each n ∈ N we can estimate yj on Wn by

(17) ŷn,j =
1

|Wn 	Brd
(o)|

∫
Wn	Brd

(o)

Yj (x) dx.

Under appropriate assumptions, the covariances

(18) Covij (x) = Cov (Yi (o) , Yj (x))

exist for all i, j = 0, . . . , d, see e.g. [13]. If the covariances are absolutely inte-
grable and some further assumptions (cf. [11]) are fulfilled, then the random vector√
|Wn|(ŷ0,n− y0, . . . , ŷd,n− yd)> is asymptotically normally distributed with mean

vector o and covariance matrix Σ = (σij)d
i,j=0 with σij =

∫
Rd Covij(x)dx. Therefore
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the random vector
√
|Wn|(v̂0,n−v0, . . . , vd,n−vd)> is also asymptotically normally

distributed with zero mean vector and covariance matrix Σv̂ = A−1Σ(A−1)>.
The values of these estimators v̂j of the specific intrinsic volumes depend heavily

on the choice of the radii r0, . . . , rd, see also the discussion in [3]. To reduce this
dependence a least-squares approach is considered. Let 0 < r0 < . . . < rk−1 be
k > d + 1 pairwise different radii. Similar to (10) we get a system of k linear
equations with the difference that the vector y is k-dimensional and that A is not
a squared matrix any more because it has k rows and d + 1 columns. Anyhow, the
minimization problem

(19) |ŷ −Av∗| = min
x∈Rd+1

|ŷ −Ax|

has a unique solution given by

(20) v∗ =
(
A>A

)−1
A>ŷ.

The estimator v∗ of the vector of specific intrinsic volumes does not depend on the
choice of radii as much as the estimator v̂ in (12). Furthermore, the random vector√
|Wn|(v∗0,n − v0, . . . , v

∗
d,n − vd)> is asymptotically normally distributed with zero

mean vector and covariance matrix Σv∗ = Ã Σ Ã> where Ã = (A>A)−1A>.
The asymptotic covariance matrix Σ can be estimated from the observation of the

stationary random fields Yj defined in (13). For each n ∈ N let Wn0, . . . ,Wnk−1 ⊂
Wn. Let {Unij} be a monotonously increasing sequence of bounded sets with Unij ⊂
Wni ⊕ W̌nj and |Unij | > 0 for all n ∈ N and for all i, j = 0, . . . , k − 1. Additionally
let limn→∞ Unij = supp(Covij) and let the sets Unij grow smaller in comparison
to Wnij , i.e.

(21) lim
n→∞

|Unij |2

|Wnij |
= 0.

Furthermore, assume that

(22) lim
n→∞

minx∈Unij |Wnij ∩ (Wnij + x)|
|Wnij |

= 1.

For each n ∈ N and i, j = 0, . . . , k − 1 we consider the estimator

(23) σ̂nij =
∫

Unij

Ĉovnij (x)
|Wnij ∩ (Wnij − x)|

|Wnij |
dx

of σij with

(24) Ĉovnij (x) =
∫

Wnij∩(Wnij−x)

Yi (y) Yj (x + y)
|Wnij ∩ (Wnij − x)|

dy − ŷi,nŷj,n.

This sequence Σ̂n = (σnij) of estimators of Σ is asymptotically unbiased, i.e.

limn→∞ ‖EΣ̂n − Σ‖ = 0, see e.g. [13] and [12], where ‖Σ‖ =
√∑d

i,j=0 σ2
ij denotes

the matrix norm. Under additional integrability conditions, Σ̂n is L2 consistent for
Σ, i.e. it holds limn→∞ E‖Σ̂n − Σ‖2 = 0. If Ξ is the Boolean model with primary
grain M0 for example, the integrability conditions are fulfilled if E|M0⊕Brd

|2 < ∞.
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From the estimators Σ̂n described in (23) and (24) we get a sequence of estimators
Σ̂∗n of the asymptotic covariance matrix Σv∗ by

(25) Σ̂∗n = Ã Σ̂n Ã> with Ã =
(
A>A

)−1
A>.

3. Application to image data

Now we are ready to apply the statistical approach explained in the previous
section to estimate the specific intrinsic volumes of real image data showing mam-
mary tissue. There were ten cases of ductal mammary cancer tissue and ten cases
showing normal, i.e. cancer-free, mammary tissue. From each case, a sample of
3 × 3 = 9 contiguous quadratic images was evaluated, where the first image was
selected at random. Each image had a size of 510× 510 pixels. The concatenation
led to a large quadratic image with 1530 × 1530 pixels, which is needed for the
estimation of the asymptotic variances. This means that the final observation win-
dow is given by the rectangle [0, 1529] × [0, 1529]. Figure 1(a) shows tumour-free
mammary tissue and Figure 2(a) shows invasive ductal mammary carcinoma. The
edgelength of 510 pixels corresponds to 0.4 mm at the scale of the specimen at
this magnification, i.e. Figures 1(a) and 2(a) show only one of the nine contiguous
images. The same images are shown in Figures 1(b) and 2(b), respectively, after
interactive segmentation of stroma, epithelium and lumina. The stroma is repre-
sented by the black phase, the grey phase forms the lumina and the white phase
stands for the epithelium without the lumina, i.e. the tumor cells.

These three phase images were converted into three binary images by combining
two phases. The foreground of the resulting images may consist of one of the three
grey phases (e.g. the white phase) or of the union of two of the three phases (e.g.
white and grey). We understand these binary images as realizations of stationary
and isotropic random closed sets, cf. [10]. Since these images are two-dimensional
the specific intrinsic volumes V 0, 2V 1 and V 2 represent the mean Euler number
per unit area, the mean boundary length per unit area, and the area fraction,
respectively.

In the following, the procedure to calculate the least-squares estimator given in
(20) is described step by step.

(1) Choose the number k > 3 and the values of the radii r0 < . . . < rk−1. We
put k = 15 and ri = 4.2 + 1.3i, i = 0, . . . , 14, following the recommen-
dation in [3]. In this particular case, the matrix A defined in (11) is given
by

(26) A =


17.64 π 8.4 1
30.25 π 11.0 1

...
...

...
445.21 π 42.2 1
501.76 π 44.8 1

 .

(2) Estimate the local Euler characteristic in the reduced observation window
W 	 Br14(o) = [23, 1506]× [23, 1506] for all radii r0, . . . , r14 by computing
V0(Ξ∩Bri(x)) for all pixels x ∈ W 	Br14(o) and averaging over all pixels.
That means the estimator ŷ from equation (16) is given in discretized form
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(a) Original image of tumour-free mammary tissue.

(b) Segmentation of Figure 1(a) leads to this image,

which contains three phases: white – epithelial cells,

gray – lumen, black – stroma.

Figure 1. Tumour-free mammary tissue. Haematoxylin-Eosin
stain (a) and segmented image (b), respectively. The edgelength
of the quadrat corresponds to 0.4 mm at the scale of the specimen
at this magnification.
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(a) Original image of invasive ductal mammary carci-

noma.

(b) Segmentation of Figure 2(a).

Figure 2. Invasive ductal mammary carcinoma. In (a), stain
and magnification identical with Figure 1(a). In (b), segmenta-
tion identical with Figure 1(b).

by

(27) ŷj =
1

14842

∑
x=(x1,x2)

x1,x2∈{23,...,1506}

V0

(
Ξ ∩Brj

(x)
)
.
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normal group carcinoma group
VV 0.15 0.43
Std (VV ) 0.037 0.047
SV 24.01 mm−1 40.85 mm−1

Std (SV ) 2.68 mm−1 1.97 mm−1

MV 106.91 mm−2 297.91 mm−2

Std (MV ) 122.07 mm−2 180.93 mm−2

Table 1. Means of the estimated values and the means of their
asymptotic standard deviations. The latter means are not equal
to the usual standard deviations between the cases within the
groups.

An algorithm to estimate the local Euler characteristic for all radii simul-
taneously is given in [3].

(3) Now, the estimation of the specific intrinsic volumes is straightforward by
computing the least-squares estimator v∗ = (A>A)−1A>ŷ.

(4) To estimate the asymptotic covariance matrix the theory says we need
an unboundedly increasing sequence of observation windows, cf. (6). In
practice we have only one concatenated quadratic image with fixed size, and
we assume it is large enough. So we choose the averaging set U = B300(o)
and estimate the variances and covariances using a discretized version of
the estimator given in (23), (24) and (25) where the integrals are replaced
by sums.

In the present study, the application of the joint estimator described above to
the white phase of the images led to the following mean values for the stereological
model parameters (1) – (3). In Table 1, the terms Std (VV ), Std (SV ) and Std (MV )
denote the means of the asymptotic standard deviations of the white phase per
concatenated large image. Thus, they are not identical with the standard deviations
of these model parameters ‘between images within cases’ and also not identical with
the ordinary standard deviations of VV , SV and MV ‘between cases within groups’
. The latter may be computed using standard statistical formulae even with a table
calculator; however, this does not apply to the asymptotic standard deviations. In
addition, the covariances between VV , SV and MV were computed, but these are
not reiterated here. In order to see which parameter discriminated best between the
groups, the results were visualized graphically. For example, Figures 3 and 4 show
the estimated area fraction of the white phase and the estimated mean curvature
density of the white phase per unit area, respectively.

From Figure 4 one can see that it is not possible to base the decision whether
an image shows mammary carcinoma or not only on the mean curvature density.
Also a statistical test of the mean surface area per unit volume alone does not lead
to a sufficient discrimination of the groups. However, the area fraction of the white
phase (Figure 3) seems to be a better parameter to categorize the images into two
groups. Since this paper is focused on explaining the theory and the algorithm
of the new estimation approach we will only test the area fraction which yields
acceptable results. Anyhow, it is clear that the two groups in Figure 4 belong to
two different settings. Therefore one could combine e.g. area fraction and Euler
number and consider vectorial tests to strengthen the results of a one-dimensional
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Figure 3. Estimated area fraction of the white phase.

test. With the approach described in the last section this is possible and will be
done in a further paper.

In the following, we write just ‘area fraction’ and omit the words ‘white phase’
for convenience. From the last section we know that the least-squares estimator
is asymptotically normally distributed so we can construct a statistical test for
the area fraction. Since the images have fixed size we don’t have an unboundedly
increasing sequence of observation windows Wn. Instead we claim that the estima-
tors are approximately Gaussian because our images are large enough. The null
hypothesis states that ‘the expected area fraction in image j corresponds to the
mean area fraction in images showing normal mammary tissue’ , where the images
1− 10 show normal mammary tissue and the images 11− 20 show mammary car-
cinoma tissue. So if we write pj for the expected area fraction in image j and p0

denotes the mean area fraction in images showing normal mammary tissue, the null
hypothesis reads as H0 : pj = p0. As we can see from Figure 3, the estimated val-
ues of the area fraction in images showing mammary carcinoma tissue are greater
than in images showing tumor-free mammary tissue. That’s why we consider the
one-sided alternative hypothesis H1 : pj > p0. The significance level is α = 5 %.
The unknown expected area fraction pj in image j is estimated by the least-squares
estimator given in (20) or, to be precise, by its third entry, and denoted by p̂j .
When calculating the mean area fraction p0 one has to distinguish, if the image
whose area fraction we want to test shows mammary cancer or normal tissue. In
the first case we define p0 as the arithmetic mean of the estimated area fractions
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Figure 4. Estimated mean curvature density MV (in mm−2) of
the white phase per unit area.

of the ten images showing tumor-free tissue, i.e.

(28) p0 =
1
10

10∑
i=1

p̂i.

But if the considered image shows tumor-free tissue, we have to exclude it from the
calculation of the mean, so we define p0 by

(29) p0 =
1
9

10∑
i=1
i 6=j

p̂i.

Now we can calculate the test statistic

(30) Tj =
√
|W | p̂j − p0

σ̂j

in image j, where σ̂2
j denotes the estimated variance of

√
|W |(p̂j−p0), see equations

(23) and (24) and subsequent lines. In fact, it holds that
√
|W | = 1530 in the

considered case, because all images are squares with sidelength 1530 pixel. Slutsky’s
theorem yields that Tj is approximately standard Gaussian. With the 95%-quantile
z0.95 = 1.64 the critical range is (1.64,∞), so the null hypothesis for image j is
rejected if the value Tj is greater than 1.64. The results are shown in Table 2. The
null hypothesis is not rejected for the images showing normal mammary tissue, but
it is rejected for all ten images showing mammary carcinoma tissue, which means
they are classified correctly.
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j p̂j Rejection of H0

1 0.047224 no
2 0.094392 no
3 0.138055 no
4 0.145576 no
5 0.155753 no
6 0.159763 no
7 0.163755 no
8 0.163812 no
9 0.217735 no

10 0.232209 no

11 0.277096 yes
12 0.297491 yes
13 0.342711 yes
14 0.342963 yes
15 0.418210 yes
16 0.423122 yes
17 0.442027 yes
18 0.520348 yes
19 0.570691 yes
20 0.693262 yes

Table 2. Results of the test H0 : pj = p0 for images showing
tumor-free mammary tissue (j = 1, . . . , 10) and for images showing
mammary cancer tissue (j = 11, . . . , 20)

Of course, we can, in a certain sense, exchange null and alternative hypothesis
and test the null hypothesis that ‘the expected area fraction in image j corresponds
to the mean area fraction in images showing mammary carcinoma tissue’ or, shortly,
H̃0 : pj = p̃0. Here, p̃0 denotes the mean area fraction of images showing mammary
cancer tissue and as above there are two definitions for p̃0 depending on what type
of tissue the considered image shows, cf. (28) and (29). Again, the alternative is
one-sided H̃1 : pj < p̃0 and the test statistic is defined by

(31) Tj =
√
|W | p̂j − p̃0

σ̂j
.

The results of this test are shown in Table 3. Table 3 shows that the null hypoth-
esis is rejected for all images showing normal tissue. But unfortunately there are
three images out of the ten showing mammary carcinoma tissue for which the null
hypothesis is rejected although it should not be.
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j p̂j Rejection of H̃0

1 0.047224 yes
2 0.094392 yes
3 0.138055 yes
4 0.145576 yes
5 0.155753 yes
6 0.159763 yes
7 0.163755 yes
8 0.163812 yes
9 0.217735 yes

10 0.232209 yes

11 0.277096 yes
12 0.297491 yes
13 0.342711 yes
14 0.342963 no
15 0.418210 no
16 0.423122 no
17 0.442027 no
18 0.520348 no
19 0.570691 no
20 0.693262 no

Table 3. Results of the test H̃0 : pj = p̃0 for images showing
tumor-free tissue (j = 1, . . . , 10) and for images showing mammary
cancer tissue (j = 11, . . . , 20)

4. Discussion

Equations (1) – (3) are well-known fundamental stereological formulae, valid
under the conditions of isotropy and stationarity in a model-based approach, and
under the condition of IUR sampling from arbitrary structures in a design-based
approach. However, there is a practical difference: the estimators of the model pa-
rameters in (1) and (2) are very easy to implement with an image analyzer, but the
estimation of the Euler number is non-elementary even in 2D. While estimation of
VV and SV is already taught in basic courses on stereology, this does not apply for
the Euler number. Nevertheless the Euler number is of interest for a quantitative
characterization of carcinoma tissue of glandular origin, because the Euler num-
ber is directly linked to fundamental pathological tumor properties such as solid
architecture where ideally χ > 0, tubular architecture where ideally χ = 0, and
cribriform architecture where ideally χ < 0. These textures may arise in all types
of adenocarcinomas. Sometimes a cribriform texture can be found in mammary
carcinomas; in practice it is most important to recognize this texture component
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in prostatic carcinomas, where it is known to be associated with a poorer prog-
nosis as compared to tubular differentiation. Furthermore, the usual stereological
approach, even if it encompasses the Euler number, leads merely to point estimates
of the model parameters, but does not provide an insight into the covariance ma-
trix, i.e. the asymptotic variances and covariances of VV , SV , and MV of the three
phases remain unknown. Point estimates for VV and SV of the epithelial phase of
tumour-free mammary tissue and mammary carcinomas obtained from conventional
stereological methods were previously published [7, Table 1]. The results were very
similar to the present study. This shows the good reproducibility (robustness) of
the method, in which the images were segmented interactively. Fully automatic
segmentation of mammary tissue into epithelium, lumen, and tumour cells by im-
age analysis would be desirable, but this aim is difficult to achieve at the moment.
The plausibility of the results was checked by using a theorem of Tomkeieff, which
states that the mean length of intercepts through particle profiles, l1, is related to
the Minkowski functionals of the particles by the equation l1 = 4VV /SV (see [1,
p. 33]). According to this relation, one would expect values for l1 ≈ 0.025 mm in
the tumour-free group and l1 ≈ 0.042 mm in the carcinoma group, which roughly
corresponds to the visual impression, see Figures 1(b) and 2(b). In contrast to
many other methods to estimate the specific intrinsic volumes the approach given
in [17] yields not only the estimates, but also the (asymptotic) variances and co-
variances. All values can be computed from one large concatenated image. The
classical approach to estimate the sample variance in each group is inappropriate
here because we want to test each image separately. This might be interesting if
there is only one image available in a practical application, which may be divided
into subwindows.

In the special case of mammary tissue it turned out that the area fraction of
the white phase, i.e. the part of the image that shows epithelial cells, is a good
criterion to detect if an image shows mammary cancer tissue or not. The area
fraction has the useful property of being independent of the magnification of the
image. Although this was not important in our study, it may be relevant for the
analysis of images where the scaling factor is unknown. A practical example for
this situation has emerged more and more in the last decade. There are published
datasets available in the internet consisting of images of various tumor types, e.g.
also mammary and prostatic carcinomas, where expert groups have performed the
histopathological grading for reference purposes. Usually, these images are given
without any information on the final magnification, and often it will not be possible
to retrieve the magnification factor any more. It would be attractive to perform
a quantitative meta-analysis of these images by means of spatial statistics. Due
to the aforementioned reasons, one will then be restricted to methods which are
independent of the magnification. This holds for the VV component of the joint
estimator described here. In contrast to the usual routine method, e.g. point
counting, our method will also provide an estimate of the asymptotic variance, and
thus yield valuable additional information. As one can conclude from Tables 2 –
3, the test on tumor-free tissue yields better results than the test on mammary
carcinoma tissue.

The most common tumor types of the female breast are invasive ductal and lob-
ular carcinoma. These designations indicate a tumor differentiation more similar
to the ducts or to the lobules of the mammary parenchyma, respectively. For both
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types of breast cancers, an attempt is made towards grading of malignancy in rou-
tine diagnostics. This is important for prognosis prediction and therapy planning.
It is intended to apply our method for the characterization of mammary carcinomas
of different degrees of malignancy, and eventually to use it for the prediction of the
grade of malignancy from spatial data, i.e. for the purpose of pattern recognition.
Also it will be interesting to differentiate by this technique between ductal and lob-
ular mammary carcinomas, which may be difficult in some cases, see [5]. However,
before these two more ambitious projects are put into practice, we thought it advis-
able to implement the methodology first in a simpler setting comparing tumor-free
tissue to carcinoma tissue, where the differences between the classes of specimens
are more pronounced. For the advanced applications, it may become useful to con-
sider vectorial tests. With the described method it is possible to characterize the
tissue high-dimensionally. If only one phase is considered, one obtains 9 instead
of 3 numerical values per image (the three point estimates, the three asymptotic
variances and the three asymptotic covariances of the Minkowski functionals). This
rises to a whole bunch of characteristics if also the other two phases are taken into
account. This will be subject of a further paper.
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