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t A sto
hasti
 model for the tra
ks of tropi
al 
y
lones that allowsfor the 
omputerised generation of a large number of syntheti
 
y
lone tra
ksis introdu
ed. This will provide a larger dataset than previously availablefor the assessment of risks in areas a�e
ted by tropi
al 
y
lones.To improve homogeneity, the histori
al tra
ks are �rst split into 6 
lasses.The points of 
y
lone genesis are modelled as a spatial Poisson point pro
ess,the intensity of whi
h is estimated using a generalised version of a kernelestimator. For these points, initial values of dire
tion, translation speed,and wind speed are drawn from histograms of the histori
al values of thesevariables observed in the neighbourhood of the respe
tive points, therebygenerating a �rst 6-h segment of a tra
k. The subsequent segments are thengenerated by drawing 
hanges in theses variables from histograms of thehistori
al data available near the 
y
lone's 
urrent lo
ation. A terminationprobability for the tra
k is determined after ea
h segment as a fun
tion ofwind speed and lo
ation.In the present paper, the model is applied to histori
al 
y
lone data fromthe western North Pa
i�
, but it is general enough to be transferred to othero
ean basins with only minor adjustments. A version for the North Atlanti
is 
urrently under preparation.Key words Sto
hasti
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2 Jonas Rumpf et al.1 Introdu
tion1.1 MotivationCatastrophies 
aused by tropi
al 
y
lones are not only a threat to humanlives but also a massive �nan
ial risk to insuran
e and reinsuran
e 
ompa-nies. These 
ompanies need to assess as pre
isely as possible the risk andextent of losses in areas a�e
ted by tropi
al 
y
lones. Sin
e reliable data on
y
lone tra
ks is only available for a relatively short period of time, it is notsu�
ient to make a risk assessment based solely on histori
al storm tra
ks.Therefore, as one possible approa
h to this problem, a basin-wide sto
hasti
simulation model for the western North Pa
i�
 as outlined in Rumpf et al.(2006) is introdu
ed. To the authors' knowledge, this is a novel 
on
ept forthis o
ean basin. Approa
hes with similar ideas for the North Atlanti
 andthe South Pa
i�
 have been dis
ussed in James and Mason (2005), Vi
k-ery et al. (2000), and most re
ently in Emanuel et al. (2006) and Hall andJewson (2007).1.2 OverviewAfter a short des
ription of the available data, an explanation is given inSe
tion 2 as to why and how this data is homogenised by splitting it into 6di�erent 
lasses. Se
tion 3 is 
on
erned with modelling the starting pointsof the 
y
lone tra
ks as an inhomogeneous Poisson point pro
ess and thejusti�
ation for this 
hoi
e of model. The a
tual tra
k model, in whi
hresampling methods play an important role, is explained in Se
tion 4. Analgorithm for the simulation of 
y
lone tra
ks is spe
i�ed in Se
tion 5, alongwith some sample results of the algorithm and a brief dis
ussion of theassessment of these results. After providing a brief insight into the methodsof risk assessment applied to the simulated tra
ks in Se
tion 6, the paper
on
ludes with an outlook on possibilities for further model development.1.3 DataThe available data 
onsists of the tra
ks of all tropi
al 
y
lones re
ordedduring the period 1945�2004 in the western North Pa
i�
. Sin
e there is no`de�nitive' dataset for this o
ean basin in the same way as the HURDATbest tra
k is for the North Atlanti
 (see Jarvinen et al. (1984)), we use dataMuni
h Re has 
ompiled from di�erent sour
es, mainly the Japanese Me-teorologi
al Agen
y (JMA), the Joint Typhoon Warning Center (JTWC)and Unisys Weather. Figure 1 shows the tra
ks of all 1,519 storms 
on-sidered. Ea
h tra
k is given as a polygonal traje
tory 
onne
ting between2 and 100 points of measurement. Besides the date and time of measure-ment, the storm's 
urrent position (latitude and longitude) and its 
urrentmaximum windspeeds are given for ea
h point. The measurements within
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h individual storm are taken at regular intervals of 6 h, so the storm'stranslational speed 
an be easily 
al
ulated. All observations fall into anobservation window that is delimited by the equator in the south, 60◦N inthe north, 100◦E in the west, and the date line in the east.2 Classi�
ationAs 
an be easily seen from Figure 1, there are strong inhomogeneities in theshapes of the 
y
lone tra
ks. To improve the quality of the simulation, thestorm tra
ks are therefore split into 6 more homogeneous 
lasses. Sin
e theshape of a storm tra
k is a spatial 
hara
teristi
, we split the observationwindow into 4 di�erent zones, to 
orrespond roughly to the map's majorareas of land and sea, respe
tively; see Figure 2. Tra
ks are then 
lassi�edon the basis of the zones they tou
h. The 
lassi�
ation pro
edure 
onsistsof two parts: First, storm tra
ks are split into 
lasses 0, 1, 2, and 3 a

ordingto the 
riteria listed in Table 1. Then, 
lass 4 is 
reated with those stormsfrom 
lass 2 that have their starting point in zone 1, and 
lass 5 is 
reatedwith storms of 
lass 1 whi
h have their starting point east of 122◦E, i. e.in the South China Sea. This parti
ular 
hoi
e of 
lasses has the desirableproperties of 
reating a de
ent amount of homogeneity among the tra
kshapes with not too many 
lasses. The authors do re
ognize, however, thatthe vague notion of homogeneity among tra
k shapes introdu
es a 
ertainamount of arbitrariness, though this is not 
onsidered a detriment to themodel, sin
e no information is lost and a helpful tool for the simulation isgained.Two of the resulting 
lasses of storm tra
ks 
an be seen in Figures 3and 4, respe
tively. The 
lass sizes are given in Table 2. A more intuitivedes
ription of the 
lassi�
ation 
riteria 
an be given as follows:� Class 0 
ontains all the storms whose tra
ks are situated 
ompletely inthe open sea in the southeastern part of the observation window.� Class 1 
ontains the storms, whose tra
ks start in the southeastern partof the observation window and then head mostly northwest in an almoststraight line towards the Philippines, the South China Sea, and the Asian
ontinent; see Figure 3.� Class 2 
ontains the storms whose tra
ks start in the eastern part of theobservation window. After initially heading northwest, they head to theright towards the northeast and in one way or the other a�e
t Japanand/or the Korean Peninsula; see Figure 4.� Class 3 
ontains storms whose tra
ks are situated 
ompletely in the opensea in the eastern part of the observation window and whi
h move furtherup north than those of 
lass 0.� Class 4 
ontains those storms that start o� from the South China Seaand then head northeast towards Japan in a nearly straight line.



4 Jonas Rumpf et al.Start in zone. Tou
hed zones End in zone Class
0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

0 or 1 0 and 1 0 or 1 1

0 or 2 0 and 2 0 or 2 2

0 or 3 0 and 3 0 or 3 3

1 or 2 1 and 2 1 1

1 or 2 1 and 2 2 2

2 or 3 2 and 3 2 or 3 2

0, 1 or 2 0, 1 and 2 0 0

0, 1 or 2 0, 1 and 2 1 1

0, 1 or 2 0, 1 and 2 2 2

0, 1 or 3 0, 1 and 3 0 0

0, 1 or 3 0, 1 and 3 1 1

0, 1 or 3 0, 1 and 3 2 2

0, 2 or 3 0, 2 and 3 0, 2 or 3 2

1, 2 or 3 1, 2 and 3 1 1

1, 2 or 3 1, 2 and 3 2 or 3 2

0, 1, 2 or 3 0, 1, 2 and 3 0 0

0, 1, 2 or 3 0, 1, 2 and 3 1 1

0, 1, 2 or 3 0, 1, 2 and 3 2 or 3 2Table 1 Criteria for the 
lassi�
ation of the 
y
lone tra
ksClass Number of tra
ks Number of data points
0 115 1,939
1 470 11,958
2 470 14,695
3 178 4,086
4 84 2,032
5 202 2,667Total 1,519 37,377Table 2 Class sizes of the storm 
lasses� Class 5 
ontains storms whose tra
ks are almost 
ompletely limited tothe vi
inity of the South China Sea. Most of them move in a straightline towards the Asian 
ontinent.After 
reating the 6 di�erent storm 
lasses, all subsequent steps of the mod-elling pro
ess are done separately for ea
h 
lass.
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Figure 1 Tra
ks of all storms in the dataset

Figure 2 Observation window split into 4 zones
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Figure 3 Tra
ks of all storms in 
lass 1

Figure 4 Tra
ks of all storms in 
lass 23 Points of genesis3.1 Basi
 modelFor a sto
hasti
 model of the tra
ks of tropi
al 
y
lones, �rst a model forthe points of 
y
lone genesis, i. e. the �rst points of the tra
ks, is needed.Figure 5 shows, as an example, the points of genesis of storms in 
lass 2.The points are 
learly distributed inhomogeneously within the observation



Sto
hasti
 Modelling of Tropi
al Cy
lone Tra
ks 7

Figure 5 Points of genesis of storms in 
lass 2window. Therefore, an inhomogeneous Poisson pro
ess is 
hosen as a model,whi
h is further justi�ed by the 
entral properties of this point pro
ess model(see, for example, Stoyan and Stoyan (1994), p. 228):� No intera
tion: The Poisson pro
ess is 
onsidered to be a model for
omplete spatial randomness, in the sense that its points are pla
ed inthe observation window 
ompletely independent of ea
h other. They ex-hibit no intera
tion; neither attra
tion (or 
lustering) nor repulsion isin
orporated into the model. This property re�e
ts the fa
t that me-teorology provides no eviden
e of intera
tions between storms' startingpoints, espe
ially not over the number of years 
ontained in the data.However, the authors do re
ognise that in any given year a 
lustering ofstorms in a 
ertain region 
ould o

ur.� Poisson distribution: In a Poisson pro
ess, the number of points ina given area is Poisson-distributed. This 
orresponds to the result of aPearson-Fisher-Goodness-of-Fit test, whi
h does not reje
t the hypoth-esis that the number of storms per year in the given data is Poisson-distributed. This result is obtained not only for the numbers of stormsin the di�erent 
lasses, but also for the total number of storms withinthe observation window (see Se
tion 3.2).3.2 Tests for Poisson distributionTo test the hypothesis that the number of storms in the data is Poisson-distributed, i. e.
H0 : P ∈ {Poi(λ), λ > 0} vs. H1 : P 6∈ {Poi(λ), λ > 0}, (1)



8 Jonas Rumpf et al.where P is the distribution of the number of 
y
lones per year within theobservation window, an asymptoti
 Pearson-Fisher-Goodness-of-Fit test isperformed, see Cramér (1971), Chapter 30. For this test, 
onsider the num-bers of storms in the 59 years 
ontained in the data as realisations u1, . . . , unof independent and identi
ally distributed random variables U1, . . . , Un,where n = 59. These realisations are then grouped into r disjoint subsets
A0 = {0, . . . , a0}, A1 = {a0 + 1, . . . , a1}, . . . , Ar−2 = {ar−3 + 1, . . . , ar−2},
Ar−1 = {ar−2 + 1, ar−2 + 2, . . .}. The values of a0, . . . , ar−2 are 
hosen inthe following way: Starting with a0, the aj are determined iteratively as theminimal values that ensure that the 
ondition

pj(λ̂) · n > 5 ∀j = 0, . . . , r − 1, (2)holds, where
p0(λ̂) =

a0∑

i=0

λ̂i

i!
e−

bλ, (3)
pj(λ̂) =

aj∑

i=aj−1+1

λ̂i

i!
e−

bλ ∀j = 1, . . . , r − 2, (4)
pr−1(λ̂) =

∞∑

i=ar−2

λ̂i

i!
e−

bλ (5)denote the Poisson probabilities of the r subsets. Condition (2) requiresthe subsets Ai to ea
h 
ontain more than a 
ertain minimum number ofobservations. While there seems to be a 
onsensus in the literature that thisis an important 
ondition for the validity of the Pearson-Fisher test (seee. g. Cramér (1971), p. 420, and Gibbons (1985), p.72f.), the a
tual valuesstated vary. In 
hoosing the minimum number in (2) equal to 5, we followGibbons (1985).Note that 
ondition (2) is expli
itly required to hold for j = r−1, therebydetermining uniquely not only the Aj , but also r. The maximum likelihoodestimator λ̂ for the parameter λ of the hypotheti
al Poisson distributionfrom the grouped data 
an be approximated by the well-known maximumlikelihood estimator for λ for ungrouped data, the sample mean Un. Thenthe test statisti

Tn(U1, . . . , Un) =

r−1∑

j=0

(Zj(U1, . . . , Un) − npj(Un))2

npj(Un)
(6)is asymptoti
ally χ2

r−2-distributed, where
Zj(U1, . . . , Un) = #{i : 1 ≤ i ≤ n, Ui ∈ Aj}. (7)Therefore, the hypothesis H0 is reje
ted at a given level of signi�
an
e α if

Tn(u1, . . . , un) > χ2
r−2,1−α, (8)
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ks 9Class ūn r Tn(u1, . . . , un)0 1.95 5 7.851 7.97 8 2.492 7.97 8 9.853 3.02 6 5.024 1.42 4 0.055 3.42 6 4.32all 25.75 8 1.97Table 3 Tests for Poisson distribution of the number of storms per yearClass χ2

r−2,0.99 H0 rej.? χ2

r−2,0.95 H0 rej.? χ2

r−2,0.90 H0 rej.?0 11.34 no 7.81 yes 6.25 yes1 16.81 no 12.59 no 10.64 no2 16.81 no 12.59 no 10.64 no3 13.28 no 9.49 no 7.78 no4 7.38 no 5.99 no 4.61 no5 13.28 no 9.49 no 7.78 noall 16.81 no 12.59 no 10.64 noTable 4 Tests for Poisson distribution of the number of storms per yearre
alling that (u1, . . . , un) denotes a realization of (U1, . . . , Un). As 
an beseen from Tables 3 and 4, for the tropi
al 
y
lone data, the hypothesis isnot reje
ted ex
ept for storms of 
lass 0 for the higher α-levels of 0.05 or0.1. This result holds for the di�erent storm 
lasses as well as for the totalnumber of storms.3.3 Intensity estimationThe distribution of points of an inhomogeneous Poisson point pro
ess withinthe observation window W is determined by its intensity fun
tion λ(t). Thisfun
tion 
an be interpreted in a way that λ(t)dt des
ribes the in�nitesimalprobability of a point of the Poisson pro
ess being lo
ated in the in�nites-imally small dis
 with area dt 
entred at t (see, for example, Stoyan et al.(1995), p. 42). Sin
e there is no obvious parametri
 trend visible in the data(see Figure 5), a non-parametri
 estimation te
hnique was 
hosen. The gen-eralised nearest neighbour estimator (see Silverman (1986), p.97) is givenby
λ̂(t) = rk(t)−2

m∑

i=1

Ke

{
rk(t)−1(t − Ti)

}
, (9)where rk(t) is the distan
e to the k-th nearest point of genesis seen fromthe lo
ation t, Ti the lo
ation of the i-th histori
al point of 
y
lone genesis,
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hnikov kernel:
Ke(t) =

{
2
π (1 − t

⊤
t) if t

⊤
t < 1,

0 otherwise. (10)The parameter k is 
hosen su
h that k = ⌊√m⌋, where m is the number ofhistori
al points of genesis.A simpli�ed interpretation of this estimator is given in the following: whilethe kernel Ke determines the size and the shape of the `probability mass'whi
h is assigned to a measurement point, the bandwidth rk(t) is the radiusover whi
h this mass is spread. Note that the estimator λ̂(t) is nowhere zero:at all points within the observation window, there is a non-zero probabil-ity mass from exa
tly k histori
al points of genesis. This probability massde
reases with in
reasing distan
e to the k-th nearest histori
al point ofgenesis, but in theory never rea
hes zero. This e�e
t is intended, be
ause itallows, if only rarely, for the genesis of tropi
al 
y
lones within the modelat lo
ations that are far away from most histori
al initial points of 
y
lones,where there are no physi
al reasons against 
y
lone genesis. In some areas,of 
ourse, the intensity is set to zero be
ause 
y
lone genesis is meteoro-logi
ally impossible there. These areas in
lude all lo
ations 
loser to theequator than 3◦ of latitude, motivated by the negligible Coriolis for
e inthese regions, as well as all lo
ations not over sea, be
ause of their la
k ofne
essary heat sour
es for a 
y
lone.4 Cy
lone tra
ks and wind speeds4.1 Dire
tion, translational speed and wind speedOn
e a model for the points of 
y
lone genesis is available, the propagationof the tra
ks is the next step in the modelling pro
ess. Here our model re-lies on the same basi
 assumption as the models introdu
ed in, for example,Emanuel et al. (2006), Hall and Jewson (2007), and Vi
kery et al. (2000)that 
y
lones lo
ated in similar areas of the observation window behavesimilarly. An appropriate model of the tra
ks following the points of genesisneeds to in
lude the dire
tion of movement (denoted by X in the follow-ing) and the translational speed (Y ), i. e. the velo
ity at whi
h the 
y
loneis moving in the given dire
tion. By assuming these 
hara
teristi
s to be
onstant for intervals of 6 h (see Se
tion 1.3) and updating them instanta-neously after ea
h interval, the 
y
lone's lo
ation 
an be 
al
ulated in 6-hsteps, thereby generating a 
omplete traje
tory. For risk assessment (seeSe
tion 6), additional information is needed, namely the maximum windspeeds attained (Z) at ea
h of the 
y
lone's positions. To 
ombine these
hara
teristi
s, 
onsider a 3-dimensional state ve
tor Si that 
ontains theirvalues after the i-th tra
k segment. These values are 
onsidered to be the
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hanges in these values after ea
h step:
Si = S0 +

i∑

j=1

∆Sj =




Xi

Yi

Zi



 =




X0

Y0

Z0



 +

i∑

j=1




∆Xj

∆Yj

∆Zj



 (11)Sin
e a sto
hasti
 model is being developed, all of the 
hara
teristi
s
X0, Y0 and Z0 as well as ∆Xj , ∆Yj , ∆Zj are 
onsidered to be random vari-ables. The distributions of these random variables depend on the storm's
urrent lo
ation t within the observation window W . To generate a reali-sation of S0 at a 
ertain lo
ation, data is resampled from the distributionsof the histori
al measurements of X0, Y0 and Z0 near that lo
ation, i. e. theprobability distribution fun
tion of X0 at lo
ation t is estimated by

FX0
(x, t) =

#{l : 1 ≤ l ≤ kX0
, x

(0)
l (t) ≤ x}

kX0

, (12)where x
(0)
l (t), l = 1, . . . , kX0

, denote the kX0
histori
al realisations of X0
losest to the lo
ation t. In short, the distribution of the initial dire
tionof a tra
k in the model is determined by all histori
al initial dire
tions ofstorm tra
ks. Similar formulae are used in order to estimate the lo
ation-dependent distributions of Y0 and Z0, respe
tively. In analogy to this, theprobability distribution fun
tions of a 
hange in dire
tion ∆Xj0 is given by

F∆X(x, t) =
#{l : 1 ≤ l ≤ k∆X , ∆xl(t) ≤ x}

k∆X
, (13)where ∆xl(t), l = 1, . . . , k∆X , now denote the k∆X histori
al realisationsof ∆Xj ∀j 
losest to the lo
ation t. This means that the distribution ofany 
hange in dire
tion ∆Xj0 depends on the histori
al realizations of all
hanges in dire
tion ∆Xj of tropi
al 
y
lones, no matter after whi
h stepof a storm they o

urred. A similar formula is used for ∆Yj .To 
onform with reality, 
ertain boundary 
onditions are imposed on the
omponents of Si. For example, the translational speeds Yi must be non-negative at all times. Also note that all 
al
ulations involving the dire
tionof a 
y
lone are made `mod 360◦' to keep the value of the Xj within theinterval [0◦, 360◦), where 0◦ is 
onsidered North.For the 
hanges in wind speed ∆Zj , a modi�ed version of the probabilitydistribution fun
tion given in (12) is 
onsidered. To re�e
t the fa
t that thewind speeds of stronger storms tend to de
rease, while weaker storms tendto intensify in their early stages, the distribution of the 
hanges in windspeed was made dependent on the previous wind speed z:

F∆Z(x, t, z) =
#{l : 1 ≤ l ≤ k∆Z , ∆zl(t, z) ≤ x}

k∆Z
, (14)where the ∆zl(t, z), l = 1, . . . , k∆Z , denote k∆Z histori
al realisations ofthose ∆Zj 
losest to the lo
ation t that had previous wind speeds in thesame range (`low', `medium-low', `medium-high', `high') as z.



12 Jonas Rumpf et al.4.2 Termination probabilitiesSin
e the proposed model 
reates syntheti
 
y
lone tra
ks in 6-h steps, ame
hanism is needed to determine whether the tra
k should be terminatedafter the 
urrent step or if it should be 
ontinued. This is done sto
hasti
allyvia a Bernoulli experiment with a su

ess probability p(t, Z) depending onthe storm's 
urrent lo
ation and wind speed. Here, the event `su

ess' is
onsidered equivalent to `the 
y
lone terminates'. The termination proba-bility is determined as the maximum of two probabilities pZ and pt, sin
ethis approa
h to 
ombining the two probabilities delivered the best resultsin eliminating spurious syntheti
 storm tra
ks penetrating unrealisti
allydeep into the Asian 
ontinent.Although in theory tropi
al 
y
lones should only be 
onsidered as su
has long as their wind speeds ex
eed 62 km/h (34 knots), the wind speeds atthe last points of measurement of the 
y
lones vary greatly in the availabledata. Therefore, to mat
h the data, a 
urve of the form
pZ = c · e−λZα (15)depending on a 
y
lone's 
urrent wind speed Z was �tted to histori
al ter-mination probabilities, whi
h have been determined as follows: all points ofmeasurement and their respe
tive wind speeds are grouped into 10 km/h-wide bins. The termination probability of every bin is then given as thefra
tion of 
y
lone termination points among all points in this bin. To avoidartefa
ts resulting from imperfe
t data, points with speeds less than 30km/h are omitted. The 
urve given in (15) is then �tted to the resulting 28points using a least-squares method. It is well known that tropi
al 
y
lonesbehave di�erently over land than they do over sea. For example, 
y
lonesare subje
t to higher fri
tion and a lower energy supply over land than theyare over sea. Therefore, this pro
edure is applied separately to the pointsof measurement over land and to those over sea. As an example, the datapoints and the �tted 
urve for the storms of 
lass 2 over land and over seaare shown in Figures 6 and 7, respe
tively. A possible la
k in �t of the 
urveto the data is 
onsidered a

eptable be
ause of the fa
t that only the generalform of the 
urve is needed for the model. In parti
ular, an exa
t repli
ationof the data is not intended, 
onsidering the goal of 
reating a larger datasetfor risk assessment and bearing in mind the existen
e of imperfe
tions in thedata. Additionally, �tting errors are also 
ompensated in part by the se
ondtermination probability, whose 
al
ulation is des
ribed in the following.To a

ount for the fa
t that the weakening of tropi
al 
y
lones and theirwind speeds is signi�
antly in�uen
ed by the geographi
al 
onditions atthe storm's 
urrent lo
ation, a se
ond probability pt is 
al
ulated for alllo
ations t in the observation window. Similarly to the probabilities givenin (12), pt is 
al
ulated as the fra
tion of termination points among the nnearest points of measurement of the lo
ation t.
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Figure 6 Curve �tted to histori
al termination probabilities of storms of 
lass 2over land

Figure 7 Curve �tted to histori
al termination probabilities of storms of 
lass 2over seaThe termination probability used in the Bernoulli experiment is thentaken to be
p(t, Z) = max{pZ , pt}. (16)This allows for the qui
ker termination of storms that have rea
hed spe
i�
lo
ations while exhibiting un
ommonly high wind speeds, su
h as stormsthat penetrate far inland with high wind speeds. On the other hand, it alsoa

ounts for the termination of storms that do not rea
h parti
ularly highwind speeds in areas where most storms in the data have 
ontinued to exist.



14 Jonas Rumpf et al.5 Simulation and resultsIn this se
tion, an algorithm for generating syntheti
 
y
lone tra
ks is de-s
ribed, summarising the di�erent parts of the model and illustrating theirintera
tion. To 
reate a 
omplete set of syntheti
 storm tra
ks from themodel des
ribed above, the pro
edure is as follows for ea
h of the 6 storm
lasses (see Se
tion 2):0. Initialisation: Find all needed estimators and probabilities as they werede�ned in (9), (12), (13), (14), (15), and (16), respe
tively, and go to step1.1. Points of genesis:Generate a realisation of the inhomogeneous Poissonpoint pro
ess with the intensity fun
tion de�ned in (9) and go to step 2.2. Choose a point: From the point pro
ess realisation generated in step 1,pi
k one point that does not yet have a 
orresponding 
y
lone tra
k andgo to step 3. If there are no su
h points left, terminate the algorithm.3. Initial segment: Generate a realisation of S0 from the distributionfun
tions de�ned in (12) a

ording to the lo
ation t of the 
y
lone'sstarting point from step 2. With this, �nd the storm's new lo
ation afterits �rst segment and go to step 4.4. Termination probability: Perform a Bernoulli experiment with thesu

ess probability given by (16) a

ording to the storm's 
urrent lo
a-tion and wind speed. If the result is `su

ess', terminate the storm tra
kand go to step 6. Otherwise go to step 5.5. Additional segment: Generate a realisation of ∆Sj from the distribu-tion fun
tions de�ned in (13) and (14) a

ording to the storm's 
urrentlo
ation and wind speed. Add ∆Sj to Sj−1 to get Sj and from this anew lo
ation and wind speed for the storm. Then go to step 4.6. Class veri�
ation: Determine the 
lassi�
ation of the generated stormtra
k as des
ribed in Se
tion 2. If it mat
hes the 
lass of storm tra
ksfor whi
h this algorithm is being performed, a

ept the storm tra
k forthe given point of genesis and go to step 2. Otherwise, reje
t the stormtra
k and go to step 3 with the same point of genesis.Note that the possibility of a storm being reje
ted mentioned in step 6 ofthe algorithm is not just theoreti
al, but that in fa
t quite a few reje
tionsdo happen during simulation. For example, when a storm of 
lass 1 (seeFigure 3) is being simulated, the random 
ombination of a starting pointfar to the east, an initial dire
tion towards the west and several 
hanges ofthe dire
tion of movement to the right early on is improbable, but possible.This tra
k will then be 
lassi�ed into 
lass 3 instead of 
lass 1 (see Table 1)and therefore will be reje
ted in step 6 of the algorithm.This algorithm has been implemented using Java, whi
h 
reates thepossibility for the generation of a large number of syntheti
 
y
lone tra
ks.A sample of syntheti
 storm tra
ks in 
lass 1 with the same expe
ted numberof storms as in the original data is plotted in Figure 8.
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Figure 8 Syntheti
 tra
ks of storms in 
lass 1To evaluate the results of the model, 150 samples of syntheti
 stormtra
ks, where every sample is 
onsidered to 
onsist of 59 years of data, aregenerated by simulating a random number of storms for ea
h year whi
h isPoisson-distributed with a parameter given by the mean number of stormsper year in the histori
al data. Then the number of storms a�e
ting Japan(whi
h is the area of highest interest within the observation window), de-noted by Vi, is 
ounted for ea
h year. From every sample with sample size
n = 59, the expe
ted number of storms a�e
ting Japan per year and thevarian
e of this number are estimated by the sample mean V n and thesample varian
e S2

n. The simulated data is then 
ompared to the histori
aldata by 150 realisations of an asymptoti
 one-sample test. The test statisti

T (V1, . . . , Vn) given by

T (V1, . . . , Vn) =
√

n
V n − µ0√

S2
n

(17)is approximately N(0, 1)-distributed for su�
iently large n (see, for exam-ple, Lehmann and Romano (2005), p. 444). The hypothesis that the ex-pe
ted number of storms a�e
ting Japan in the simulated data 
orre
tlyre�e
ts the 
orresponding number from the histori
al data (denoted by µ0),is therefore reje
ted at a given level of signi�
an
e α if |T (V1, . . . , Vn)| >
z1−α/2 where z1−α/2 denotes the (1 − α/2)-quantile of the standard nor-mal distribution. Table 5 shows that the per
entage of samples where thehypothesis is reje
ted is approximately α, whi
h suggests that the model
orre
tly represents the number of storms a�e
ting Japan per year.
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α 1% 5% 10%Reje
tions 0.7% 5.3% 10.0%Table 5 Test results for the 
omparison between simulated and histori
al data6 Risk assessmentFrom a 
y
lone tra
k 
onsisting of the storm's lo
ations, translational speedsand maximum attained wind speeds, a two-dimensional wind �eld 
an be
al
ulated. This wind�eld is obtained using an empiri
al relation betweenthe maximum wind speed vmax, whi
h is 
onsidered to be attained at theso-
alled `radius of maximum wind speeds' rmax of the storm and windspeeds v(r) at a radial distan
e r ≥ rmax from the 
entre. The general formof this relation is given by

v(r) = vmax ·
(

r

rmax

)−γ , (18)where the exponent γ ∈ (0, 1) and rmax are determined empiri
ally.In the lower troposphere, the wind in a 
y
lone is dominated by thetangential wind speed. Therefore, the 
y
lone wind pro�le (18) is originallyderived using the 
onservation of relative angular momentum of tangentialwinds (v(r) · r = const) outside of rmax. However in reality, the wind inthe boundary layer is spiraling inwards, and, as a 
onsequen
e, it losesrelative angular momentum due to fri
tional dissipation at the surfa
e (seeDepperman (1947), Holland (1980)). Due to this fa
t, the exponent γ < 1is introdu
ed into (18), whi
h then re�e
ts a typi
al typhoon wind pro�leadequately for the purposes of this investigation.With this method, wind speeds 
aused by a 
y
lone at lo
ations of in-terest are 
al
ulated. These wind speeds 
an then be used to 
al
ulate anestimate for the damage the 
y
lone 
auses at these lo
ations. This 
reatesa possibility for a long-term risk assessment sin
e, with the des
ribed modeland its implementation in the programming language Java, it is possible togenerate a large number of realisti
 storm tra
ks. For example, one 
ouldsimulate tra
ks for a time horizon of 10,000 years and then 
al
ulate the`10,000-year damage' or damages with return periods of less than 10,000years.7 Summary and outlookA sto
hasti
 model for the simulation of tropi
al 
y
lone tra
ks in the west-ern North Pa
i�
 was developed. The model relies mostly on the histori
altra
k data available. Complex meteorologi
al aspe
ts of tropi
al 
y
lonemovement are greatly simpli�ed, thereby 
reating the possibility for the
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y
lone tra
ks. With these syn-theti
 tra
ks, the assessment of damage risks at lo
ations of interest inareas a�e
ted by the 
y
lones 
an be improved.The transfer of our model to the North Atlanti
 basin is 
urrently un-der development. In addition, the model is 
onstantly being enhan
ed. Forexample, it is intended to model dependen
ies of Sj and Sj−1 by Markov
hains, related to what was suggested in, for example, Emanuel et al. (2006).Another possibility for re�ning the model 
ould be to follow e. g. Hall andJewson (2007) by weighting the histori
al data used in formulae (12) through(14) a

ording to their distan
e from the storm's 
urrent lo
ation t. Fur-thermore, additional methods for the 
omparison of simulated and histori
al
y
lone tra
ks are being developed. With these methods, it will also be pos-sible to assess the relevan
e of the previously mentioned enhan
ements tothe performan
e of the model.A
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