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Abstract A method is introduced for assessing the probabilities and in-
tensities of tropical cyclones at landfall and applied to data from the North
Atlantic. First, a recently developed model for the basin-wide Monte-Carlo
simulation of tropical cyclone tracks is enhanced and transferred to the
North Atlantic basin. Subsequently, a large number of synthetic tracks is
generated by means of an implementation of this model. This synthetic data
is far more comprehensive than the available historical data, whilst exhibit-
ing the same basic characteristics. It thus creates a more sound basis for
assessing landfall probabilities than previously available, especially in areas
with a low historical landfall frequency.
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1 Introduction
1.1 Motivation

Tropical cyclones cause by far the highest losses for the insurance indus-
try. In 2005, insured losses caused by North Atlantic cyclones exceeded
US$83bn, breaking all previous records for a single year (see Munich Rein-
surance Company (2006), p.18). It is therefore necessary for insurance and
reinsurance companies to assess these risks thoroughly and carefully. Unfor-
tunately, the data available for risk assessment is relatively limited, covering
(in the case of the North Atlantic) a time span of about 150 years, whereas
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reinsurers need to include wind speeds with much lower exceedance fre-
quencies (< 0.001 p. a.) in their calculations. The approach to the solution
of this problem taken in this paper is to enhance the stochastic model of
tropical cyclone tracks in the western North Pacific originally introduced
in Rumpf et al. (2006) and Rumpf et al. (2007) and then to apply it to
the historical data on the North Atlantic basin. From this model, a num-
ber of synthetic but realistic storm tracks can be simulated that is much
larger than the number of storms provided by the historical data. Since
these synthetic tracks exhibit the same basic characteristics as the tracks
observed in the past, they can be used to perform the calculations neces-
sary for a more sound risk assessment. For example, the frequencies and
return periods of wind speeds at certain points of interest can be calculated
on the basis of a much larger dataset. It should be emphasized that the
methods described in this study aim to reflect the characteristics of the his-
torical data in their entirety, while the effects of potential fluctuations in
cyclone activity are deliberately neglected for now. Influences such as the El
Nifio-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), or
the Atlantic Multidecadal Oscillation (AMO) are ‘averaged out’ by pooling
all available data regardless of the phases it occurred in.

The procedure for the simulation of tropical cyclone tracks can be out-
lined as follows: After simulating a point of genesis from an inhomogeneous
Poisson point process model, the initial segment of a cyclone track is gen-
erated by sampling from the historically observed initial directions, initial
translational speeds and initial wind speeds of cyclones starting in the vicin-
ity of this genesis point. With this segment, a new position for the simulated
cyclone track can be found. At the new position, changes in direction, trans-
lational speed, and wind speed are simulated, again by sampling from the
historically observed values of these characteristics in the vicinity of the
current position. In this way, a new segment for the cyclone track is con-
structed. Further segments are then simulated in the same way until it is
decided to terminate the track. The random decision whether or not a track
is terminated is made after each segment with a termination probability
that is found as a function of the cyclone’s current wind speed and posi-
tion. The details of this simulation procedure are explained in Rumpf et al.
(2006) and in part in Section 2.

For an overview of the statistical aspects of the modelling and analysis

of losses caused by hurricanes, the reader is referred to the article by Iman
et al. (2006) and the references it contains.

1.2 Overview

The first step involves presenting the data on which the model is based.
The various components of the stochastic track model are then explained



Cyclone Hazard Assessment Using Track Simulation 3

in Section 2. This focuses in particular on the calculation of wind speeds
at certain distances from the simulated tracks (see Section 2.5). The meth-
ods of hazard assessment applied to the simulation results are described
in Section 3. Section 4 presents the results of simulations carried out with
an implementation of the model, and evaluates them in comparison to the
historical data. The summary in Section 5 rounds off the paper.

1.3 Data

The data used in this study are taken from the HURDAT (Atlantic basin
hurricane database) best track data (see Jarvinen et al. (1984)) provided by
the National Oceanographic and Atmospheric Administration of the United
States of America (NOAA). Although the database contains storms dating
back to 1851, only the records for the 1900-2005 period are used, older data
being of doubtful reliability. This complies with meteorological standard
M-1 of the Florida Commission on Hurricane Loss Projection Methodology
(FCHLPM).

The information in HURDAT that is relevant to the proposed model
indicates the position and wind speed of each storm, recorded at regular
six-hour intervals. In this way, a cyclone track can be represented as a
polygonal trajectory that connects up to 132 points of storm measurement.
The tracks of all 979 storms considered are plotted in Figure 1.

Figure 1 Tracks of all storms contained in the historical dataset
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2 Stochastic track model

This section outlines the stochastic model used to simulate the tracks of
tropical cyclones. The basis for this model was first introduced in Rumpf et
al. (2006) and has been described in detail in Rumpf et al. (2007). Therefore,
only those parts of the model that constitute significant enhancements to
the original model are described at length, see for example Section 2.5. The
reader is referred to Rumpf et al. (2007) for details on other aspects of the
model.

2.1 Classification

It is obvious from Figure 1 that the cyclone track shapes exhibit strong in-
homogeneities. Therefore, as an auxiliary tool for simulating cyclone tracks,
the historical tracks are first split into six disjoint classes based on the loca-
tions of their starting and end points and the regions affected by the storms.
The track shapes in the respective classes are much more homogeneous, and
yield greater precision when the simulations are generated. Figures 5 and 7
show two examples of the resulting classes: class 1 storms (Figure 5) have a
relatively straight track from the open Atlantic into the Caribbean and the
Gulf of Mexico, whereas class 2 storms (Figure 7) initially take a similar
direction but then recurve towards the northeast, in most cases affecting
not only the Caribbean and/or the Gulf of Mexico but also Florida or some
other part of the eastern North American continent. The subsequent steps
in the modelling process are performed separately for the different classes,
making use of the improved homogeneity created by dividing the tracks into
classes.

2.2 Points of genesis

The first step in modelling the tracks of tropical cyclones is to describe the
points of cyclone genesis by means of a random point process model (see,
for example, Baddeley et al. (2006) and Diggle (2003)). In our case, it is ap-
propriate to employ a Poisson process model, due to the nature of the data.
A Poisson point process can be considered as a model for ‘complete spatial
randomness’, i.e. the points are placed independently of each other, while
their total number is Poisson distributed (see Stoyan and Stoyan (1994)).
This model therefore reflects the apparent absence of ‘interaction’ between
the starting points of cyclones in the historical data for the time period
1900-2005, a meteorological property that is also backed by the results of a
mathematical investigation into the point patterns of these points of gene-
sis. In this investigation, the frequencies of interpoint distances were plotted
to establish whether any attraction or repulsion effects between the points
of genesis were visible. These plots seemed to indicate only a minor degree
of interaction, if any. In consequence, further investigations were carried
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out. Various point process models such as the Strauss hard core model were
fitted to the data using spatstat (see Baddeley and Turner (2005)). The re-
sulting model parameters did not indicate any relevant interaction between
the points.

Furthermore, the point process model of which the points of cyclone gen-
esis are considered a realisation is presumed to be spatially inhomogeneous,
i.e. its intensity varies spatially. Figure 2 plots the points of genesis for his-
torical class 2 storms to illustrate this assumption. The intensity function
of the inhomogeneous Poisson process has to be estimated from the data
in order to complete the model of the starting points of the cyclone tracks.
This is done by means of a generalised nearest neighbour estimator (see
Rumpf et al. (2007)), which uses an estimation technique closely related to
kernel estimation. For details of the corresponding definition and properties,
see Silverman (1986), p.97.

Figure 2 Points of genesis of class 2 storm tracks in the historical data

2.8 Cyclone tracks and wind speeds

As mentioned in Section 1.3, cyclone tracks can be interpreted as polygo-
nal trajectories or as a sequence of track segments connecting the locations
of measurement. Fach track segment is uniquely determined by its start-
ing point, orientation and length. Thus, storm tracks are modelled as a

sequence of random vectors 5@ = (X, y(® 7 ("))T in the following way:
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the direction of storm movement (or orientation) X (“*1) along the (i 1)-th
segment, is interpreted as the state of a generalised random walk after the
(i 4+ 1)-th step, i.e. as the sum of an initial direction X and the subsequent
independent changes in direction after the j-th segment, X;,1 < j <i:

x (+1) — ZXJ (1)
j=0

The distributions of X and X, j > 1 are assumed to depend on the storm’s
current position, i.e. the endpoint of what is currently the last segment of
the storm track. This approach relies on the same basic assumption as the
track simulation models proposed for example in Emanuel et al. (2006) and
Hall and Jewson (2007), namely that tropical cyclones with similar geo-
graphical positions behave in comparable ways due to similarities in their
meteorological and geographical circumstances. In the model, this assump-
tion is reflected by the fact that the distributions of Xy and X; are created
by resampling from the historical data measured near the storm’s current
position.

Since the historical measurements have been taken at regular six-hour
intervals, the length of a segment is more naturally modelled by finding the
storm’s translational speed along that segment and multiplying it by the
duration of the interval. The model for translational speed Y, in turn, is then
constructed in the same way as the one for X explained above, with the same
dependence on the cyclone’s current position. Note that while the current
translational speed is seen as the sum of the initial speed and changes in that
speed after each segment, it can not formally be considered a generalised
random walk. Certain boundary conditions that have to be imposed on
Y (most notably Y > 0) effectively make its changes a Markov process,
i.e. a stochastic process whose probability distribution of the next state
depends only on its current state but not on the past. For mathematically
more rigorous treatments of Markov processes, see, for example, Meyn and
Tweedie (1993) or Stroock (2005) and the references therein.

For a meaningful assessment of tropical cyclone hazards, it is also nec-
essary to consider the maximum wind speeds Z along the cyclone tracks.
In a similar way to that described above, the maximum wind speed Z(+1)
along the (i 4+ 1)-th segment is regarded as the sum of an initial wind speed
Zy and the subsequent changes in wind speed Z; after the j-th segment,
1 < j < i. Again, the wind speed is not a generalised random walk. The
changes in it have to be considered a Markov process, because besides some
boundary conditions, the distribution of Z; depends not only on the storm’s
current position (analogously to X; and Y;) but also on the previous wind
speed Z), This latter dependence is introduced into the model to reflect a
property of tropical cyclones observed in the data. For example, storms that
reach very high wind speeds exhibit a tendency to weaken because there is
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a high probability that they have reached their peak intensity. On the other
hand, storms with low wind speeds could be in the early stages of their life
cycle and still developing, or already close to the end of their track, and
therefore of reducing intensity. To differentiate between these two possibil-
ities, a location dependence of the changes in wind speed Z; is constructed
in complete analogy to the location dependence of the distributions of X
and Yj, because the main regions of cyclone genesis and of the termination
of cyclones are different.

2.4 Termination probabilities

The termination of cyclone tracks is also described stochastically. As men-
tioned above, a basic underlying assumption of the whole model is that
storms with similar positions behave in similar ways. It is therefore plau-
sible to make the termination probability of a cyclone location-dependent,
since the weakening and dissipation of a cyclone is strongly related to the
influx of energy from warm water at its current position — or rather the lack
thereof. On the other hand, the termination probability also has to depend
on the current maximum wind speed of the storm, since a storm with a low
wind speed is obviously much more likely to fall below the speed threshold
of being a tropical storm during the subsequent 6 hours than a storm with
a high wind speed.

Therefore, termination probability is calculated as being the maximum
of a location-dependent and a wind-speed-dependent probability. Whilst
the former is obtained as the relative frequency of termination points in
the vicinity of the cyclone’s current position, the latter is determined by
fitting a curve to the historical termination probabilities as a function of
the cyclone’s current wind speed.

2.5 Radii and shapes of cyclones

The information incorporated into the model for the tracks of tropical cy-
clones so far has been limited to the polygonal trajectories, i.e. no state-
ments are made about the situation outside the points of measurement and
the segments connecting them. A real tropical cyclone, however, causes high
wind speeds not only at its centre but also at locations a significant, distance
from the centre. It is therefore necessary to include information about the
radius and the shape of the storms in the model. The proposed model does
so in the following way: a tropical cyclone is considered to be a modified
Rankine vortex of the form

{'Umaz',,‘":‘a if0§r<rmam )

z o 9
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where the wind speed v(r) (in km/h) at a distance r from the centre is given
as a function of r, of the radius 7,4, at which the maximum wind speed is
attained, and of the maximum wind speed vj,q, (in km/h) itself for some
x € [0,1] (see, for example, Holland (1980)). The exponent z determines
the shape of the wind profile, i.e. how quickly wind speed decreases with
increasing distance outside of the radius of maximum wind speed. The value
of x has to be found empirically. Reflecting the approach of the proposed
model more naturally than determining x directly, is to determine the radius
of maximum wind speed 7,,,, and the gale-force radius ryq.. The gale-
force radius rgqe is defined as the maximum distance from the centre of the
storm at which wind speeds of at least gale force, i.e. vgqe = 63 km/h, are
attained. Naturally, v,,q, is always assumed to be greater than vyqe (which
also implies 74 < Tgale), since storms that do not attain wind speeds
above gale force are not considered tropical storms (note that the data still
contains measurements of maximum wind speeds below 63 km /h, mainly
due to the possibility that a cyclone will regain strength after falling below
Tgale, but also in part due to a number of data maintenance inconsistencies).
In this way, the value of x can be determined using (2), if 74 and rgqe

are known: | (63
= n(vmaw) — n( ) (3)

o In(rgare) — In(rmaz)

Unfortunately, the data available on these radii constitute only a small
fraction of the total measurements in HURDAT: The ‘extended best track
data’ (see Demuth et al. (2006)) contains 225 storms with measurements of
the radius of maximum wind speeds and the gale-force radius. This makes up
approximately 23% of the best track HURDAT data used for this study (see
Section 1.3). However, 45 and rgq. have not been recorded at all the mea-
surement points of these storms. Thus, the total number of measurements
with a recorded radius of maximum wind speed is reduced to approximately
15% of the HURDAT data measurements. This makes it inappropriate to
deal with them as Markov processes with location-dependent distributions
of the summands in analogy to the maximum wind speed. Instead, 7,4, and
Tgale are calculated as empirical functions of the wind speed by exponential
regression of % and logarithmic regression of 744, respectively:

’Umail)
max = 4 4
" a - exp (b vmaz) )
Tgale = € - IN(Vmaz) — d (5)

The coefficients a, b, ¢, d are determined separately by least-squares regres-
sion for three different categories of cyclones: those who reach wind speeds
of at least 210 km/h along their track, those whose highest wind speed
along the track is between 140 km/h and 210 km/h, and those whose wind
speeds never exceed 140 km/h, or in other words, strong, medium and weak
cyclones. For any cyclone track simulated as described in Sections 2.2 to
2.4, rmaz and 744 at each point of measurement are then calculated as
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functions (4) and (5) of vyqz, for the values of a, b, ¢, d corresponding to
the highest wind speed attained along the respective tracks. These functions
can then be used to determine the value of x via (3).

In general, maximum wind speeds are measured on the right hand side of
a storm, since the translation speed on that side adds to the tangential wind
speeds. To take account of this fact, the translation speed (multiplied by
the sine of the angle between storm direction and direction to the respective
location) is subtracted from the wind speeds calculated from (2) for locations
on the left-hand side of a storm.

Figure 3 shows a plot of the fitted exponential regression curves from
(4) for the data available on the radii of maximum wind speeds 7,4,. An
analogous graph is plotted in Figure 4 for the regression curves resulting
from (5). Only the relevant parts of the curves are plotted; for values not in-
cluded in the plot, the curves are either undistinguishable or not applicable,
because the respective maximum wind speeds for the different categories of
cyclones are exceeded.

3 Hazard assessment

As mentioned in Section 1.1, the stochastic track model described in this pa-
per was developed in order to improve hazard assessment for areas affected
by tropical cyclones. To this end, firstly a large number of synthetic storm
tracks is generated from the implementation of the model. For example, a
random Poisson distributed number (see Section 2.2) with an expectation
101’8600 times the number of historical tracks in the data considered (see Sec-
tion 1.3) would represent the number of storms occuring over a time span
of m = 10,000 years. As described above, each of these storms consists of
several segments connecting the points of measurement. To calculate the
cyclone hazard at a point of interest ¢ in the observation window, for each
storm, the distance of ¢ to all points of measurement of this storm is cal-
culated. The wind speeds with which ¢, is affected by the cyclone from its
various positions can be determined by inserting these distances into (2).
The maximum of all the wind speeds caused by a storm is then taken as
the storm’s ‘wind impact’ on ty. By calculating the impacts of all simulated
storms on ty for the time span of m years, a large number n;, of wind speeds
is obtained, even if wind speeds of less than v are discarded. Finally, the
expected return period of any given wind speed vy can easily be estimated
from those wind speeds by dividing the number of years m by the number
of impacts on ty greater than or equal to vy. Note that this method may
produce the same estimate for the expected return period for different wind
speeds. To obtain a one-to-one relation, a strictly monotonic parametric
distribution function F'(v) (e. g. Gamma-, Weibull- or other extreme value
distributions) could be fitted to the impacts calculated. Then the estimate
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Figure 3 Exponential regression of “"““” as a function of vmaz. Solid line: all
cyclones; dashed line: strong cyclones; dotted line: medium cyclones; dot-dashed
line: weak cyclones.
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Figure 4 Logarithmic regression of rgq;c as a function of vas. Solid line: all
cyclones; dashed line: strong cyclones; dotted line: medium cyclones; dot-dashed
line: weak cyclones.
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EZ\D(vO) for the expected return period of vy could be calculated as

m

RP(w) = o o)

(6)

When assessing cyclone hazards in this way, it has to be borne in mind
that the hazards obtained from the tracks simulated with an implementation
of the model reflect only the average hazards over the whole time period
considered. For example, the various modes of variability in cyclone activity
explained in Holland (2007) are not considered separately from the rest of
the data. Thus, the actual hazards in any given year may differ significantly
from those obtained from the model. A possible way of dealing with this
problem could be, instead of using all of the available data as input for the
model, as it was done in the present study (see Section 1.3), to use only
data from a period that exhibits similar values of certain influence factors
as the time span for whose investigation the model is being applied. Such a
period might be a selection of years with similar values of influence factors
such as ENSO or AMO, which have their principal expression in sea surface
temperatures (SST). Recall that SST are considered to be closely correlated
to cyclone activity and intensity (i.e. wind speeds), see for example Mann
and Emanuel (2006) or Holland and Webster (2007). More simply, one might
also choose to consider a sequence of years with higher cyclone activity
or higher counts in cyclone genesis. By selecting the input data in this
way, the model should then reproduce the specific effects of these influences
reflected in the data, consequently producing more accurate information
about hazards in periods under investigation.

It is not clear, however, if this simple transfer of the model to different
input data would be able to produce the desired results. While the transfer
of the model itself does not pose an essential problem (the initial version of
the model was applied to data from the western North Pacific, see Rumpf et
al. (2007)), the selection of the input data would require extensive statistical
investigations beyond the scope of this study. For example, this would mean
a restriction to a potentially much smaller subset of the data, which could
pose serious statistical difficulties, such as a heightened sensitivity of the
results to outliers of any kind in the data. In addition, it would raise the
question of how to separate the data appropriately: which years exactly are
considered to be of ‘high activity’ and which ones are not? Furthermore, it
would require a different data set as a basis, since ENSO, AMO, or SST are
not included in HURDAT.

4 Simulation results

4.1 Simulation samples

The proposed model has been implemented in Java, in part using classes and
methods from the GeoStoch library, see Mayer et al. (2004) and
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http://www.geostoch.de . This implementation can be used to generate a
dataset containing 100 times the number of storms found in the historical
data within a few days on standard computers. Two examples of sets of
synthetic storm tracks are shown in Figures 6 and 8. These figures show
simulated tracks of class 1 and 2 cyclones, respectively. By juxtaposition
with the historical class 1 tracks in Figure 5, it can be seen that the basic
shapes and characteristics of the historical tracks are captured fairly well in
the simulated class 1 tracks plotted in Figure 6. The same generally holds
true for the sample of synthetic class 2 tracks (Figure 8) that have been
juxtaposed with the historical tracks of class 2 storms (Figure 7), although
the former tend to end somewhat earlier and curve northward slightly too
far east compared with the latter.

4.2 Evaluation

In addition to the visual comparison between historical and synthetic storm
tracks conducted in Section 4.1, a number of statistical comparisons are per-
formed. These comparisons check the quality of the match between certain
characteristics in the simulated data and the same characteristics in the en-
tire historical data. The different modes of variability as stated in Holland
(2007) (see also Section 3) are only considered indirectly through the fact
that certain characteristics, such as for example the maximum wind speeds
at certain locations, are influenced much more by certain values of theses
modes, for example high SST, than others.

Initially, the numbers of storm tracks crossing certain zones of interest
are counted for the historical dataset and for 100 samples of simulated storm
tracks. Each sample covers the same time 106-year period as the historical
data (see Section 1.3), i.e. it has been simulated with the same expected
number of tropical cyclones. The zones chosen represent most of the areas
with the highest relevance to the insurance industry, because on the one
hand, they are known to be endangered by tropical cyclones and, on the
other, they contain a significant amount of (potentially) insured values. The
complete list of zones investigated is given in Table 1.

The results of the first part of this investigation are given in Table 1.
This table lists the following values by zone: the number of historical storm
tracks crossing that particular zone (z) and the sample mean (Z,,) and sam-
ple standard deviation (s,) of that number in the 100 samples of simulated
storm tracks. It is assumed that this number is normally distributed with
a standard deviation given by s,. Under the hypothesis that the expected
number in real data is equal to Z,, the value z = £=Z= is standard-normally
distributed. The last column of the table indicates whether z is located
within a certain interval around the simulated mean, i.e. if z is within the
range [—1.96,1.96] where 1.96 is the 0.975-quantile of the standard normal
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| Number | Name || T | Tn | Sn | TD |
1 Bahamas 144 | 155.6 | 16.8 +
2 Barbados 29 26.3 5.3 +
3 Cayman 14 11.1 3.5 +
4 Dominican Republic || 64 69.8 9.9 +
5 Florida 138 | 153.0 | 17.9 +
6 Houston/Galveston 48 | 46.0 | 7.3 +
7 Jamaica 24 28.3 5.1 +
8 New York 336 | 345.9 | 34.4 +
9 New Orleans 41 55.6 8.5 +
10 Puerto Rico 46 35.1 6.5 +
11 Yucatan 73 78.1 9.9 +

Table 1 Counts of storm tracks hitting zones of interest. Number: number of the
zone of interest (as used in Tables 2 and 3); Name: name of the zone of interest; x:
historical count; Z,: simulated mean; s,: simulated standard deviation; TD: test
decision; +: hypothesis not rejected; —: hypothesis rejected.

distribution. This quantile was chosen such that the entries in the last col-
umn indicate the result of a standard Gaussian test at level a = 0.05 of the
above mentioned hypothesis. As can be seen from the table, this hypothesis
is never rejected.

In addition to the frequencies of tropical cyclone landfalls in a certain
zone, which are listed in Table 1, the so-called ‘clash probabilities’ are also
of importance for insurers and reinsurers, i.e. the probabilities of a single
cyclone hitting at least two zones of interest. The counts in the historical
data and the simulated data for such events are shown in Table 2. The
columns are used in analogy to those in Table 1. Again, the table shows
a good agreement between the historical and the simulated data, the two
exceptions being cyclones that strike the Bahamas and Yucatan and those
which make landfall in Barbados and Puerto Rico.

Investigation of the model’s performance also focuses on simulated wind
speeds in the regions of interest. Table 3 shows the counts of points of
measurement, of tropical cyclones where winds reach hurricane intensity.
The meaning of the columns is the same as in Tables 1 and 2. Category
1-3 and category 4-5 hurricanes are investigated separately. It can be seen
that the agreement between historical and simulated data is decent with
the exception of category 1-3 hurricanes making landfall in the Bahamas,
although the variability in the simulated data appears relatively high for
some zones.

The last step in the comparison between historical and simulated data
consists of a selection of so-called ‘two-sample-goodness-of-fit tests’, a kind
of statistical hypothesis tests used to check whether the distribution func-
tions of two random samples which are considered to consist of independent
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| Z] a] @] su [TD] Z] a] &[] s.[TD ]

2] 1] 20 1.3] + 4,510 125 ] 31| +
1,3 3] 28 16| + 4,6 2| 18] 14| +
1,415 213 | 52| + 47| 5] 68| 25| +
1,5 |61 | 616 97| =+ 4,8 [ 22328 | 65| +
1,6 2] 61 26| + 49 1] 27 16| +
7| 6] 45| 21| +| 4,10 |24 [199 ] 45| +
1,8 |75 | 951 | 131 | + | 4,11 5| 82| 28| +
1,9 8[116 | 35| + 56| 6| 80| 35| +
1,10 | 11 | 118 | 33| + 5,71 3] 34| 17| +
1,11 | 4102 30| - 5,8 | 84 | 982 | 136 | +
2,3 0| 06| 08| =+ 5,919 | 222 | 50| +
2,4 3] 30| 16| + | 510] 8| 65| 26| +
2,56 2| 20| 15| + | 5 11| 5| 86| 30| +
2,6 0] 04 07| + 6,7] 0] 07] 08| +
2,7 1] 16| 12| + 6,8 | 23| 175 | 46| +
2,8 4| 57| 26| + 6,9 | 15 | 1569 | 43| +
2,9 1] 04| 07| + | 6,10 1] 09 1.1] +
2,10 | 6] 15| 12| — | 6,11 | 6] 34| 19| +
2,11 | 0] 30| 17| + 7.8 110 | 123 | 34| +
3,4 0| 28 17| + 79| 0] 07] 08| +
35| 3| 14| 12| + | 7,10 3| 20| 12| +
36| 0] 05| 07| + | 11| 9| 60| 22| +
3,7 5] 20| 17| + 8,925 |302] 61| +
3,8 8| 46| 24| + | 81016 | 137 | 39| +
3,9 0| 04] 06| + | 8 11|23 [213]| 58| +
3,10 0] 09| 10| + 910 1] 14| 12| +
3,11 | 6] 37| 21| + | 9 11| 4] 32| 20| +
10,11 | 4] 30| 16| +

Table 2 Numbers of storm tracks hitting two zones of interest. Z: Zones of interest
(see Table 1); x: historical count; Z,: simulated mean; s,: simulated standard
deviation; TD: test decision; +: hypothesis not rejected; —: hypothesis rejected.

and identically distributed sample variables agree (for details on hypothesis
testing, see, for example, Lehmann and Romano (2005)). For this purpose,
wind impacts (see Section 3) at 7,182 specific locations within the zones of
interest (see Table 1) were calculated for the historical as well as for the
simulated data. In this way, two samples, a historical one with distribu-
tion function Fj;s, and a simulated one with distribution function Fg;p,,
were created for each of the 7,182 locations. If the historical data is repre-
sented well by the simulated data, the samples of wind impacts from the
two datasets at one and the same location should be very similar, i.e. they
should have the same underlying distribution function. Therefore, three dif-
ferent tests of the hypothesis that the distribution functions of these two
samples are the same, i.e.

Hy : Fhist(x) = Fsim(x) Ve eR ) (7)
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[Z] C] 2] & 5. [TD[ Z] C[ 2] @] 5. 7D |
1|13 55 2 | 26.7 — 1|45 | 53 | 62.8 | 22.0 +
2113 0 1.8 2.8 + 2 | 4-5 0 0.7 1.2 +
3113 0 1.3 2.3 + 3| 45 1 1.1 1.5 +
41 1-3 16 15.7 6.2 + 4 | 4-5 2 8.1 4.7 +
51 1-3 | 104 | 142.7 | 19.8 + 5145 | 25 | 52.3 | 14.8 +
6 | 1-3 90 63.6 | 16.1 + 6 | 4-5 | 18 | 18.0 8.4 +
7113 5 14.1 9.4 + 71 4-5 3 9.1 9.2 +
8 | 1-3 11 7.4 4.8 + 8 | 4-5 1 1.0 1.5 +
9| 1-3 67 56.2 | 15.6 + 9 |45 | 17 | 12.3 5.4 +
10 | 1-3 6 7.2 5.0 + || 10 | 4-5 3 2.3 3.2 +
11 | 1-3 72 88.9 | 24.2 + 11 | 4-5 | 15 | 33.5 | 194 +

Table 3 Points of measurement of hurricanes of different categories in the dif-
ferent zones. Z: Zone of interest (see Table 1); C: Categories of hurricanes; w:

hist

orical count; Z,: simulated mean; s,: simulated standard deviation; TD: test

decision; +: hypothesis not rejected; —: hypothesis rejected.

wer

All

e performed for each location. The following tests were used:

Kolmogorov-Smirnov test (KST). This test checks Hy against the general
alternative that the values of the two distribution functions differ for
some x € R. That means that any differences between the two samples
will lead to the rejection of Hy if they are too large in the statistical
sense, regardless of the wind impacts at which these differences might
occur. For mathematical details, see, for example, Gibbons (1985), p.
1274

Wilcoxon rank test (WRT). This test is especially sensitive to deviations
in the location parameters of Fj;s; and Fl;y,, i.e. it is used to determine
whether one of the distribution functions is shifted relative to the other.
Thus, differences in variabilities of wind impacts within the two samples
will not lead to the rejection of Hy as easily as differences in the means or
medians of the two samples. For mathematical details, see, for example,
Gibbons (1985), p. 164ff., or Lehmann and Romano (2005), p.243.
Ansari-Bradley test (ABT). In contrast to the WRT, the ABT detects
differences in scale between Fj;s; and Fl;,,. Thus, it is used to check
Hj against the alternative that Fj,s is a scaled version of Fy;, (or vice
versa). In other words: while differences in the means or medians of the
two samples of wind impacts are considered more tolerable, differences
in the variabilites will lead to the rejection of Hy by this test more easily.
For mathematical details, see, for example, Gibbons (1985), p. 179ff.

the two-sample-goodness-of-fit tests were performed using methods avail-

able in version 2.3.1 of the R programming language (see R Development
Core Team (2006)).

The numbers of points (out of 7,182) for which Hy was rejected by the
three tests at different levels of significance « are listed in Table 4. The
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column marked ‘All’ indicates the number of points where Hy was rejected
by all three tests, whilst the last column in contrast contains the number
of points where none of the tests rejected Hy. A closer look at the locations
where the hypothesis of equal distribution functions was rejected by all tests
shows that, at those points, the average wind speeds and the variance in
wind speeds appear to have been underestimated. Most are situated off the
coast of New York. One possible interpretation of this might be that class
2 storms, i.e. the class which contains storms recurving from a western to a
northeastern bearing and affecting the eastern part of the North American
continent (see Section 2.1 and Rumpf et al. (2007)), are not simulated in the
model with the requisite precision. Most of the other cyclone tracks seem
to be represented very well. The fit seems especially good in the Caribbean
and in and around the Gulf of Mexico.

Note that it is not appropriate to draw any conclusions from a comparison
of the relative rejection frequencies given in Table 4 to the respective levels
of significance, i.e. the probabilities of type I errors, since the wind speed
distributions at different locations have been derived from the same data
and are therefore strongly dependent.

| a] KST | WRT | ABT || All [ None ]

0.01 229 219 261 45 | 6,632
0.05 || 1,018 785 989 || 244 | 5,138
0.10 || 1,575 | 1,559 | 1,794 || 562 | 4,083

Table 4 Numbers of points where Hy was rejected by the different tests

5 Summary and outlook

A model for the Monte-Carlo simulation of tropical cyclone tracks has been
enhanced and applied to historical data from the North Atlantic Ocean basin
in order to improve tropical cyclone hazard assessment. The simulation of a
large number of tracks with an implementation of this model now allows for
a calculation of a large number of ‘wind impacts’ at any location of interest
affected by tropical cyclones. The resulting large numbers of wind impacts
can be used to estimate the expected return periods of certain wind speeds.
This, in turn, makes it possible to estimate the expected damages and other
characteristics of interest to the insurance and reinsurance industry.

In the present study, the model was applied to the complete historical
data from 1900-2005. For the investigation of the effects of certain influence
factors, such as those stated in Holland (2007), some extensive statistical
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investigations of the corresponding subsets of data would have to be per-
formed, which will be the subject of future research. Especially when aiming
to include potential effects of climate change, such as trends in SST, a care-
ful scrutiny of the input data is necessary, since the model is in large parts
data-driven. Thus, the fact that for example certain levels of SST values
may not have been observed in the historical data would create a need for
extrapolation of the data. Possible effects of these modes of variability and
trends might for example be changes in the structure of the point patterns
formed by the points of tropical cyclone genesis (and resulting changes in
proportions or shapes of the six different storm classes), as well as changes
in cyclone frequencies or the distribution of wind speeds, which all could
potentially result in differences in the hazards obtained from the model.
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Figure 5 Tracks of historical class 1 storms

Figure 6 Tracks of a sample of simulated class 1 storms
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Figure 8 Tracks of a sample of simulated class 2 storms



