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Tropial Cylone Hazard Assessment UsingModel-based Trak SimulationJonas Rumpf1⋆, Helga Weindl2, Peter Höppe2, Ernst Rauh2,Volker Shmidt1
1 Ulm University, Institute of Stohastis, 89069 Ulm, Germany
2 Munih Reinsurane Company, 80791 Munih, GermanySubmitted: June 22, 2007 / Aepted: June 13, 2008 / Published online: 10 July2008Abstrat A method is introdued for assessing the probabilities and in-tensities of tropial ylones at landfall and applied to data from the NorthAtlanti. First, a reently developed model for the basin-wide Monte-Carlosimulation of tropial ylone traks is enhaned and transferred to theNorth Atlanti basin. Subsequently, a large number of syntheti traks isgenerated by means of an implementation of this model. This syntheti datais far more omprehensive than the available historial data, whilst exhibit-ing the same basi harateristis. It thus reates a more sound basis forassessing landfall probabilities than previously available, espeially in areaswith a low historial landfall frequeny.Key words tropial ylones, hurrianes, landfall hazard, stohasti model,Monte-Carlo simulation1 Introdution1.1 MotivationTropial ylones ause by far the highest losses for the insurane indus-try. In 2005, insured losses aused by North Atlanti ylones exeededUS$83bn, breaking all previous reords for a single year (see Munih Rein-surane Company (2006), p.18). It is therefore neessary for insurane andreinsurane ompanies to assess these risks thoroughly and arefully. Unfor-tunately, the data available for risk assessment is relatively limited, overing(in the ase of the North Atlanti) a time span of about 150 years, whereas
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2 Jonas Rumpf et al.reinsurers need to inlude wind speeds with muh lower exeedane fre-quenies (< 0.001 p. a.) in their alulations. The approah to the solutionof this problem taken in this paper is to enhane the stohasti model oftropial ylone traks in the western North Pai� originally introduedin Rumpf et al. (2006) and Rumpf et al. (2007) and then to apply it tothe historial data on the North Atlanti basin. From this model, a num-ber of syntheti but realisti storm traks an be simulated that is muhlarger than the number of storms provided by the historial data. Sinethese syntheti traks exhibit the same basi harateristis as the traksobserved in the past, they an be used to perform the alulations nees-sary for a more sound risk assessment. For example, the frequenies andreturn periods of wind speeds at ertain points of interest an be alulatedon the basis of a muh larger dataset. It should be emphasized that themethods desribed in this study aim to re�et the harateristis of the his-torial data in their entirety, while the e�ets of potential �utuations inylone ativity are deliberately negleted for now. In�uenes suh as the ElNiño-Southern Osillation (ENSO), North Atlanti Osillation (NAO), orthe Atlanti Multideadal Osillation (AMO) are `averaged out' by poolingall available data regardless of the phases it ourred in.The proedure for the simulation of tropial ylone traks an be out-lined as follows: After simulating a point of genesis from an inhomogeneousPoisson point proess model, the initial segment of a ylone trak is gen-erated by sampling from the historially observed initial diretions, initialtranslational speeds and initial wind speeds of ylones starting in the viin-ity of this genesis point. With this segment, a new position for the simulatedylone trak an be found. At the new position, hanges in diretion, trans-lational speed, and wind speed are simulated, again by sampling from thehistorially observed values of these harateristis in the viinity of theurrent position. In this way, a new segment for the ylone trak is on-struted. Further segments are then simulated in the same way until it isdeided to terminate the trak. The random deision whether or not a trakis terminated is made after eah segment with a termination probabilitythat is found as a funtion of the ylone's urrent wind speed and posi-tion. The details of this simulation proedure are explained in Rumpf et al.(2006) and in part in Setion 2.For an overview of the statistial aspets of the modelling and analysisof losses aused by hurrianes, the reader is referred to the artile by Imanet al. (2006) and the referenes it ontains.1.2 OverviewThe �rst step involves presenting the data on whih the model is based.The various omponents of the stohasti trak model are then explained



Cylone Hazard Assessment Using Trak Simulation 3in Setion 2. This fouses in partiular on the alulation of wind speedsat ertain distanes from the simulated traks (see Setion 2.5). The meth-ods of hazard assessment applied to the simulation results are desribedin Setion 3. Setion 4 presents the results of simulations arried out withan implementation of the model, and evaluates them in omparison to thehistorial data. The summary in Setion 5 rounds o� the paper.1.3 DataThe data used in this study are taken from the HURDAT (Atlanti basinhurriane database) best trak data (see Jarvinen et al. (1984)) provided bythe National Oeanographi and Atmospheri Administration of the UnitedStates of Ameria (NOAA). Although the database ontains storms datingbak to 1851, only the reords for the 1900-2005 period are used, older databeing of doubtful reliability. This omplies with meteorologial standardM-1 of the Florida Commission on Hurriane Loss Projetion Methodology(FCHLPM).The information in HURDAT that is relevant to the proposed modelindiates the position and wind speed of eah storm, reorded at regularsix-hour intervals. In this way, a ylone trak an be represented as apolygonal trajetory that onnets up to 132 points of storm measurement.The traks of all 979 storms onsidered are plotted in Figure 1.

Figure 1 Traks of all storms ontained in the historial dataset



4 Jonas Rumpf et al.2 Stohasti trak modelThis setion outlines the stohasti model used to simulate the traks oftropial ylones. The basis for this model was �rst introdued in Rumpf etal. (2006) and has been desribed in detail in Rumpf et al. (2007). Therefore,only those parts of the model that onstitute signi�ant enhanements tothe original model are desribed at length, see for example Setion 2.5. Thereader is referred to Rumpf et al. (2007) for details on other aspets of themodel.2.1 Classi�ationIt is obvious from Figure 1 that the ylone trak shapes exhibit strong in-homogeneities. Therefore, as an auxiliary tool for simulating ylone traks,the historial traks are �rst split into six disjoint lasses based on the loa-tions of their starting and end points and the regions a�eted by the storms.The trak shapes in the respetive lasses are muh more homogeneous, andyield greater preision when the simulations are generated. Figures 5 and 7show two examples of the resulting lasses: lass 1 storms (Figure 5) have arelatively straight trak from the open Atlanti into the Caribbean and theGulf of Mexio, whereas lass 2 storms (Figure 7) initially take a similardiretion but then reurve towards the northeast, in most ases a�etingnot only the Caribbean and/or the Gulf of Mexio but also Florida or someother part of the eastern North Amerian ontinent. The subsequent stepsin the modelling proess are performed separately for the di�erent lasses,making use of the improved homogeneity reated by dividing the traks intolasses.2.2 Points of genesisThe �rst step in modelling the traks of tropial ylones is to desribe thepoints of ylone genesis by means of a random point proess model (see,for example, Baddeley et al. (2006) and Diggle (2003)). In our ase, it is ap-propriate to employ a Poisson proess model, due to the nature of the data.A Poisson point proess an be onsidered as a model for `omplete spatialrandomness', i.e. the points are plaed independently of eah other, whiletheir total number is Poisson distributed (see Stoyan and Stoyan (1994)).This model therefore re�ets the apparent absene of `interation' betweenthe starting points of ylones in the historial data for the time period1900-2005, a meteorologial property that is also baked by the results of amathematial investigation into the point patterns of these points of gene-sis. In this investigation, the frequenies of interpoint distanes were plottedto establish whether any attration or repulsion e�ets between the pointsof genesis were visible. These plots seemed to indiate only a minor degreeof interation, if any. In onsequene, further investigations were arried



Cylone Hazard Assessment Using Trak Simulation 5out. Various point proess models suh as the Strauss hard ore model were�tted to the data using spatstat (see Baddeley and Turner (2005)). The re-sulting model parameters did not indiate any relevant interation betweenthe points.Furthermore, the point proess model of whih the points of ylone gen-esis are onsidered a realisation is presumed to be spatially inhomogeneous,i.e. its intensity varies spatially. Figure 2 plots the points of genesis for his-torial lass 2 storms to illustrate this assumption. The intensity funtionof the inhomogeneous Poisson proess has to be estimated from the datain order to omplete the model of the starting points of the ylone traks.This is done by means of a generalised nearest neighbour estimator (seeRumpf et al. (2007)), whih uses an estimation tehnique losely related tokernel estimation. For details of the orresponding de�nition and properties,see Silverman (1986), p.97.

Figure 2 Points of genesis of lass 2 storm traks in the historial data2.3 Cylone traks and wind speedsAs mentioned in Setion 1.3, ylone traks an be interpreted as polygo-nal trajetories or as a sequene of trak segments onneting the loationsof measurement. Eah trak segment is uniquely determined by its start-ing point, orientation and length. Thus, storm traks are modelled as asequene of random vetors S(i) =
(
X(i), Y (i), Z(i)

)⊤ in the following way:



6 Jonas Rumpf et al.the diretion of storm movement (or orientation) X(i+1) along the (i+1)-thsegment is interpreted as the state of a generalised random walk after the
(i + 1)-th step, i.e. as the sum of an initial diretion X0 and the subsequentindependent hanges in diretion after the j-th segment, Xj , 1 ≤ j ≤ i:

X(i+1) =

i∑

j=0

Xj (1)The distributions of X0 and Xj , j ≥ 1 are assumed to depend on the storm'surrent position, i.e. the endpoint of what is urrently the last segment ofthe storm trak. This approah relies on the same basi assumption as thetrak simulation models proposed for example in Emanuel et al. (2006) andHall and Jewson (2007), namely that tropial ylones with similar geo-graphial positions behave in omparable ways due to similarities in theirmeteorologial and geographial irumstanes. In the model, this assump-tion is re�eted by the fat that the distributions of X0 and Xj are reatedby resampling from the historial data measured near the storm's urrentposition.Sine the historial measurements have been taken at regular six-hourintervals, the length of a segment is more naturally modelled by �nding thestorm's translational speed along that segment and multiplying it by theduration of the interval. The model for translational speed Y , in turn, is thenonstruted in the same way as the one forX explained above, with the samedependene on the ylone's urrent position. Note that while the urrenttranslational speed is seen as the sum of the initial speed and hanges in thatspeed after eah segment, it an not formally be onsidered a generalisedrandom walk. Certain boundary onditions that have to be imposed on
Y (most notably Y ≥ 0) e�etively make its hanges a Markov proess,i.e. a stohasti proess whose probability distribution of the next statedepends only on its urrent state but not on the past. For mathematiallymore rigorous treatments of Markov proesses, see, for example, Meyn andTweedie (1993) or Strook (2005) and the referenes therein.For a meaningful assessment of tropial ylone hazards, it is also ne-essary to onsider the maximum wind speeds Z along the ylone traks.In a similar way to that desribed above, the maximum wind speed Z(i+1)along the (i + 1)-th segment is regarded as the sum of an initial wind speed
Z0 and the subsequent hanges in wind speed Zj after the j-th segment,
1 ≤ j ≤ i. Again, the wind speed is not a generalised random walk. Thehanges in it have to be onsidered a Markov proess, beause besides someboundary onditions, the distribution of Zj depends not only on the storm'surrent position (analogously to Xj and Yj) but also on the previous windspeed Z(j). This latter dependene is introdued into the model to re�et aproperty of tropial ylones observed in the data. For example, storms thatreah very high wind speeds exhibit a tendeny to weaken beause there is



Cylone Hazard Assessment Using Trak Simulation 7a high probability that they have reahed their peak intensity. On the otherhand, storms with low wind speeds ould be in the early stages of their lifeyle and still developing, or already lose to the end of their trak, andtherefore of reduing intensity. To di�erentiate between these two possibil-ities, a loation dependene of the hanges in wind speed Zj is onstrutedin omplete analogy to the loation dependene of the distributions of Xjand Yj , beause the main regions of ylone genesis and of the terminationof ylones are di�erent.2.4 Termination probabilitiesThe termination of ylone traks is also desribed stohastially. As men-tioned above, a basi underlying assumption of the whole model is thatstorms with similar positions behave in similar ways. It is therefore plau-sible to make the termination probability of a ylone loation-dependent,sine the weakening and dissipation of a ylone is strongly related to thein�ux of energy from warm water at its urrent position � or rather the lakthereof. On the other hand, the termination probability also has to dependon the urrent maximum wind speed of the storm, sine a storm with a lowwind speed is obviously muh more likely to fall below the speed thresholdof being a tropial storm during the subsequent 6 hours than a storm witha high wind speed.Therefore, termination probability is alulated as being the maximumof a loation-dependent and a wind-speed-dependent probability. Whilstthe former is obtained as the relative frequeny of termination points inthe viinity of the ylone's urrent position, the latter is determined by�tting a urve to the historial termination probabilities as a funtion ofthe ylone's urrent wind speed.2.5 Radii and shapes of ylonesThe information inorporated into the model for the traks of tropial y-lones so far has been limited to the polygonal trajetories, i.e. no state-ments are made about the situation outside the points of measurement andthe segments onneting them. A real tropial ylone, however, auses highwind speeds not only at its entre but also at loations a signi�ant distanefrom the entre. It is therefore neessary to inlude information about theradius and the shape of the storms in the model. The proposed model doesso in the following way: a tropial ylone is onsidered to be a modi�edRankine vortex of the form
v(r) =

{
vmax · r

rmax

if 0 ≤ r < rmax ,

vmax ·

(
r

rmax

)−x if r ≥ rmax ,
(2)



8 Jonas Rumpf et al.where the wind speed v(r) (in km/h) at a distane r from the entre is givenas a funtion of r, of the radius rmax at whih the maximum wind speed isattained, and of the maximum wind speed vmax (in km/h) itself for some
x ∈ [0, 1] (see, for example, Holland (1980)). The exponent x determinesthe shape of the wind pro�le, i.e. how quikly wind speed dereases withinreasing distane outside of the radius of maximum wind speed. The valueof x has to be found empirially. Re�eting the approah of the proposedmodel more naturally than determining x diretly, is to determine the radiusof maximum wind speed rmax and the gale-fore radius rgale. The gale-fore radius rgale is de�ned as the maximum distane from the entre of thestorm at whih wind speeds of at least gale fore, i.e. vgale = 63 km/h, areattained. Naturally, vmax is always assumed to be greater than vgale (whihalso implies rmax < rgale), sine storms that do not attain wind speedsabove gale fore are not onsidered tropial storms (note that the data stillontains measurements of maximum wind speeds below 63 km/h, mainlydue to the possibility that a ylone will regain strength after falling below
rgale, but also in part due to a number of data maintenane inonsistenies).In this way, the value of x an be determined using (2), if rmax and rgaleare known:

x =
ln(vmax) − ln(63)

ln(rgale) − ln(rmax)
(3)Unfortunately, the data available on these radii onstitute only a smallfration of the total measurements in HURDAT: The `extended best trakdata' (see Demuth et al. (2006)) ontains 225 storms with measurements ofthe radius of maximum wind speeds and the gale-fore radius. This makes upapproximately 23% of the best trak HURDAT data used for this study (seeSetion 1.3). However, rmax and rgale have not been reorded at all the mea-surement points of these storms. Thus, the total number of measurementswith a reorded radius of maximum wind speed is redued to approximately15% of the HURDAT data measurements. This makes it inappropriate todeal with them as Markov proesses with loation-dependent distributionsof the summands in analogy to the maximum wind speed. Instead, rmax and

rgale are alulated as empirial funtions of the wind speed by exponentialregression of vmax

rmax

and logarithmi regression of rgale, respetively:
rmax =

vmax

a · exp (b vmax)
(4)

rgale = c · ln(vmax) − d (5)The oe�ients a, b, c, d are determined separately by least-squares regres-sion for three di�erent ategories of ylones: those who reah wind speedsof at least 210 km/h along their trak, those whose highest wind speedalong the trak is between 140 km/h and 210 km/h, and those whose windspeeds never exeed 140 km/h, or in other words, strong, medium and weakylones. For any ylone trak simulated as desribed in Setions 2.2 to2.4, rmax and rgale at eah point of measurement are then alulated as



Cylone Hazard Assessment Using Trak Simulation 9funtions (4) and (5) of vmax, for the values of a, b, c, d orresponding tothe highest wind speed attained along the respetive traks. These funtionsan then be used to determine the value of x via (3).In general, maximum wind speeds are measured on the right hand side ofa storm, sine the translation speed on that side adds to the tangential windspeeds. To take aount of this fat, the translation speed (multiplied bythe sine of the angle between storm diretion and diretion to the respetiveloation) is subtrated from the wind speeds alulated from (2) for loationson the left-hand side of a storm.Figure 3 shows a plot of the �tted exponential regression urves from(4) for the data available on the radii of maximum wind speeds rmax. Ananalogous graph is plotted in Figure 4 for the regression urves resultingfrom (5). Only the relevant parts of the urves are plotted; for values not in-luded in the plot, the urves are either undistinguishable or not appliable,beause the respetive maximum wind speeds for the di�erent ategories ofylones are exeeded.3 Hazard assessmentAs mentioned in Setion 1.1, the stohasti trak model desribed in this pa-per was developed in order to improve hazard assessment for areas a�etedby tropial ylones. To this end, �rstly a large number of syntheti stormtraks is generated from the implementation of the model. For example, arandom Poisson distributed number (see Setion 2.2) with an expetation
10,000
106 times the number of historial traks in the data onsidered (see Se-tion 1.3) would represent the number of storms ouring over a time spanof m = 10, 000 years. As desribed above, eah of these storms onsists ofseveral segments onneting the points of measurement. To alulate theylone hazard at a point of interest t0 in the observation window, for eahstorm, the distane of t0 to all points of measurement of this storm is al-ulated. The wind speeds with whih t0 is a�eted by the ylone from itsvarious positions an be determined by inserting these distanes into (2).The maximum of all the wind speeds aused by a storm is then taken asthe storm's `wind impat' on t0. By alulating the impats of all simulatedstorms on t0 for the time span of m years, a large number nt0 of wind speedsis obtained, even if wind speeds of less than vgale are disarded. Finally, theexpeted return period of any given wind speed v0 an easily be estimatedfrom those wind speeds by dividing the number of years m by the numberof impats on t0 greater than or equal to v0. Note that this method mayprodue the same estimate for the expeted return period for di�erent windspeeds. To obtain a one-to-one relation, a stritly monotoni parametridistribution funtion F (v) (e. g. Gamma-, Weibull- or other extreme valuedistributions) ould be �tted to the impats alulated. Then the estimate
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Cylone Hazard Assessment Using Trak Simulation 11
R̂P (v0) for the expeted return period of v0 ould be alulated as

R̂P (v0) =
m

nt0(1 − F (v0))
(6)When assessing ylone hazards in this way, it has to be borne in mindthat the hazards obtained from the traks simulated with an implementationof the model re�et only the average hazards over the whole time periodonsidered. For example, the various modes of variability in ylone ativityexplained in Holland (2007) are not onsidered separately from the rest ofthe data. Thus, the atual hazards in any given year may di�er signi�antlyfrom those obtained from the model. A possible way of dealing with thisproblem ould be, instead of using all of the available data as input for themodel, as it was done in the present study (see Setion 1.3), to use onlydata from a period that exhibits similar values of ertain in�uene fatorsas the time span for whose investigation the model is being applied. Suh aperiod might be a seletion of years with similar values of in�uene fatorssuh as ENSO or AMO, whih have their prinipal expression in sea surfaetemperatures (SST). Reall that SST are onsidered to be losely orrelatedto ylone ativity and intensity (i.e. wind speeds), see for example Mannand Emanuel (2006) or Holland andWebster (2007). More simply, one mightalso hoose to onsider a sequene of years with higher ylone ativityor higher ounts in ylone genesis. By seleting the input data in thisway, the model should then reprodue the spei� e�ets of these in�uenesre�eted in the data, onsequently produing more aurate informationabout hazards in periods under investigation.It is not lear, however, if this simple transfer of the model to di�erentinput data would be able to produe the desired results. While the transferof the model itself does not pose an essential problem (the initial version ofthe model was applied to data from the western North Pai�, see Rumpf etal. (2007)), the seletion of the input data would require extensive statistialinvestigations beyond the sope of this study. For example, this would meana restrition to a potentially muh smaller subset of the data, whih ouldpose serious statistial di�ulties, suh as a heightened sensitivity of theresults to outliers of any kind in the data. In addition, it would raise thequestion of how to separate the data appropriately: whih years exatly areonsidered to be of `high ativity' and whih ones are not? Furthermore, itwould require a di�erent data set as a basis, sine ENSO, AMO, or SST arenot inluded in HURDAT.4 Simulation results4.1 Simulation samplesThe proposed model has been implemented in Java, in part using lasses andmethods from the GeoStoh library, see Mayer et al. (2004) and



12 Jonas Rumpf et al.http://www.geostoh.de . This implementation an be used to generate adataset ontaining 100 times the number of storms found in the historialdata within a few days on standard omputers. Two examples of sets ofsyntheti storm traks are shown in Figures 6 and 8. These �gures showsimulated traks of lass 1 and 2 ylones, respetively. By juxtapositionwith the historial lass 1 traks in Figure 5, it an be seen that the basishapes and harateristis of the historial traks are aptured fairly well inthe simulated lass 1 traks plotted in Figure 6. The same generally holdstrue for the sample of syntheti lass 2 traks (Figure 8) that have beenjuxtaposed with the historial traks of lass 2 storms (Figure 7), althoughthe former tend to end somewhat earlier and urve northward slightly toofar east ompared with the latter.4.2 EvaluationIn addition to the visual omparison between historial and syntheti stormtraks onduted in Setion 4.1, a number of statistial omparisons are per-formed. These omparisons hek the quality of the math between ertainharateristis in the simulated data and the same harateristis in the en-tire historial data. The di�erent modes of variability as stated in Holland(2007) (see also Setion 3) are only onsidered indiretly through the fatthat ertain harateristis, suh as for example the maximum wind speedsat ertain loations, are in�uened muh more by ertain values of thesesmodes, for example high SST, than others.Initially, the numbers of storm traks rossing ertain zones of interestare ounted for the historial dataset and for 100 samples of simulated stormtraks. Eah sample overs the same time 106-year period as the historialdata (see Setion 1.3), i.e. it has been simulated with the same expetednumber of tropial ylones. The zones hosen represent most of the areaswith the highest relevane to the insurane industry, beause on the onehand, they are known to be endangered by tropial ylones and, on theother, they ontain a signi�ant amount of (potentially) insured values. Theomplete list of zones investigated is given in Table 1.The results of the �rst part of this investigation are given in Table 1.This table lists the following values by zone: the number of historial stormtraks rossing that partiular zone (x) and the sample mean (x̄n) and sam-ple standard deviation (sn) of that number in the 100 samples of simulatedstorm traks. It is assumed that this number is normally distributed witha standard deviation given by sn. Under the hypothesis that the expetednumber in real data is equal to x̄n, the value z = x−x̄n

sn

is standard-normallydistributed. The last olumn of the table indiates whether x is loatedwithin a ertain interval around the simulated mean, i.e. if z is within therange [−1.96, 1.96] where 1.96 is the 0.975-quantile of the standard normal



Cylone Hazard Assessment Using Trak Simulation 13Number Name x x̄n sn TD1 Bahamas 144 155.6 16.8 +2 Barbados 29 26.3 5.3 +3 Cayman 14 11.1 3.5 +4 Dominian Republi 64 69.8 9.9 +5 Florida 138 153.0 17.9 +6 Houston/Galveston 48 46.0 7.3 +7 Jamaia 24 28.3 5.1 +8 New York 336 345.9 34.4 +9 New Orleans 41 55.6 8.5 +10 Puerto Rio 46 35.1 6.5 +11 Yuatan 73 78.1 9.9 +Table 1 Counts of storm traks hitting zones of interest. Number: number of thezone of interest (as used in Tables 2 and 3); Name: name of the zone of interest; x:historial ount; x̄n: simulated mean; sn: simulated standard deviation; TD: testdeision; +: hypothesis not rejeted; −: hypothesis rejeted.distribution. This quantile was hosen suh that the entries in the last ol-umn indiate the result of a standard Gaussian test at level α = 0.05 of theabove mentioned hypothesis. As an be seen from the table, this hypothesisis never rejeted.In addition to the frequenies of tropial ylone landfalls in a ertainzone, whih are listed in Table 1, the so-alled `lash probabilities' are alsoof importane for insurers and reinsurers, i.e. the probabilities of a singleylone hitting at least two zones of interest. The ounts in the historialdata and the simulated data for suh events are shown in Table 2. Theolumns are used in analogy to those in Table 1. Again, the table showsa good agreement between the historial and the simulated data, the twoexeptions being ylones that strike the Bahamas and Yuatan and thosewhih make landfall in Barbados and Puerto Rio.Investigation of the model's performane also fouses on simulated windspeeds in the regions of interest. Table 3 shows the ounts of points ofmeasurement of tropial ylones where winds reah hurriane intensity.The meaning of the olumns is the same as in Tables 1 and 2. Category1-3 and ategory 4-5 hurrianes are investigated separately. It an be seenthat the agreement between historial and simulated data is deent withthe exeption of ategory 1-3 hurrianes making landfall in the Bahamas,although the variability in the simulated data appears relatively high forsome zones.The last step in the omparison between historial and simulated dataonsists of a seletion of so-alled `two-sample-goodness-of-�t tests', a kindof statistial hypothesis tests used to hek whether the distribution fun-tions of two random samples whih are onsidered to onsist of independent



14 Jonas Rumpf et al.Z x x̄n sn TD Z x x̄n sn TD1, 2 1 2.0 1.3 + 4, 5 10 12.5 3.1 +1, 3 3 2.8 1.6 + 4, 6 2 1.8 1.4 +1, 4 15 21.3 5.2 + 4, 7 5 6.8 2.5 +1, 5 61 61.6 9.7 + 4, 8 22 32.8 6.5 +1, 6 2 6.1 2.6 + 4, 9 1 2.7 1.6 +1, 7 6 4.5 2.1 + 4, 10 24 19.9 4.5 +1, 8 75 95.1 13.1 + 4, 11 5 8.2 2.8 +1, 9 8 11.6 3.5 + 5, 6 6 8.0 3.5 +1, 10 11 11.8 3.3 + 5, 7 3 3.4 1.7 +1, 11 4 10.2 3.0 − 5, 8 84 98.2 13.6 +2, 3 0 0.6 0.8 + 5, 9 19 22.2 5.0 +2, 4 3 3.0 1.6 + 5, 10 8 6.5 2.6 +2, 5 2 2.0 1.5 + 5, 11 5 8.6 3.0 +2, 6 0 0.4 0.7 + 6, 7 0 0.7 0.8 +2, 7 1 1.6 1.2 + 6, 8 23 17.5 4.6 +2, 8 4 5.7 2.6 + 6, 9 15 15.9 4.3 +2, 9 1 0.4 0.7 + 6, 10 1 0.9 1.1 +2, 10 6 1.5 1.2 − 6, 11 6 3.4 1.9 +2, 11 0 3.0 1.7 + 7, 8 10 12.3 3.4 +3, 4 0 2.8 1.7 + 7, 9 0 0.7 0.8 +3, 5 3 1.4 1.2 + 7, 10 3 2.0 1.2 +3, 6 0 0.5 0.7 + 7, 11 9 6.0 2.2 +3, 7 5 2.9 1.7 + 8, 9 25 30.2 6.1 +3, 8 8 4.6 2.4 + 8, 10 16 13.7 3.9 +3, 9 0 0.4 0.6 + 8, 11 23 21.3 5.8 +3, 10 0 0.9 1.0 + 9, 10 1 1.4 1.2 +3, 11 6 3.7 2.1 + 9, 11 4 3.2 2.0 +10, 11 4 3.0 1.6 +Table 2 Numbers of storm traks hitting two zones of interest. Z: Zones of interest(see Table 1); x: historial ount; x̄n: simulated mean; sn: simulated standarddeviation; TD: test deision; +: hypothesis not rejeted; −: hypothesis rejeted.and identially distributed sample variables agree (for details on hypothesistesting, see, for example, Lehmann and Romano (2005)). For this purpose,wind impats (see Setion 3) at 7,182 spei� loations within the zones ofinterest (see Table 1) were alulated for the historial as well as for thesimulated data. In this way, two samples, a historial one with distribu-tion funtion Fhist, and a simulated one with distribution funtion Fsim,were reated for eah of the 7,182 loations. If the historial data is repre-sented well by the simulated data, the samples of wind impats from thetwo datasets at one and the same loation should be very similar, i.e. theyshould have the same underlying distribution funtion. Therefore, three dif-ferent tests of the hypothesis that the distribution funtions of these twosamples are the same, i.e.
H0 : Fhist(x) = Fsim(x) ∀x ∈ R , (7)



Cylone Hazard Assessment Using Trak Simulation 15Z C x x̄n sn TD Z C x x̄n sn TD1 1-3 55 2 26.7 − 1 4-5 53 62.8 22.0 +2 1-3 0 1.8 2.8 + 2 4-5 0 0.7 1.2 +3 1-3 0 1.3 2.3 + 3 4-5 1 1.1 1.5 +4 1-3 16 15.7 6.2 + 4 4-5 2 8.1 4.7 +5 1-3 104 142.7 19.8 + 5 4-5 25 52.3 14.8 +6 1-3 90 63.6 16.1 + 6 4-5 18 18.0 8.4 +7 1-3 5 14.1 9.4 + 7 4-5 3 9.1 9.2 +8 1-3 11 7.4 4.8 + 8 4-5 1 1.0 1.5 +9 1-3 67 56.2 15.6 + 9 4-5 17 12.3 5.4 +10 1-3 6 7.2 5.0 + 10 4-5 3 2.3 3.2 +11 1-3 72 88.9 24.2 + 11 4-5 15 33.5 19.4 +Table 3 Points of measurement of hurrianes of di�erent ategories in the dif-ferent zones. Z: Zone of interest (see Table 1); C: Categories of hurrianes; x:historial ount; x̄n: simulated mean; sn: simulated standard deviation; TD: testdeision; +: hypothesis not rejeted; −: hypothesis rejeted.were performed for eah loation. The following tests were used:� Kolmogorov-Smirnov test (KST). This test heksH0 against the generalalternative that the values of the two distribution funtions di�er forsome x ∈ R. That means that any di�erenes between the two sampleswill lead to the rejetion of H0 if they are too large in the statistialsense, regardless of the wind impats at whih these di�erenes mightour. For mathematial details, see, for example, Gibbons (1985), p.127�.� Wiloxon rank test (WRT). This test is espeially sensitive to deviationsin the loation parameters of Fhist and Fsim, i.e. it is used to determinewhether one of the distribution funtions is shifted relative to the other.Thus, di�erenes in variabilities of wind impats within the two sampleswill not lead to the rejetion of H0 as easily as di�erenes in the means ormedians of the two samples. For mathematial details, see, for example,Gibbons (1985), p. 164�., or Lehmann and Romano (2005), p.243.� Ansari-Bradley test (ABT). In ontrast to the WRT, the ABT detetsdi�erenes in sale between Fhist and Fsim. Thus, it is used to hek
H0 against the alternative that Fhist is a saled version of Fsim (or vieversa). In other words: while di�erenes in the means or medians of thetwo samples of wind impats are onsidered more tolerable, di�erenesin the variabilites will lead to the rejetion of H0 by this test more easily.For mathematial details, see, for example, Gibbons (1985), p. 179�.All the two-sample-goodness-of-�t tests were performed using methods avail-able in version 2.3.1 of the R programming language (see R DevelopmentCore Team (2006)).The numbers of points (out of 7,182) for whih H0 was rejeted by thethree tests at di�erent levels of signi�ane α are listed in Table 4. The



16 Jonas Rumpf et al.olumn marked `All' indiates the number of points where H0 was rejetedby all three tests, whilst the last olumn in ontrast ontains the numberof points where none of the tests rejeted H0. A loser look at the loationswhere the hypothesis of equal distribution funtions was rejeted by all testsshows that, at those points, the average wind speeds and the variane inwind speeds appear to have been underestimated. Most are situated o� theoast of New York. One possible interpretation of this might be that lass2 storms, i.e. the lass whih ontains storms reurving from a western to anortheastern bearing and a�eting the eastern part of the North Amerianontinent (see Setion 2.1 and Rumpf et al. (2007)), are not simulated in themodel with the requisite preision. Most of the other ylone traks seemto be represented very well. The �t seems espeially good in the Caribbeanand in and around the Gulf of Mexio.Note that it is not appropriate to draw any onlusions from a omparisonof the relative rejetion frequenies given in Table 4 to the respetive levelsof signi�ane, i.e. the probabilities of type I errors, sine the wind speeddistributions at di�erent loations have been derived from the same dataand are therefore strongly dependent.
α KST WRT ABT All None0.01 229 219 261 45 6,6320.05 1,018 785 989 244 5,1380.10 1,575 1,559 1,794 562 4,083Table 4 Numbers of points where H0 was rejeted by the di�erent tests

5 Summary and outlookA model for the Monte-Carlo simulation of tropial ylone traks has beenenhaned and applied to historial data from the North Atlanti Oean basinin order to improve tropial ylone hazard assessment. The simulation of alarge number of traks with an implementation of this model now allows fora alulation of a large number of `wind impats' at any loation of interesta�eted by tropial ylones. The resulting large numbers of wind impatsan be used to estimate the expeted return periods of ertain wind speeds.This, in turn, makes it possible to estimate the expeted damages and otherharateristis of interest to the insurane and reinsurane industry.In the present study, the model was applied to the omplete historialdata from 1900-2005. For the investigation of the e�ets of ertain in�uenefators, suh as those stated in Holland (2007), some extensive statistial



Cylone Hazard Assessment Using Trak Simulation 17investigations of the orresponding subsets of data would have to be per-formed, whih will be the subjet of future researh. Espeially when aimingto inlude potential e�ets of limate hange, suh as trends in SST, a are-ful srutiny of the input data is neessary, sine the model is in large partsdata-driven. Thus, the fat that for example ertain levels of SST valuesmay not have been observed in the historial data would reate a need forextrapolation of the data. Possible e�ets of these modes of variability andtrends might for example be hanges in the struture of the point patternsformed by the points of tropial ylone genesis (and resulting hanges inproportions or shapes of the six di�erent storm lasses), as well as hangesin ylone frequenies or the distribution of wind speeds, whih all ouldpotentially result in di�erenes in the hazards obtained from the model.AknowledgementsThe authors would like to thank two anonymous reviewers for omments andsuggestions that helped to improve an earlier version of the manusript.Furthermore, the authors would like to aknowledge the help of CarolinRupieper in the mathematial investigation of the point patterns formed bythe points of tropial ylone genesis (see Setion 2.2).ReferenesBaddeley A, Gregori P, Mateu J, Stoia R, Stoyan D (eds.) (2006) CaseStudies in Spatial Point Proess Modeling. Leture Notes in Statistis185. Springer, New YorkBaddeley A, Turner R (2005) spatstat: an R pakage for analyzing spatialpoint patterns. J. Stat. Softw. 12 (6): 1�42.URL: http://www.jstatsoft.orgDemuth J, DeMaria M, Kna� JA (2006) Improvement of advaned mi-rowave sounder unit tropial ylone intensity and size estimation algo-rithms. J. Appl. Meteor. Clim. 45, 1573�1581.Diggle PJ (2003) Statistial Analysis of Spatial Point Patterns. 2nd Edition.Arnold, LondonEmanuel KA, Ravela S, Vivant E, Risi C (2006) A statistial deterministiapproah to hurriane risk assessment. B. Am. Meteorol. So. 87: 299�314Gibbons JD (1985) Nonparametri Statistial Inferene. 2nd edition. MarelDekker, New YorkHall TM, Jewson S (2007) Statistial modeling of North Atlanti tropialylone traks. Tellus, 59A, 486�498Holland GJ (1980) An analyti model of the wind and pressure pro�les inhurrianes. Mon. Weather Rev. 108: 1212�1218Holland GJ (2007) Misuse of landfall as a proxy for Atlanti tropial yloneativity. EOS Trans. Am. Geophys. Union 88 (36), 349�350
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Figure 5 Traks of historial lass 1 storms

Figure 6 Traks of a sample of simulated lass 1 storms
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Figure 7 Traks of historial lass 2 storms

Figure 8 Traks of a sample of simulated lass 2 storms


