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epted: June 13, 2008 / Published online: 10 July2008Abstra
t A method is introdu
ed for assessing the probabilities and in-tensities of tropi
al 
y
lones at landfall and applied to data from the NorthAtlanti
. First, a re
ently developed model for the basin-wide Monte-Carlosimulation of tropi
al 
y
lone tra
ks is enhan
ed and transferred to theNorth Atlanti
 basin. Subsequently, a large number of syntheti
 tra
ks isgenerated by means of an implementation of this model. This syntheti
 datais far more 
omprehensive than the available histori
al data, whilst exhibit-ing the same basi
 
hara
teristi
s. It thus 
reates a more sound basis forassessing landfall probabilities than previously available, espe
ially in areaswith a low histori
al landfall frequen
y.Key words tropi
al 
y
lones, hurri
anes, landfall hazard, sto
hasti
 model,Monte-Carlo simulation1 Introdu
tion1.1 MotivationTropi
al 
y
lones 
ause by far the highest losses for the insuran
e indus-try. In 2005, insured losses 
aused by North Atlanti
 
y
lones ex
eededUS$83bn, breaking all previous re
ords for a single year (see Muni
h Rein-suran
e Company (2006), p.18). It is therefore ne
essary for insuran
e andreinsuran
e 
ompanies to assess these risks thoroughly and 
arefully. Unfor-tunately, the data available for risk assessment is relatively limited, 
overing(in the 
ase of the North Atlanti
) a time span of about 150 years, whereas
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2 Jonas Rumpf et al.reinsurers need to in
lude wind speeds with mu
h lower ex
eedan
e fre-quen
ies (< 0.001 p. a.) in their 
al
ulations. The approa
h to the solutionof this problem taken in this paper is to enhan
e the sto
hasti
 model oftropi
al 
y
lone tra
ks in the western North Pa
i�
 originally introdu
edin Rumpf et al. (2006) and Rumpf et al. (2007) and then to apply it tothe histori
al data on the North Atlanti
 basin. From this model, a num-ber of syntheti
 but realisti
 storm tra
ks 
an be simulated that is mu
hlarger than the number of storms provided by the histori
al data. Sin
ethese syntheti
 tra
ks exhibit the same basi
 
hara
teristi
s as the tra
ksobserved in the past, they 
an be used to perform the 
al
ulations ne
es-sary for a more sound risk assessment. For example, the frequen
ies andreturn periods of wind speeds at 
ertain points of interest 
an be 
al
ulatedon the basis of a mu
h larger dataset. It should be emphasized that themethods des
ribed in this study aim to re�e
t the 
hara
teristi
s of the his-tori
al data in their entirety, while the e�e
ts of potential �u
tuations in
y
lone a
tivity are deliberately negle
ted for now. In�uen
es su
h as the ElNiño-Southern Os
illation (ENSO), North Atlanti
 Os
illation (NAO), orthe Atlanti
 Multide
adal Os
illation (AMO) are `averaged out' by poolingall available data regardless of the phases it o

urred in.The pro
edure for the simulation of tropi
al 
y
lone tra
ks 
an be out-lined as follows: After simulating a point of genesis from an inhomogeneousPoisson point pro
ess model, the initial segment of a 
y
lone tra
k is gen-erated by sampling from the histori
ally observed initial dire
tions, initialtranslational speeds and initial wind speeds of 
y
lones starting in the vi
in-ity of this genesis point. With this segment, a new position for the simulated
y
lone tra
k 
an be found. At the new position, 
hanges in dire
tion, trans-lational speed, and wind speed are simulated, again by sampling from thehistori
ally observed values of these 
hara
teristi
s in the vi
inity of the
urrent position. In this way, a new segment for the 
y
lone tra
k is 
on-stru
ted. Further segments are then simulated in the same way until it isde
ided to terminate the tra
k. The random de
ision whether or not a tra
kis terminated is made after ea
h segment with a termination probabilitythat is found as a fun
tion of the 
y
lone's 
urrent wind speed and posi-tion. The details of this simulation pro
edure are explained in Rumpf et al.(2006) and in part in Se
tion 2.For an overview of the statisti
al aspe
ts of the modelling and analysisof losses 
aused by hurri
anes, the reader is referred to the arti
le by Imanet al. (2006) and the referen
es it 
ontains.1.2 OverviewThe �rst step involves presenting the data on whi
h the model is based.The various 
omponents of the sto
hasti
 tra
k model are then explained



Cy
lone Hazard Assessment Using Tra
k Simulation 3in Se
tion 2. This fo
uses in parti
ular on the 
al
ulation of wind speedsat 
ertain distan
es from the simulated tra
ks (see Se
tion 2.5). The meth-ods of hazard assessment applied to the simulation results are des
ribedin Se
tion 3. Se
tion 4 presents the results of simulations 
arried out withan implementation of the model, and evaluates them in 
omparison to thehistori
al data. The summary in Se
tion 5 rounds o� the paper.1.3 DataThe data used in this study are taken from the HURDAT (Atlanti
 basinhurri
ane database) best tra
k data (see Jarvinen et al. (1984)) provided bythe National O
eanographi
 and Atmospheri
 Administration of the UnitedStates of Ameri
a (NOAA). Although the database 
ontains storms datingba
k to 1851, only the re
ords for the 1900-2005 period are used, older databeing of doubtful reliability. This 
omplies with meteorologi
al standardM-1 of the Florida Commission on Hurri
ane Loss Proje
tion Methodology(FCHLPM).The information in HURDAT that is relevant to the proposed modelindi
ates the position and wind speed of ea
h storm, re
orded at regularsix-hour intervals. In this way, a 
y
lone tra
k 
an be represented as apolygonal traje
tory that 
onne
ts up to 132 points of storm measurement.The tra
ks of all 979 storms 
onsidered are plotted in Figure 1.

Figure 1 Tra
ks of all storms 
ontained in the histori
al dataset



4 Jonas Rumpf et al.2 Sto
hasti
 tra
k modelThis se
tion outlines the sto
hasti
 model used to simulate the tra
ks oftropi
al 
y
lones. The basis for this model was �rst introdu
ed in Rumpf etal. (2006) and has been des
ribed in detail in Rumpf et al. (2007). Therefore,only those parts of the model that 
onstitute signi�
ant enhan
ements tothe original model are des
ribed at length, see for example Se
tion 2.5. Thereader is referred to Rumpf et al. (2007) for details on other aspe
ts of themodel.2.1 Classi�
ationIt is obvious from Figure 1 that the 
y
lone tra
k shapes exhibit strong in-homogeneities. Therefore, as an auxiliary tool for simulating 
y
lone tra
ks,the histori
al tra
ks are �rst split into six disjoint 
lasses based on the lo
a-tions of their starting and end points and the regions a�e
ted by the storms.The tra
k shapes in the respe
tive 
lasses are mu
h more homogeneous, andyield greater pre
ision when the simulations are generated. Figures 5 and 7show two examples of the resulting 
lasses: 
lass 1 storms (Figure 5) have arelatively straight tra
k from the open Atlanti
 into the Caribbean and theGulf of Mexi
o, whereas 
lass 2 storms (Figure 7) initially take a similardire
tion but then re
urve towards the northeast, in most 
ases a�e
tingnot only the Caribbean and/or the Gulf of Mexi
o but also Florida or someother part of the eastern North Ameri
an 
ontinent. The subsequent stepsin the modelling pro
ess are performed separately for the di�erent 
lasses,making use of the improved homogeneity 
reated by dividing the tra
ks into
lasses.2.2 Points of genesisThe �rst step in modelling the tra
ks of tropi
al 
y
lones is to des
ribe thepoints of 
y
lone genesis by means of a random point pro
ess model (see,for example, Baddeley et al. (2006) and Diggle (2003)). In our 
ase, it is ap-propriate to employ a Poisson pro
ess model, due to the nature of the data.A Poisson point pro
ess 
an be 
onsidered as a model for `
omplete spatialrandomness', i.e. the points are pla
ed independently of ea
h other, whiletheir total number is Poisson distributed (see Stoyan and Stoyan (1994)).This model therefore re�e
ts the apparent absen
e of `intera
tion' betweenthe starting points of 
y
lones in the histori
al data for the time period1900-2005, a meteorologi
al property that is also ba
ked by the results of amathemati
al investigation into the point patterns of these points of gene-sis. In this investigation, the frequen
ies of interpoint distan
es were plottedto establish whether any attra
tion or repulsion e�e
ts between the pointsof genesis were visible. These plots seemed to indi
ate only a minor degreeof intera
tion, if any. In 
onsequen
e, further investigations were 
arried
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k Simulation 5out. Various point pro
ess models su
h as the Strauss hard 
ore model were�tted to the data using spatstat (see Baddeley and Turner (2005)). The re-sulting model parameters did not indi
ate any relevant intera
tion betweenthe points.Furthermore, the point pro
ess model of whi
h the points of 
y
lone gen-esis are 
onsidered a realisation is presumed to be spatially inhomogeneous,i.e. its intensity varies spatially. Figure 2 plots the points of genesis for his-tori
al 
lass 2 storms to illustrate this assumption. The intensity fun
tionof the inhomogeneous Poisson pro
ess has to be estimated from the datain order to 
omplete the model of the starting points of the 
y
lone tra
ks.This is done by means of a generalised nearest neighbour estimator (seeRumpf et al. (2007)), whi
h uses an estimation te
hnique 
losely related tokernel estimation. For details of the 
orresponding de�nition and properties,see Silverman (1986), p.97.

Figure 2 Points of genesis of 
lass 2 storm tra
ks in the histori
al data2.3 Cy
lone tra
ks and wind speedsAs mentioned in Se
tion 1.3, 
y
lone tra
ks 
an be interpreted as polygo-nal traje
tories or as a sequen
e of tra
k segments 
onne
ting the lo
ationsof measurement. Ea
h tra
k segment is uniquely determined by its start-ing point, orientation and length. Thus, storm tra
ks are modelled as asequen
e of random ve
tors S(i) =
(
X(i), Y (i), Z(i)

)⊤ in the following way:



6 Jonas Rumpf et al.the dire
tion of storm movement (or orientation) X(i+1) along the (i+1)-thsegment is interpreted as the state of a generalised random walk after the
(i + 1)-th step, i.e. as the sum of an initial dire
tion X0 and the subsequentindependent 
hanges in dire
tion after the j-th segment, Xj , 1 ≤ j ≤ i:

X(i+1) =

i∑

j=0

Xj (1)The distributions of X0 and Xj , j ≥ 1 are assumed to depend on the storm's
urrent position, i.e. the endpoint of what is 
urrently the last segment ofthe storm tra
k. This approa
h relies on the same basi
 assumption as thetra
k simulation models proposed for example in Emanuel et al. (2006) andHall and Jewson (2007), namely that tropi
al 
y
lones with similar geo-graphi
al positions behave in 
omparable ways due to similarities in theirmeteorologi
al and geographi
al 
ir
umstan
es. In the model, this assump-tion is re�e
ted by the fa
t that the distributions of X0 and Xj are 
reatedby resampling from the histori
al data measured near the storm's 
urrentposition.Sin
e the histori
al measurements have been taken at regular six-hourintervals, the length of a segment is more naturally modelled by �nding thestorm's translational speed along that segment and multiplying it by theduration of the interval. The model for translational speed Y , in turn, is then
onstru
ted in the same way as the one forX explained above, with the samedependen
e on the 
y
lone's 
urrent position. Note that while the 
urrenttranslational speed is seen as the sum of the initial speed and 
hanges in thatspeed after ea
h segment, it 
an not formally be 
onsidered a generalisedrandom walk. Certain boundary 
onditions that have to be imposed on
Y (most notably Y ≥ 0) e�e
tively make its 
hanges a Markov pro
ess,i.e. a sto
hasti
 pro
ess whose probability distribution of the next statedepends only on its 
urrent state but not on the past. For mathemati
allymore rigorous treatments of Markov pro
esses, see, for example, Meyn andTweedie (1993) or Stroo
k (2005) and the referen
es therein.For a meaningful assessment of tropi
al 
y
lone hazards, it is also ne
-essary to 
onsider the maximum wind speeds Z along the 
y
lone tra
ks.In a similar way to that des
ribed above, the maximum wind speed Z(i+1)along the (i + 1)-th segment is regarded as the sum of an initial wind speed
Z0 and the subsequent 
hanges in wind speed Zj after the j-th segment,
1 ≤ j ≤ i. Again, the wind speed is not a generalised random walk. The
hanges in it have to be 
onsidered a Markov pro
ess, be
ause besides someboundary 
onditions, the distribution of Zj depends not only on the storm's
urrent position (analogously to Xj and Yj) but also on the previous windspeed Z(j). This latter dependen
e is introdu
ed into the model to re�e
t aproperty of tropi
al 
y
lones observed in the data. For example, storms thatrea
h very high wind speeds exhibit a tenden
y to weaken be
ause there is
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k Simulation 7a high probability that they have rea
hed their peak intensity. On the otherhand, storms with low wind speeds 
ould be in the early stages of their life
y
le and still developing, or already 
lose to the end of their tra
k, andtherefore of redu
ing intensity. To di�erentiate between these two possibil-ities, a lo
ation dependen
e of the 
hanges in wind speed Zj is 
onstru
tedin 
omplete analogy to the lo
ation dependen
e of the distributions of Xjand Yj , be
ause the main regions of 
y
lone genesis and of the terminationof 
y
lones are di�erent.2.4 Termination probabilitiesThe termination of 
y
lone tra
ks is also des
ribed sto
hasti
ally. As men-tioned above, a basi
 underlying assumption of the whole model is thatstorms with similar positions behave in similar ways. It is therefore plau-sible to make the termination probability of a 
y
lone lo
ation-dependent,sin
e the weakening and dissipation of a 
y
lone is strongly related to thein�ux of energy from warm water at its 
urrent position � or rather the la
kthereof. On the other hand, the termination probability also has to dependon the 
urrent maximum wind speed of the storm, sin
e a storm with a lowwind speed is obviously mu
h more likely to fall below the speed thresholdof being a tropi
al storm during the subsequent 6 hours than a storm witha high wind speed.Therefore, termination probability is 
al
ulated as being the maximumof a lo
ation-dependent and a wind-speed-dependent probability. Whilstthe former is obtained as the relative frequen
y of termination points inthe vi
inity of the 
y
lone's 
urrent position, the latter is determined by�tting a 
urve to the histori
al termination probabilities as a fun
tion ofthe 
y
lone's 
urrent wind speed.2.5 Radii and shapes of 
y
lonesThe information in
orporated into the model for the tra
ks of tropi
al 
y-
lones so far has been limited to the polygonal traje
tories, i.e. no state-ments are made about the situation outside the points of measurement andthe segments 
onne
ting them. A real tropi
al 
y
lone, however, 
auses highwind speeds not only at its 
entre but also at lo
ations a signi�
ant distan
efrom the 
entre. It is therefore ne
essary to in
lude information about theradius and the shape of the storms in the model. The proposed model doesso in the following way: a tropi
al 
y
lone is 
onsidered to be a modi�edRankine vortex of the form
v(r) =

{
vmax · r

rmax

if 0 ≤ r < rmax ,

vmax ·

(
r

rmax

)−x if r ≥ rmax ,
(2)



8 Jonas Rumpf et al.where the wind speed v(r) (in km/h) at a distan
e r from the 
entre is givenas a fun
tion of r, of the radius rmax at whi
h the maximum wind speed isattained, and of the maximum wind speed vmax (in km/h) itself for some
x ∈ [0, 1] (see, for example, Holland (1980)). The exponent x determinesthe shape of the wind pro�le, i.e. how qui
kly wind speed de
reases within
reasing distan
e outside of the radius of maximum wind speed. The valueof x has to be found empiri
ally. Re�e
ting the approa
h of the proposedmodel more naturally than determining x dire
tly, is to determine the radiusof maximum wind speed rmax and the gale-for
e radius rgale. The gale-for
e radius rgale is de�ned as the maximum distan
e from the 
entre of thestorm at whi
h wind speeds of at least gale for
e, i.e. vgale = 63 km/h, areattained. Naturally, vmax is always assumed to be greater than vgale (whi
halso implies rmax < rgale), sin
e storms that do not attain wind speedsabove gale for
e are not 
onsidered tropi
al storms (note that the data still
ontains measurements of maximum wind speeds below 63 km/h, mainlydue to the possibility that a 
y
lone will regain strength after falling below
rgale, but also in part due to a number of data maintenan
e in
onsisten
ies).In this way, the value of x 
an be determined using (2), if rmax and rgaleare known:

x =
ln(vmax) − ln(63)

ln(rgale) − ln(rmax)
(3)Unfortunately, the data available on these radii 
onstitute only a smallfra
tion of the total measurements in HURDAT: The `extended best tra
kdata' (see Demuth et al. (2006)) 
ontains 225 storms with measurements ofthe radius of maximum wind speeds and the gale-for
e radius. This makes upapproximately 23% of the best tra
k HURDAT data used for this study (seeSe
tion 1.3). However, rmax and rgale have not been re
orded at all the mea-surement points of these storms. Thus, the total number of measurementswith a re
orded radius of maximum wind speed is redu
ed to approximately15% of the HURDAT data measurements. This makes it inappropriate todeal with them as Markov pro
esses with lo
ation-dependent distributionsof the summands in analogy to the maximum wind speed. Instead, rmax and

rgale are 
al
ulated as empiri
al fun
tions of the wind speed by exponentialregression of vmax

rmax

and logarithmi
 regression of rgale, respe
tively:
rmax =

vmax

a · exp (b vmax)
(4)

rgale = c · ln(vmax) − d (5)The 
oe�
ients a, b, c, d are determined separately by least-squares regres-sion for three di�erent 
ategories of 
y
lones: those who rea
h wind speedsof at least 210 km/h along their tra
k, those whose highest wind speedalong the tra
k is between 140 km/h and 210 km/h, and those whose windspeeds never ex
eed 140 km/h, or in other words, strong, medium and weak
y
lones. For any 
y
lone tra
k simulated as des
ribed in Se
tions 2.2 to2.4, rmax and rgale at ea
h point of measurement are then 
al
ulated as
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k Simulation 9fun
tions (4) and (5) of vmax, for the values of a, b, c, d 
orresponding tothe highest wind speed attained along the respe
tive tra
ks. These fun
tions
an then be used to determine the value of x via (3).In general, maximum wind speeds are measured on the right hand side ofa storm, sin
e the translation speed on that side adds to the tangential windspeeds. To take a

ount of this fa
t, the translation speed (multiplied bythe sine of the angle between storm dire
tion and dire
tion to the respe
tivelo
ation) is subtra
ted from the wind speeds 
al
ulated from (2) for lo
ationson the left-hand side of a storm.Figure 3 shows a plot of the �tted exponential regression 
urves from(4) for the data available on the radii of maximum wind speeds rmax. Ananalogous graph is plotted in Figure 4 for the regression 
urves resultingfrom (5). Only the relevant parts of the 
urves are plotted; for values not in-
luded in the plot, the 
urves are either undistinguishable or not appli
able,be
ause the respe
tive maximum wind speeds for the di�erent 
ategories of
y
lones are ex
eeded.3 Hazard assessmentAs mentioned in Se
tion 1.1, the sto
hasti
 tra
k model des
ribed in this pa-per was developed in order to improve hazard assessment for areas a�e
tedby tropi
al 
y
lones. To this end, �rstly a large number of syntheti
 stormtra
ks is generated from the implementation of the model. For example, arandom Poisson distributed number (see Se
tion 2.2) with an expe
tation
10,000
106 times the number of histori
al tra
ks in the data 
onsidered (see Se
-tion 1.3) would represent the number of storms o

uring over a time spanof m = 10, 000 years. As des
ribed above, ea
h of these storms 
onsists ofseveral segments 
onne
ting the points of measurement. To 
al
ulate the
y
lone hazard at a point of interest t0 in the observation window, for ea
hstorm, the distan
e of t0 to all points of measurement of this storm is 
al-
ulated. The wind speeds with whi
h t0 is a�e
ted by the 
y
lone from itsvarious positions 
an be determined by inserting these distan
es into (2).The maximum of all the wind speeds 
aused by a storm is then taken asthe storm's `wind impa
t' on t0. By 
al
ulating the impa
ts of all simulatedstorms on t0 for the time span of m years, a large number nt0 of wind speedsis obtained, even if wind speeds of less than vgale are dis
arded. Finally, theexpe
ted return period of any given wind speed v0 
an easily be estimatedfrom those wind speeds by dividing the number of years m by the numberof impa
ts on t0 greater than or equal to v0. Note that this method mayprodu
e the same estimate for the expe
ted return period for di�erent windspeeds. To obtain a one-to-one relation, a stri
tly monotoni
 parametri
distribution fun
tion F (v) (e. g. Gamma-, Weibull- or other extreme valuedistributions) 
ould be �tted to the impa
ts 
al
ulated. Then the estimate
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R̂P (v0) for the expe
ted return period of v0 
ould be 
al
ulated as

R̂P (v0) =
m

nt0(1 − F (v0))
(6)When assessing 
y
lone hazards in this way, it has to be borne in mindthat the hazards obtained from the tra
ks simulated with an implementationof the model re�e
t only the average hazards over the whole time period
onsidered. For example, the various modes of variability in 
y
lone a
tivityexplained in Holland (2007) are not 
onsidered separately from the rest ofthe data. Thus, the a
tual hazards in any given year may di�er signi�
antlyfrom those obtained from the model. A possible way of dealing with thisproblem 
ould be, instead of using all of the available data as input for themodel, as it was done in the present study (see Se
tion 1.3), to use onlydata from a period that exhibits similar values of 
ertain in�uen
e fa
torsas the time span for whose investigation the model is being applied. Su
h aperiod might be a sele
tion of years with similar values of in�uen
e fa
torssu
h as ENSO or AMO, whi
h have their prin
ipal expression in sea surfa
etemperatures (SST). Re
all that SST are 
onsidered to be 
losely 
orrelatedto 
y
lone a
tivity and intensity (i.e. wind speeds), see for example Mannand Emanuel (2006) or Holland andWebster (2007). More simply, one mightalso 
hoose to 
onsider a sequen
e of years with higher 
y
lone a
tivityor higher 
ounts in 
y
lone genesis. By sele
ting the input data in thisway, the model should then reprodu
e the spe
i�
 e�e
ts of these in�uen
esre�e
ted in the data, 
onsequently produ
ing more a

urate informationabout hazards in periods under investigation.It is not 
lear, however, if this simple transfer of the model to di�erentinput data would be able to produ
e the desired results. While the transferof the model itself does not pose an essential problem (the initial version ofthe model was applied to data from the western North Pa
i�
, see Rumpf etal. (2007)), the sele
tion of the input data would require extensive statisti
alinvestigations beyond the s
ope of this study. For example, this would meana restri
tion to a potentially mu
h smaller subset of the data, whi
h 
ouldpose serious statisti
al di�
ulties, su
h as a heightened sensitivity of theresults to outliers of any kind in the data. In addition, it would raise thequestion of how to separate the data appropriately: whi
h years exa
tly are
onsidered to be of `high a
tivity' and whi
h ones are not? Furthermore, itwould require a di�erent data set as a basis, sin
e ENSO, AMO, or SST arenot in
luded in HURDAT.4 Simulation results4.1 Simulation samplesThe proposed model has been implemented in Java, in part using 
lasses andmethods from the GeoSto
h library, see Mayer et al. (2004) and
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h.de . This implementation 
an be used to generate adataset 
ontaining 100 times the number of storms found in the histori
aldata within a few days on standard 
omputers. Two examples of sets ofsyntheti
 storm tra
ks are shown in Figures 6 and 8. These �gures showsimulated tra
ks of 
lass 1 and 2 
y
lones, respe
tively. By juxtapositionwith the histori
al 
lass 1 tra
ks in Figure 5, it 
an be seen that the basi
shapes and 
hara
teristi
s of the histori
al tra
ks are 
aptured fairly well inthe simulated 
lass 1 tra
ks plotted in Figure 6. The same generally holdstrue for the sample of syntheti
 
lass 2 tra
ks (Figure 8) that have beenjuxtaposed with the histori
al tra
ks of 
lass 2 storms (Figure 7), althoughthe former tend to end somewhat earlier and 
urve northward slightly toofar east 
ompared with the latter.4.2 EvaluationIn addition to the visual 
omparison between histori
al and syntheti
 stormtra
ks 
ondu
ted in Se
tion 4.1, a number of statisti
al 
omparisons are per-formed. These 
omparisons 
he
k the quality of the mat
h between 
ertain
hara
teristi
s in the simulated data and the same 
hara
teristi
s in the en-tire histori
al data. The di�erent modes of variability as stated in Holland(2007) (see also Se
tion 3) are only 
onsidered indire
tly through the fa
tthat 
ertain 
hara
teristi
s, su
h as for example the maximum wind speedsat 
ertain lo
ations, are in�uen
ed mu
h more by 
ertain values of thesesmodes, for example high SST, than others.Initially, the numbers of storm tra
ks 
rossing 
ertain zones of interestare 
ounted for the histori
al dataset and for 100 samples of simulated stormtra
ks. Ea
h sample 
overs the same time 106-year period as the histori
aldata (see Se
tion 1.3), i.e. it has been simulated with the same expe
tednumber of tropi
al 
y
lones. The zones 
hosen represent most of the areaswith the highest relevan
e to the insuran
e industry, be
ause on the onehand, they are known to be endangered by tropi
al 
y
lones and, on theother, they 
ontain a signi�
ant amount of (potentially) insured values. The
omplete list of zones investigated is given in Table 1.The results of the �rst part of this investigation are given in Table 1.This table lists the following values by zone: the number of histori
al stormtra
ks 
rossing that parti
ular zone (x) and the sample mean (x̄n) and sam-ple standard deviation (sn) of that number in the 100 samples of simulatedstorm tra
ks. It is assumed that this number is normally distributed witha standard deviation given by sn. Under the hypothesis that the expe
tednumber in real data is equal to x̄n, the value z = x−x̄n

sn

is standard-normallydistributed. The last 
olumn of the table indi
ates whether x is lo
atedwithin a 
ertain interval around the simulated mean, i.e. if z is within therange [−1.96, 1.96] where 1.96 is the 0.975-quantile of the standard normal



Cy
lone Hazard Assessment Using Tra
k Simulation 13Number Name x x̄n sn TD1 Bahamas 144 155.6 16.8 +2 Barbados 29 26.3 5.3 +3 Cayman 14 11.1 3.5 +4 Domini
an Republi
 64 69.8 9.9 +5 Florida 138 153.0 17.9 +6 Houston/Galveston 48 46.0 7.3 +7 Jamai
a 24 28.3 5.1 +8 New York 336 345.9 34.4 +9 New Orleans 41 55.6 8.5 +10 Puerto Ri
o 46 35.1 6.5 +11 Yu
atan 73 78.1 9.9 +Table 1 Counts of storm tra
ks hitting zones of interest. Number: number of thezone of interest (as used in Tables 2 and 3); Name: name of the zone of interest; x:histori
al 
ount; x̄n: simulated mean; sn: simulated standard deviation; TD: testde
ision; +: hypothesis not reje
ted; −: hypothesis reje
ted.distribution. This quantile was 
hosen su
h that the entries in the last 
ol-umn indi
ate the result of a standard Gaussian test at level α = 0.05 of theabove mentioned hypothesis. As 
an be seen from the table, this hypothesisis never reje
ted.In addition to the frequen
ies of tropi
al 
y
lone landfalls in a 
ertainzone, whi
h are listed in Table 1, the so-
alled `
lash probabilities' are alsoof importan
e for insurers and reinsurers, i.e. the probabilities of a single
y
lone hitting at least two zones of interest. The 
ounts in the histori
aldata and the simulated data for su
h events are shown in Table 2. The
olumns are used in analogy to those in Table 1. Again, the table showsa good agreement between the histori
al and the simulated data, the twoex
eptions being 
y
lones that strike the Bahamas and Yu
atan and thosewhi
h make landfall in Barbados and Puerto Ri
o.Investigation of the model's performan
e also fo
uses on simulated windspeeds in the regions of interest. Table 3 shows the 
ounts of points ofmeasurement of tropi
al 
y
lones where winds rea
h hurri
ane intensity.The meaning of the 
olumns is the same as in Tables 1 and 2. Category1-3 and 
ategory 4-5 hurri
anes are investigated separately. It 
an be seenthat the agreement between histori
al and simulated data is de
ent withthe ex
eption of 
ategory 1-3 hurri
anes making landfall in the Bahamas,although the variability in the simulated data appears relatively high forsome zones.The last step in the 
omparison between histori
al and simulated data
onsists of a sele
tion of so-
alled `two-sample-goodness-of-�t tests', a kindof statisti
al hypothesis tests used to 
he
k whether the distribution fun
-tions of two random samples whi
h are 
onsidered to 
onsist of independent



14 Jonas Rumpf et al.Z x x̄n sn TD Z x x̄n sn TD1, 2 1 2.0 1.3 + 4, 5 10 12.5 3.1 +1, 3 3 2.8 1.6 + 4, 6 2 1.8 1.4 +1, 4 15 21.3 5.2 + 4, 7 5 6.8 2.5 +1, 5 61 61.6 9.7 + 4, 8 22 32.8 6.5 +1, 6 2 6.1 2.6 + 4, 9 1 2.7 1.6 +1, 7 6 4.5 2.1 + 4, 10 24 19.9 4.5 +1, 8 75 95.1 13.1 + 4, 11 5 8.2 2.8 +1, 9 8 11.6 3.5 + 5, 6 6 8.0 3.5 +1, 10 11 11.8 3.3 + 5, 7 3 3.4 1.7 +1, 11 4 10.2 3.0 − 5, 8 84 98.2 13.6 +2, 3 0 0.6 0.8 + 5, 9 19 22.2 5.0 +2, 4 3 3.0 1.6 + 5, 10 8 6.5 2.6 +2, 5 2 2.0 1.5 + 5, 11 5 8.6 3.0 +2, 6 0 0.4 0.7 + 6, 7 0 0.7 0.8 +2, 7 1 1.6 1.2 + 6, 8 23 17.5 4.6 +2, 8 4 5.7 2.6 + 6, 9 15 15.9 4.3 +2, 9 1 0.4 0.7 + 6, 10 1 0.9 1.1 +2, 10 6 1.5 1.2 − 6, 11 6 3.4 1.9 +2, 11 0 3.0 1.7 + 7, 8 10 12.3 3.4 +3, 4 0 2.8 1.7 + 7, 9 0 0.7 0.8 +3, 5 3 1.4 1.2 + 7, 10 3 2.0 1.2 +3, 6 0 0.5 0.7 + 7, 11 9 6.0 2.2 +3, 7 5 2.9 1.7 + 8, 9 25 30.2 6.1 +3, 8 8 4.6 2.4 + 8, 10 16 13.7 3.9 +3, 9 0 0.4 0.6 + 8, 11 23 21.3 5.8 +3, 10 0 0.9 1.0 + 9, 10 1 1.4 1.2 +3, 11 6 3.7 2.1 + 9, 11 4 3.2 2.0 +10, 11 4 3.0 1.6 +Table 2 Numbers of storm tra
ks hitting two zones of interest. Z: Zones of interest(see Table 1); x: histori
al 
ount; x̄n: simulated mean; sn: simulated standarddeviation; TD: test de
ision; +: hypothesis not reje
ted; −: hypothesis reje
ted.and identi
ally distributed sample variables agree (for details on hypothesistesting, see, for example, Lehmann and Romano (2005)). For this purpose,wind impa
ts (see Se
tion 3) at 7,182 spe
i�
 lo
ations within the zones ofinterest (see Table 1) were 
al
ulated for the histori
al as well as for thesimulated data. In this way, two samples, a histori
al one with distribu-tion fun
tion Fhist, and a simulated one with distribution fun
tion Fsim,were 
reated for ea
h of the 7,182 lo
ations. If the histori
al data is repre-sented well by the simulated data, the samples of wind impa
ts from thetwo datasets at one and the same lo
ation should be very similar, i.e. theyshould have the same underlying distribution fun
tion. Therefore, three dif-ferent tests of the hypothesis that the distribution fun
tions of these twosamples are the same, i.e.
H0 : Fhist(x) = Fsim(x) ∀x ∈ R , (7)



Cy
lone Hazard Assessment Using Tra
k Simulation 15Z C x x̄n sn TD Z C x x̄n sn TD1 1-3 55 2 26.7 − 1 4-5 53 62.8 22.0 +2 1-3 0 1.8 2.8 + 2 4-5 0 0.7 1.2 +3 1-3 0 1.3 2.3 + 3 4-5 1 1.1 1.5 +4 1-3 16 15.7 6.2 + 4 4-5 2 8.1 4.7 +5 1-3 104 142.7 19.8 + 5 4-5 25 52.3 14.8 +6 1-3 90 63.6 16.1 + 6 4-5 18 18.0 8.4 +7 1-3 5 14.1 9.4 + 7 4-5 3 9.1 9.2 +8 1-3 11 7.4 4.8 + 8 4-5 1 1.0 1.5 +9 1-3 67 56.2 15.6 + 9 4-5 17 12.3 5.4 +10 1-3 6 7.2 5.0 + 10 4-5 3 2.3 3.2 +11 1-3 72 88.9 24.2 + 11 4-5 15 33.5 19.4 +Table 3 Points of measurement of hurri
anes of di�erent 
ategories in the dif-ferent zones. Z: Zone of interest (see Table 1); C: Categories of hurri
anes; x:histori
al 
ount; x̄n: simulated mean; sn: simulated standard deviation; TD: testde
ision; +: hypothesis not reje
ted; −: hypothesis reje
ted.were performed for ea
h lo
ation. The following tests were used:� Kolmogorov-Smirnov test (KST). This test 
he
ksH0 against the generalalternative that the values of the two distribution fun
tions di�er forsome x ∈ R. That means that any di�eren
es between the two sampleswill lead to the reje
tion of H0 if they are too large in the statisti
alsense, regardless of the wind impa
ts at whi
h these di�eren
es mighto

ur. For mathemati
al details, see, for example, Gibbons (1985), p.127�.� Wil
oxon rank test (WRT). This test is espe
ially sensitive to deviationsin the lo
ation parameters of Fhist and Fsim, i.e. it is used to determinewhether one of the distribution fun
tions is shifted relative to the other.Thus, di�eren
es in variabilities of wind impa
ts within the two sampleswill not lead to the reje
tion of H0 as easily as di�eren
es in the means ormedians of the two samples. For mathemati
al details, see, for example,Gibbons (1985), p. 164�., or Lehmann and Romano (2005), p.243.� Ansari-Bradley test (ABT). In 
ontrast to the WRT, the ABT dete
tsdi�eren
es in s
ale between Fhist and Fsim. Thus, it is used to 
he
k
H0 against the alternative that Fhist is a s
aled version of Fsim (or vi
eversa). In other words: while di�eren
es in the means or medians of thetwo samples of wind impa
ts are 
onsidered more tolerable, di�eren
esin the variabilites will lead to the reje
tion of H0 by this test more easily.For mathemati
al details, see, for example, Gibbons (1985), p. 179�.All the two-sample-goodness-of-�t tests were performed using methods avail-able in version 2.3.1 of the R programming language (see R DevelopmentCore Team (2006)).The numbers of points (out of 7,182) for whi
h H0 was reje
ted by thethree tests at di�erent levels of signi�
an
e α are listed in Table 4. The
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olumn marked `All' indi
ates the number of points where H0 was reje
tedby all three tests, whilst the last 
olumn in 
ontrast 
ontains the numberof points where none of the tests reje
ted H0. A 
loser look at the lo
ationswhere the hypothesis of equal distribution fun
tions was reje
ted by all testsshows that, at those points, the average wind speeds and the varian
e inwind speeds appear to have been underestimated. Most are situated o� the
oast of New York. One possible interpretation of this might be that 
lass2 storms, i.e. the 
lass whi
h 
ontains storms re
urving from a western to anortheastern bearing and a�e
ting the eastern part of the North Ameri
an
ontinent (see Se
tion 2.1 and Rumpf et al. (2007)), are not simulated in themodel with the requisite pre
ision. Most of the other 
y
lone tra
ks seemto be represented very well. The �t seems espe
ially good in the Caribbeanand in and around the Gulf of Mexi
o.Note that it is not appropriate to draw any 
on
lusions from a 
omparisonof the relative reje
tion frequen
ies given in Table 4 to the respe
tive levelsof signi�
an
e, i.e. the probabilities of type I errors, sin
e the wind speeddistributions at di�erent lo
ations have been derived from the same dataand are therefore strongly dependent.
α KST WRT ABT All None0.01 229 219 261 45 6,6320.05 1,018 785 989 244 5,1380.10 1,575 1,559 1,794 562 4,083Table 4 Numbers of points where H0 was reje
ted by the di�erent tests

5 Summary and outlookA model for the Monte-Carlo simulation of tropi
al 
y
lone tra
ks has beenenhan
ed and applied to histori
al data from the North Atlanti
 O
ean basinin order to improve tropi
al 
y
lone hazard assessment. The simulation of alarge number of tra
ks with an implementation of this model now allows fora 
al
ulation of a large number of `wind impa
ts' at any lo
ation of interesta�e
ted by tropi
al 
y
lones. The resulting large numbers of wind impa
ts
an be used to estimate the expe
ted return periods of 
ertain wind speeds.This, in turn, makes it possible to estimate the expe
ted damages and other
hara
teristi
s of interest to the insuran
e and reinsuran
e industry.In the present study, the model was applied to the 
omplete histori
aldata from 1900-2005. For the investigation of the e�e
ts of 
ertain in�uen
efa
tors, su
h as those stated in Holland (2007), some extensive statisti
al
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k Simulation 17investigations of the 
orresponding subsets of data would have to be per-formed, whi
h will be the subje
t of future resear
h. Espe
ially when aimingto in
lude potential e�e
ts of 
limate 
hange, su
h as trends in SST, a 
are-ful s
rutiny of the input data is ne
essary, sin
e the model is in large partsdata-driven. Thus, the fa
t that for example 
ertain levels of SST valuesmay not have been observed in the histori
al data would 
reate a need forextrapolation of the data. Possible e�e
ts of these modes of variability andtrends might for example be 
hanges in the stru
ture of the point patternsformed by the points of tropi
al 
y
lone genesis (and resulting 
hanges inproportions or shapes of the six di�erent storm 
lasses), as well as 
hangesin 
y
lone frequen
ies or the distribution of wind speeds, whi
h all 
ouldpotentially result in di�eren
es in the hazards obtained from the model.A
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Figure 5 Tra
ks of histori
al 
lass 1 storms

Figure 6 Tra
ks of a sample of simulated 
lass 1 storms
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Figure 7 Tra
ks of histori
al 
lass 2 storms

Figure 8 Tra
ks of a sample of simulated 
lass 2 storms


