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ABSTRACT

Two methods to approximate stable random fields are presented. The methods are based on approximating
the kernel function in the integral representation of such fields. Error bounds for the approximation error are
derived and the approximations are used to simulate stable random fields. The simulation methodology is
applied to a portfolio of storm insurance policies in order to spatially predict insurance claims.

Keywords: insurance, simulation, stable random fields.

INTRODUCTION

In many cases, the normal distribution is a reasonable
model for real phenomena. If one considers the
cumulative outcome of a great amount of influence
factors, the normal distribution assumption can be
justified by the Central Limit Theorem which states
that the sum of a large number of independent
and identically distributed random variables can be
approximated by a normal distribution if the variance
of these variables is finite. However, many real
phenomena such as stock returns and claim sizes
in storm insurance exhibit rather heavy tails. Stable
distributions remedy this drawback by still being
the limit distribution of a sum of independent and
identically distributed random variables, but allowing
for an infinite variance and heavy tails.

In order to include the spatial structure of real
phenomena, stable random fields may be an
appropriate model. Stable random fields can be
represented as a stochastic integral of a deterministic
kernel as integrand and a stable random measure
as integrator. The kernel basically determines the
dependence structure, whereas the stable random
measure inhibits the probabilistic characteristics of the
random field. As already noted by Cohen et al. (2008),
practitioners have to try a variety of kernels and stable
random measures to find the model that best fits their
needs.

Once the model is fixed, it is desirable to be able to
perform simulations of the stable random field. There
are several papers that are devoted to this problem. In
Biermé and Scheffler (2008), Stoev et al. (2004) and
Wu et al. (2004), the fast Fourier transform is used
for the simulation of linear fractional stable processes,
whereas in Dury (2001), a wavelet representation of a

certain type of fractional stable processes was applied
to simulate sample paths. Furthermore, Cohen et al.
(2008) give a general framework for the simulation of
fractional fields.

In this paper, we consider certain classes of stable
random fields for which the kernel function is assumed
to be Hölder-continuous or bounded which is a
less restrictive assumption. Based on the respective
assumption, we derive estimates for the approximation
error when the kernel function is approximated by a
step function or by a certain truncated wavelet series.
The approximation allows for simulation since the
integral representation of the stable field reduces to a
finite sum of random variables in this case. The proofs
of the theorems are given in Karcher et al. (2009).

In Section 2, we present the main results for the
approximation error which is made when the kernel
function is replaced by a step function or a truncated
wavelet series. Section 3 is devoted to a brief
simulation study where we apply the derived formulas
for the approximation error to the simulation of two
particular stable random fields. In Section 4, we
present an application of the simulation methods to a
portfolio of storm insurance policies.

APPROXIMATION OF STABLE
RANDOM FIELDS

Let 0 < α ≤ 2 and α 6= 1. In the following, we consider
random fields of the form

X(t) =
∫

Rd

ft(x)M(dx), t ∈ Rd , d ∈ N,
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where ft ∈ Lα(Rd) and M is an α-stable random
measure with Lebesgue control measure and constant
skewness intensity β . For a detailed introduction and
a thorough treatment of stable distributions and stable
random processes, we refer to Samorodnitsky and
Taqqu (1994). Our goal is to approximate sample paths
of X for a variety of kernel functions ft , t ∈ Rd .

In the following, two approaches will be presented.
They are both based on approximating the kernel
function appropriately and determining bounds for the
error resulting from this approximation.

MEASURING THE APPROXIMATION
ERROR

We consider a set of functions { f̃ (n)
t }t∈Rd such that

f̃ (n)
t ∈ Lα(Rd) for all t ∈ Rd and n ∈ N. The

corresponding α-stable random field is denoted by

X̃ (n)(t) :=
∫

Rd

f̃ (n)
t (x)M(dx), t ∈ Rd .

We know that for α 6= 1 and for each t ∈ Rd , X̃ (n)(t)
converges to X(t) in probability if and only if

∫

Rd
| ft(x)− f̃ (n)

t (x)|αdx

converges to 0 as n goes to infinity, see for instance
Samorodnitsky and Taqqu (1994). Therefore, we can
use X̃ (n)(t) as an approximation for X(t) if f̃ (n)

t
approximates ft sufficiently well. We choose

Err(X(t), X̃ (n)(t)) :=
∥∥∥ ft(x)− f̃ (n)

t (x)
∥∥∥

Lα

:=
(∫

Rd
| ft(x)− f̃ (n)

t (x)|αdx
)1/α

to measure the error resulting from this approximation.
This choice can be further justified as follows.

Since X(t) and X̃ (n)(t) are jointly α-stable random
variables for all t ∈Rd , the difference X(t)− X̃ (n)(t) is
also an α-stable random variable. The scale parameter
of X(t)− X̃ (n)(t) is given by

σX(t)−X̃(n)(t) =
(∫

Rd
| ft(x)− f̃ (n)

t (x)|αdx
)1/α

,

so that

Err(X(t), X̃ (n)(t)) = σX(t)−X̃(n)(t).

Furthermore, let us consider the quantity

E|X(t)− X̃ (n)(t)|p, 0 < p < α ,

that is the mean error between X(t) and X̃ (n)(t) in the
Lp-sense.

Since X(t)− X̃ (n)(t) is an α-stable random variable,
we have

E|X(t)− X̃ (n)(t)|p < ∞, 0 < p < α

and

E|X(t)− X̃ (n)(t)|p = ∞, p≥ α.

For 0 < p < α , 0 < α < 2 and α 6= 1, this quantity can
be written as

(
E|X(t)− X̃ (n)(t)|p

)1/p
= cα,βt (p) ·σX(t)−X̃(n)(t),

where

(
cα,βt (p)

)p =
2p−1Γ(1− p

α )

p
∫ ∞

0 u−p−1 sin2 u du

·
(

1+β 2
t tan2 απ

2

)p/2α

· cos
( p

α
arctan

(
βt tan

απ
2

))

and

βt =
∫
Rd | ft(x)− f̃ (n)

t (x)|αsign( ft(x)− f̃ (n)
t (x))βdx

∫
Rd | ft(x)− f̃ (n)

t (x)|αdx
.

We remind that β is the constant skewness intensity of
the α-stable random measure. The above implies that
for 0 < p < α , we have

Err(X(t), X̃ (n)(t)) =
1

cα,βt (p)

(
E|X(t)− X̃ (n)(t)|p

) 1
p
.

The goal is now to find a set of functions
{ f̃ (n)

t }t∈Rd such that Err(X(t), X̃ (n)(t)) is less than a
predetermined critical value.

We see that the problem of approximating the α-stable
random field X reduces to an approximation problem
of the corresponding kernel functions. Two approaches
to approximate the kernel functions are presented in
the following.
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STEP FUNCTION APPROXIMATION

First, we restrict our setting to the observation window
[−T,T ]d with T > 0 and consider

X(t) =
∫

Rd

ft(x)M(dx), t ∈ [−T,T ]d .

We denote by supp( ft) the support of ft for each
t ∈ [−T,T ]d and assume that

⋃

t∈[−T,T ]d
supp( ft)⊂ [−A,A]d

for an A > 0. Then X(·) can be written as

X(t) =
∫

[−A,A]d

ft(x)M(dx), t ∈ [−T,T ]d .

For any natural number n≥ 1 and k = (k1, ...,kd) ∈ Zd

with −n≤ k1, ...,kd < n, let

ξk =
(

k1
A
n
, · · · ,kd

A
n

)
,

∆k =
[

k1
A
n
,(k1 +1)

A
n

)
×·· ·×

[
kd

A
n
,(kd +1)

A
n

)
.

We define the step function

f̃ (n)
t (x) := ∑

|k|≤n
ft(ξk)1I∆k(x)

to approximate ft , where |k| ≤ n is meant to be
componentwise, i. e. −n≤ ki < n for i = 1, ...,d. Then
we have

X̃ (n)(t) =
∫

[−A,A]d

f̃ (n)
t (x)M(dx) = ∑

|k|≤n
ft(ξk)M(∆k).

In the last sum, M(∆k), |k| ≤ n, are independent α-
stable random variables which can be simulated as
presented in Chambers et al. (1976).

The following theorem provides error bounds for
Err(X(t), X̃ (n)(t)) for Hölder-continuous functions ft .

Theorem 1
Assume that 0 < α ≤ 2, α 6= 1 and the functions ft
are Hölder-continuous for all t ∈ [−T,T ]d , i. e. for
x,y ∈ [−A,A]d , it holds

| ft(x)− ft(y)| ≤Ct · ||x− y||γt
2 , t ∈ [−T,T ]d ,

for some 0 < γt ≤ 1 and Ct > 0, where ‖·‖2 denotes the
Euclidean norm. Then for any t ∈ [−T,T ]d we have for
all n≥ 1 that

Err(X(t), X̃ (n)(t))

≤Ct ·2d/α
(

d
1+αγt

)1/α
Aγt+d/α

(
1
n

)γt

for 0 < α < 1 and

Err(X(t), X̃ (n)(t))

≤Ct ·2d
(

d
1+αγt

)1/α
Aγt+d/α

(
1
n

)γt+d(1/α−1)

for 1 < α ≤ 2.

As a consequence, for 0 < α < 1 the error bound
converges to zero as n goes to infinity. For 1 < α ≤ 2,
the condition d < αγt

α−1 has to be fullfilled to get such a
convergence.

Remark 2
Suppose that the conditions of Theorem 1 hold true.
If the support of ft is not compact, we first need to
estimate

X(t) =
∫

Rd

ft(x)M(dx)

by

XK(t) =
∫

[−K,K]d

ft(x)M(dx)

For K > 0 large enough, the approximation error is
small since

Err(X(t),XK(t)) =




∫

Rd\[−K,K]d

| ft(x)|αdx




1/α

tends to 0 if K goes to infinity. Let ε > 0. If 1 < α ≤ 2,
choose K > 0 such that Err(X(t),XK(t)) ≤ ε/2. We
can apply Theorem 1 to XK(·) such that

Err(XK(t), X̃ (n)
K (t))≤ ε/2

for n ∈ N large enough. Then

Err(X(t), X̃ (n)
K (t)) ≤ Err(X(t),XK(t))

+Err(XK(t), X̃ (n)
K (t))

≤ ε
2

+
ε
2

= ε.

If 0 < α < 1, choose K > 0 such that
Err(X(t),XK(t)) ≤ εα/2. Again, we can apply
Theorem 1 to XK(·) such that

Err(XK(t), X̃ (n)
K (t))≤ εα/2

3
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for n ∈ N large enough. Then

Err(X(t), X̃ (n)
K (t)) ≤

(
Err(X(t),XK(t))

+Err(XK(t), X̃ (n)
K (t))

)1/α

≤
(

εα

2
+

εα

2

)1/α
= ε.

Remark 3
More generally, we could consider random fields of the
form

X(t) =
∫

[−A,A]q

ft(x)M(dx), t ∈ [−T,T ]d ,

where q ∈ N and d ∈ N. In this case, under the
assumptions of Theorem 1, the error bounds hold true
with d replaced by q.

APPROXIMATION BY WAVELET SERIES

Series representation of kernel functions

Let ft ∈ Lα(Rd), t ∈ Rd , 0 < α ≤ 2, α 6= 1, and let
{ξi}i∈I be a basis for Lα(Rd), where I is an index set.
Then ft can be represented as

ft = ∑
i∈I

ai ·ξi (1)

for certain constants ai ∈R. In order to approximate ft ,
one can truncate (1) such that it consists only of a finite
number of summands. In Biermé and Scheffler (2008),
the trigonometric system is used to approximate the
kernel function of certain stable random fields. In this
paper, we will go another way and analyse whether
a wavelet system may also be appropriate for the
simulation of α-stable random fields.

The Haar system

In this section, we consider a specific wavelet basis,
the so-called Haar basis. For a detailed treatment
of wavelets, we refer to DeVore (1998), DeVore and
Lucier (1992) and Urban (2008) and proceed with the
definition of the Haar basis.

Definition 4
Consider the function

ϕHaar(x) :=
1

(2A)1/2 , x ∈ [−A,A],

and the corresponding mother wavelet defined by

ΨHaar := ϕHaar(2x)−ϕHaar(2x−1).

Then, translation by j and dilation by 2k of the mother
wavelet ΨHaar yields ΨHaar

j,k := 2k/2ΨHaar(2k · − j),
2k ≤ j ≤ 2k+1 − 1, k ∈ N0, that form together with
ϕHaar an (orthonormal) basis of L2([−A,A]) which is
called Haar basis of L2([−A,A]).

The Haar basis can be extended to d dimensions as
follows.

Let Ψ0 := ϕHaar, Ψ1 := ΨHaar and E be the set of
nonzero vertices of the unit cube [0,1]d . Consider the
multivariate functions Ψe, e = (e1, ...,ed) ∈ E, defined
by

Ψe(x1, ...,xd) := Ψe1(x1) · · ·Ψed (xd), x ∈ [−A,A]d .

Translation by j = ( j1, ..., jd) and dilation by 2k

of the functions Ψe yields Ψe
j,k := 2k/2Ψe(2k · − j),

2k ≤ ji ≤ 2k+1 − 1, i = 1, ...,d, k ∈ N0, e ∈ E that
form together with Ψ∗(x) := 1

(2A)d/2 , x ∈ [−A,A]d

an (orthonormal) basis of L2([−A,A]d). Then, each
function f ∈ L2([−A,A]d) has the expansion

f = ( f ,Ψ∗)Ψ∗ (2)

+ ∑
e∈E

∞

∑
k=0

∑
2k≤ ji≤2k+1−1

i=1,··· ,d

( f ,Ψe
j−2kc,k)Ψ

e
j−2kc,k,

where c := (1, ...,1)T is a vector in Rd . It can be
shown that any function f ∈ Lmax{α,p}([−A,A]d) with
1 < p≤ 2 can be represented by such a wavelet series
(2), cf. DeVore and Lucier (1992). However, there exist
examples of functions for which (2) does not hold in
particular for p = α = 1. Therefore, we restrict our
setting to kernel functions ft ∈ Lmax{α,p}([−A,A]d),
1 < p≤ 2.

As in the step function approach, we restrict our setting
to the observation window [−T,T ]d with T > 0 and
consider

X(t) =
∫

Rd

ft(x)M(dx), t ∈ [−T,T ]d .

We assume again that
⋃

t∈[−T,T ]d
supp( ft)⊂ [−A,A]d

for an A > 0 such that X(·) can be written as

X(t) =
∫

[−A,A]d

ft(x)M(dx), t ∈ [−T,T ]d .

4



Approximation and simulation

Consider a kernel function ft ∈ Lmax{α,p}([−A,A]d)
with corresponding Haar series

ft = ( ft ,Ψ∗)Ψ∗

+ ∑
e∈E

∞

∑
k=0

∑
2k≤ ji≤2k+1−1

i=1,··· ,d

( ft ,Ψe
j−2kc,k)Ψ

e
j−2kc,k.

The idea is now to cut off this series at a certain detail
level k = n, that is to approximate the kernel function
ft by

f̃ (n)
t,cut = ( ft ,Ψ∗)Ψ∗

+ ∑
e∈E

n

∑
k=0

∑
2k≤ ji≤2k+1−1

i=1,··· ,d

( ft ,Ψe
j−2kc,k)Ψ

e
j−2kc,k.

The following lemma provides an upper bound for the
approximation error of bounded kernel functions by
applying this truncation method.

Lemma 5
Let 0 < α ≤ 2. If 1 < α ≤ 2, let additionally d > α .
Assume that Mt := sup

x∈[−A,A]d
| ft(x)| < ∞. Then for any

natural number n, we have

‖ ft − f̃ (n)
t,cut‖Lα ≤

(
2d −1

2d−α −1

)1/α

·d1/α

·Mt · (2A)d/α ·
(

1
2d/α−1

)n

if 0 < α < 1 and

‖ ft − f̃ (n)
t,cut‖Lα ≤ 2d −1

2d/α−1−1
·d

·Mt · (2A)d/α ·
(

1
2d/α−1

)n

if 1≤ α ≤ 2.

Remark 6
When ft , t ∈ [−T,T ]d is assumed to be Hölder-
continuous on [−A,A]d , the rate of convergence of this
estimate can be improved, see Karcher et al. (2009).

Taking a wavelet basis for Lmax{α,p}([−A,A]d) with
1 < p ≤ 2 has advantages in particular in the
representation of functions with discontinuities and
sharp peaks, that is functions with a certain local
behavior. By simply cutting of at a certain detail

level, this advantage is not honored. In this view,
it is better to approximate the kernel function ft
with a truncated Haar series f̃ (n)

t that contains those
n summands ( f ,Ψe

j−2kc,k)Ψ
e
j−2kc,k with the largest

values ‖( f ,Ψe
j−2kc,k)Ψ

e
j−2kc,k‖Lα and ‖( f ,Ψ∗)Ψ∗‖Lα ,

see Karcher et al. (2009). In this paper, an algorithm
is presented which determines an approximation f̃ (n)

close to this particular truncation.

We denote by I the set of the indices (e, j,k) for which
the summands ( ft ,Ψe

j−2kc,k)Ψ
e
j−2kc,k are part of the

truncated wavelet series f̃ (n)
t . Then we can write

f̃ (n)
t = ( ft ,Ψ∗)Ψ∗+ ∑

(e,k, j)∈I
( ft ,Ψe

j−2kc,k)Ψ
e
j−2kc,k

if ( ft ,Ψ∗)Ψ∗ is included in the truncated series or

f̃ (n)
t = ∑

(e,k, j)∈I
( ft ,Ψe

j−2kc,k)Ψ
e
j−2kc,k

if it is not included.

In order to approximate the random field X , we use

X̃ (n)(t) = ( ft ,Ψ∗) · M([−A,A]d)
(2A)d/2

+ ∑
(e,k, j)∈I

( ft ,Ψe
j−2kc,k)

∫

[−A,A]d

Ψe
j−2kc,kM(dx),

or

X̃ (n)(t) = ∑
(e,k, j)∈I

( ft ,Ψe
j−2kc,k)

∫

[−A,A]d

Ψe
j−2kc,kM(dx)

if, again, ( ft ,Ψ∗)Ψ∗ is not included in the truncated
series.

Since the Haar wavelets Ψe
j−2kc,k are simple step

functions, the integrals
∫

[−A,A]d

Ψe
j−2kc,kM(dx)

can be easily computed. However, the wavelet
coefficients ( ft ,Ψe

j−2kc,k) cause problems if no closed
formula of the integral of the kernel functions ft
over cubes is known. In this case, they have to be
determined numerically by using the fast wavelet
transform (see Urban (2008)).

The following algorithm can be used for the simulation
of the considered α-stable random fields.

5
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Algorithm

Let Mt := sup
x∈[−A,A]d

| ft(x)|< ∞ and d > α . Choose ε > 0

as the desired level of accuracy. Choose ε1,ε2 > 0 such
that ε = ε1 + ε2 if 1 < α ≤ 2 and ε = (εα

1 + εα
2 )1/α if

0 < α < 1.

1. Let

mt :=
⌈

ln(ε(2d−α−1)1/α )−ln((2d−1)1/α d1/α Mt (2A)
d
α )

(1−d/α) ln(2)

⌉

if 0 < α < 1 and

mt :=
⌈

ln(ε(2d/α−1−1))−ln((2d−1)dMt(2A)d/α )
(1−d/α) ln(2)

⌉

if 1 < α ≤ 2, where dxe is the integral part of x
and choose a number l ∈ N0 that increases the
detail level mt .

2. Calculate the wavelet coefficients for

( ft ,Ψ∗)Ψ∗

+ ∑
e∈E

mt+l

∑
k=0

∑
2k≤ ji≤2k+1−1

i=1,··· ,d

( ft ,Ψe
j−2kc,k)Ψ

e
j−2kc,k

using the fast wavelet transform with a precision
of

δ = ε2

(2A)d/α−d/22(n+1)d/2
(

1+(2d−1) 2(dα−d)(n+1)−1
2dα−d−1

)1/α

if 0 < α < 1 and

δ = ε2

(2A)d/α−d/22(n+1)d/2
(

1+(2d−1) 2(d−d/α)(n+1)−1
2d−d/α−1

)

if 1 < α ≤ 2.

3. Take the n largest summands from

C := ‖ ̂( ft ,Ψ∗)Ψ∗‖Lα +

+ ∑
e∈E

mt+l

∑
k=0

∑
2k≤ ji≤2k+1−1

i=1,··· ,d

‖ ̂( ft ,Ψe
j−2kc,k

)Ψe
j−2kc,k‖Lα

and denote them by a1,...,an, where ̂( ft ,Ψ∗)
and ̂( ft ,Ψe

j−2kc,k
) denote the wavelet coefficients

calculated by the fast wavelet transform. The
corresponding summands from

̂( ft ,Ψ∗)Ψ∗

+ ∑
e∈E

mt+l

∑
k=0

∑
2k≤ ji≤2k+1−1

i=1,··· ,d

̂( ft ,Ψe
j−2kc,k

)Ψe
j−2kc,k

are denoted by b1,...,bn. Choose the number n
such that

C−
n

∑
i=1

ai ≤ ε1− ε∗t ,

where

ε∗t :=
(

2d−1
2d−α−1

) 1
α

d1/αMt(2A)d/α
(

1
2d/α−1

)mt+l

if 0 < α < 1 and

ε∗t := 2d−1
2d/α−1−1

·d ·Mt · (2A)d/α ·
(

1
2d/α−1

)mt+l

if 1 < α ≤ 2.

4. Take f̃ (n)
t = ∑n

i=1 bi as the approximation for ft .

Remark 7
Assume that ft is Hölder-continuous with parameters
Ct and γt for t ∈ [−T,T ]d . Then the algorithm can be
applied with mt and ε∗t replaced by

mt :=
⌈

ln(2ε(2d+αγt−1)
1
α )−ln((2d−1)

1
α d

1
α + γt

2α Ct (2A)
d
α +γt )

− ln(2
d
α +γt )

⌉
,

ε∗t := 1
2

(
2d−1

2d+αγt−1

)1/α

·d1/α+γt/(2α) ·Ct · (2A)d/α+γt ·
(

1
2d/α+γt

)mt+l
,

if 0 < α < 1 and

mt :=
⌈

ln(ε(2d/α+γt+1−2))−ln((2d−1)d1+γt/2Ct(2A)d/α+γt )
− ln(2d/α+γt )

⌉
,

ε∗t := 2d−1
2d/α+γt+1−2

·d1+ γt
2 ·Ct · (2A)

d
α +γt

(
1

2d/α+γt

)mt+l
,

if 1 < α ≤ 2.

We conclude this section with the main result.

Theorem 8
Assume 0 < α ≤ 2, α 6= 1 and let ε > 0. If f̃ (n)

t is
calculated using the algorithm mentioned above, then

Err(X(t), X̃ (n)(t))≤ ε, ∀t ∈ [−T,T ]d .
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SIMULATION STUDY

For the simulation study, we used two different types
of kernel functions for α-stable random fields of
dimension d = 2. The first one is an Epanechnikov-
type kernel function defined by

ft(x) =

{
b · (a2−‖x− t‖2

2), ‖x− t‖2 ≤ a
0, otherwise,

(3)

where a > 0 and b > 0, whereas for the second one, we
take

f(t1,t2)(x1,x2) = b(a−|x1− t1|)(a−|x2− t2|)
·1I{a−|x1−t1|≥0, a−|x2−t2|≥0}(x1,x2)

(4)

where a > 0 and b > 0. Examples of both kernel
functions are plotted in Figure 1.

+
(a)

(b)

Fig. 1. The Epanechnikov-type kernel function (3)
(subfigure (a)) and the kernel function (4) (subfigure
(b)).

The main difference between these two types of kernel
functions is that one can derive a simple formula for
the integral of (4) over squares, but not for the integral

of (3). This does not affect the step function approach
since the kernel functions are only evaluated there at
the points ξk, but it does affect the wavelet approach
because the input vector consists of such integrals of
(3) and (4) over squares. Therefore, we have to expect
a loss in computational performance for kernel (3) with
the wavelet approach in this case.

Both functions (3) and (4) are Hölder-continuous
with parameters (C1,γ1) = (2ab,1) and (C2,γ2) =
(
√

2ab,1), respectively. We fixed α = 1.1, β = 0 and
[−T,T ]2 = [−1,1]2 for both types of kernel functions.

For the remaining parameters, we started with the
following configuration: b = 1, a = 1 and ε = 1.
Furthermore, we divided [−1,1]2 into an equidistant
grid of 50×50 points and chose l = 0 for the number
of detail levels to be increased. Two realisations of the
1-stable random field X with kernels (3) and (4) are
shown in Figure 2.

(a)

(b)

Fig. 2. Two realisations of stable random fields with
kernel (3) (subfigure (a)) and kernel (4) (subfigure (b)).

First, we kept all parameters fixed and determined
the computational time depending on the number
of realisations. For the step function approach, each
realisation needs the same computational time. For the
wavelet approach, however, the wavelet coefficients
only have to be calculated for the first realisation

7
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and can be stored afterwards. Therefore, any further
realisation needs less computational time. Table 1
shows the results for both the Epanechnikov-type
kernel (3) and kernel (4). By trial-and-error, we figured
out that a combination of ε = ε1 + ε2 = 0.99 + 0.01
performs quite good for the corresponding parameters
in the wavelet algorithm in this case.

Kernel (3) Kernel (4)

Step function 1314.4 680.2
approach

Wavelet approach 5245.0 1081.0
(first realisation)

Wavelet approach 13.9 12.0
(further realisations)

Table 1. Computational time (in msec) for the first and
further realisations.

Second, we focused on the computational time of
any further realisation except the first one and varied
subsequently one of the parameters α , m (the number
of pixels per row) and ε while all the other parameters
were kept fixed. It turned out that the computational
time increased much slower for the wavelet approach
than for the step function approach when α and m were
increased and ε was decreased.

Finally, we increased the parameter l successively
for a field with 10 × 10 pixels while all other
parameters were kept fixed and investigated the
computational time for the wavelet approach for any
further realisation except the first one. Table 2 shows
the corresponding results.

l 0 1 2 3

Computational time 35.8 58.1 260.0 1050.4

l 4 5 6

Computational time 501.5 2097.5 12600.9

Table 2. Computational time (in msec) for different
values of l (kernel (4)).

One might have expected that the computational time
tends to decrease if l is increased since the wavelet
series consists of less summands when keeping the
same level of precision. At the same time, however,
more stable random variable simulations have to be
performed for the calculation of the integrals

∫

[−A,A]d
Ψe

j−2m+l ,m+lM(dx).

That is why for larger values of l, the computational
time tends to increase sharply.

APPLICATION TO A PORTFOLIO OF
STORM INSURANCE POLICIES

The past years have demonstrated that natural disasters
can cause losses in the billions so that insurance
companies have to raise enormous sums to cover
them (for example after the hundred year flood in
August 2002 or after Hurricane Katrina in August
2005). Experts assume that both the intensity and the
frequency of natural disasters continue to increase
resulting in even larger and more frequent insurance
claims.

In contrast to the classical stochastic risk theory
dealing with one-dimensional problems, spatial
analysis and modelling of risks allows for better
assessment of the spatial risk situation and for
regionalized premium rating. In the following, we
present a method of how to fit a stable random field to
insurance data in order to include the spatial structure
of risks in the model. After the model has been fixed,
we apply the simulation method from Section 2 to
generate realisations of the stable random field.

We consider a portfolio of storm insurance policies
from an Austrian insurancy company. For each zip
code region in Austria, the annual average claim size
over an 11-year period as well as x- and y-coordinates
of the center of the zip code region are given in the data
set. There are data of 2047 zip code regions in the data
set.

For i = 1, ...,2047 and j = 1, ...,11, we denote by ti the
vector of the x- and y-coordinates of the center of the
zip code region i, by z j(ti) the average claim size of
year j in zip code region i and by z̄(ti) the arithmetic
mean of the annual average claim sizes in zip code
region i over all years. Now we consider the deviations

x j(ti) = z j(ti)− z̄(ti)

and assume that for each year, they are part of a
realisation of an α-stable random field of the form

X(t) =
∫

R2

b
1√

2πσ
e−

1
2σ2 ‖x−t‖2

2M(dx), t ∈ A, (5)

where A is the region of Austria and M has Lebesgue
control measure and a constant skewness intensity β .
We used all the deviations x j(ti) in order to estimate α
and β by the Maximum-Likelihood method (cf. Nolan
(2001)). The estimated values are α̂ = 1.3562 and β̂ =
0.2796. In order to estimate the parameters b and σ
of the kernel function, we used an approach frequently
applied in geostatistics, see for instance Wackernagel
(1998).
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Consider the so-called first-order madogram

γ(h) = E|X(t)−X(t +h)|

= b
1√

2πσ
E

∣∣∣∣∣∣

∫

R2

(
e−

1
2σ2 ‖x−t‖2

2

−e−
1

2σ2 ‖x−t−h‖2
2
)

M(dx)
∣∣∣

=
cα,βt (1)b√

2πσ

∫

R2

∣∣∣e−
1

2σ2 ‖x−t‖2
2

−e−
1

2σ2 ‖x−t−h‖2
2
∣∣∣dx.

which does only depend on the length of h, but not on
the orientation. It exists since α > 1. We note that we
cannot take the variogram as described in Wackernagel
(1998) since for α < 2, the second moment of X(t)
does not exist for each t ∈ A.

One can think of the first-order madogram as a
measure of dissimilarity between the random variables
X(t) and X(t + h) depending on the distance ‖h‖2.
We calculated the corresponding empirical version of
the first-order madogram – the so-called experimental
first-order madogram – as correspondingly defined in
Wackernagel (1998) and fitted the theoretical one by
the least squares method to the empirical one. Both the
theoretical and experimental first-order madogram are
plotted in Figure 3.

Fig. 3. Theoretical (red curve) and experimental (blue
dots) first-order madogram.

From the least squares method, we obtained the
estimates b̂ = 10.7055 and σ̂ = 4.3472 and simulated
the α-stable random field (5). In Figure 4, a plot of a
realisation of the fitted α-stable random field is shown.
In order to be able to compare the picture with the

real data, we used ordinary kriging (see Wackernagel
(1998)) to extrapolate the deviations for the year 2000.

(a)

(b)

Fig. 4. Kriged deviations for insurance year 2000 (a)
and a realisaton of the fitted α-stable random field (b).

One can see that both maps show a similar spatial
structure of the deviations. There are some very large
deviations which are dominant in the maps. The fact
that the kriged map is smoother than the simulated one
is due to the kriging technique.

In order to obtain a realisation of the actual average
claim sizes in each zip code center, one can add the
values in the realisation of the α-stable random field to
the overall mean z̄(ti) at each zip code center ti.

SUMMARY AND OUTLOOK

We presented two approaches to simulate α-stable
random fields that are based on approximating the
kernel function by a step function and by a wavelet
series. For both approaches, we derived estimates for
the approximation error Err(X(t), X̃ (n)(t)).

In the simulation study, we saw that for the first
realisation of an α-stable random field, the step
function approach performs better than the wavelet
approach due to the initial calculation of the wavelet
coefficients. For any further realisation, however,
the wavelet approach outperforms the step function
approach.

We then applied the simulation methods to an portfolio
of storm insurance policies by fitting an α-stable

9



KARCHER W et al.: Simulation of stable random fields

random field to the data and generating realisations
from this field.

To conclude, we want to make two remarks about the
wavelet approach.

First, we have seen in the simulation study that
one drawback of the wavelet approach is that the
computation of the input vector for the fast wavelet
transfrom may take quite a long time if no formula for
the integrals ∫

C
ft(x)dx

is known, where C is a cube in Rd . Interpolatory
wavelet bases can remedy this disadvantage since for
this kind of wavelets bases, the wavelet coefficients
basically reduce to evaluating the kernel function at
a certain point. However, the interpolatory wavelets
themselves are no step functions any more such that
the simulation of the integrals

∫

[−A,A]d

Ψe
j−2kc,kM(dx)

is much more complicated than for the Haar basis.

Second, one could use adaptive wavelet methods in
order to calculate the wavelet coefficients. This might
decrease the computational time for the first random
field realisation. However, in the simulation study we
have seen that increasing the parameter l has little
advantage over the cut wavelet series (l = 0) since the
negative effect of the increasing detail level and thus
the need for more stable random variable simulations
dominates the positive one of less summands in the
wavelet series.
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Clermont-Ferrand.

Karcher W, Scheffler H-P, Spodarev E (2009). Simulation of
infinitely divisible random fields. Preprint, Ulm.

Nolan J (2001). Maximum likelihood estimation of stable
parameters. In: Barndorff-Nielsen OE, Mikosch T,
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