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Motivation

Natural disasters and their mapping (geosciences)
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Motivation

Significant changes of the claims expectancy in burglary
insurance (Austria).
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Motivation

Number of cancellations of
insurance policies in motor car insurance (Bavaria).
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Motivation

Simulation and prediction of city road traffic (DLR, Berlin)

City road network / downtown Berlin Mean velocity field
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Motivation
Criminality in Bavaria: Probability of housebreaking in April




Extrapolation of Stationary Random Fields

Spatial data

1Z01,X2)=Z(x)

Evgeny Spodarev |

{X(t;)}7_, - spatial data in ob-
servation window W C RY.
They are interpreted as a re-
alisation of a real—valued ran-
dom field

X ={X(t): teRY}

which is a spatially indexed
family of random variables
defined on a joint probability
space (22, F, P).
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Spatial Prediction (Extrapolation)

Let the observations X(t),..., X(t,) of a random field
X = {X(t), t € R} be given for t;,...t, € W, W c RY
being a compact set.

Find a predictor )A((z‘) for X(t), t € {ty,...,tn} thatis
optimal in some sense and has a number of nice
properties such as exactness, continuity, etc.
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Examples of extrapolation methods

» Kriging

» Geoadditive regression models
» Radial methods

» Splines

» Whittaker smoothing

» Randomly coloured mosaics

>
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Extrapolation: historical retrospective

» Wide sense stationary random functions: kriging (1952)
» Random functions without finite second moments:

>

discrete stable processes: minimization of dispersion
(Cambanis, Soltani (1984); Brockwell, Cline (1985);
Kokoszka (1996); Brockwell, Mitchell (1998); Gallardo et al.
(2000); Hill (2000))

fractional stable motion: conditional simulation
(Painter(1998))

subgaussian random functions: maximum likelihood (ML)
(Painter(1998)), linear regression (Miller (1978)),
conditional simulation

stable moving average processes: minimization of
L'-distance (Mohammadia, Mohammadpour (2009))
a-stable random fields with integral spectral repr.: three
methods (Karcher, Shmileva, S. (2011))
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Stationary random fields
Random field X = {X(t) : t € R9} is (strictly) stationary if
its probability law is translation invariant, i.e.,
all finite dimensional distributions are invariant
with respect to any shifts in RY:
foralheR? neN,t,...,t, € R? holds

(X(t + h), ..., X(ta + h) L (X(t),- .., X(tn))-

Random field X = {X(t) : t € RY} is stationary of
2nd order if E X2(t) < oo for all t € RY and

» E(X(t)) = pforall t.

> y(h)=3E [(X(t + h) — X(t))z] depends only on
vector h, but not on t.
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Stationary random fields

» Strict stationarity +— -4 stationarity of second order
» A second order stationary random field is called
isotropic if C(h) = C(|h|), h € RY.
Correlation structure:

Let the random field X = {X(t)} be stationary of second order.

> Variogram: y(h) = 1E | (X(t + h) — X(1))®

» Covariance function: C(h) = E [X(t) - X(t + h)] — u?
> y(h) = C(0) — C(h)
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Stationary random fields

» A random field X is stochastically continuous
it X(t) — X(to), t — to for all t € RY.

» A random field X is mean square continuous (m.s.c.)
if E(X(t) — X(t))?> — 0, t— t for all { € RY.

» A second order stationary random field is m.s.c.
<= C(h) is continuous at h = 0.

» Cis positive definite: Yne N, w; e R, t; € R?

zn: W,'WjC(t,' — t/) = Var (zn: W,'X(f,')) >0
i—1

i?j:1

» |C(h)| < C(0) = VarX(t) for 2nd order stationary X.
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Stationary random fields

Examples of covariance functions
» Nugget effect (white noise): C(h) = b > 0 for |h| = 0 and
C(h)=0, |h > 0.
» Exponential model: C(h) = be~!"/a where b > 0 is
the sill and a > 0 is the range.
» Spherical model, d < 3: for positive a and b

b(1-3/2lh|/a+1/2|h]3/a®), 0<|h < a,
0 |h| > a.

C(h) = {

)
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Stationary random fields
Variogram

» It holds +(0) = 0.

» Symmetry: y(—h) = v(h), h € RY,

» ~ is conditionally negative definite: for n € N, w; € R with
n n
Sw;=0and t € R%itholds > wwyy(t — ) <O0.
i=1 ij=1

» v is a variogram <= e~ is a covariance function V.

> If y(h) < 7(o0) < oo for all hthen C(h) = ~v(c0) — v(h)
is a valid covariance function.

» Not all variograms are bounded: v(h) = b|h|¢, b > 0,
O<a<2

LIV % = 0 for m.s.c. random functions X.
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Stationary random fields

Variogram
» If v1 and ~» are variograms then v = v + o
is a variogram as well.
» If X is stationary and isotropic then (h) = ~(|h|),
heRY.
» Many isotropic variogram models can be constructed
using models for covariance functions.

» Anisotropic variogram models? e.g., geometrically
anisotropic...
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Stationary random fields

Exponential geometrically anisotropic variogram

{0 h=0,
Y=Y atb(1—e VTR h Lo,

» Nugget effect a: discontinuity of the data at the
microscopic scale

» Sill b: variability of the data at large distances h

» Range c: the correlation range of random variables X(t)
and X(t + h)

» K is the matrix of the composition of a rotation and a
scaling.
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Example: Gaussian random fields

» Arandom field {X(t)} is called Gaussian if
the distribution of (X(t), ..., X(t,))" is multivariate
Gaussian foreach 1 < n<ooand t, ..., t, € RY.

The distribution of X is completely defined by the mean

value function u(t) = E X(t) and covariance function

C(s,t) = Cov(X(s),X(t)), s,t € RY. Hence: strict stationarity
<~ stationarity of second order.
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(Non) stationary random fields

Fractional Brownian field: Gaussian field with E X(0) =0 a.s.,
pw(t) =0,t € RY, C(s, 1) =1/2(|s|* + [t|* — |s — t]*),
v(h) = 1/2|h|*, s,t,h € R? and Hurst index «/2, a € (0,2).
It is self—similar and has stationary increments.

A realization of the Brownian field (a = 1)
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Ordinary Kriging (D. Krige (1952), G. Matheron (1960s))

» Assumptions: X is stationary of second order.
» Notation

i : locations of the sample points

X(t) : values of the sample points

n : number of sample points

A . weights

Estimator: )A((t) =>"T  NX(t), where 37 A = 1.

The weights \; are chosen such that the estimation
variance o2 = Var(X(t) — X(t)) is minimized.

v

v



Seite 22 Extrapolation of Stationary Random Fields | Evgeny Spodarev |

Ordinary Kriging

~ —~ n
» X(t)is unbiased: E X(t) = p since > \j =1
i=1

> a% — min = O'%K: solve the Lagrange equations
n .
Z)‘jr}/(t t)+V:7(t_tl)7 I:17-"an7
=1
]n
YA =1
j=1

» The minimal estimation variance:

n
ook =v+ Y An(ti—t)
i=1
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Ordinary Kriging

Variogram fitting
To find the weights \; from the system of linear equations,
the variogram ~(h) has to be known or estimated
from the data X(t), ..., X(tn).

» Matheron’s estimator: )
Ah) = anmy X (X(B) = X(4))"

if:ti—ti=h
N(h) is the number of pairs (&, ) : t; — tj = h.
Computations are made for h on a grid in R,
» 4(h) not conditionally negative definite = a valid
variogram model has to be fitted to 4(h) e.g. by least
squares
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Variogram fitting

Variogram point cloud and a fitted exponential variogram
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Properties of ordinary kriging

» The kriging predictor exists and is unique.
» BLUE: best linear unbiased estimator by definition.
» Exactness: )A((t,-) =X(t)as.,i=1,....n
» If X is a stationary Gaussian random field,
X(t) ~ N(u,0?), then X is Gaussian as well,
and X(t) ~ N(u, o3(t)) with

n
og(t) =0 +v—=> At — 1)

i=1
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Further theory of kriging

What if X is not stationary? X(t) = u(t) + Y(t)

» Universal kriging

» Kriging with drift:
» Estimation of the drift © and residual Y
» Kriging of the residual Y
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Kriging with drift

» Estimation of ;1: many methods (splines, geostatistical
regression, smoothing, etc.)
Here: smoothing by the moving average

ZXZ‘,

t,eR

where R(t) is the neighborhood of ¢
and Ny = #{i : ti € R(1)}.

» Estimated residual Y*(t) = X(t;) — ()

» Extrapolation of Y from the data Y*(),..., Y*(&),
e.g. by ordinary kriging provided that Y is stationary
of second order.
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Kriging with drift: example

Synthetic data: disturbed Boolean models

Let = be a stationary Boolean model with intensity A and
deterministic rectangular primary grain =, = [a, b]?. Let
¢ = Br(0) be a deterministic disturbance.
> ou(t) =1t eg)
» Y(i) =1(t € =) — p= where
p==EM{oc=}=Ploc=)=1—-eNol=1_ga
is the area fraction of =.
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Kriging with drift: example
Y is a stationary random field of second order with the
covariance function
C(h) = 2p= — 1+ (1 — p=)?eMZoN(Eo—h)l
and the anisotropic variogram
1(h) = C(0) — C(h) = 1~ p= — (1 — p=)Pe=on= .
In the special case of =, = [a, b]? it holds

~+(h) = e~ (1 _ e—)\(ab—|Eom(Eo—h)|)> '
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Kriging with drift: example

Disturbed Boolean models

Realisation of = and &

Measurement points t, ...,
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Kriging with drift: example

Disturbed Boolean models

Theoretical variogram ~ Estimated variogram 4* Fitted variogram ~*
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Kriging with drift: example

Disturbed Boolean models

ey y.

Estimated residual Y* Extrapolation X = fi + Y*
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Kriging with drift: example

Disturbed Boolean models

Realisationof X = p+ Y

Extrapolated field X = & + Y*
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Kriging: further examples

Quality of ground water in Baden-Wirttemberg

Nitratgehalt 1994 (in mg/l)

[ ber  44.03
[_|38.83-44.03
[ ]34.65-38.83
13047 -34.85
[ ]26.24-30.47
[ ]21.70-26.24
17.81-21.70
12.74-17.81
7.66-12.74
6.81- 7.66
unler 6.81

Drilling points Nitrate concentration, 1994
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Application: excursion sets

Excursion set of function X over level u € R:
=x(u) = {t e R? : X(t) > u}.
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Application: examples of excursion sets
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Further Applications

» Biology, Medicine

» Geology: exploration of mineral resources
» Materials Sciences

» Physics, Astronomy

» Humanities
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Lecture 2: Stable laws and random fields

|

|

Motivation

Normalisation: Box—Cox transform
Stable distributions

Covariation

Random measures

Stochastic integration

Stable random fields and their properties
Stability and association

Literature
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Random fields without a finite second moment

» Before: Extrapolation of 2nd order stationary
random fields

» Now: need more flexible models and corresponding
extrapolation methods for random fields with infinite
variance. Why do we take care?
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Motivation: storm insurance in Austria

Centers of 2047 postal code regions in Austria
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Motivation: storm insurance in Austria
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Histogram of the deviations Q-Q plot of the deviations

» Goal: Spatial modelling of the deviations
Y(t) = X(t) — p(t) from the mean claim pay-
ments p(t) = E X(t) with random fields.

» However, the distribution of the deviations is not
Gaussian (rather skewed and heavy-tailed).
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Motivation: storm insurance in Austria

Tools:

» Make the random field Y Gaussian:
use Box-Cox Transformation
— modelling of medium sized claims.

» Modelling of all claims: use stable random fields.
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Motivation: storm insurance in Austria
Box-Cox-type Transformation (Bickel & Doksum, 1981):
» Set ¥y (x) = {sgn(x)|x|* —1}/\, x € R, A > 0.
» Transform a random variable Z with density g to ¢,(2).
Let g, be the density of ¥, (2).

» How to find the correct value of A > 0?
Hernandez & Johnson (1980): minimize the Kullback —
Leibler information

‘/g/\ )10g{gn(X)/¢,02(x)} dx| — min ,

,/L,

where ¢, ;2 is the density of the N(u, o?) distribution.

» More sophisticated transforms: see |.-K. Yeo & R. A.
Johnson (2000)
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Motivation: storm insurance in Austria

» Application of a transformation of Box-Cox type
makes the data more normally distributed.

Sinels Qarties
S gt
Sk qurties

el quanles Thors il cies Thsoni querfes

Original data Transformed data Reference plot
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Motivation: storm insurance in Austria

Kriged deviations Gaussian random field

Spatial risks of the storm insurance in Austria (only medium sized claims)
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Motivation: storm insurance in Austria

Modelling with stable random fields

Kriged deviation map for insurance year 2000 (left) and a
realisaton of the fitted a-stable random field (right) (all claims).



Extrapolation of Stationary Random Fields Evgeny Spodarev |
Stable distributions

Stable distributions (Kchinchine, Levy, 1930s):

» A random variable X is said to have a stable distri-
bution if there is a sequence of i.i.d. random variables

Y1, Yo, ... and sequences of positive numbers {d,}
and real numbers {a,}, such that

Yi+...+Y, d
%_Fan_))(

d . . . .
where — denotes convergence in distribution.
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Stable distributions

» A random variable X is stable if and only if for
AB>03C>0,DeR:

AX; +BX, £ CX+ D
where Xj and X; are independent copies of X.
» There exists a number a € (0,2] (index of stability)

such that C* = A* + B
» Also referred to as (a—)stable distribution

» For o = 2: normal distribution

» A random vector X = (Xi, ..., Xy) " is called stable if for
A B>03C>0,DecRY

AXD 4 BX@ L cx 4+ D
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Stable distributions

» Characteristic function of an a-stable random
variable X ~ S, (o, 5,1), 0 < a < 2:

E (%) = {e—a|o||i|1+(:gzlisgn0 e e
e’ =sgné In |6])+iud ifo =1
» Parameters o, 8, u are unique for a € (0, 2):

» € R: shift

» [ €[-1,1]: skewness (form) , 5 = 0: symmetry

» o > 0: scale
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Multivariate stable distributions

» Characteristic function of an «-stable random
vector X = (Xy, .., Xy)T,0 < a < 2:

— [ 167s|*(1—isgn@T stan = )T (ds)+i0

S .
— [ 107s|(1+i2sgn@"sIn |67 s| ) (ds)+i0"
e % if o =1

where I is a finite (spectral) measure
on the unit sphere Sy of R? and i € RY.
» Parameters I and p are unique for a € (0, 2):
> € R: shift
» [: skewness (form) and scale together.
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Stable distributions

» Symmetric random vector
A random vector X in RY is symmetric if
P(X € A) = P(—X € A) for any Borel set A € RY.

» Symmetric stable random vector
A symmetric a-stable random vector X (Sa.S) in RY
has a characteristic function

ox(0) = e fsd |<975>|a|—(ds)7 0 c RY

where the spectral measure I' is symmetric on Sg.

» If I is not concentrated on a great sub-sphere of Sy,
then X is called full-dimensional.
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Stable distributions

Properties and characteristics
» Moments: if p < a then E | X|P < co. For p > a, it holds
E|X|P = 0.
» Covariation: for an a-stable random vector (X, X2) T,
1 < o < 2 with spectral measure I' define

(X1, Xa], =/ $155% 717 T'(dsy, dsp)
S

where a<P~ := |a|Psgn(a) forac Rand p > 0.
» Gaussian case a = 2:if (X, X2) " is a centered Gaussian
random vector then

1
[X1 s X2]2 = ECOV(X1 s Xg)
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Covariation and moments

Lemma

Let1 < o < 2 and suppose that (X, Y)T is an a-stable
random vector with spectral measure I' such that

X ~ Su(ox,Bx,0)and Y ~ S,(oy,By,0). For1 <p < a, it
holds

E(XY<P~">) [X,Y]a(1 —c-By)+c-(X,Y)a
E|Y|P o oy ’

where (X, Y)a := [g, 81|82/*7'T(dS) and ¢ := cap(fy) is
constant. If Y is symmetric, i. e. By =0, then c = 0.
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Stable random fields

» Arandom field {X(?), t € Rd} is called a-stable if
the distribution of (X(t), ..., X(t,))" is multivariate
a—stable forany 1 < n < oo , and ty,....th € RY.

» Spectral representation: for centered separable in
probability a-stable fields with 1 < o < 2

(X(1). teRd}—{/ft M(d). teRd}

where
» fye L%(E) forall t € RY,
» M is an «a-stable independently scattered random

measure on E with control measure m and skewness
intensity £.
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Random measures

Let (E, £, m) be a measurable space with a o—finite
measure m, & = {A € £: m(A) < oo},

Lo(2) = {random variables on (2, F, P)}.

An independently scattered stable random measure M with
control measure m and skewness intensity 5 : E — Ris a
random measure with independent a—stable increments, i.e.,
an a.s. o—additive function M : & — Lo(Q2) with

M(A) ~ S, ((m(A))“a, | 800 () m(a) 0>

forany A € &.



Extrapolation of Stationary Random Fields Evgeny Spodarev |

Stochastic integration
For f € L*(E), construct I(f) = [ f(x) M(dx), where M is an
independently scattered a-stable random measure on (E, £)
with control measure m and skewness intensity 5.

> Simple functions: for f(x) = -1 gl(x € A)), x € E,
with Aj € &: AiNA;j # 0, i # j, we set

I(f) =" cM(4).
j=1

» General functions: for any f € L*(E), there exists a
sequence of simple functions f, 1 f a.e. on E. Set

I(f) = p— lim I(7y).
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Stochastic integral

This limit exists and does not depend on the choice of the
sequence {f,} tending to f.

» Distribution: I(f) ~ S, (0¥, Bf, puf), Where

o= ([irear m(dx))”a e

5, Je 1007300 m(a)

Je lf(x)1*B(x) m(ax) °
|0, a#1,
o _{ —2 [ f(x)B(x)log |f(x)| m(dx), a=1.
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Examples: a—stable random fields

v X
LRI
i SR
NN

Iy
L

-

» Epanechnikov kernel: fora>0and b > 0
fo(x) = b- (& — ||Ix — t]3) Wjx g, <alX)

» Pyramid kernel: fora>0and b > 0, t = (t, k) € R?,
x = (X1, %) € R?,

fi(x) =b-(a—|x1 —ti]) - (@— X2 — ) Ug>|x,—t|,a>[x0— o] (X)
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Examples: a—stable random fields
Sub-Gaussian random fields:

> Let A~ S, »((cos(ma/4))?/%,1,0) and let
G = {G(t),t € RY} be a stationary zero mean Gaussian
random field with covariance function C. Assume that A is
independent of G. The SaS random field
X = {X(t), t € R} with X(t) = A"/2G(t), t € R% is called
sub-Gaussian.

» Characteristic function of Xy, 4, = (X(t1),..., X(t2)) "
foranyneN, t;,...,t, € R it holds

/2

.....
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Stable random fields

/ft ), te RY

where f; € L*(E), t € R?, and M is an a-stable independently
scattered r. meas. with control meas. m and skewness /.
Properties and characteristics

» Symmetry: if 5(x) = 0 Vx then the field X is symmetric.
» Scale parameter of X(t): ox(s) = || fll . Where

EIXDOP)'P = cap(p) - oxcy

for0 < p < a, 0 < a < 2 and some constant ¢, g(p).
» Covariation function: for t,b e R9and 1 < o < 2

Rt ) = [X(ﬁ),X(Tz)]a:/Eft1(X)ft2(X)<a_1>m(dX)-
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Stable random fields
Properties

» Stationarity: if E = RY, fi(x) = f(t — x), x,t € RY and
m(dx) = dx then X is stationary (moving average) and
k(s,t) =kr(s—t,0)=k(h),h=s—t,stecRI

» Linear dependence: For a d-dimensional a-stable
random vector X = (Xi, ..., Xy)T with integral
representation

</E f1(x)M(dx),...,/Efd(x)M(dx)>T,

let I be its spectral measure. X is not full-dimensional
(i.e., T is concentrated on a great sub—sphere of Sy) iff
59 . ¢:.X; = 0 as. for some (cy,...,cq)T € R\ {0}
This is equivalent to Z,dﬂ cifi(x) =0 m-a. e.
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Stability and association
Association

» A random vector (X, Y)T is called associated if, for any
functions f, g : R? — R which are non-decreasing in each
argument, one has

Cov(f(X,Y),9(X,Y)) >0

whenever the covariance exists.

» ltis called negatively associated if for any functions
f,g : R — R which are non-decreasing, one has

Cov(f(X),g(Y)) <0

whenever the covariance exists.
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Stability and association

Lemma
Let0 < a <2 and (X, Y)" be an a-stable random vector with

integra/ representation

= ([ H()M(dX), [z B(x)M(dx))". Then (X, Y)T is
assoc:ated (negatively assocrated) ifand only if fifo > 0
(fif> < 0) m-almost everywhere.



Seite 65 Extrapolation of Stationary Random Fields Evgeny Spodarev |

Stability and association

Corollary (Decomposition of a stable random vector)

Let0 < a <2 and (X, Y)" be an a-stable random vector.
Then there exist a-stable random variables X1, Xo, Y1, Yo S.L.

X=X;+Xo and Y=Y;+Y> as.,

(X, Y1)T is associated, (Xo, Y»)" is negatively associated,
and the components of each of the random vectors (X1, X2)T,
(X1 , YQ)T, (Y1 , XQ)T, (Y1 , Y2)T are independent.

Corollary (Association, covariation)

Let1 < a < 2and(X,Y)" be an a-stable random vector. If
(X, Y)T is associated (negatively associated), then
[X; Y]a 20 (IX, Y]a <0).
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Example: Spatial modelling of storm data (Austria)

Parameter estimation for the one-dimensional case:

The field X of deviations from the mean claim sizes has the
univariate distribution X(t) ~ S, (o, 3, ) with

«@ B o 1]
1.3562 | 0.2796 | 234.286 | 6.7787
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Lecture 3: Extrapolation of stable random fields
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» Least scale predictor
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Prediction

» Let X be a centered (E X(t) = 0, t € RY) a-stable random
field, 1 < o < 2, with skewness intensity ( satisfying the
spectral representation

/f, M(dx), teRY.

» Let X(#),...,X(fn) be the observations of X for
ty,...te W, W c RY being a compact set.

» Non-linear predictors for X(t), t € {t1, ..., tn}: for some
particular random functions (e.g. subgaussian ones) one
can use

» Maximum likelihood (ML) predictors
» Conditional simulators
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Linear predictors

» Linear predictor for X(t), t & {t1,...,ta}:
. n
X(t) =" xX(h),
i=1

where \; = \i(t, ty,...,tp) fori=1,....n.

Properties

» X is unbiased since EX(t) = 0, t € RY
» X is exact if )A((ti) =X(t)as.,i=1,...,n

» X is continuous if Ai = Xi(+ b, ..., tn) are continuous as
functionsof t,i=1,...,n
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Linear predictors

X(t) should be optimal in a sense that it

» minimizes the scale parameter T -X(t)

— Least Scale Linear (LSL) Predictor
» mimics the covariation structure between X(t) and X(%),
f=1,...,n
— Covariation Orthogonal Linear (COL) Predictor
» maximizes the covariation between X(t) and )A((t)
— Maximization of Covariation Linear (MCL) Predictor
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Least Scale Linear Predictor

Generalization of Kriging techniques:

[0

m(dx) — min

f(x) = Aify(x)
=1

« —
IX0-x ~ /E

with respectto Aq, ..., \p.

Non-linear optimization problem = numerical methods for its
solution.
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Least Scale Linear Predictor

Lemma
A solution of the above minimization problem resolves the
system of equations

[X(z}-),X(t)—Zn:A,-X(t,-)] 0, j=1,...n
i=1 o

which can be written as

<a—1>

/Eftj(x) (ft(x)—zn:)\,-ft,(x)> m(dx) =0, j=1,...n.
i=1

This is a system of non-linear equations in A\1,..., An.
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Least Scale Linear Predictor

Theorem

» Existence: The LSL estimator exists.

» Uniqueness: Assume that the random vector
(X(t1), ..., X(t)))" is full-dimensional. Then the LSL
estimator is unique.

» Exactness: If there is a unique LSL estimator, then it is
obviously exact.

» Continuity: If the random field X is stochastically
continuous and (X(t),..., X(ty))" is full-dimensional then
the LSL estimator is continuous.
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Least Scale Linear Predictor

Example SaS Lévy motion
X(t) =[5~ U(x < t)M(dx), where M is a SaS random measure

with Lebesgue control measure. Let t =3/4 and ty = 1. Then
the optimization problem for the LSL predictor is

3/4 1
o - 1— M I
X -X(t) /o | 1] dX+/3/4| 1|%dx

3 o 1 .
= I =M%+ 4IM] — min.
We obtain the LSL predictor

— 1

X =y X )
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Covariation Orthogonal Linear Predictor

Let X be a random field as above. The linear predictor with
weights A1, ..., A\, being a solution of the following system of
equations

[X(8), X(t)]a = X(O, X()]as j=1,....n

is the COL predictor. Itis a linear system of equations

[X( ZA, X(t)]. =0, j=1,...,n

The COL predictor is obviously exact.
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Covariation Orthogonal Linear Predictor

The regression of X(t) on (X(t;),...,X(t,))" is called linear if
there exists some (A1, ..., \p) € R” such that it holds a.s.

E(X(D)|X(t), ..., X(ta)) = > AiX(1).
i=1

Lemma

If the regression of X(t) on the random vector
(X(t),...,X(t))" is linear then the vector (\1,...,\n)" is a
solution of the COL system of equations.
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Covariation Orthogonal Linear Predictor

Theorem
Let X be an a-stable moving average.

» If the kernel function f : RY — R is positive semi-definite,
then the covariation function « is positive semi-definite. If
f:RY — R, is positive definite and positive on a set with
positive Lebesgue measure, then x is positive definite.

» If the covariation function is positive definite then the COL
predictor exists and is unique.

» If the covariation function is positive definite and
continuous, then the COL predictor is continuous.
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Covariation Orthogonal Linear Predictor

Proof.
The weights of the COL predictor satisfy the system of
equations

x(0) o k(th— 1) M k(t—t)

Wt - w(0) ) \an) \n(t—t)
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Covariation Orthogonal Linear Predictor

Example: SaS Ornstein-Uhlenbeck process.

X(t) = / e NENU(t— x > 0)M(dx), e R,
R

for some A > 0, where M is a SaS random measure with
Lebesgue control measure. If ; < b < ... < t, < t, then the
regression of X(t) on (X(t),...,X(t,))" is linear, and

X(1) = e =) X(t,).
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Covariation Orthogonal Linear Predictor

Symmetric case

If X is additionally symmetric then
» the unknown quantities [X(t), X(#)]o and [X(), X(t)]. can
be estimated by using

EXY<P=1> X, Y],
ElYlP oy

where (X, Y)T is an a-stable vector and 1 < p < « or by
estimating the kernel function f; and using the
representation of covariation in terms of f;.
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Covariation Orthogonal Linear Predictor

Lemma
If the COL estimator is unique and the regression of X(t) on
(X(t),...,X(t))7 is linear, then the weights )1, ..., \, of the

—

COL estimator X(t) are a solution of the minimization problem

TB(X()- Xy BXO|X (). X (1) M, -

If the spectral measure of (X(t;),..., X(t)))" is
full-dimensional, then this solution is unique.

The regression of X(t) on (X(t;),...,X(t)))" is linear if X is
e.g. a (sub)Gaussian random function.
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Covariation Orthogonal Linear Predictor

Let X be a centered (sub)Gaussian «a-stable random field with
covariance function C of the Gaussian part.

Then
[X(8), X(4)]a = 27/2C(t; — ) C(0)(*~2)/2,

The COL predictor is the solution of the system

c0) - C(th—t)\ (M C(t—t)

C(tn:— t) - § C(:0) )\:n C(t:— t)

and thus coincides with simple kriging.
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Covariation Orthogonal Linear Predictor

Theorem
Let X be a centered (sub)Gaussian «-stable random field with
positive definite covariance function C of the Gaussian part.

» The COL predictor exists and is unique.

» If the covariance function is continuous, then the COL
predictor is continuous.

Theorem

For (sub)Gaussian random fields, the COL and LSL predictors
for X(t) coincide (with the maximum-likelihood (ML) estimator
of X(t)).
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Maximization of Covariation Linear Predictor

Let X be an «-stable random field with spectral integral
representation and o > 1. To construct the MCL predictor, solve

{[Y(?),X(t)}a = S0 M IX(). X()], — max .

)\1:-~~7)\n

0—)?(\1‘) = 0X(t)>

;. o d
where the condition Tx = OX(r) means X(t) = X(t) for SaS
random fields.
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Maximization of Covariation Linear Predictor

Theorem
Assume that the random vector (X(t;),..., X(t)))" is
full-dimensional.
» Existence: The MCL predictor exists.
» Uniqueness: If[X(t;), X(t)]o # 0 forsomei e {1,...,n}
then the MCL predictor is unique.
» Exactness: If the MCL predictor is unique then it is exact.
» Continuity: If X is a moving average, the covariation
function r is continuous and k(t; — t) # 0 for some
i€{1,...,n} then the MCL predictor is continuous.
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Numerical results
Two-dimensional Sa'S Lévy motion
X(t) = / T{x1 < t,x < L}M(dx), te]0, 1]2,
[0,1]2

where M is a SaS random measure with m = Lebesgue control
measure and « = 1.5.

Method  5%-Quantile  1st Quartile  Median  3rd Quartile  95%-Quantile

LSL -0.5170 -0.1246 0.0000 0.1226 0.5045
COL -0.5263 -0.1289 0.0002 0.1266 0.5137
MCL -0.6093 -0.1455 -0.0007 0.1407 0.5895

—

Summary statistics for the deviations X(t) — X(t).
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Numerical results

Realization of the Lévy stable motion (top left) and the extrapolations (out of 9
observation points) based on the LSL method (top right), the COL method (bottom left)
and the MCL method (bottom right).
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Numerical results

Subgaussian random field

X = {A2G(t),t € [0,1]%}
with a = 1.5, A~ S, »((cos(ra/4))?/,1,0) and G being a
stationary isotropic Gaussian random field with covariance

function
C(h) = 7exp{—(h/0.1)?}, h>0.
Method 5%-Quantile  1st Quartile  Median  3rd Quartile  95%-Quantile
LSL (COL, ML) -1.5451 -0.4446 0.0018 0.4503 1.5363
MCL -1.8204 -0.4899 0.0046 0.5016 1.7580
CS -2.7523 -0.5837 0.0058 0.5985 2.7262

Summary statistics for the deviations X(t) — X(t).
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Numerical results

Realization of the sub-Gaussian random field (top left) and the extrapolations (out of 9
observation points) based on the LSL (COL, ML) method (top right), the MCL method
(bottom left) and the CS method (bottom right).
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Open problems

» Extrapolation methods and their properties for stable
random fields with a € (0, 1]

» Control of skewness of known predictors for
non—-symmetric stable random fields (5 # 0)

» Characterization of the covariation function
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