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Motivation

Natural disasters and their mapping (geosciences)

Hundred year flood, 2002 Winter storm “Kyrill”, 2007
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Motivation

Significant changes of the claims expectancy in burglary
insurance (Austria).

Centers of postal code regions Changes of the claims expectancy
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Motivation

Number of cancellations of
insurance policies in motor car insurance (Bavaria).

Centers of postal code regions Extrapolated numbers of cancellations (1998)
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Motivation

Simulation and prediction of city road traffic (DLR, Berlin)

City road network / downtown Berlin Mean velocity field
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Motivation
Criminality in Bavaria: Probability of housebreaking in April
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Spatial data

{X (ti)}ni=1 - spatial data in ob-
servation window W ⊆ Rd .
They are interpreted as a re-
alisation of a real–valued ran-
dom field

X = {X (t) : t ∈ Rd}

which is a spatially indexed
family of random variables
defined on a joint probability
space (Ω,F ,P).
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Spatial Prediction (Extrapolation)

Let the observations X (t1), . . . ,X (tn) of a random field
X = {X (t), t ∈ Rd} be given for t1, . . . tn ∈W , W ⊂ Rd

being a compact set.

Find a predictor X̂ (t) for X (t), t 6∈ {t1, . . . , tn} that is
optimal in some sense and has a number of nice
properties such as exactness, continuity, etc.
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Examples of extrapolation methods

I Kriging
I Geoadditive regression models
I Radial methods
I Splines
I Whittaker smoothing
I Randomly coloured mosaics
I ...
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Extrapolation: historical retrospective
I Wide sense stationary random functions: kriging (1952)
I Random functions without finite second moments:

I discrete stable processes: minimization of dispersion
(Cambanis, Soltani (1984); Brockwell, Cline (1985);
Kokoszka (1996); Brockwell, Mitchell (1998); Gallardo et al.
(2000); Hill (2000))

I fractional stable motion: conditional simulation
(Painter(1998))

I subgaussian random functions: maximum likelihood (ML)
(Painter(1998)), linear regression (Miller (1978)),
conditional simulation

I stable moving average processes: minimization of
L1-distance (Mohammadia, Mohammadpour (2009))

I α-stable random fields with integral spectral repr.: three
methods (Karcher, Shmileva, S. (2011))
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Stationary random fields
Random field X = {X (t) : t ∈ Rd} is (strictly) stationary if
its probability law is translation invariant, i.e.,
all finite dimensional distributions are invariant
with respect to any shifts in Rd :
for all h ∈ Rd , n ∈ N, t1, . . . , tn ∈ Rd holds

(X (t1 + h), . . . ,X (tn + h))
d
= (X (t1), . . . ,X (tn)).

Random field X = {X (t) : t ∈ Rd} is stationary of
2nd order if E X 2(t) <∞ for all t ∈ Rd and

I E(X (t)) = µ for all t .

I γ(h) = 1
2E
[
(X (t + h)− X (t))2

]
depends only on

vector h, but not on t .
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Stationary random fields

I Strict stationarity 6⇐= 6=⇒ stationarity of second order
I A second order stationary random field is called

isotropic if C(h) = C(|h|), h ∈ Rd .
Correlation structure:

Let the random field X = {X (t)} be stationary of second order.

I Variogram: γ(h) = 1
2E
[
(X (t + h)− X (t))2

]
I Covariance function: C(h) = E [X (t) · X (t + h)]− µ2

I γ(h) = C(0)− C(h)
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Stationary random fields

I A random field X is stochastically continuous
if X (t) P−→ X (t0), t → t0 for all t0 ∈ Rd .

I A random field X is mean square continuous (m.s.c.)
if E (X (t)− X (t0))2 → 0, t → t0 for all t0 ∈ Rd .

I A second order stationary random field is m.s.c.
⇐⇒ C(h) is continuous at h = 0.

I C is positive definite: ∀n ∈ N, wi ∈ R, ti ∈ Rd

n∑
i,j=1

wiwjC(ti − tj) = Var

(
n∑

i=1

wiX (ti)

)
≥ 0

I |C(h)| ≤ C(0) = VarX (t) for 2nd order stationary X .
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Stationary random fields

Examples of covariance functions
I Nugget effect (white noise): C(h) = b > 0 for |h| = 0 and

C(h) = 0, |h| > 0.
I Exponential model: C(h) = be−|h|/a, where b > 0 is

the sill and a > 0 is the range.
I Spherical model, d ≤ 3: for positive a and b

C(h) =

{
b
(
1− 3/2|h|/a + 1/2|h|3/a3) , 0 ≤ |h| ≤ a,

0, |h| > a.
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Stationary random fields
Variogram

I It holds γ(0) = 0.
I Symmetry: γ(−h) = γ(h), h ∈ Rd .
I γ is conditionally negative definite: for n ∈ N, wi ∈ R with

n∑
i=1

wi = 0 and ti ∈ Rd it holds
n∑

i,j=1
wiwjγ(ti − tj) ≤ 0.

I γ is a variogram⇐⇒ e−λγ is a covariance function ∀λ.
I If γ(h) ≤ γ(∞) <∞ for all h then C(h) = γ(∞)− γ(h)

is a valid covariance function.
I Not all variograms are bounded: γ(h) = b|h|α, b > 0,

0 < α < 2.
I lim|h|→∞

γ(h)
|h|2 = 0 for m.s.c. random functions X .
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Stationary random fields

Variogram

I If γ1 and γ2 are variograms then γ = γ1 + γ2
is a variogram as well.

I If X is stationary and isotropic then γ(h) = γ(|h|),
h ∈ Rd .

I Many isotropic variogram models can be constructed
using models for covariance functions.

I Anisotropic variogram models? e.g., geometrically
anisotropic...
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Stationary random fields

Exponential geometrically anisotropic variogram

γ(h) =

{
0, h = 0,
a + b(1− e−

√
h>Kh/c), h 6= 0,

I Nugget effect a: discontinuity of the data at the
microscopic scale

I Sill b: variability of the data at large distances h
I Range c: the correlation range of random variables X (t)

and X (t + h)

I K is the matrix of the composition of a rotation and a
scaling.
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Example: Gaussian random fields
I A random field {X (t)} is called Gaussian if

the distribution of (X (t1), ...,X (tn))> is multivariate
Gaussian for each 1 ≤ n <∞ and t1, ..., tn ∈ Rd .

The distribution of X is completely defined by the mean
value function µ(t) = E X (t) and covariance function
C(s, t) = Cov

(
X (s),X (t)

)
, s, t ∈ Rd . Hence: strict stationarity

⇐⇒ stationarity of second order.
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(Non) stationary random fields
Fractional Brownian field: Gaussian field with E X (0) = 0 a.s.,
µ(t) = 0, t ∈ Rd , C(s, t) = 1/2(|s|α + |t |α − |s − t |α),
γ(h) = 1/2|h|α, s, t ,h ∈ Rd and Hurst index α/2, α ∈ (0,2).
It is self–similar and has stationary increments.

A realization of the Brownian field (α = 1)
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Ordinary Kriging (D. Krige (1952), G. Matheron (1960s))

I Assumptions: X is stationary of second order.

I Notation
ti : locations of the sample points
X (ti) : values of the sample points
n : number of sample points
λi : weights

I Estimator: X̂ (t) =
∑n

i=1 λiX (ti), where
∑n

i=1 λi = 1.

I The weights λi are chosen such that the estimation
variance σ2

E = Var(X̂ (t)− X (t)) is minimized.
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Ordinary Kriging

I X̂ (t) is unbiased: E X̂ (t) = µ since
n∑

i=1
λi = 1

I σ2
E → min = σ2

OK : solve the Lagrange equations
n∑

j=1
λjγ(tj − ti) + ν = γ(t − ti), i = 1, . . . ,n,

n∑
j=1

λj = 1.

I The minimal estimation variance:

σ2
OK = ν +

n∑
i=1

λiγ(ti − t)
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Ordinary Kriging

Variogram fitting
To find the weights λi from the system of linear equations,
the variogram γ(h) has to be known or estimated
from the data X (t1), . . . ,X (tn).

I Matheron’s estimator:
γ̂(h) = 1

2N(h)

∑
i,j:ti−tj≈h

(
X (ti)− X (tj)

)2
,

N(h) is the number of pairs (ti , tj) : ti − tj ≈ h.
Computations are made for h on a grid in Rd .

I γ̂(h) not conditionally negative definite⇒ a valid
variogram model has to be fitted to γ̂(h) e.g. by least
squares
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Variogram fitting

Variogram point cloud and a fitted exponential variogram
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Properties of ordinary kriging

I The kriging predictor exists and is unique.
I BLUE: best linear unbiased estimator by definition.
I Exactness: X̂ (ti) = X (ti) a.s., i = 1, . . . ,n
I If X is a stationary Gaussian random field,

X (t) ∼ N(µ, σ2), then X̂ is Gaussian as well,
and X̂ (t) ∼ N(µ, σ2

0(t)) with

σ2
0(t) = σ2 + ν −

n∑
i=1

λiγ(ti − t)
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Further theory of kriging

What if X is not stationary? X (t) = µ(t) + Y (t)

I Universal kriging
I Kriging with drift:

I Estimation of the drift µ and residual Y
I Kriging of the residual Y
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Kriging with drift

I Estimation of µ: many methods (splines, geostatistical
regression, smoothing, etc.)
Here: smoothing by the moving average

µ̂(t) =
1
Nt

∑
ti∈R(t)

X (ti),

where R(t) is the neighborhood of t
and Nt = #{i : ti ∈ R(t)}.

I Estimated residual Y ∗(ti) = X (ti)− µ̂(ti)
I Extrapolation of Y from the data Y ∗(t1), . . . ,Y ∗(tn),

e.g. by ordinary kriging provided that Y is stationary
of second order.
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Kriging with drift: example

Synthetic data: disturbed Boolean models

Let Ξ be a stationary Boolean model with intensity λ and
deterministic rectangular primary grain Ξ0 = [a,b]2. Let
ξ = Br (o) be a deterministic disturbance.

I µ(t) = 1I(t ∈ ξ)

I Y (t) = 1I(t ∈ Ξ)− pΞ where
pΞ = E 1I{o ∈ Ξ} = P(o ∈ Ξ) = 1− e−λ|Ξ0| = 1− e−λab

is the area fraction of Ξ.
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Kriging with drift: example

Y is a stationary random field of second order with the
covariance function

C(h) = 2pΞ − 1 + (1− pΞ)2eλ|Ξ0∩(Ξ0−h)|

and the anisotropic variogram

γ(h) = C(0)− C(h) = 1− pΞ − (1− pΞ)2eλ|Ξ0∩(Ξ0−h)| .

In the special case of Ξ0 = [a,b]2 it holds

γ(h) = e−λab
(

1− e−λ(ab−|Ξ0∩(Ξ0−h)|)
)
.



Seite 30 Extrapolation of Stationary Random Fields | Evgeny Spodarev |

Kriging with drift: example

Disturbed Boolean models

Realisation of Ξ and ξ Measurement points t1, . . . , tn
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Kriging with drift: example

Disturbed Boolean models

Theoretical variogram γ Estimated variogram γ̂∗ Fitted variogram γ∗
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Kriging with drift: example

Disturbed Boolean models

+ =

Estimated residual Ŷ∗ Estimated drift µ̂ Extrapolation X̂ = µ̂+ Ŷ∗
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Kriging with drift: example

Disturbed Boolean models

Realisation of X = µ+ Y Extrapolated field X̂ = µ̂+ Ŷ∗



Seite 34 Extrapolation of Stationary Random Fields | Evgeny Spodarev |

Kriging: further examples

Quality of ground water in Baden-Württemberg

Drilling points Nitrate concentration, 1994



Seite 35 Extrapolation of Stationary Random Fields | Evgeny Spodarev |

Application: excursion sets

Excursion set of function X over level u ∈ R:
ΞX (u) = {t ∈ R2 : X (t) ≥ u}.
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Application: examples of excursion sets

Significant changes of the nitrate Dangerous risk zones for the

concentration in ground water, burglary insurance, Austria

Baden-Württemberg, 1993–1994
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Further Applications

I Biology, Medicine
I Geology: exploration of mineral resources
I Materials Sciences
I Physics, Astronomy
I Humanities
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Random fields without a finite second moment

I Before: Extrapolation of 2nd order stationary
random fields

I Now: need more flexible models and corresponding
extrapolation methods for random fields with infinite
variance. Why do we take care?
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Motivation: storm insurance in Austria

Centers of 2047 postal code regions in Austria
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Motivation: storm insurance in Austria

Histogram of the deviations Q-Q plot of the deviations

I Goal: Spatial modelling of the deviations
Y (t) = X (t)− µ(t) from the mean claim pay-
ments µ(t) = E X (t) with random fields.

I However, the distribution of the deviations is not
Gaussian (rather skewed and heavy-tailed).
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Motivation: storm insurance in Austria

Tools:
I Make the random field Y Gaussian:

use Box-Cox Transformation
=⇒ modelling of medium sized claims.

I Modelling of all claims: use stable random fields.
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Motivation: storm insurance in Austria
Box-Cox-type Transformation (Bickel & Doksum, 1981):

I Set ψλ(x) = {sgn(x)|x |λ − 1}/λ, x ∈ R, λ > 0.
I Transform a random variable Z with density g to ψλ(Z ).

Let gλ be the density of ψλ(Z ).
I How to find the correct value of λ > 0?

Hernandez & Johnson (1980): minimize the Kullback –
Leibler information∣∣∣∣∫

R
gλ(x) log{gλ(x)/ϕµ,σ2(x)}dx

∣∣∣∣→ min
λ,µ,σ2

,

where ϕµ,σ2 is the density of the N(µ, σ2) distribution.
I More sophisticated transforms: see I.-K. Yeo & R. A.

Johnson (2000)
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Motivation: storm insurance in Austria

I Application of a transformation of Box-Cox type
makes the data more normally distributed.

Original data Transformed data Reference plot
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Motivation: storm insurance in Austria

Kriged deviations Gaussian random field

Spatial risks of the storm insurance in Austria (only medium sized claims)
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Motivation: storm insurance in Austria

Modelling with stable random fields

Kriged deviation map for insurance year 2000 (left) and a
realisaton of the fitted α-stable random field (right) (all claims).



Seite 48 Extrapolation of Stationary Random Fields | Evgeny Spodarev |

Stable distributions

Stable distributions (Kchinchine, Levy, 1930s):

I A random variable X is said to have a stable distri-
bution if there is a sequence of i.i.d. random variables
Y1,Y2, ... and sequences of positive numbers {dn}
and real numbers {an}, such that

Y1+...+Yn
dn

+ an
d→ X

where d→ denotes convergence in distribution.



Seite 49 Extrapolation of Stationary Random Fields | Evgeny Spodarev |

Stable distributions
I A random variable X is stable if and only if for

A,B > 0 ∃C > 0,D ∈ R:

AX1 + BX2
d
= CX + D

where X1 and X2 are independent copies of X .

I There exists a number α ∈ (0,2] (index of stability)

such that Cα = Aα + Bα

I Also referred to as (α−)stable distribution

I For α = 2: normal distribution

I A random vector X = (X1, ...,Xd )> is called stable if for
A,B > 0 ∃C > 0,D ∈ Rd :

AX (1) + BX (2) d
= CX + D
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Stable distributions

I Characteristic function of an α-stable random
variable X ∼ Sα(σ, β, µ), 0 < α ≤ 2:

E
(
eiθX) =

{
e−σ

α|θ|α(1−iβ sgnθ tan πα
2 )+iµθ if α 6= 1

e−σ|θ|(1+iβ 2
π

sgnθ ln |θ|)+iµθ if α = 1

I Parameters σ, β, µ are unique for α ∈ (0,2):
I µ ∈ R: shift
I β ∈ [−1,1]: skewness (form) , β = 0: symmetry
I σ ≥ 0: scale
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Multivariate stable distributions

I Characteristic function of an α-stable random
vector X = (X1, ...,Xd )>, 0 < α ≤ 2:

E
(

ei·θT X
)

=

e
−
∫

Sd

|θT s|α(1−i sgnθT s tan πα
2 )Γ(ds)+iθT µ

if α 6= 1

e
−
∫

Sd

|θT s|(1+i 2
π

sgnθT s ln |θT s|)Γ(ds)+iθT µ

if α = 1

where Γ is a finite (spectral) measure
on the unit sphere Sd of Rd and µ ∈ Rd .

I Parameters Γ and µ are unique for α ∈ (0,2):
I µ ∈ R: shift
I Γ: skewness (form) and scale together.
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Stable distributions

I Symmetric random vector
A random vector X in Rd is symmetric if
P(X ∈ A) = P(−X ∈ A) for any Borel set A ∈ Rd .

I Symmetric stable random vector
A symmetric α-stable random vector X (SαS) in Rd

has a characteristic function

ϕX (θ) = e−
∫

Sd
|〈θ,s〉|αΓ(ds)

, θ ∈ Rd

where the spectral measure Γ is symmetric on Sd .
I If Γ is not concentrated on a great sub-sphere of Sd ,

then X is called full-dimensional.
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Stable distributions

Properties and characteristics
I Moments: if p < α then E |X |p <∞. For p ≥ α, it holds

E |X |p =∞.
I Covariation: for an α-stable random vector (X1,X2)>,

1 < α ≤ 2 with spectral measure Γ define

[X1,X2]α =

∫
S1

s1s<α−1>
2 Γ(ds1,ds2)

where a<p> := |a|psgn(a) for a ∈ R and p ≥ 0.
I Gaussian case α = 2: if (X1,X2)> is a centered Gaussian

random vector then

[X1,X2]2 =
1
2

Cov(X1,X2).



Seite 54 Extrapolation of Stationary Random Fields | Evgeny Spodarev |

Covariation and moments

Lemma
Let 1 < α < 2 and suppose that (X ,Y )T is an α-stable
random vector with spectral measure Γ such that
X ∼ Sα(σX , βX ,0) and Y ∼ Sα(σY , βY ,0). For 1 ≤ p < α, it
holds

E
(
XY<p−1>)
E|Y |p

=
[X ,Y ]α(1− c · βY ) + c · (X ,Y )α

σαY
,

where (X ,Y )α :=
∫

S1
s1|s2|α−1Γ(ds) and c := cα,p(βY ) is a

constant. If Y is symmetric, i. e. βY = 0, then c = 0.
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Stable random fields

I A random field {X (t), t ∈ Rd} is called α-stable if
the distribution of (X (t1), ...,X (tn))> is multivariate
α–stable for any 1 ≤ n <∞ and t1, ..., tn ∈ Rd .

I Spectral representation: for centered separable in
probability α-stable fields with 1 < α < 2

{X (t), t ∈ Rd} d
=

{∫
E

ft (x)M(dx), t ∈ Rd
}

where
I ft ∈ Lα(E) for all t ∈ Rd ,
I M is an α-stable independently scattered random

measure on E with control measure m and skewness
intensity β.
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Random measures

Let (E , E ,m) be a measurable space with a σ–finite
measure m, E0 = {A ∈ E : m(A) <∞},

L0(Ω) = {random variables on (Ω,F ,P)}.

An independently scattered stable random measure M with
control measure m and skewness intensity β : E → R is a
random measure with independent α–stable increments, i.e.,
an a.s. σ–additive function M : E0 → L0(Ω) with

M(A) ∼ Sα

(
(m(A))1/α,

∫
A
β(x) m(dx)/m(A),0

)
for any A ∈ E0.
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Stochastic integration
For f ∈ Lα(E), construct I(f ) =

∫
E f (x) M(dx), where M is an

independently scattered α-stable random measure on (E , E)
with control measure m and skewness intensity β.

I Simple functions: for f (x) =
∑n

j=1 cj1I(x ∈ Aj), x ∈ E ,
with Aj ∈ E0: Ai ∩ Aj 6= ∅, i 6= j , we set

I(f ) =
n∑

j=1

cjM(Aj).

I General functions: for any f ∈ Lα(E), there exists a
sequence of simple functions fn ↑ f a.e. on E . Set

I(f ) = p− lim
n→∞

I(fn).
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Stochastic integral

This limit exists and does not depend on the choice of the
sequence {fn} tending to f .

I Distribution: I(f ) ∼ Sα(σf , βf , µf ), where

σf =

(∫
E
|f (x)|α m(dx)

)1/α

= ‖f‖Lα ,

βf =

∫
E f (x)<α>β(x) m(dx)∫
E |f (x)|αβ(x) m(dx)

,

µf =

{
0, α 6= 1,
− 2
π

∫
E f (x)β(x) log |f (x)|m(dx), α = 1.
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Examples: α–stable random fields

I Epanechnikov kernel: for a > 0 and b > 0

ft (x) = b · (a2 − ‖x − t‖22)1I‖x−t‖2≤a(x)

I Pyramid kernel: for a > 0 and b > 0, t = (t1, t2) ∈ R2,
x = (x1, x2) ∈ R2,

ft (x) = b · (a− |x1 − t1|) · (a− |x2 − t2|)1Ia≥|x1−t1|,a≥|x2−t2|(x)
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Examples: α–stable random fields

Sub-Gaussian random fields:

I Let A ∼ Sα/2((cos(πα/4))2/α,1,0) and let
G = {G(t), t ∈ Rd} be a stationary zero mean Gaussian
random field with covariance function C. Assume that A is
independent of G. The SαS random field
X = {X (t), t ∈ Rd} with X (t) = A1/2G(t), t ∈ Rd is called
sub-Gaussian.

I Characteristic function of Xt1,...,tn = (X (t1), . . . ,X (tn))>:
for any n ∈ N, t1, . . . , tn ∈ Rd it holds

ϕXt1,...,tn
(s1, . . . , sn) = exp

−1
2

∣∣∣∣∣∣
n∑

i,j=1

C(ti − tj)sisj

∣∣∣∣∣∣
α/2
 .
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Stable random fields

X (t) =

∫
E

ft (x)M(dx), t ∈ Rd

where ft ∈ Lα(E), t ∈ Rd , and M is an α-stable independently
scattered r. meas. with control meas. m and skewness β.
Properties and characteristics

I Symmetry: if β(x) = 0 ∀x then the field X is symmetric.
I Scale parameter of X (t): σX(t) = ‖ft‖Lα where(

E|X (t)|p
)1/p

= cα,β(p) · σX(t)

for 0 < p < α, 0 < α < 2 and some constant cα,β(p).
I Covariation function: for t1, t2 ∈ Rd and 1 < α ≤ 2

κ(t1, t2) = [X (t1),X (t2)]α =

∫
E

ft1(x)ft2(x)<α−1>m(dx).
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Stable random fields
Properties

I Stationarity: if E = Rd , ft (x) = f (t − x), x , t ∈ Rd and
m(dx) = dx then X is stationary (moving average) and
κ(s, t) = κ(s − t ,o) = κ(h), h = s − t , s, t ∈ Rd .

I Linear dependence: For a d-dimensional α-stable
random vector X = (X1, . . . ,Xd )T with integral
representation(∫

E
f1(x)M(dx), . . . ,

∫
E

fd (x)M(dx)

)T

,

let Γ be its spectral measure. X is not full-dimensional
(i.e., Γ is concentrated on a great sub–sphere of Sd ) iff∑d

i=1 ciXi = 0 a.s. for some (c1, . . . , cd )T ∈ Rd \ {0}.
This is equivalent to

∑d
i=1 ci fi(x) = 0 m-a. e.
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Stability and association
Association

I A random vector (X ,Y )T is called associated if, for any
functions f ,g : R2 → R which are non-decreasing in each
argument, one has

Cov(f (X ,Y ),g(X ,Y )) ≥ 0

whenever the covariance exists.
I It is called negatively associated if for any functions

f ,g : R→ R which are non-decreasing, one has

Cov(f (X ),g(Y )) ≤ 0

whenever the covariance exists.



Seite 64 Extrapolation of Stationary Random Fields | Evgeny Spodarev |

Stability and association

Lemma
Let 0 < α < 2 and (X ,Y )T be an α-stable random vector with
integral representation
(X ,Y )T =

(∫
E f1(x)M(dx),

∫
E f2(x)M(dx)

)T. Then (X ,Y )T is
associated (negatively associated) if and only if f1f2 ≥ 0
(f1f2 ≤ 0) m-almost everywhere.
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Stability and association

Corollary (Decomposition of a stable random vector)
Let 0 < α < 2 and (X ,Y )T be an α-stable random vector.
Then there exist α-stable random variables X1,X2,Y1,Y2 s.t.

X = X1 + X2 and Y = Y1 + Y2 a.s.,

(X1,Y1)T is associated, (X2,Y2)T is negatively associated,
and the components of each of the random vectors (X1,X2)T,
(X1,Y2)T, (Y1,X2)T, (Y1,Y2)T are independent.

Corollary (Association, covariation)
Let 1 < α < 2 and (X ,Y )T be an α-stable random vector. If
(X ,Y )T is associated (negatively associated), then
[X ,Y ]α ≥ 0 ([X ,Y ]α ≤ 0).
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Example: Spatial modelling of storm data (Austria)

Parameter estimation for the one-dimensional case:

The field X of deviations from the mean claim sizes has the
univariate distribution X (t) ∼ Sα(σ, β, µ) with

α β σ µ

1.3562 0.2796 234.286 6.7787
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Lecture 3: Extrapolation of stable random fields

I (Non)linear predictors and their properties

I Least scale predictor

I Covariation orthogonal predictor

I Maximization of covariation

I Numerical results

I Open problems

I Literature
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Prediction

I Let X be a centered (E X (t) = 0, t ∈ Rd ) α-stable random
field, 1 < α ≤ 2, with skewness intensity β satisfying the
spectral representation

X (t) =

∫
E

ft (x)M(dx), t ∈ Rd .

I Let X (t1), . . . ,X (tn) be the observations of X for
t1, . . . tn ∈W , W ⊂ Rd being a compact set.

I Non-linear predictors for X (t), t 6∈ {t1, . . . , tn}: for some
particular random functions (e.g. subgaussian ones) one
can use

I Maximum likelihood (ML) predictors
I Conditional simulators
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Linear predictors

I Linear predictor for X (t), t 6∈ {t1, . . . , tn}:

X̂ (t) =
n∑

i=1

λiX (ti),

where λi = λi(t , t1, . . . , tn) for i = 1, . . . ,n.

Properties

I X̂ is unbiased since E X̂ (t) = 0, t ∈ Rd

I X̂ is exact if X̂ (ti) = X (ti) a.s., i = 1, . . . ,n.
I X̂ is continuous if λi = λi(·, t1, . . . , tn) are continuous as

functions of t , i = 1, . . . ,n
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Linear predictors

X̂ (t) should be optimal in a sense that it

I minimizes the scale parameter σX̂(t)−X(t)
=⇒ Least Scale Linear (LSL) Predictor

I mimics the covariation structure between X (t) and X (tj),
j = 1, . . . ,n
=⇒ Covariation Orthogonal Linear (COL) Predictor

I maximizes the covariation between X (t) and X̂ (t)
=⇒ Maximization of Covariation Linear (MCL) Predictor
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Least Scale Linear Predictor

Generalization of Kriging techniques:

σα
X̂(t)−X(t)

=

∫
E

∣∣∣∣∣ft (x)−
n∑

i=1

λi fti (x)

∣∣∣∣∣
α

m(dx) → min

with respect to λ1, . . . , λn.

Non-linear optimization problem =⇒ numerical methods for its
solution.
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Least Scale Linear Predictor

Lemma
A solution of the above minimization problem resolves the
system of equations[

X (tj),X (t)−
n∑

i=1

λiX (ti)

]
α

= 0, j = 1, . . .n,

which can be written as∫
E

ftj (x)

(
ft (x)−

n∑
i=1

λi fti (x)

)<α−1>

m(dx) = 0, j = 1, . . .n.

This is a system of non–linear equations in λ1, . . . , λn.
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Least Scale Linear Predictor

Theorem
I Existence: The LSL estimator exists.
I Uniqueness: Assume that the random vector

(X (t1), . . . ,X (tn))T is full-dimensional. Then the LSL
estimator is unique.

I Exactness: If there is a unique LSL estimator, then it is
obviously exact.

I Continuity: If the random field X is stochastically
continuous and (X (t1), . . . ,X (tn))T is full-dimensional then
the LSL estimator is continuous.
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Least Scale Linear Predictor

Example: SαS Lévy motion
X (t) =

∫∞
0 1I(x ≤ t)M(dx), where M is a SαS random measure

with Lebesgue control measure. Let t = 3/4 and t1 = 1. Then
the optimization problem for the LSL predictor is

σα
X̂(t)−X(t)

=

∫ 3/4

0
|1− λ1|αdx +

∫ 1

3/4
|λ1|αdx

=
3
4
|1− λ1|α +

1
4
|λ1|α → min

λ1
.

We obtain the LSL predictor

X̂ (t) =
1

1 + (1/3)1/(α−1)
X (t1).
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Covariation Orthogonal Linear Predictor

Let X be a random field as above. The linear predictor with
weights λ1, . . . , λn being a solution of the following system of
equations

[X (t),X (tj)]α = [X̂ (t),X (tj)]α, j = 1, . . . ,n

is the COL predictor. It is a linear system of equations

[
X (t),X (tj)

]
α
−

n∑
i=1

λi
[
X (ti),X (tj)

]
α

= 0, j = 1, . . . ,n.

The COL predictor is obviously exact.
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Covariation Orthogonal Linear Predictor

The regression of X (t) on (X (t1), . . . ,X (tn))T is called linear if
there exists some (λ1, ..., λn) ∈ Rn such that it holds a.s.

E(X (t)|X (t1), . . . ,X (tn)) =
n∑

i=1

λiX (ti).

Lemma
If the regression of X (t) on the random vector
(X (t1), . . . ,X (tn))T is linear then the vector (λ1, . . . , λn)T is a
solution of the COL system of equations.
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Covariation Orthogonal Linear Predictor

Theorem
Let X be an α-stable moving average.

I If the kernel function f : Rd → R+ is positive semi-definite,
then the covariation function κ is positive semi-definite. If
f : Rd → R+ is positive definite and positive on a set with
positive Lebesgue measure, then κ is positive definite.

I If the covariation function is positive definite then the COL
predictor exists and is unique.

I If the covariation function is positive definite and
continuous, then the COL predictor is continuous.
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Covariation Orthogonal Linear Predictor

Proof.
The weights of the COL predictor satisfy the system of
equations κ(0) · · · κ(tn − t1)

...
. . .

...
κ(tn − t1) · · · κ(0)


λ1

...
λn

 =

κ(t − t1)
...

κ(t − tn)


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Covariation Orthogonal Linear Predictor

Example: SαS Ornstein-Uhlenbeck process.

X (t) =

∫
R

e−λ(t−x)1I(t − x ≥ 0)M(dx), t ∈ R,

for some λ > 0, where M is a SαS random measure with
Lebesgue control measure. If t1 < t2 < . . . < tn < t , then the
regression of X (t) on (X (t1), . . . ,X (tn))T is linear, and
X̂ (t) = e−λ(t−tn)X (tn).
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Covariation Orthogonal Linear Predictor

Symmetric case

If X is additionally symmetric then
I the unknown quantities [X (t),X (tj)]α and [X (ti),X (tj)]α can

be estimated by using

EXY<p−1>

E|Y |p
=

[X ,Y ]α
σαY

,

where (X ,Y )T is an α-stable vector and 1 < p < α or by
estimating the kernel function ft and using the
representation of covariation in terms of ft .
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Covariation Orthogonal Linear Predictor

Lemma
If the COL estimator is unique and the regression of X (t) on
(X (t1), . . . ,X (tn))T is linear, then the weights λ1, . . . , λn of the
COL estimator X̂ (t) are a solution of the minimization problem

σE(X(t)−
∑n

i=1 bi X(ti )|X(t1),...,X(tn)) → min
b1,...,bn

.

If the spectral measure of (X (t1), . . . ,X (tn))T is
full-dimensional, then this solution is unique.
The regression of X (t) on (X (t1), . . . ,X (tn))T is linear if X is
e.g. a (sub)Gaussian random function.
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Covariation Orthogonal Linear Predictor

Let X be a centered (sub)Gaussian α-stable random field with
covariance function C of the Gaussian part.
Then

[X (ti),X (tj)]α = 2−α/2C(ti − tj)C(0)(α−2)/2.

The COL predictor is the solution of the system C(0) · · · C(tn − t1)
...

. . .
...

C(tn − t1) · · · C(0)


λ1

...
λn

 =

C(t − t1)
...

C(t − tn)


and thus coincides with simple kriging.
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Covariation Orthogonal Linear Predictor

Theorem
Let X be a centered (sub)Gaussian α-stable random field with
positive definite covariance function C of the Gaussian part.

I The COL predictor exists and is unique.
I If the covariance function is continuous, then the COL

predictor is continuous.

Theorem
For (sub)Gaussian random fields, the COL and LSL predictors
for X (t) coincide (with the maximum–likelihood (ML) estimator
of X (t)).
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Maximization of Covariation Linear Predictor

Let X be an α-stable random field with spectral integral
representation and α > 1. To construct the MCL predictor, solve

[
X̂ (t),X (t)

]
α

=
∑n

i=1 λi [X (ti),X (t)]α → max
λ1,...,λn

,

σX̂(t) = σX(t),

where the condition σX̂(t) = σX(t) means X̂ (t) d
= X (t) for SαS

random fields.
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Maximization of Covariation Linear Predictor

Theorem
Assume that the random vector (X (t1), . . . ,X (tn))T is
full-dimensional.

I Existence: The MCL predictor exists.
I Uniqueness: If [X (ti),X (t)]α 6= 0 for some i ∈ {1, . . . ,n}

then the MCL predictor is unique.
I Exactness: If the MCL predictor is unique then it is exact.
I Continuity: If X is a moving average, the covariation

function κ is continuous and κ(ti − t) 6= 0 for some
i ∈ {1, . . . ,n} then the MCL predictor is continuous.
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Numerical results

Two-dimensional SαS Lévy motion

X (t) =

∫
[0,1]2

1I{x1 ≤ t1, x2 ≤ t2}M(dx), t ∈ [0,1]2,

where M is a SαS random measure with m = Lebesgue control
measure and α = 1.5.

Method 5%-Quantile 1st Quartile Median 3rd Quartile 95%-Quantile
LSL -0.5170 -0.1246 0.0000 0.1226 0.5045
COL -0.5263 -0.1289 0.0002 0.1266 0.5137
MCL -0.6093 -0.1455 -0.0007 0.1407 0.5895

Summary statistics for the deviations X(t)− X̂(t).
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Numerical results

Realization of the Lévy stable motion (top left) and the extrapolations (out of 9

observation points) based on the LSL method (top right), the COL method (bottom left)

and the MCL method (bottom right).
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Numerical results

Subgaussian random field

X = {A1/2G(t), t ∈ [0,1]2}
with α = 1.5, A ∼ Sα/2((cos(πα/4))2/α,1,0) and G being a
stationary isotropic Gaussian random field with covariance
function

C(h) = 7 exp{−(h/0.1)2}, h ≥ 0.

Method 5%-Quantile 1st Quartile Median 3rd Quartile 95%-Quantile
LSL (COL, ML) -1.5451 -0.4446 0.0018 0.4503 1.5363
MCL -1.8204 -0.4899 0.0046 0.5016 1.7580
CS -2.7523 -0.5837 0.0058 0.5985 2.7262

Summary statistics for the deviations X(t)− X̂(t).
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Numerical results

Realization of the sub-Gaussian random field (top left) and the extrapolations (out of 9

observation points) based on the LSL (COL, ML) method (top right), the MCL method

(bottom left) and the CS method (bottom right).
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Open problems

I Extrapolation methods and their properties for stable
random fields with α ∈ (0,1]

I Control of skewness of known predictors for
non–symmetric stable random fields (β 6= 0)

I Characterization of the covariation function
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