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For stationary vector–valued random fields on Rd the asymptotic covariance matrix for estimators of the
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dence intervals and significance tests for the mean vector, nonparametric estimators of these integrated
covariance functions are required. Integrability conditions are derived under which the estimators of the
covariance matrix are mean-square consistent. For random fields induced by stationary Boolean models
with convex grains, these conditions are expressed by sufficient assumptions on the grain distribution.
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1 Introduction

In various fields of practical application, such as medicine, biology, geology or material sciences, huge
amounts of spatial data sets have to be categorized by means of certain characteristics of the underlying
material. Assuming that these characteristics can be expressed by the mean vector of some stationary
random field Y = {Y (x), x ∈ Rd}, where Y (x) = (Y1(x), . . . , Ym(x)) for m ∈ N, we are interested in
(asymptotic) confidence intervals and significance tests for the mean vector µ = EY (x). On a sequence
of expanding observation windows Wn, n ∈ N mean–square consistent estimators of µ are given by
µ̂n = (µ̂n1, . . . , µ̂nm), n ≥ 1 with µ̂ni =

∫
Wn

Yi(x)Gi(Wn, x) dx for weighting functions Gi, i = 1, .., m.
Under appropriate assumptions, it holds that

√
|Wn|(µ̂n − µ) converges in distribution to a Gaussian

random vector with mean vector zero and covariance matrix Σ as Wn tends to Rd, where

Σ =
(
θij

∫

Rd

Cov
(
Yi(o), Yj(x)

)
dx

)
i,j=1,..,m

for certain constants θij ∈ (0,∞) (with o = (0, . . . , 0)>); see, e.g., the paper Pantle et al. (2006) for a
general class of stationary random fields induced by germ–grain models. In order to perform asymptotic
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significance tests for the mean vector µ (e.g., with the aim of an automated classification of the underlying
material), the matrix of integrated covariance functions Σ has to be estimated consistently, since it is in
general unknown or too complicated to be evaluated explicitly. Notice that due to this estimation, the
rate of convergence in the above central limit theorem (which is usually O(n−1/2) by the well–known result
of Berry–Esseen) slows down. In Bulinski and Kryzhanovskaya (2006), an empirical covariance estimator
similar to Σ̃n of Section 5 below is considered, for which it is shown that the rate of convergence in the
corresponding limit theorem is O(n−d/(6(2d+1))), d > 6 (cf. Corollary 1 in Bulinski and Kryzhanovskaya
(2006)).

A new nonparametric estimator Σ̂n of the asymptotic covariance matrix Σ is proposed in Section 3, where

Σ̂n =
(∫

Rd

Ĉovnij(x) γij(Wn, x) dx
)

i,j=1,..,m
, n ≥ 1

for some weighting function γij(Wn, x) and a consistent estimator Ĉovnij(x) of Cov(Yi(o), Yj(x)) for
fixed x ∈ Rd. The construction principle employed is similar to the techniques used, e.g., in Böhm
et al. (2004, Section 3) and Schmidt and Spodarev (2005, Section 3.5). Sufficient conditions for the
asymptotic unbiasedness and for the mean-square consistency of Σ̂n are given in Lemma 1 and Theorem 1,
respectively. It is shown in Section 3.3 that they can be easily verified for a special class of stationary
Gaussian random fields with exponential (cross)covariance structure. In Section 4, random fields induced
by special random sets called Boolean models are discussed. For this case, sufficient conditions on the
volume of the typical grain M0 enlarged by some test set K can be formulated so that the assumptions
of Theorem 1 are satisfied. Section 5 deals with an estimator of Σ derived from the empirical covariance
of observations of µ̂n on disjoint subwindows of Wn. A numerical comparison of the different estimates
of the asymptotic covariance matrix of random fields considered in Sections 3.3 and 4 is given in Section
6. The paper closes with a summary of results and discussion thereof. The proof of Theorem 2 from
Section 4.3 is given in the Appendix.

2 Preliminaries

In the present section, we introduce some notation used throughout this paper and recall basic facts from
stochastic geometry. Further details can be found for example in Adler and Taylor (2007), Schneider
and Weil (2008) or Stoyan et al. (1995). In the second part, a class of estimators of the mean value of
stationary random fields and their asymptotic properties are considered (compare, in particular, Ivanov
and Leonenko (1989) and Pantle et al. (2006)).

2.1 Basic notations

Let d ≥ 1 be an arbitrary fixed integer and let the d-dimensional Euclidean space Rd be equipped with the
Borel σ-algebra Bd. Denote the set of bounded Borel sets by Bd

0 and write o ∈ Rd for the origin in Rd. The
Euclidean norm of a vector x ∈ Rd is denoted by |x|, whereas |B| stands for the d-dimensional Lebesgue
measure (or volume) of a set B ∈ Bd. By ∂B we denote the boundary of a Borel set and by int(B) its
interior. Furthermore, let Br(x) = {y ∈ Rd : |y−x| ≤ r} be the closed ball in Rd centered at x ∈ Rd with
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radius r > 0. The Minkowski sum of two sets B, B′ ⊂ Rd is given by B ⊕ B′ = {x + y : x ∈ B, y ∈ B′},
where we write B + x instead of B ⊕ {x} for the translation of B by a vector x ∈ Rd. Besides this,
consider the reflection B̌ = {−x : x ∈ B} of B at the origin and denote the Minkowski difference of B
and B′ by B ªB′ = {x : B̌′ + x ⊆ B}.
Consider an arbitrary probability space (Ω,A, P ) and some Bd⊗A-measurable mapping Y : Rd×Ω → R
with mean function µ(x) = EY (x) and covariance function Cov(x, y) = Cov(Y (x), Y (y)) assuming that
EY 2(x) < ∞ for any x ∈ Rd. For simplicity, we use the notation Y (x) instead of Y (x, ·) and denote the
random field {Y (x), x ∈ Rd} by Y as well. A random field Y is called stationary if its finite dimensional
distributions are invariant with respect to translations, that is to say, the distribution of the random
vectors (Y (x1 + h), . . . , Y (xm + h)) and (Y (x1), . . . , Y (xm)) coincide for all x1, . . . , xm, h ∈ Rd and
m ∈ N. Stationarity implies, in particular, that µ(x) is constant and Cov(x, y) is a function depending
on the difference y − x only. Hence, set µ = EY (x) and Cov(x) = Cov(y, y + x) for any x, y ∈ Rd.

In Section 4 we will consider the case, where Y is defined as a functional of a random closed set (RACS)
Ξ in Rd. A random closed set is a (A, σF )-measurable mapping from (Ω,A) into (F , σF ), where F ⊂ Bd

denotes the family of all closed sets in Rd, and σF is the σ-algebra generated by {F ∈ F : F ∩ C 6= ∅}
for arbitrary compact C ⊂ Rd. Finally, let K ⊂ F be the family of all convex and compact sets in Rd,
and define the σ-algebra σK = {B ∩ K : B ∈ σF} on K.

2.2 Estimating the mean of vector–valued random fields

Let Y1 = {Y1(x), x ∈ Rd}, . . . , Ym = {Ym(x), x ∈ Rd} be a set of m ∈ N random fields on the same
probability space such that the finite dimensional distributions of the vector–valued random field Y =
{Y (x), x ∈ Rd} with Y (x) = (Y1(x), . . . , Ym(x))> are invariant with respect to translations. The random
fields Y1, . . . , Ym are then called jointly stationary. For i, j = 1, . . . ,m, set µi = EYi(o) and Covij(x) =
Cov(Yi(o), Yj(x)), x ∈ Rd, where we assume that EY 2

i (o) < ∞, but µi and Covij(x) are unknown. With
regard to the estimation of µ = (µ1, . . . , µm)>, consider a sequence {Wn} of monotonously increasing,
bounded Borel sets Wn ⊂ Rd, n ≥ 1 such that

lim
n→∞ |Wn| = ∞ and lim

n→∞
|∂Wn ⊕Br(o)|

|Wn| = 0 (1)

for any r > 0. Furthermore, suppose that the random fields Yi = {Yi(x), x ∈ Rd} are observable on
sub-windows Wni = Wn ª Ǩi for some Ki ∈ K, respectively. An unbiased estimator of the mean vector
µ is then given by µ̂n = (µ̂n1, . . . , µ̂nm)>, n ≥ 1 with

µ̂ni =
∫

Wn

Yi(x) Gi(Wn, x) dx (2)

for functionals Gi : Bd
0 ⊗ Rd → [0,∞), i = 1, . . . , m, which are Bd-measurable in the second component

and satisfy

Gi(W,x) = 0 if x ∈ Rd \W ª Ǩi, and
∫

Rd

Gi(W,x) dx = 1 (3)
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for any W ∈ Bd
0 . Put Γnij(x) =

∫
Rd Gi(Wn, y)Gj(Wn, y+x) dy for i, j = 1, . . . , m. Note that Γnij(x) = 0

if x /∈ Wni ⊕ W̌nj . For any n ≥ 1, it holds that

Cov(µ̂ni, µ̂nj) =
∫

Rd

Covij(x)Γnij(x) dx . (4)

To study the asymptotic behaviour of µ̂n, we assume that there exist constants c1, θij ∈ (0,∞) for all
i, j = 1, . . . ,m such that

sup
x∈Rd

Gi(Wn, x) ≤ c1

|Wn| for any n ≥ 1 and lim
n→∞ |Wn|Γnij(x) = θij for any x ∈ Rd . (5)

Both conditions (3) and (5) hold, for instance, if Gi(Wn, x) = 1I(x ∈ Wn ª Ǩi) / |Wn ª Ǩi|, i = 1, . . . ,m

for any n ≥ 1 and x ∈ Rd, where 1I(B) denotes the indicator function of the set B.

Under appropriate mixing and integrability conditions one can show that



√
|Wn| (µ̂n1 − µ1)

...√
|Wn| (µ̂nm − µm)


 =⇒ Nm(o, Σ) , n →∞ ,

where =⇒ denotes convergence in distribution and Nm(o, Σ) is an m-dimensional Gaussian random
variable with mean zero and covariance matrix Σ = (σij)

Σ =




θ11

∫
Rd Cov11(x) dx . . . θ1m

∫
Rd Cov1m(x) dx

...
. . .

...

θm1

∫
Rd Covm1(x) dx . . . θmm

∫
Rd Covmm(x) dx


 , (6)

confer for example Ivanov and Leonenko (1989, Section 1.7), Pantle et al. (2006, Sections 4 and 5) and
references therein. Regarding the symmetry of the covariance matrix Σ, note that Covij(x) = Covji(−x)
for all x ∈ Rd as well as Γnij(x) = Γnji(−x), and consequently θij = θji. Since explicit formulae for σij ,
i, j = 1, . . . , m are in general unknown, we are interested in the estimation of the integrated covariance
functions

∫
Rd Covij(x) dx. At this, we assume that

∫

Rd

|Covij(x)| dx < ∞ , i, j = 1, . . . ,m . (7)

3 A weighted covariance estimator

3.1 Definition and growth conditions

Throughout the following, let Y1, . . . , Ym be a set of jointly stationary random fields with finite fourth
moments and µ̂n, n ≥ 1 the estimator of EY (o) as defined in (2). The aim of this section is to establish
a consistent estimator Σ̂n of the asymptotic covariance matrix Σ given in (6).

For any pair i ≤ j, choose an increasing sequence {Unij} of compact Borel sets with
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• Unij ⊆ Wni ⊕ W̌nj and o ∈ Unij .

• Denote by supp(Covij) the support of Covij and assume that supp(Covij) ⊆ limn→∞ Unij .

• In addition, suppose that

lim
n→∞ sup

x∈Unij

| θij − |Wn|Γnij(x) | = 0 , ∀ i, j = 1, . . . , m. (8)

• and
lim

n→∞ |Unij |2/ |Wn| = 0 , ∀ i, j = 1, . . . , m . (9)

• Finally, for j < i, put Unji = Ǔnij to preserve symmetry in the covariance matrix estimate.

Based on the above-mentioned assumptions, define the estimator Σ̂n = (σ̂nij) by

σ̂nij =
∫

Unij

Ĉovnij(x) |Wn|Γnij(x) dx, n ≥ 1 (10)

with

Ĉovnij(x) =
∫

Wni∩(Wnj−x)
Yi(y)Yj(y + x) Gi(Wn, y)Gj(Wn, y + x) dy · Γ−1

nij(x) − µ̂niµ̂nj . (11)

We may assume, without loss of generality, that |Unij | > 0 and Γnij(x) > 0 for all x ∈ Unij , i, j = 1, . . . ,m
and any n ∈ N. Notice that σ̂nij = σ̂nji for any i, j = 1, . . . , m, n ≥ 1.

As an example, let supp(Covij) = Rd and Wn = nKo for some K0 ∈ K with |K0| > 0 and o ∈ int(K0).
Define %n = sup{r > 0 : Br(o) ⊆ Wn}, and put Gi(x) = 1I(x ∈ B%n−r0(o))/|B%n−r0(o)| for all i, where
r0 > 0 satisfies Ki ⊆ Br0(o) for i = 1, . . . , m and n ∈ N is large enough ensuring that %n > r0. Then,
conditions (9) and (8) are fulfilled with θij ≡ 1 if Unij = B√%n εn−r0

(o) for some sequence {εn} such that
εn ↓ 0 and limn→∞

√
n εn = ∞.

Following along the lines of the subsequent proofs, one observes that Ĉovnij(x), considered separately
for fixed x ∈ Rd, is an asymptotically unbiased and consistent estimator of Cov(x). For the special case,
where EY (o) = 0 and G(Wn, x) = 1I(x ∈ Wn)/|Wn|, further results on Ĉovnij(x) can be found, for
instance, in Ivanov and Leonenko (1989, Chapter 4).

Generally speaking, the averaging set Unij in the definition (10) of the estimator σ̂nij mimics the inte-
gration over Rd in the definition (6) of the asymptotic covariance σij , where both (8) and (9) are
growth conditions on Unij , bounding the rate with which Unij fills the support supp(Covij) of Covij .
If supp(Covij) = Rd, then |Unij | → ∞ as n →∞. This, together with (8) and (9), means from a practi-
cal point of view that the averaging set Unij should be as large as possible to keep the bias of σ̂nij small,
but not too large to get an estimator with small variance. In particular, the assumptions that (8) is
fulfilled and that |Unij | → ∞ holds are used in the proof of Lemma 1 below, in order to show asymptotic
unbiasedness of σ̂nij , whereas (9) is used in the proof of Theorem 1 to show mean-square consistency of
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σ̂nij . As a rule, condition (9) suggests that the volume of Unij should not be larger than the square root
of the volume of the observation window Wn; see also the numerical examples considered in Section 6.

We also remark that the estimator matrix Σ̂n of the asymptotic covariance matrix Σ defined above is
not necessarily positive semi-definite. To see this, we refer the reader to Section 6 where the numerical
examples provide a clear evidence of that fact.

3.2 Asymptotic properties

Lemma 1. The estimator Σ̂n = (σ̂nij) with σ̂nij as defined in (10) and (11) is asymptotically unbiased
for the covariance matrix Σ = (σij) given in (6).

Proof. Insert ±µiµj into the defining equation (11) of Ĉovnij(x) for any i, j = 1, . . . , m and apply
Fubini’s theorem to obtain

E σ̂nij =
∫

Unij

Covij(x) |Wn|Γnij(x) dx− |Wn|Cov(µ̂ni, µ̂nj)
∫

Unij

Γnij(x) dx (12)

By (4) and (5) one can derive that limn→∞ |Wn|Cov(µ̂ni, µ̂nj) = σij < ∞ applying the dominated
convergence theorem. Together with

0 ≤ lim sup
n→∞

∫

Unij

Γnij(x) dx ≤ c1 · lim
n→∞

|Unij |
|Wn| = 0 ,

the second expression in (12) converges to zero as n → ∞. On the other hand, the first summand can
be split up as follows

∫

Unij

Covij(x) |Wn|Γnij(x) dx

= θij

∫

Rd

Covij(x) dx−
∫

Unij

Covij(x)
(
θij − |Wn|Γnij(x)

)
dx− θij

∫

Rd\Unij

Covij(x) dx .

By (7) we have limn→∞
∫
Rd\Unij

|Covij(x)| dx = 0 , and from (8) it follows that

lim sup
n→∞

∣∣∣
∫

Unij

Covij(x)(θij − |Wn|Γnij(x)) dx
∣∣∣

≤
∫

Rd

|Covij(x)| dx · lim
n→∞ sup

x∈Unij

| θij − |Wn|Γnij(x) | = 0 ,

According to Lemma 1, asymptotic unbiasedness of Σ̂n holds under the same integrability assumption (7)
needed so that Σ is well defined. Additional assumptions are necessary, however, to ensure mean-square
consistency. Consistency is understood with respect to the matrix norm ||A|| =

(∑m
i,j=1 a2

ij

)1/2 for a
matrix A = (aij) ∈ Rm×m.
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Theorem 1. Suppose that EY 4
i (o) < ∞ for i = 1, . . . ,m. Then it holds that limn→∞E ||Σ̂n − Σ||2 = 0,

i.e., Σ̂n = (σ̂nij) is mean-square consistent for Σ = (σij) if the sampling window Unij and the random
fields Yi, i, j = 1, . . . ,m satisfy the following additional assumptions:

1
|Unij |2

∫

Unij

∫

Unij

∫

Rd

∣∣Cov
(
Yi(o)Yj(x1), Yi(y)Yj(x2 + y)

)∣∣ dy dx1dx2 ≤ κ1 (13)

and
sup

x1,x2∈Rd

∫

Rd

∣∣E(
(Yi(o)− µi)(Yi(y)− µi)Yj(x1)Yj(x2)

)∣∣ dy ≤ κ2 (14)

for some finite constants κ1 and κ2.

Proof. By Minkowski’s inequality and since limn→∞E σ̂nij = σij according to Lemma 1, it suffices to
show that limn→∞E (σ̂nij − E σ̂nij)2 = 0 for all i, j = 1, . . . , m. To this end, define

Sn1 =
∫

Unij

∫

Wni∩(Wnj−x)

(
Yi(y)Yj(y + x)− E (Yi(y)Yj(y + x))

)
|Wn|Gi(Wn, y)Gj(Wn, y + x) dy dx

and

Sn2 = −(
µ̂niµ̂nj − E (µ̂niµ̂nj)

) ∫

Unij

|Wn|Γnij(x) dx .

Hence, we find σ̂nij−E σ̂nij = Sn1+Sn2 and have to verify that limn→∞ES2
n1 = 0 and limn→∞ES2

n2 = 0.
For the first expression, one obtains

E

(∫

Unij

∫

Wni∩(Wnj−x)

[
Yi(y)Yj(y + x)− E(Yi(y)Yj(y + x))

]
|Wn|Gi(Wn, y)Gj(Wn, y + x) dy dx

)2

≤
∫

Unij

∫

Unij

∫

Wn

∫

Wn

∣∣Cov
(
Yi(o)Yj(x1), Yi(y2 − y1)Yj(x2 + y2 − y1)

)∣∣

× |Wn|2 Gi(Wn, y1)Gj(Wn, x1 + y1)Gi(Wn, y2)Gj(Wn, x2 + y2) dy1 dy2 dx1 dx2

=
∫

Unij

∫

Unij

∫

Rd

∣∣Cov
(
Yi(o)Yj(x1), Yi(y)Yj(x2 + y)

)∣∣

× |Wn|2
∫

Wn

Gi(Wn, y)Gj(Wn, x1 + y)Gi(Wn, y + u)Gj(Wn, x2 + y + u) du dy dx1 dx2

≤ c3
1 · κ1 · |Unij |2

|Wn| ,

where the second inequality follows from (5). Hence, the final expression converges to zero given (9).
Furthermore, it holds that

ES 2
n2 = E

[
µ̂niµ̂nj − E (µ̂niµ̂nj)

]2 ·
(∫

Unij

|Wn|Γnij(x) dx

)2

≤ |Wn|E
[
µ̂niµ̂nj − E (µ̂niµ̂nj)

]2 · c2
1

|Unij |2
|Wn| ,
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which tends to zero as well if limn→∞|Wn|E
(
µ̂niµ̂nj − E (µ̂niµ̂nj)

)2
< ∞. The latter can be seen as

follows. Inserting ±µiµj and ±µiµ̂nj yields

|Wn|E
[
µ̂niµ̂nj − E (µ̂niµ̂nj)

]2 = |Wn|E
[
(µ̂ni − µi) µ̂nj + µi (µ̂nj − µj) + µiµj − E (µ̂niµ̂nj)

]2

≤ 3|Wn|
[
E

(
[µ̂ni − µi]2 µ̂2

nj

)
+ µ2

i E
(
µ̂nj − µj

)2 + Cov2
(
µ̂ni, µ̂nj

)]
,

where limn→∞ |Wn|E (µ̂nj − µj)2 = σjj < ∞ and limn→∞
√
|Wn|Cov(µ̂ni, µ̂nj) = 0. From the definition

of µ̂ni, i = 1, ..., m and Fubini’s theorem it follows that

|Wn|E
(
[µ̂ni − µi]2 µ̂2

nj

)
= |Wn|

∫

W 4
n

E
(
[Yi(v1)− µi] [Yi(v2)− µi] Yj(v3)Yj(v4)

)

×Gi(Wn, v1)Gi(Wn, v2)Gj(Wn, v3)Gj(Wn, v4) dv1 dv2 dv3 dv4

= |Wn|
∫

Wn

∫

Wn−v

∫

Wn−v

∫

Wn−v
E

(
[Yi(o)− µi] [Yi(y)− µi] Yj(x1)Yj(x2)

)

×Gi(Wn, v)Gi(Wn, y + v)Gj(Wn, x1 + v)Gj(Wn, x2 + v) dy dx2 dx1dv

≤ c1

∫

Wn

∫

Wn−v

∫

Wn−v

∫

Rd

∣∣E(
[Yi(o)− µi] [Yi(y)− µi] Yj(x1)Yj(x2)

)∣∣ dy

×Gi(Wn, v)Gj(Wn, x1 + v)Gj(Wn, x2 + v) dx2 dx1dv

≤ c1 · sup
x1,x2∈Rd

∫

Rd

∣∣E(
[Yi(o)− µi)] [Yi(y)− µi] Yj(x1)Yj(x2)

)∣∣ dy .

The last two lines are obtained by (3) and (5), that is, in particular, that G(Wn, ·) integrates to one over
Wn. By condition (14), we obtain the desired result.

As mentioned before, similar estimation methods for Σ are used in Böhm et al. (2004, Section 3) for
0-1-valued vector fields or Schmidt and Spodarev (2005, Section 3.5) for arbitrary stationary vector
fields with uniform weights. Both variants assume that conditions (7) and (13) hold to prove mean-
square consistency. In the case of 0-1-valued random fields no further assumptions are needed, since
Y is uniformly bounded on Rd. For the more general setting considered in Schmidt and Spodarev
(2005), mean-square consistency is shown using different arguments in the proof, which lead to stronger
integrability conditions. We point out that formula (56) in Schmidt and Spodarev (2005) is a sufficient
condition for (13). In addition, we have to assume that

∫

R3d

∣∣∣E
(
[Yi(o)− µi] [Yj(x1)− µi] [Yi(x2)− µi] [Yj(x3)− µi]

)− Covij(x1)Covij(x2 − x3) (15)

−Covii(x2)Covjj(x1 − x3)− Covij(x3)Covji(x1 − x2)
∣∣∣ dx1 dx2 dx3 ≤ κ

for some finite constant κ and i, j = 1, . . . , m.
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3.3 Examples; Gaussian random fields

It can easily be verified that conditions (7) and (13)–(15) hold if the covariance function of (not necessarily
Gaussian) vector random field Y has compact support, i.e., Covij(x) = 0 if |x| > r0 for some r0 > 0.

Furthermore, a less trivial class of examples is given by stationary Gaussian random fields with exponen-
tial (cross)covariance structure (for which condition (7) is obviously satisfied). We show that conditions
(13)–(14) hold in this case as well. For simplicity of calculations, assume d = 1 (dependent Gaussian
processes).

Let Y1 = {Y1(t), t ∈ R} and Y2 = {Y2(t), t ∈ R} be two dependent stationary centered Gaussian
random processes with exponential covariance Ci(t) = E

(
Yi(0)Yi(t)

)
= e−|t|/a, t ∈ R, i = 1, 2 and cross–

covariance C12(t) = C21(t) = E
(
Y1(0)Y2(t)

)
= e−

√
t2+h2/a, t ∈ R. Such processes can be constructed e.g.

as Y1(t) = Z
(
(t, 0)

)
and Y2(t) = Z

(
(t, h)

)
for some h ∈ R and each t ∈ R, where Z = {Z(x), x ∈ R2}

is a stationary centered Gaussian random field with covariance function C(x) = E
(
Z(o)Z(x)

)
= e−|x|/a,

x ∈ R2 for some constant a > 0.

Note that condition (13) is satisfied if
∫

R

∣∣Cov
(
Yi(o)Yj(x1), Yi(y)Yj(x2 + y)

)∣∣ dy ≤ κ1 (16)

for all i, j ∈ {1, 2} and x1, x2 ∈ R. Assume i 6= j, h 6= 0. The particular case i = j will follow from the
same reasoning by letting h = 0. By Kij we denote the covariance

Kij = Cov
(
Yi(o)Yj(x1), Yi(y)Yj(x2 + y)

)
.

It can be shown that

Kij = e−
(
|y|+|x1−x2−y|

)
/a + e−

(√
(y−x1)2+h2+

√
(x2+y)2+h2

)
/a

leading to the upper bound

|Kij | ≤ e−|y|/a + e−|y−x1|/a , x1, x2, y ∈ R ,

and hence ∫

R

|Kij | dy ≤ 2
∫

R

e−|y|/a dy = κ1 < ∞ .

Thus, the inequality (16) is proved. Analogously, condition (14) is satisfied if
∫

R

∣∣E(
Yi(o)Yi(y)Yj(x1)Yj(x2)

)∣∣ dy ≤ κ2 (17)

for all i, j ∈ {1, 2} and x1, x2 ∈ R. As above, it can be shown that

E
(
Yi(o)Yi(y)Yj(x1)Yj(x2)

)
= e−

(
|y|+|x1−x2|

)
/a + e−

(√
x2
2+h2+

√
(y−x1)2+h2

)
/a

+ e−
(√

x2
1+h2+

√
(y−x2)2+h2

)
/a ≤ e−|y|/a + e−|y−x1|/a + e−|y−x2|/a
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for all x1, x2, y ∈ R leading to
∫

R

∣∣E(
Yi(o)Yi(y)Yj(x1)Yj(x2)

)∣∣ dy ≤ 3
∫

R

e−|y|/a dy = κ2 < ∞ ,

i.e., the inequality (17) is also proved.

4 Random fields related to the Boolean model

The aim of this section is to give a simple sufficient condition for the integrability conditions (13) and
(14) for a another special class of jointly stationary random fields, which are functionals of particular
stationary random closed sets.

4.1 Boolean model

Let X = {Xl} be a stationary Poisson point process on Rd with finite intensity λ > 0. To each germ
Xl affix an independent copy Ml of a non-empty compact and convex random set M0 called the typical
grain. The sequence M = {Ml} of grains has to be independent of the point process X. A Boolean
model Ξ with convex grains is defined as the set-theoretic union of the translated RACS Ml + Xl, i.e.,

Ξ =
∞⋃

l=1

(Ml + Xl) . (18)

The right-hand side of (18) is almost surely closed and different from Rd if

E |M0 ⊕ Ǩ| < ∞ for any K ∈ K ; (19)

see Heinrich (1992). This condition is always satisfied e.g. in the case of grains M0 ⊂ BR(o) a.s. for some
R > 0. Moreover, a Boolean model Ξ with convex grains Ml can be represented as the union set of a
Poisson particle process Ψ = {Ψl} on K, where particles Ψl are defined as Ψl = Ml +Xl, confer Schneider
and Weil (2008). The intensity measure of Ψ is denoted by Λ, where Λ(B) = EΨ(B) is the expected
number of particles belonging to B for B ∈ σK. Let gΨ(B)(s) = E

(
sΨ(B)

)
, s ∈ R be the generating

function of Ψ(B). Then it holds that

gΨ(B)(s) = e(s−1)Ψ(B), s ∈ R . (20)

An application of Campbell’s theorem for independently marked point processes in Rd (see, e.g. Schneider
and Weil (2008)) yields

Λ(B) = E
∑

ψ ∈Ψ

1I(ψ ∈ B) = E
∑

y∈X,M0∈M

1I((M0 + y) ∈ B)

= λ

∫

Rd

E 1I((M0 + y) ∈ B) dy (21)

for all B ∈ σK. Considering KK = {K ′ ∈ K : K ′ ∩K 6= ∅}, we find that Λ(KK) = λE |M0 ⊕ Ǩ| so that
gΨ(KK)(s) < ∞ for any s ∈ R given that (19) is fulfilled.



Estimation of integrated covariance functions 11

4.2 Related random fields

Let f : R→ R be a functional on the convex ring R, which is the family of all finite unions of sets from
K. We say, f is a valuation on R if f is measurable and additive, i.e.,

f(K1 ∪K2) = f(K1) + f(K2)− f(K1 ∩K2)

for any K1, K2 ∈ R and f(∅) = 0. Furthermore, we assume that f is conditionally bounded on K, meaning
that for any K ∈ K there exists a finite bound c(K) such that for all K ′ ∈ K with K ′ ⊆ K it holds that

|f(K ′)| ≤ c(K) .

For any fixed convex body K ∈ K and for any Boolean model Ξ satisfying (19) the random set Ξ ∩K
belongs to R with probability one. Consequently, we may consider the random field Y = {Y (x), x ∈ Rd}
defined by

Y (x) = f ((Ξ− x) ∩K) , x ∈ Rd . (22)

In many cases, it can be thought of as a measurement of the random set Ξ within a moving scanning
window K + x, x ∈ Rd. Since Ξ is stationary, the random field Y is stationary as well. Notice that by
(20) all moments of Y (x), x ∈ Rd are finite, since one can show that

E |Y p(x)| ≤ cp(K)e(2p−1)λE |M0⊕Ǩ| for any p > 0 , (23)

see for example Lemma 2.1 of Pantle et al. (2006). Finally, consider m ∈ N pairs (fi,Ki), i = 1, . . . ,m
of conditionally bounded valuations fi : R → R and convex test sets Ki ∈ K. Then the vector field
Y = {Y (x), x ∈ Rd} with Y (x) = (Y1(x), . . . , Ym(x)) and Yi = {fi((Ξ− x) ∩Ki), x ∈ Rd} is of the form
discussed in Section 3.

4.3 Integrability of mixed moments

In the following, we show that the vector field Y constructed above obeys the integrability conditions (13)
and (14) under second moment conditions on the volume of the dilated primary grain M0 ⊕ Ǩ, K ∈ K.
To do this, we use the representation of Ξ as the union set of the generating Poisson particle process
Ψ = {Ψl} on K with intensity measure Λ as introduced above. In Lemma 4.1 of Pantle et al. (2006) it has
already been shown that (7), i.e.

∫
Rd |Covij(x)| dx < ∞, holds under the assumption E |M0 ⊕ Ǩi|2 < ∞

for i = 1, . . . ,m. The subsequent theorem yields that (13) and (14) are satisfied under the very same
condition.

Theorem 2. If E |M0 ⊕ Ǩi|2 < ∞ for i = 1, . . . , m, then there exist constants κ1, κ2 < ∞ such that

sup
x1,x2∈Rd

∫

Rd

∣∣Cov
(
Yi(o)Yj(x1), Yi(y)Yj(x2 + y)

)∣∣ dy ≤ κ1

and
sup

x1,x2∈Rd

∫

Rd

∣∣E(
[Yi(o)− µi] [Yi(y)− µi]Yj(x1) Yj(x2)

)∣∣ dy ≤ κ2

for all i, j = 1, ..., m.

The proof of this theorem is given in Appendix.
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5 The empirical covariance

The estimator σ̂nij introduced in (10) makes use of the fact that σij is basically the integral of Covij(x)
over Rd. Thus, estimating the covariance and considering the integral over an unboundedly increasing win-
dow is a quite intuitive approach. Another possibility is to employ that σij = limn→∞ |Wn|Cov(µ̂ni, µ̂nj).
Provided that there exist samples

√
|Wn|µ̂ni,1, . . . ,

√
|Wn|µ̂ni,N(n) and

√
|Wn|µ̂nj,1, . . . ,

√
|Wn|µ̂nj,N(n)

for some N(n) ∈ N, a natural estimate is given by the empirical covariance of these samples. Initially, we
assumed that there exists only one value µ̂ni and µ̂nj , respectively. One way to use as much information
from the observations in Wn as possible and to cut down the running time is to divide Wn into N(n)
smaller subwindows and perform the estimation of the means µni of random fields Yi on each subwindow
separately. This will give us the required samples of size N(n).

To be more precise, we need some further definitions and notation. Let {Vn} with Vn ⊂ Wn, n ≥ 1 be a
sequence of monotonously increasing, bounded Borel sets fulfilling (1) and {N(n)} an increasing sequence
of integers with limn→∞N(n) = ∞. For any n ∈ N choose some vectors hn,1, . . . , hn,N(n) ∈ Rd and define
Vn,k = Vn + hn,k , k = 1, . . . , N(n) satisfying the following conditions:

• Suppose that

N(n)⋃

k=1

Vn,k ⊆ Wn and Gi(Vn,k, x) = Gi(Vn, x− hn,k), x ∈ Rd, i = 1, . . . ., m, n ∈ N. (24)

• Condition (5) holds for {Vn,k} with constant c̃1 and limits θ̃ij ∈ (0,∞), i, j = 1 . . . , m. Without
loss of generality we may assume that c̃1 = c1 and θij = θ̃ij .

• There exists some r > 0 such that

Vn,k ∩ Vn,` ⊂ ∂Vn,k ⊕Br(o) for k, ` ∈ {1, . . . , N(n)} with k 6= `. (25)

Furthermore, denote by µ̂ni,k the estimator of µi = EYi(o) as given in (2), but based on observations
within Vn,k only: µ̂ni,k =

∫
Vn,k

Yi(x)Gi(Vn,k, x) dx . Now define a new estimator Σ̃n = (σ̃nij) by the
formula

σ̃nij =
|Vn|

N(n)− 1

N(n)∑

k=1

(
µ̂ni,k − µni

)(
µ̂nj,k − µnj

)
, (26)

where µni =
1

N(n)
∑N(n)

k=1 µ̂ni,k for i = 1, . . . ,m .

The estimator Σ̃n is asymptotically unbiased under the same assumptions as considered for Σ̂n, but
mean-square consistency requires integrability condition (15).

Lemma 2. The estimator Σ̃n defined in (26) is asymptotically unbiased for Σ as n →∞.
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Proof. Set N = N(n) and employ the following representation

σ̃nij =
|Vn|
N

N∑

k=1

(
µ̂ni,k − µi

)(
µ̂nj,k − µj

)− |Vn|
N(N − 1)

N∑

k, ` = 1
k 6= `

(
µ̂ni,k − µi

)(
µ̂nj,` − µj

)
. (27)

This formula can be derived by elementary transformation of
∑N

k=1

(
µ̂ni,k − µni ± µi

)(
µ̂nj,k − µnj ± µj

)
.

With regard to the expectation of the first summand in (27) we get

|Vn|
N

N∑

k=1

E
(
µ̂ni,k − µi

)(
µ̂nj,k − µj

)
=

|Vn|
N

N∑

k=1

∫

Vn,k

∫

Vn,k

Covij(y − x)Gi(Vn,k, x)Gj(Vn,k, y) dx dy

=
|Vn|
N

N∑

k=1

∫

Vn

∫

Vn

Covij(y − x)Gi(Vn, x)Gj(Vn, y) dx dy

=
∫

Rd

Covij(x) |Vn|ΓVnij (x) dx ,

where we used condition (24) in the second line. The last expression converges to σij as n → ∞ by the
dominated convergence theorem, given (7) and (5). It remains to show that the expectation of the second
expression in (27) tends to zero as n →∞. In fact, one obtains for any k 6= ` that

E
(
µ̂ni,k − µi

)(
µ̂nj,` − µj

)
=

∫

Vn,k

∫

Vn,`

Covij(y − x)Gi(Vn,k, x)Gj(Vn,`, y) dx dy

≤ c2
1

∫

Rd

|Covij(x)| |Vn,k ∩ (Vn,` − x)|
|Vn|2 dx .

By (25), it holds that |Vn,k ∩ (Vn,` − x)| ≤ |(∂Vn ⊕B|x|+r(o))∩ Vn| for each l 6= k, l, k = 1, . . . , N . Thus,
assuming (1) and (7) we have

E
( |Vn|

N(N − 1)

N∑

k, ` = 1
k 6= `

(
µ̂ni,k − µi

)(
µ̂nj,` − µj

)) ≤ c2
1

∫

Rd

|Covij(x)| |(∂Vn ⊕B|x|+r(o)) ∩ Vn|
|Vn| dx → 0

as n tends to infinity.

Theorem 3. If condition (15) holds, then Σ̃n is a mean-square consistent estimator of Σ.

Proof. By means of Lemma 2, it suffices to show that limn→∞E (σ̃nij − E σ̃nij)2 = 0. To simplify
notation, write ωij,kn(x, y) = Gi(Vn,k, x)Gj(Vn,k, y) for all i, j = 1, ...,m, x, y ∈ Rd. As in the proof of
Lemma 2 consider the two summands of formula (27) separately, using the fact that the covariance of
two random variables converges to zero whenever the variances do. For the variance of the first summand
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we observe that

E

( |Vn|
N

N∑

k=1

((
µ̂ni,k − µi

)(
µ̂nj,k − µj

)−
∫

Vn,k

∫

Vn,k

Covij(y − x) ωij,kn(x, y) dx dy)
))2

=
|Vn|2
N2

N∑

k,`=1

∫

V 2
n,k

∫

V 2
n,`

(
E

(
(Yi(v1)− µi)(Yj(v2)− µj)(Yi(v3)− µi)(Yj(v4)− µj)

)

−Covij(v2 − v1)Covij(v4 − v3)
)

ωij,kn(v1, v2) ωij,`n(v3, v4) dv1 dv2 dv3 dv4 .

For any v1, v2, v3, v4 ∈ Rd set c
(4)
ij (v1, v2, v3, v4) = E ((Yi(v1)−µi)(Yj(v2)−µj)(Yi(v3)−µi)(Yj(v4)−µj))

− Covij(v2 − v1)Covij(v4 − v3) − Covii(v3 − v1)Covjj(v4 − v2) − Covij(v4 − v1)Covij(v2 − v3). Then it
follows that

∫

V 2
n,k

∫

V 2
n,`

(
E

(
(Yi(v1)− µi)(Yj(v2)− µj)(Yi(v3)− µi)(Yj(v4)− µj)

)− Covij(v2 − v1)Covij(v4 − v3)
)

× ωij,kn(v1, v2) ωij,`n(v3, v4) dv1 dv2 dv3 dv4

=
∫

V 2
n,k

∫

V 2
n,`

c
(4)
ij (v1, v2, v3, v4) ωij,kn(v1, v2) ωij,`n(v3, v4) dv1 dv2 dv3 dv4

+
∫

V 2
n,k

∫

V 2
n,`

(
Covii(v3 − v1)Covjj(v4 − v2) + Covij(v4 − v1)Covij(v2 − v3)

)

× ωij,kn(v1, v2) ωij,`n(v3, v4) dv1 dv2 dv3 dv4

Using the same arguments as in the proof of Lemma 2, one obtains

|Vn|2
N2

N∑

k,`=1

∫

V 2
n,k

∫

V 2
n,`

(
E

(
(Yi(v1)− µi)(Yj(v2)− µj)(Yi(v3)− µi)(Yj(v4)− µj)

)

−Covij(v2 − v1)Covij(v4 − v3)
)

ωij,kn(v1, v2) ωij,`n(v3, v4) dv1 dv2 dv3 dv4

≤ c4
1

|Vn| ·
∫

R3d

| c(4)
ij (o, x1, x2, x3)| dx1 dx2 dx3 +

+
c4
1

N2

N∑

k,`=1

∫

Rd

|Covii(x)| |Vni,k ∩ (Vni,l − x)|
|Vn| dx

∫

Rd

|Covjj(x)| dx

+
c4
1

N2

N∑

k,`=1

∫

Rd

|Covij(x)| |Vni,k ∩ (Vnj,l − x)|
|Vn| dx

∫

Rd

|Covij(x)| dx

≤ c4
1

|Vn| · κ + c4
1

∫

Rd

|Covii(x)| ·
(

1
N

+
|(∂Vn ⊕B|x|+r(o)) ∩ Vn|

|Vn|
)

dx

∫

Rd

|Covjj(x)| dx

+ c4
1

∫

Rd

|Covij(x)| ·
(

1
N

+
|(∂Vn ⊕B|x|+r(o)) ∩ Vn|

|Vn|
)

dx

∫

Rd

|Covij(x)| dx .
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The last expression tends to zero, since limn→∞ |Vn| = limn→∞N(n) = ∞. Besides that, it can now easily
be derived that the variance of the second summand of (27) has similar upper bounds and, consequently,
converges to zero as well.

If Y (x) = 1I(x ∈ Ξ), where Ξ is a Boolean model with compact typical grain M0, then it is known from
Lemma 7 of Heinrich (2005) that a sufficient assumption for the conditions of Theorem 3 is given by
E |M0|4 < ∞. Notice that Σ̂n, on the contrary, is mean–square consistent in this particular case provided
that M0 is compact and convex and E |M0|2 < ∞, compare Theorem 2.

6 Numerical examples

We conclude with a numerical comparison of the estimators Σ̂n and Σ̃n with respect to performance and
computational effort.

6.1 Dependent Gaussian random processes

Revisiting the example of Section 3.3, the behaviour of the estimator Σ̂n with respect to the relationship
between the observation window Wn and the averaging set Un is investigated by simulations, see Table
1. Let K (α, x) denote the modified Bessel function of the second kind. Then, the asymptotic covariance
matrix

Σ =




∫
R

e−|y|/a dy
∫
R

e−
√

y2+h2/a dy

∫
R

e−
√

y2+h2/a dy
∫
R

e−|y|/a dy


 =

(
2a 2hK

(
1, h

a

)
2hK

(
1, h

a

)
2a

)
=

(
100 87.374

87.374 100

)

of the dependent Gaussian processes Y1 and Y2 with parameter values a = 50 and h = 20 and weight
function Gi(Wn, x) = 1I(x ∈ Wn) / |Wn| (meaning θij = 1, i, j = 1, 2) was estimated by Σ̂n as an average
of 200 simulations. The value of the Bessel function K(1, 2/5) was assessed numerically using Maple.
In Table 1, the values of the empirical standard deviation and the bias for σ̂ij are given as well. One
can observe that the variance of the estimator increases with increasing subwindow Un. Conversely, the
bias of the estimator decreases with increasing Un. The overall precision of the estimator increases with
increasing Wn since both bias and variance become smaller.

6.2 Boolean Model and related random fields

Let Ξ be a stationary Boolean model with compact and convex uniformly bounded grains. Hence,
condition (19) is satisfied. Then, the intrinsic volumes Vj(Ξ ∩K), j = 0, ..., d of Ξ ∩K are well defined
for any convex body K ∈ K, see e.g. Schneider (1993) or Schneider and Weil (2008) on intrinsic volumes.
In the plane, i.e., d = 2, for instance, V2(Ξ ∩K) is the usual area, 2V1(Ξ ∩K) is the boundary length
and V0(Ξ ∩ K) is the Euler-Poincaré characteristic of the set Ξ ∩ K. Let Yi(x) = V0(Ξ ∩ Bri(x)) for
m > d+1 distinct radii ri, i = 1, ..., m. In the following, we estimate the asymptotic integrated covariance
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matrix of the stationary vector–valued random field Y = (Y1, . . . , Ym)> from simulated realisations of Ξ.
Since Yi(x) and Yj(y) are independent if |x − y| > ri + rj + dM0 , x, y ∈ R2, where dM0 is the maximal
(deterministic) diameter of the typical grain M0, we put Unij = Bri+rj+dM0

(o) in (10) for the estimator
Σ̂n.

First, let us motivate this simulation study by applications in stochastic geometry. Consider the so–called
intrinsic volume densities of a Boolean model Ξ and the corresponding integrated covariance functions.
For any sequence {Kn} of convex bodies Kn = nK0 with K0 ∈ K such that |K0| > 0 and o ∈ int(K0),
the limits

V j(Ξ) = lim
n→∞

EVj(Ξ ∩Kn)
|Kn| , j = 0, . . . , d (28)

exist and are called the intrinsic volume densities of Ξ. For some intrinsic volume densities, estimators
of several types are considered in the literature. The following indirect estimation method has been
proposed in Spodarev and Schmidt (2005):

v̂n =
(
A>r1,...,rm

Ar1,...,rm

)−1
A>r1,...,rm

µ̂n , (29)

where v̂n is a least-squares estimator for v = (V 0(Ξ), . . . , V d(Ξ)) minimizing |Ar1,...,rm µ̂n−v| on Rd+1, µ̂n

is the mean value estimator of Y defined in (2) and Ar1,...,rm is a specific m× (d+1)–dimensional matrix
of rank d + 1. We refer to the article Guderlei et al. (2006) for related implementation issues. A major
advantage of this estimation method for our purpose is that the values Yi(x) can be determined for each
point x inside the observation window Wn explicitly with acceptable runtime. To assess the quality of
the estimates of Σ, the transformed estimators Ĉn and C̃n are compared, where

Ĉn =
(
A>r1,...,rm

Ar1,...,rm

)−1
A>r1,...,rm

Σ̂n Ar1,...,rm

(
A>r1,...,rm

Ar1,...,rm

)−1
, n ≥ 1

and C̃n is defined analogously. In other words, we compare the estimated values of the asymptotic covari-
ance matrix C of

√
|Wn|(v̂n − v), whereas, from the computational point of view, the estimation of the

asymptotic covariance matrix of random fields Yi was performed first and then the linear transformation
as in (29) was applied.

In the sequel, set d = 2 and skip the index n for simplicity. Several Boolean models Ξ with typical grain
M0 = BR(o), R ∼ U(20, 40) and intensity λ = − log(0.5)/π E(R2) were simulated in the observation
window W = [−1500, 1500]2 with in total 30002 data points (pixels). The intensity of the underlying
point process is chosen so that V 2(Ξ) = 0.5 for each setting. Notice that the values of V 1(Ξ) and V 0(Ξ) are
also known for these models (see Stoyan et al. (1995, p. 76)). For the auxiliary vector Y = (Y1, . . . , Ym)>,
put m = 16 and ri+1 = 4.2 + 1.3 i, i = 0, . . . , 15; confer Guderlei et al. (2006) on the choice of these
parameters. Any integral in the definitions of the estimators is discretized using observations on the grid
W ªBr(o)∩∆Z2 for some grid mesh size ∆ ∈ N and r = max{r1, . . . , rm}. For the computation of Σ̂, we
choose the discrete weighting functions gi(W,x) = 1I(x ∈ (W ªBr(o))∩∆Z2)/card((W ªBr(o))∩∆Z2).
For the values of all estimation parameters, see Table 2. The evaluation of Σ̃ is performed on N non–
overlapping subwindows Vk. Again, uniform weights are assigned to each observation in VkªBr(o)∩∆Z2.
A finer mesh size ∆ is chosen for the second partition (cf. last line of Table 2) due to the reduced size of the
subwindows. For each Boolean model, k = 200 simulations were performed. Typical simulation results
are shown in the Tables 3–6 including the standard deviation (std) from the corresponding averaged
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values. On average, a Pentium IV (2.4 GHz) requires about 25 minutes for the evaluation of Ĉ on
W = [−1500, 1500]2. As expected, since only very elementary operations are needed, the running time
for C̃ is shorter with 3 minutes on average on both partitions. Smaller values of grid mesh size ∆ lead to
slightly more accurate results, measured with respect to the estimates of v. The running time, however,
is unreasonably higher.

Since analytic formulae for C are not available, a table of empirical co-/variances from 1000 independent
samples of

√
|W |(v̂ − v) are displayed as reference values in Table 3. With respect to these reference

values, Ĉ provides the best results in most cases (see Table 4). The results for C̃ usually get better the
finer the subpartition is (cf. Tables 5 and 6). The fluctuations in the estimated values C̃ are still higher
than those of Ĉ. The deviation from the reference values increases for two components c̃00 and c̃02 on
the second partition. This can be explained by the fact that here the estimation of v is performed on
relatively small (sub)windows compared to the estimation procedure of reference values.

Experiments showed that the application of C̃ is advisable only if the observation window W is sufficiently
large so that it can be decomposed into “sufficiently many” disjoint, but “not too small” subwindows. In
addition to the right choice of parameters m and ri, i = 1, . . . ,m, the question of an adequate size and
number of the subwindows makes C̃ rather critical for application. Using Ĉ at most 2% of the estimates
were not positive semidefinite. On the contrary, the matrix C̃ (resp. Σ̃) is by definition always positive
semidefinite and proved to be positive definite in all simulated examples. We also remark that all samples
v̂1, ...., v̂k were tested for multivariate normality using the test proposed in Henze and Zirkler (1990) with
significance level α = 0.05 and scaling parameter β = 0.5, 1.0 and 3.0, respectively. None of the tests led
to rejection of the multivariate normality assumption.

Note that there exists a simple direct estimation method for the area density p = V 2(Ξ) considered
separately, see Böhm et al. (2004). The random field used here is given by Y (x) = 1I(x ∈ Ξ), x ∈ Rd. For
this method, an explicit formula exists for the asymptotic variance σpp of

√
|W |(∫W Y (x)G(Wn, x)dx−p),

where σpp ≈ 678.097 in the considered example. The corresponding estimates σ̂pp and σ̃pp are attached
to each table for comparison.

7 Summary

In this paper, we considered two asymptotically unbiased and (under some additional conditions) mean-
square consistent estimators for the matrix of integrated cross covariances of a stationary vector–valued
random field. The first one, Σ̂, used ideas of time series analysis in its construction. The second one, Σ̃,
is an empirical covariance–type estimator which was considered in the literature before. Both estimators
allow for the construction of asymptotical test of the mean of vector–valued random fields. Our simulation
study showed that Σ̂ (although not necessarily positive semidefinite) performs better than Σ̃ concerning
the accuracy and the variance of estimation. However, the performance of Σ̃ gets better if the number
of subwindows Vk (as well as their size) increases. Hence, the use of Σ̃ is legitimized for rather large
observation windows W . As for the estimator Σ̂, its bias decreases and its variance increases with
increasing the subwindow Un. On the other hand, the computation of the estimator Σ̂ is much more
involved (and hence slower) than that of Σ̃. For a large number of repeated tests, the use of Σ̃ can be
recommended for runtime reasons.
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Appendix

Proof of Theorem 2. We use a similar construction as in the proof of Lemma 4.1 in Pantle et al.
(2006). For simplicity, consider the case i = j and omit the indices in the following. If i 6= j the
proof is analogous. With KC = {K ′ ∈ K : K ′ ∩ C 6= ∅} for any C ⊂ Rd define K∗ = K∗(x1, x2, y) =
(KK ∪KK+x1)∩ (KK+y ∪KK+x2+y) for x1, x2, y ∈ Rd. Now, consider the event A = {Ψ(K∗) > 0} and its
complement Ac, where Ψ(B) is the random number of particles of Ψ belonging to a set B ⊆ K. Then, it
holds that

∣∣Cov
(
Y (o)Y (x1), Y (y)Y (x2 + y)

)∣∣

=
∣∣E(

Y (o)Y (x1) (1IA + 1IAc) · [Y (y)Y (x2 + y)− E (Y (y)Y (x2 + y))
])∣∣

=
∣∣E(

Y (o)Y (x1) 1IA ·
[
Y (y)Y (y + x2)− E (Y (y)Y (y + x2))

])

+E
(
Y (o)Y (x1) 1IAc · [Y (y)Y (y + x2)− E (Y (y)Y (y + x2))

])∣∣. (30)

In the first step, we investigate the summand (30). Define YB(x) = f
(
(
⋃

l:Ψl∈B Ψl − x) ∩ K
)

for any
B ⊆ K and x ∈ Rd. By additivity of f we see that

Y (x) = YB(x) + YK\B(x)− f
(
(

⋃

l:Ψl∈B

Ψl − x) ∩ (
⋃

l:Ψl∈K\B
Ψl − x) ∩K

)

= YB∩KK+x
(x) + YKK+x\B(x)− f

(
(

⋃

l:Ψl∈B∩KK+x

Ψl − x) ∩ (
⋃

l:Ψl∈KK+x\B
Ψl − x) ∩K

)

Thus, we have Y (x)1I(Ψ(K∗) = 0) = YKK+x\K∗(x)1I(Ψ(K∗) = 0) almost surely and obtain the following
equations

Y (o)Y (x1) · 1IAc = YKK\K∗(o)YKK+x1
\K∗(x1) · 1IAc

and
Y (y)Y (y + x2) · 1IAc = YKK+y\K∗(y)YKK+y+x2

\K∗(y + x2) · 1IAc .

The random variables YKK\K∗(o)YKK+x1
\K∗(x1) · 1IAc and YKK+y\K∗(y)YKK+y+x2

\K∗(y + x2) are indepen-
dent, since the particles Ψl involved are mutually independent. As a result we get

E
(
Y (o)Y (x1)1IAc · [Y (y)Y (y + x2)− E (Y (y)Y (y + x2))

])

= E(YKK\K∗(o)YKK+x1
\K∗(x1) 1IAc) · [E(YKK+y\K∗(y)YKK+y+x2

\K∗(y + x2))− E (Y (y)Y (y + x2)]
)

= E(Y (o)Y (x1) 1IAc) · E(
[YKK+y\K∗(y)YKK+y+x2

\K∗(y + x2)− Y (y)Y (y + x2)] 1IA
)
.
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Insert the above equations into (30) to obtain by triangle inequality
∣∣Cov

(
Y (o)Y (x1), Y (y)Y (x2 + y)

)∣∣
≤ ∣∣E(

Y (o)Y (x1) 1IA ·
[
Y (y)Y (y + x2)− E (Y (y)Y (y + x2))

])∣∣
+E

∣∣Y (o)Y (x1)
∣∣ · ∣∣E(

[YKK+y\K∗(y)YKK+y+x2
\K∗(y + x2)− Y (y)Y (y + x2)]1IA

)∣∣ .

For the first summand in the upper bound we can conclude that
∣∣E(

Y (o)Y (x1) 1IA ·
[
Y (y)Y (y + x2)− E (Y (y)Y (y + x2))

] )∣∣
≤ c2(K)E

(
2Ψ(KK)+Ψ(KK+x1

) · [c2(K) 2Ψ(KK+y)+Ψ(KK+y+x2
) + E |Y (y)Y (y + x2)| ] · 1IA

)
.

Since Ψ is a Poisson process, the random variables Ψ(B) and Ψ(B′) are independent for any two disjount
sets B,B′ ⊆ K, whence

E
(
2Ψ(KK)+Ψ(KK+x1

)+Ψ(KK+y)+Ψ(KK+y+x2
) · 1IA

)

= E 2Ψ(KK\K∗)+Ψ(KK+x1
\K∗) · E 2Ψ(KK+y\K∗)+Ψ(KK+y+x2

\K∗) · E(
24Ψ(K∗) 1IA

)

and

E
(
2Ψ(KK)+Ψ(KK+x1

) · 1IA
)

= E 2Ψ(KK\K∗)+Ψ(KK+x1
\K∗) · E (

22Ψ(K∗) 1IA
)
.

For the second summand of the considered upper bound, we analogously obtain
∣∣E([

Y (y)Y (y + x2)− YKK+y\K∗(y)YKK+y+x2
\K∗(y + x2)

]
1IA

)∣∣

≤ c2(K)E 2Ψ(KK+y)+Ψ(KK+y+x2
)E

(
[22Ψ(K∗) + 1] 1IA

)
.

Due to the fact that c(K) < ∞, E |Y (x)Y (y)| < ∞ and E 2Ψ(KK+x\K∗)+Ψ(KK+y\K∗) ≤ gΨ(KK)(4) < ∞ for
any x, y ∈ Rd, we may concentrate on E (sΨ(K∗) 1IA), say, for arbitrary s ∈ R+. This quantity, however,
is bounded by

E (sΨ(K∗)1IA) = E (sΨ(K∗))− E (1IAc) = e(s−1)Λ(K∗) − e−Λ(K∗)

≤ s e(s−1)Λ(K∗)Λ(K∗) ≤ s e(s−1)λE |M0⊕Ǩ|Λ(K∗)
using that 1 − e−x ≤ x for any x ∈ R+ and Λ(K∗) ≤ Λ(KK) + Λ(KK+x1) = 2λE |M0 ⊕ Ǩ| by (21). It
remains to show that Λ(K∗) = Λ(K∗(x1, x2, y)) is integrable with respect to y ∈ Rd and that the integral
admits an upper bound uniformly in x1, x2 ∈ Rd. Employing equation (21) and Fubini’s theorem we get

∫

Rd

Λ(K∗(x1, x2, y)) dy

= λE

∫

Rd

∫

Rd

1I
[
z ∈ M̌0 ⊕K ∪ (M̌0 ⊕ (K + x1))

]
1I
[
z − y ∈ (M̌0 ⊕K) ∪ (M̌0 ⊕ (K + x2))

]
dy dz

≤ λE

∫

Rd

∫

Rd

(
1I[z ∈ M̌0 ⊕K] + 1I[z − x1 ∈ M̌ ⊕K]

)

× (
1I[z − y ∈ M̌0 ⊕K] + 1I[z − y ∈ M̌0 ⊕ (K + x2)]

)
dy dz

= 4λE |M0 ⊕ Ǩ|2 < ∞.
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for arbitrary x1, x2 ∈ Rd. Combining all estimates, we conclude that there exists a constant κ1 =
κ1(M0, λ, K), which depends on M0 and K through |M0 ⊕ Ǩ| and c(K), such that for all x1, x2 ∈ Rd it
holds

∫
Rd |Cov(Y (o)Y (x1), Y (y)Y (x2 + y))| ≤ κ1.

The second assertion of Theorem 2 can be shown following the same idea. Let K∗∗ = K∗∗(x1, x2, y) =
KK+y ∩ (KK ∪ KK+x1 ∪ KK+x2) for x1, x2, y ∈ Rd and consider the event Ā = {Ψ(K∗∗) > 0}. Then, by
the same arguments as before, it follows that

∣∣E(
[Y (o)− µ] [Y (y)− µ]Y (x1) Y (x2)

)∣∣ ≤ ∣∣E(
[Y (o)− µ] [Y (y)− µ] Y (x1) Y (x2) 1IĀ

)∣∣
+E

∣∣[Y (o)− µ] Y (x1) Y (x2)
∣∣∣∣E(

[YKK+y
(y)− Y (y)]1IĀ

)∣∣
≤ κ(M0, λ, K) · Λ(K∗∗(x1, x2, y))

for some finite bound κ(M0, λ, K) depending on K and M0 through c(K) and E |M0⊕ Ǩ| only. Further-
more, we have for any x1, x2 ∈ Rd that

∫

Rd

Λ(K∗∗(x1, x2, y)) dy

= λE

∫

Rd

∫

Rd

1I
[
y − z ∈ M0 ⊕ Ǩ

]
1I
[
z ∈ (M̌0 ⊕K) ∪ (M̌0 ⊕ (K + x1)) ∪ (M̌0 ⊕ (K + x2))

]
dy dz

≤ 3λE |M0 ⊕ Ǩ|2 < ∞.

References

Adler, R. J. and Taylor, J. E. (2007) Random fields and geometry. Springer.
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Table 1: Average values for σ̂nij (out of 200 runs) on different observation windows Wn with various
choices for Un.

|Wn| |Un| σ̂00 σ̂01 σ̂11

10000 100 mean 62.72 52.13 62.61
bias -37.28 -47.87 -37.39
std 8.67 8.23 9.26

10000 200 mean 83.63 71.72 83.21
bias -16.37 -28.28 -16.80
std 15.84 14.89 16.11

10000 400 mean 95.77 82.89 93.73
bias -4.23 -17.11 -6.27
std 27.35 26.05 26.90

10000 800 mean 92.67 80.47 90.31
bias -7.33 -19.53 -9.69
std 37.60 34.08 36.06

40000 100 mean 62.69 51.88 62.45
bias -37.31 -48.13 -37.55
std 4.83 4.56 4.86

40000 200 mean 85.83 73.91 85.92
bias -14.17 -26.09 -14.08
std 7.92 7.45 8.07

40000 400 mean 96.53 84.68 97.43
bias -3.47 -15.32 -2.57
std 13.05 12.22 12.75

40000 800 mean 98.68 87.01 100.11
bias -1.32 -12.99 0.11
std 19.39 17.11 18.00
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Table 2: Estimation parameters for random fields related to Boolean models. Here W is the simulation
window, ∆ is the grid mesh size for integral approximations; nmax is the maximal number of available
data points in W (subwindows Vk, respectively), which is the ratio of the total number of pixels in the
window to ∆; N is the number of non–overlapping subwindows for the estimator Σ̃; ]Vk is the number
of pixels in each Vk.

Estimator W ∆ nmax N ]Vk

Σ̂ [−1500, 1500]2 10 3002 —— ——

Σ̃ [−1500, 1500]2 10 1002 9 1000× 1000

Σ̃ [−1500, 1500]2 5 1002 36 500× 500

Table 3: Empirical co-/variances of 1000 independent samples. Reference values for the unknown asymp-
totic covariance matrix.

c0j c1j c2j

ci0 1.65e-4 -7.48e-4 -0.12
std 0.29e-4 4.51e-4 0.04

ci1 0.11 5.81
std 0.02 1.18

ci2 676.68
std 119.59

Table 4: Average value for Ĉ (out of 200 runs) on observation window W = [−1500, 1500]2. Average
estimate of the variance of the area density σ̂pp ≈ 678.93 with relative standard deviation δ ≈ 4.70%.

ĉ0j ĉ1j ĉ2j

ĉi0 1.75e-4 -1.27e-3 -0.17
std 0.30e-4 0.52e-3 0.03

ĉi1 0.19 7.09
std 0.02 0.73

ĉi2 688.13
std 34.90



Table 5: Average value for C̃ (out of 200 runs) on observation windows Vk = [−500, 500)2 + hk, hk =
(k1 1000, k2 1000)>, k = (k1, k2), k1, k2 = −1, 0, 1. Average estimate of the variance of the area density
σ̃pp ≈ 648.06 with relative standard deviation δ ≈ 51.38%.

c̃0j c̃1j c̃2j

c̃i0 1.75e-4 -1.34e-3 -0.18
std 0.32e-4 0.63e-3 0.03

c̃i1 0.19 6.95
std 0.02 0.82

c̃i2 691.33
std 39.68

Table 6: Average value for C̃ (out of 200 runs) on observation windows Vk = [−250, 250)2 + hk, hk =
(k1 500, k2 500)>, k = (k1, k2), k1, k2 = −2,−1, 0, 1, 2. Average estimate of the variance of the area density
σ̃pp ≈ 651.15 with relative standard deviation δ ≈ 23.95%.

c̃0j c̃1j c̃2j

c̃i0 1.42e-4 -9.20e-4 -0.18
std 0.31e-4 7.25e-4 0.03

c̃i1 0.17 6.68
std 0.02 0.89

c̃i2 675.10
std 46.03
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