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Introduction

Consider a stationary k—flat process @% in R?, i.e. (I’% is a random point
process on the phase space of all k—dimensional flats in d—dimensional space,
each realization of which is an at most countable ”locally finite” collection
of k-planes (cf. section 1 of chapter I for exact definitions). Stationarity
means stability of its distribution with respect to translations in R%. The
probability distribution @ of the direction of a ”typical” flat of @g is called
the directional distribution of i)z.

Intersections of all pairs of k-planes of @% induce the new stationary
(2k — d)—flat process whose intensity, i.e. the (2k — d)—volume content in a
test window, is called the intersection density of @%. A number of authors
(R. Davidson (1974), J. Janson and O. Kallenberg (1981), J. Mecke and C.
Thomas (1984, 1988), J. Keutel (1992)) dealt with the following variational
problem concerning Cﬁgﬁnd all extremal directional distributions 6 pf P4

that maximize its intersection density.

In the case of hyperplanes (k = d — 1) the solution is unique and corre-
sponds to the Haar measure on the appropriate Grassmann manifold. For
other particular dimensions & the whole class of maximal measures 6 was
described, but nevertheless some cases are still open there, e. g. when d is
not divisible by d — k. It is worth mentioning that the form of these ex-
tremal measures as well as the methods of treating this problem for different
dimensions k depend heavily on k.

The motivation for this research was to try to describe this extremal class
of directional distributions and solve the problem completely. The idea was
to understand the nature of these extremal measures deeper and find their
common properties.

This common approach is developed in chapter II by means of the appro-
priate variational calculus (section 3). The necessary conditions of maximum
for arbitrary dimensions d and k are given there in terms of the roses of in-
tersections of q)%. To be more precise, suppose one intersects @z with an
r—flat n, r =d —k+ 5. Then @% Nn is a j-flat stationary process in 7 with
intensity f(n) which is called the rose of intersections of ®¢. Theorem II.4.1
states that the directional distribution @ is extremal if and only if the rose of
intersections of @% with all k—flats is # — almost everywhere constant. The
fact that this simple criterion does not depend on % is at the same time an
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2 INTRODUCTION

advantage and a shortcoming: it systematizes the results obtained before
(cf. section 2 of chapter II), but its conditions are too weak to be sufficient,
i.e. to yield the solution.

Thus the new mathematical setting was born: suppose we know the rose
of intersections f of @z with all r—flats exactly. Is this information sufficient
to determine the distribution of @g completely? If it is so, how can it be
done? If ¢ is Poisson (cf. [59], [82]) then it is completely determined by its
intensity measure A(-), i.e. by its intensity A and directional distribution 0
(see equation (I.1.2)). For arbitrary stationary processes ®¢ this is evidently
false, but nevertheless the knowledge of the intensity measure allows us to
make some general conclusions about the behavior of the process.

Suppose the intensity A is fixed and the rose of intersections f of @g with
r—flats is given. In chapter IV the following two questions are considered:

1. Does there exist a one-to—one correspondence between f and 67
2. How can 6 be restored from f (exact formulae)?

The complete answer to the first question was obtained by G. Matheron
(1975), P. Goodey, R. Howard and M. Reeder (1990, 1996) (cf. [51], [14]
— [16], respectively). It appears that uniqueness of retrieval holds only for
particular k and 7 (see section 1 of chapter IV).

The partial answer to the second question (fiber processes in dimensions
2 and 3) could be found in the papers by J. Mecke and W. Nagel (1980,
1981) (cf. [52], [58] and others).

The main results of the present thesis (see sections 2 and 3 of chapter
IV) yield the retrieval formulae for the directional distribution 6 of any
stationary process of hyperplanes in R¢ from its rose of intersections when
the intersecting plane 7 has dimension r, 1 < r < d — 1. These results
are generalized to hold for stationary manifold processes in R?. The case
d =4,k = r = 2 is considered separately in section 5 of chapter IV. The
whole class of directional distributions 8 corresponding to the same rose of
intersections f is described there. The proofs involve inversions of various
integral transforms and expansions in spherical harmonics.

The required calculus of Radon and generalized cosine transforms on
Grassmann manifolds is discussed in chapter ITI. The action of Radon trans-
forms R;; on the functions that are the positive powers of the volumes of
certain parallelepipeds is studied in §3.1 and §3.2. It is shown that the
Radon transform and its dual preserve the ”structure” of these functions:
they map them into the same powers of some other volumes up to a constant
factor (see theorem II11.3.1 and proposition I11.3.1).

The important corollaries that yield integral relations between the ge-
neralized cosine transforms and Radon transforms (Cauchy—Kubota — type
formulae) are given in §3.3. They are used later in chapter IV to invert the
generalized cosine transforms. In detail, in §1.2 of chapter ITI the generalized
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cosine transforms Tj; are embedded in the family of operators T;; where o
is a positive parameter. The Cauchy—Kubota — type formulae for operators
T} state that by integration of T} (applying R;;) the new member of the
same family T,fj appears (proposition I11.3.2). The name ” Cauchy—Kubota
— type” is due to the fact that in case a = 1 they can be seen for particular
dimensions j and measures 6 as a consequence of the well known Cauchy —
Kubota formula (I11.3.1) (see also Ch. 13, §1, 2 of [72], [73], p. 295 and [45],
p- 126) applied to projection functions of zonoids.

Some interesting corollaries of the double fibration relation for T are
considered in §3.4. Upper bounds for the weighted images of Radon trans-
forms are given in §3.5.

In chapter V we consider two related problems for the roses of inter-
sections. Section 1 is devoted to their characteristic properties: there the
answer to the question ”is a given function the rose of intersections of some
stationary hyperplane process with lines?” is found. It is known from [51]
that this problem is deeply connected with the geometry of centrally sym-
metric convex bodies. Namely, a rose of intersections is at the same time the
generalized cosine transform of its directional distribution measure €, and
for some particular dimensions k£ and r it could be regarded as a support
function of zonoids or its kth projection function (cf. [22], [17], [89]). Due
to this fact we can apply the characterization results pertinent to this class
of convex bodies to get the answer to the question posed above.

In section 2 we generalize the notion of the rose of intersections, i.e. the
intensity of the process ® N7 (where 7 is an arbitrary r—flat), k +r > d,
to the so-called rose of neighborhood for the case k + r < d. Thus the
inversion formulae of chapter IV that give the directional distribution of the
process @% from its rose of intersections can be easily applied to the roses
of neighborhood.

The thesis is organized as follows: almost all of its chapters begin with
preliminaries and an overview of the literature on the subject, continue with
the description of the involved mathematical apparatus and the proofs of
main results, and end with a section of remarks and open problems.

Chapter I in of introductory character: here the main spaces and struc-
tures are defined and the basic facts from stochastic geometry are mentioned.
Chapter II gives the reader the motivation of the research (variational prob-
lems for Qz), the main results are proved in chapter IV and the principal
tools for that are introduced and developed in chapter I1I. The final chapter
V deals with two problems for the roses of intersections that stay apart from
the main context. Then the bibliography and the list of notations are given.

Most of the results of this research have been published or accepted for
publication: see [78] for the results of chapters IT and V, [79], [81] for those
of chapter IV, [80] for chapter III.
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Chapter I

Stationary processes of
k—flats in d—dimensional
space

1 Basic facts

In this section we shall follow the guidelines of [60] in introducing the basic
notions of k—flat processes (cf. [82], [59] for other constructions).

Let F(k,d) be the set of all k-flats in R, d > 2, 1 < k < d— 1. Let
G(k,d) be the Grassmann manifold of all non—oriented k—dimensional linear
subspaces of R? (for more detailed information see section 2). Say B C
F(k,d) is bounded if sup p(0,£) < oo where p(-,-) is the Euclidean distance

¢€B

in R%. Let &, § be the o-algebras of Borel subsets of G(k,d), F(k,d) in
their usual topologies: topology in F'(k, d) is generated by the following class
of open sets Ax = {¢ € F(k,d) : ¢\ K # ¢}, K — any compact set in R?,
and & = FN G(k,d). One calls ¢ C F(k,d) a flat field if any bounded set
B C RY is intersected by a finite number of k—flats of ¢. Let M be the set
of all flat fields and 9t — the o-algebra on M generated by all functions
2(B,): M =N, z2(B,p) =Card({¢ € F(k,d) : £ € ¢, £EN B # ¢}) for any
ball B in R¢ where Card(A) denotes the cardinal number of the set A.

Definition I.1.1. @% is called a k—flat process if @% which maps the prob-
ability space into the measurable space (M,0M) is a random element. Its
distribution is a measure k(-), € D{@L M. It is an ordinary point

process for k =0 and a hyperplane process for k =d — 1 in R?.

A k—flat process @g is called stationary if its distribution is invariant with
respect to all translations in R?. Denote by v4(-) the d-dimensional Lebesgue
measure in R?. We shall call \ the intensity of the stationary process @%

d
EV’“(Q’“OBW for every bounded subset B of R? with v4(B) > 0. The

5



6 CHAPTER I. STATIONARY FLAT PROCESSES

definition of A does not depend on the choice of B. Suppose 0 < A < co. The
rose of directions (directional distribution) of <I>% is a probability measure on

G(k,d):

_ ECard ({¢€dd.¢nS £g, r(€) €C))

I.1.1
Nt , Ced ( )

8(C)

where r(¢) is the direction of the k-flat ¢, i.e. the unique ¢ € G(k,d) that is
d

parallel to &, kg = (flf(z) is the volume of the unit ball, and S~ ! is the unit
2

sphere in R%.
Let ®¢(B) denote the number of k-flats of ®¢ that belong to a set B € §
(it can also get infinite values if B is not bounded). The measure

AB)=E (@%(B)) , Beg

is called the intensity measure of <I>g.
If <I>g is stationary the following factorization of its intensity measure
takes place (cf. e.g. [82], [59]):

A(B) = A / / Is(y + )5, (dy)0(de), Beg  (112)

G(k,d) ¢+

L
where 1/37 i (+) is the Lebesgue measure on the orthogonal linear subspace £ L
and Ip(-) is the indicator function of the set B.
Introduce the following notation:

<ai,...,ap > the k—flat spanned by vectors a1, ..., ax;
Vol(ay,...,a;) the non—oriented k—dimensional volume of the paral-
lelepiped spanned by vectors aq,...,ag;
d d .
<z> ~ (d=nr
At the transpose of the matrix A;
Zy the set of all non—negative integer numbers.

For almost all n € F(d — k + j,d), j < k — 1, the j—flat process
®inn={¢nn:&edf}

is again stationary on 7. Let >‘¢Zﬂn be the intensity of @z N n. Due to the

stationarity of @%, it is sufficient to consider only those affine flats 7 that
contain the origin, i.e., n € G(d — k + j,d). Then

(Teak10) ) 2 Dagey = [ le,0(0) (L13)
G(k,d)
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where [€,7] is the (d — j) —volume of the unit parallelepiped spanned by
orthonormal bases in é1 and ot (cf. [51], [14]): if &X =< a1,...,aq § >,
nt =< by,...,b_; > then

[5,77] = Vol(al, e ,ad,k,bl,. .. abkfj)-

It is independent of the choice of the orthonormal bases in & and n'. The
function (T} 4—x+;0) (1), n € G(d—k+j,d) is called the rose of intersections
pf I use the above notation to emphasize that for fixed \ the rose of

intersections of @z is the integral transform of its directional distribution 6.
The subscripts denote the dimensions of @z and of the intersecting plane 7.
For integers k and d with 2k > d introduce the new process

Xo(®) ={61N&:&,6 €D, & #&, &N&# o).

It is generated by the intersections of all pairs of k—flats of the original
stationary process Qz. Condition 2k > d guarantees that any two k-flats in
general position have at least one common point. This ensures that Xo(®¢)
is not empty; moreover, it is a (2k — d)—flat stationary process in R¢ that
could be easily seen from relation

dim(&1 N &) = dim(&1) + dim(&) — d. (I.1.4)

This process is sometimes called the intersection process of ngof order 2.
Its intensity )\X2(<I,%) is known as the intersection density of <I>g of order 2

(see [82], p. 253-255). Ome can prove by means of the Campbell — Mecke
theorem that

2
/\Xz@z):/\ 7/ /[51,62]9(d£1)9(d§2) (1.1.5)

G(k,d) G(k,d)

where [£1,&2] is the 2(d — k)—volume of the unit parallelepiped spanned by
the bases in &1, &5 (see the proof in [7] for the case of hyperplanes). Later
on we make use of the notation C(\, 8) for )\X2(‘I’i) to stress the fact that the
intersection density (I.1.5) is a non-linear functional of A and 6.

2 Grassmannians

Assume d > 3, 1 < k < d— 1. Let us investigate the structure of manifolds
G(k,d) on which most of the measures and functions in our considerations
are defined.

For any d and k < d the Grassmannian G(k,d), that is, the set of all
non—oriented k—dimensional flats in R? containing the origin, is a compact
analytic manifold of dimension k(d — k) (cf. e. g. [46], [47]). Moreover, it
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is a separable symmetric space. The following isomorphic representation is
known:

G(k,d) = O(d)/O(k) x O(d — k)

where O(d) is the orthogonal group in R? (cf. [32], chapter I, §6). If one
considers the Grassmann manifold L(k,d) of oriented k—flats then

L(k,d) = SO(d)/SO(k) x SO(d — k) (L.2.1)

where SO(d) is the special orthogonal group in R? (cf. [85]). For other
isomorphisms of L(k,d) see [47], [34] p. 43-46.

The structure of G(k,d), L(k,d) as a quotient space allows the intro-
duction of the unique left and right invariant normalized Haar measure on
G(k,d), L(k,d) (cf. [32], chapter I, §1). It plays the role of the uniform
distribution on the space of the directions of flats. Hence it is desirable to
find its explicit form. It will be done in the cases k = 1, d — 1 for arbitrary
d > 2as well as d = 4, k = 2 (that are of particular interest to us) in chapter
I, §2.1 and chapter IV, section 5.

2.1 Hyperplanes and lines

It is clear that the Grassmannian of all non—oriented lines through the ori-
gin G(1,d) is isomorphic to S%~* s {u € 847! : y = —u} where = denotes
the relation of identification and Sfifl is a sphere in R? with each diame-
ter having its end points ”glued together” (Si_1 is obviously topologically
equivalent to projective space RP d_l). Mapping any hyperplane ¢ to its or-
thogonal complement ¢~ € G(1,d) we get that for the Grassmann manifold
of hyperplanes the same representation is valid: G(d — 1,d) = Si_l.

In the cases of hyperplanes and lines the Haar measure on the appropriate
Grassmann manifolds normalized by unity is equal to the normalized surface
area measure wy(-)/wg on ST (wg = wa(S471) = dkg).

In view of that any function or measure on G(1,d) or G(d — 1,d) can
be represented as an even function or measure on S41. We shall use this
obvious fact later on without any further references.

2.2 Grassmannian (G(2,4) and its isomorphisms

Consider the set of all 2-flats in R* through the origin. Our aim is to give
the exact proof to the following result stated by J. Mecke in [55]:

Theorem 1.2.1. The Grassmannian L£(2,4) is homeomorphic to S? x S2.
The Grassmannian G(2,4) is homeomorphic to

{(u,v) € 82 x 8% : (u,v) = (—u, —v)} (I.2.2)

where = denotes the relation of identification.
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The proof will be given at the end of this paragraph. We shall use in
it the special type of Grassmann coordinates introduced in [55], although
other approaches are also possible (cf. [11]).

Due to theorem I1.2.1 any function (measure) on G(2,4) corresponds
to an "even” function (measure) on S? x S2. Their ”"evenness” should be
understood in the following way: they do not change under the mapping

(w3)~u, —v), (u,v) € S? x S2.

The structure of the Haar measure on G(2,4) is also known (see [14],
although the proof is not given there): it is proportional to the product
measure w3(du)ws(dv) on S2 x S2 (cf. theorem IV.5.1). We shall provide
two different proofs for it in section 5 of chapter IV.

Grassmann coordinates

Definition 1.2.1. The Grassmann coordinates of the first order of an ori-
ented k—flat in L(k,d) are all minors of order k of the k X d — matriz
composed of the coordinates belonging to an orthonormal basis of this k—flat

in R (see [66] for details).

In case of £(2,4) these are 12 coordinates, 6 of which are independent.
Let a 2-flat £ € £(2,4) be spanned over the orthonormal basis vectors
a = (al,...,a4), b= (bl,...,b4). Then

a4

gkl = b b

Clearly gx; = —qik, qxr, = 0 for all k and [. There exist the following relations
between the Grassmann coordinates (cf. [66]):

Gki9mn = GmiGkn + Gnidmk (I.2.3)

for all k, I, m, n. It means that they built a quadric in some Euclidean space
which is identified with the Grassmann manifold itself.

The six independent coordinates are qi2, q13, q14, 23, 24, q34- They do
not depend on the choice of the orthonormal basis a, b. One can show it
also directly. Introduce as in the paper [55] the following functions

u1 = q2—¢q3 = a1by —azb —agby + asbs

up = q3+¢qa = a1b3 —azby +agby —asbo

u3 = qu4 —@q23 = a1bg — asby —azbs + azbe (1.2.4)
vi = qi2+qu = a1by —agby + agby — asbs o
v2 = q13— Qo4 = aibg—aszb; — asby + asbo

v3 = quu+qe3 = aiby — asb1 + azbsz — azbs.

Evidently, —1 < u;, v; < 1. Rewrite now formulae (I.2.4) in the matrix
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form:
Uy 100 0 0 -1 q12
Ug 010 0 1 0 q13
ug | | 001 -1 O 0 q14
vv | | 100 0 0 1 g3 |’
vy 010 0 -1 0 Qo4
v3 0 01 1 0 0 q34
or briefly,

) = M(Q. (1.2.5)

Proof of theorem I.2.1

We established by means of (1.2.5) the mapping of £(2, 4) to $2x S2. Indeed,
the representation u, v does not depend on the choice of the basis in &,
because the same holds for the Grassmann coordinates. Then one should
prove that |u| = |v| = 1 where | - | denotes the Euclidean norm in R?: one
can easily check it simply by writing u? + u + u% in terms of Grassmann
coordinates and then applying relations (I1.2.3). It is also the mapping onto
S? x 82, it is bijective and continuous: because of its linearity and since
matrix M is non-degenerate one can construct the operator M ~! and invert
this change of coordinates. The rest of the proof for the first case follows
from the fact that the Grassmann coordinates of an oriented flat define it
uniquely.

If we proceed now to consider the non—oriented flats, one should first
mention that if we change the orientation of a flat then due to the definition
of Grassmann coordinates they change the sign. It acts on the vectors u,
v in the same way: they are reflected to —u, —v . Consequently, if we
would like to work with non—oriented flats, we should glue together (u,v)
and (—u, —v). The proof is complete.

3 Representations of the integral kernel [¢, 7]

According to (I1.1.3) and (I.1.5), the rose of intersectiong ah@®dts inter-

section density are integral operators of the directional distribution 6 of @%
with the integral kernel [¢,7]. The matter of this section is to find nice repre-
sentations of it that will be used in chapters III and IV. First let us consider
the most simple situations of lines, hyperplanes and 2-flats in dimension 4.

3.1 Particular cases

If ¢ is a line from G(1,d) and 7 is a hyperplane from G(d — 1,d) then the
following observation is obvious: [¢,7] = | < u,v > | where < -,- > stands
for the usual Euclidean scalar product in R¢ and unit vectors +u, +v are
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direction vectors of lines ¢ and ', respectively. Here | <wu,v > | is the cosine
of the minimal angle between +u and v or, equivalently, the sine of the
angle between ¢+ and nt.

Analogously, if £, € G(d—1, d) are two hyperplanes with normal vectors
+u, +v € 897! then [¢, 7] is equal to the sine of the angle between +u and
tu: [€,n] = /1 <u,v>2.

In fact, a more general statement holds that generalizes the above trivial
cases. It will be proved in proposition I1.3.1.

If £ and n are now 2-flats from G(2,4) with coordinates (u,v) and (@, D)
from S2 x S? (see theorem 1.2.1) then the following result can be found in
[55]:

1
[&,n]:§\<u,a>—<v,6>\ (1.3.1)

(see also [14], p. 98).

3.2 Ceritical angles

For integers k, r: r < k, k > d/2, k + r > d consider subspaces ¢ € G(k,d)
and n € G(r,d). Let their orthogonal complements ¢+ and ' be spanned
by the orthonormal bases ai,...,aq—x and by,...,bs_,, respectively. If A
(B) is the (d—k) x d — matrix ((d—r) x d — matrix) with the coordinates of a;
(b;) as lines then ¢ and 7 are defined by the following systems of equations:
z €& Az =0,z € n & Br = 0 where z is a column vector. By [43],
p- 22-25, there exist unit vectors l1,...,l3_ € € and t1,...,t43_, € 1 such
that <lp,,l, >=<tp,t, >= 0 for m # n and the angles 3,, € [0, 7/2] between
l, and t,, are stationary among all possible angles between the vectors in &
and 7 in the following sense: the values cos3,, n = 1,...,d — k are critical
for the minimization problem

<l,t>— min

with constraints

Al =0,
Bt =0,
I = It] = 1.

These B,, n =1,...,d — k are called the critical angles of £ and 1. The
volume [£, 7] as an invariant of the pair of subspaces &, n with respect to all
rotations must have a representation in terms of 3,,. We shall formulate this
in proposition 1.3.1. But before that we need to prove the following lemma
which is the stronger version of the theorem 5.1 of [39]:

Lemma 1.3.1. There exist orthonormal bases a1,...,aq4_p and by,...,bg_,
in € and n*, respectively such that

<ag, bj >= 6ij cos 61 (132)
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foralli=1,...,d=k and j = 1,...,d—r where 6;; stands for the Kronecker
delta.

Proof. Let @, ...,aq— and by, ...,bs_, be some orthonormal bases in &+
and nt, respectively. Then the systems of linear equations giving ¢ and 7
are Az = 0 and Bz = 0 where A (B) is the appropriate (d — k) X d — matrix
((d —r) x d — matrix) of the coordinates of @; (b;). By formula (72) of [43]
the squares of the cosines of the critical angles cos? B, n = 1,...,d — k are
the latent roots of the symmetrical (d — k) x (d — k) — matrix J = AB'BA".
It is well-known that any symmetrical matrix has the canonical diagonal
form; hence there exists an orthogonal (d — k) x (d — k) — matrix T' such
that
J =T -diag(cos® Bi,...,cos% Bq_y) - Tt = AB'BA’

where diag(dy, ... ,dy;,) denotes the diagonal m x m — matrix with diagonal
elements di,...,d,,. Multiplying this equality by 7% on the left and T on
the right one gets

diag(cos? By, ..., cos? By_i) = T'AB'BA'T = C'C (1.3.3)

where C = BA'T is the (d — r) x (d — k) — matrix. Due to (1.3.3) its
columns c¢i,...,cq_ can be regarded as orthogonal vectors in R4~ such
that <¢;,cj >= d;5co8B;, 4,5 = 1,...,d — k. Then there exists a rotation
D € SO(d — r) such that

C=DEg (1.3.4)

where Ejg is the (d — r) x (d — k) — matrix of the form

(cosﬁl 0 0o ... 0
0 cosfs 0 ... 0
0 0 0 cosBy_k
0 0 0
0 0 0

We get from (1.3.4) that
~ o~ ~ A1
Eg = D'C = D'BA'T = D'B (T'4) = BA'

where B = D'B, A = T'A, and D € SO(d —r), T € SO(d — k). Let
ai,...,aq—p and by,...,bq_, be the vectors with lines of A and B as coor-
dinates, respectively. By construction these vectors form the orthonormal

bases in ¢+ and 7' with the required property (1.3.2) (cf. the equality
Es = BAY). 0
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Proposition 1.3.1. For any two subspaces ¢ € G(k,d), n € G(r,d) with
dimensions k and r such that r <k, k > d/2, k+r > d and critical angles
B1,---,Ba_k the following identity is valid:

[€,m] =sinfi...sinBy_r = /({1 —y1)... (1 — yap) (1.3.5)
where yp, = cos® By, n=1,...,d — k.
Proof. By lemma, I.3.1 there exist orthonormal bases a1,...,a4_j in £+ and

bi,...,bs_, in n such that < ap,by >= 6pmcos By for all n and m. By
definition [¢,n] is equal to Vol(ai,...,aq—k,b1,-..,b4—r). Let us prove the
statement of the proposition for fixed d and any r such that » < k, k+r > d
by induction on k. The base of induction (k = d — 1) follows immediately
from the definition of the volume of the parallelepiped. Let now the conjec-
ture be true for £k = j. One has to show that it holds also for £k = j — 1.

Let Pr¢(-) denote the operator of orthogonal projection onto the plane
¢. We have

Vol(al, s Qd—j41, bl, ceey bdfr) = |P’I"CJ_ (ad,j+1)|><
xVol(al, cee ,ad,j,bl, ‘e abdfr)

by the properties of the volume of the parallelepiped where
(=<a,... ,ad_j,bl,...,bd_T > .

By Pythagorean theorem

|Prec(ad—jv1)| = \/1 —|Pr¢(adg—j+1)[*

Let us prove that |Pr¢(ag—j+1)] = cosfB4—j4+1. Orthogonalize the basis
ai,...,a4—j,b1,...,bq—r in (: we get the orthonormal system of vectors
a a b ' b b1 — COS ﬁlal bd_j — COS ﬁd_jad_j
1y---58d—5:0d—54+19---99d—r, |b1 — COSBl&l' IEEER |bd7j — COS,Bd,jad,j‘

by the properties of a; and b;. Then by definition of the orthogonal projec-
tion we get

d—j
P'rg(ad—j-i-l) = Z <@j, Gd—j11> ai+
=1
7 <y, — ¢08 Bia;, ag— ;11>
Z () 1Ay d—2]+1 (bz . COSIBZ'G,Z') +
— |b; — cos B;a;]
d—r

Z <biyaq—jy1> b =<by j+1,84j+1> bgjy1 = 08 Bg—j11ba—ji1-
i=d—j+1

Thus |Pri(ag—j+1)| = /1 — cos? Ba_j1 = sin f4_;11, and the application
of the induction step to Vol(ai,...,aq—j,b1,...,b4—,) completes the proof.
O
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3.3 Mixed volumes

Let us mention here one more interesting relation for [£,7] to be found in

[18]: ’
()

(67 = 13— V(Be:- -+ Be, By - By) (1.3.6)
-r

v

dt'r T
for ¢ € G(k,d), n € G(r,d), k +r > d where B¢ is the i-dimensional unit

ball in ¢ € G(i,d) and V(-,...,-) is the mized volume of its arguments (cf.
[73]). See remark I1.5.3 for further discussion.



Chapter 11

Variational problems for
stationary flat processes

1 Intersection density and isoperimetric problems

One of the so—called isoperimetric problems that could be stated for the
intersection processes of order 2 is to maximize their intersection density,
i.e. for given A find the set Lo of such extremal directional distributions g
that A X5(29) attains its maximal value ¢;qq:

C(/\,Q):%Q / / (€1, 6] 0(dé1)0(des) —> max. (IL.1.1)

G(k,d) G(k,d)

The maximum of the functional C is attained on the set L of all probabili-
ty measures on G(k,d) because this set is compact in the topology of weak
convergence (cf. remark 3.3 of [62], it follows also from Prokhorov’s theorem
in [3], since all probability measures on the compact space are dense) and the
functional is continuous on it: since C is Fréchet differentiable (cf. section
4), it is also continuous in the topology of convergence in total variation.
But this convergence implies the weak convergence for the measures on
the compact space G(k,d). Thus the functional C is also continuous on
the compact L in the sense of weak convergence, and hence it attains its
extremal values.
The exact value of ¢4, is also of interest to us:

Crmaz = I;lea.l)‘(C()\,G). (I1.1.2)

In section 4, C(A,0) will be extended to a non-linear functional on the
Banach space M (G(k,d)) of all signed measures with finite total variation
on G(k,d). Then we shall use variational methods of section 3 to describe the
extremal class Lg. The appropriate necessary conditions of extremum will be

15
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found. It will be clear that the rose of intersections plays an important role
in the given characterization. The obtained conditions are very weak and do
not lead to the general solution of the variational problem (II.1.1) (see also
the discussion in section 5). Nevertheless, they systemize the earlier results
listed in section 2. Thus the common properties of the known solutions of
(IT.1.1) can be understood better.

Problem (II.1.1) owes its name ”isoperimetric” to the deep connection
between the above setting and classical isoperimetric problems for centrally
symmetric convex bodies. To outline them we need some facts from convex
geometry.

The support function of a convex body K C R? is by definition

hi(x) = sup <u,z>, =z € R
ueK

The following property of zonoids that are limits of zonotopes in the
Hausdorff metric can be taken as definition (cf. [22], [73], [89]):

Definition I1.1.1. A centrally symmetric convex body K with the center at
0 € R? is called a (generalized) zonoid if its support function hx has the
representation

hi(z) = / |<z,u>|0k(du), =R
Sd—1

for some finite even (signed) measure g on S that is called generating

for K.

For some integer k& > 1 introduce the so—called projection generating
measure pg(K,-) of the zonoid K with generating measure Og: it is the
measure on the Borel subsets A of G(k, d) defined by the relation

pe(K, A) =
/ /Vol Uty oo W) <y >eay (W15 - - uk) Ok (dun) - . . Ok (duy)

(cf. [22]). If d = 2k, k > 1 one has for a zonoid K the following relations

between its mixed volume V(K, ..., K), mized functional @,(c?,)c(K,K) and
integral representation (II.1.1) (cf. [21]):

(Z) vi(K) = (Z) V(K,...,K) = O )(K,K) =

/ / €1, 6] pi (K, d61) oy (K, ).

G(k,d) G(k,d)
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We preserve here the notation of [21] for the mixed functional, which, as we
hope, will not confuse the reader by its closeness to our notation @g of the
k—flat processes. If we allow measures 6 in (II.1.1) to be chosen from the
smaller class of projection generating measures of zonoids in R? for d = 2k
then problem (II.1.1) rewrites (up to a constant factor) as follows: find
zonoids K of maximal volume v4(K) provided that the total mass of their
projection generating measure is A, i.e. p; (K, G(k,d)) = A.

If £ = 1 then pg(K,-) is obviously equal to fx(-). Recalling the fact
that in two—dimensional space the class of zonoids coincides with the class
of all centrally symmetric convex bodies, one gets that problem (II.1.1) in
R? has the following isoperimetric meaning without any further constraints
on probability measure 6: find a centrally symmetric convex body K C R?
with maximal volume v5(K) provided that its generating measure 0x has
total mass A. It is not difficult to show that the perimeter p(K) of the
zonoid K C R? is equal to 40k (S!): by [27] p(K) = 7mw(K) where w(L) is
the mean width functional of the convex body L C R%:

def wid (hi(w) + hi(—u)) wa(du).

Sd—1

w(L)

Then by [59], p. 108 (cf. also [84], remark 1) w(K) = 2 6x(S'). Hence
p(K) = 4. The zonoid K with generating measure proportional to the rose
of directions of a stationary line process @% is called the Steiner compact
of ®? (cf. [51]). Thus setting (I1.1.1) is a classical isoperimetric problem
for Steiner compacts of ®2, see also [84] for generalizations of these ideas to
hyperplane processes <I>g_1 in arbitrary dimensions d.

The case d = 2k, k > 1 will be considered more detailed in section 5 of

this chapter.

2 Some historical notes

The following is an outline of the results known for the problem (II.1.1)
— (II.1.2). The involved mathematical apparatus as well as the solutions
themselves depend to a great extent on dimensions d and k:

ed>2 k=d—-1 Lo = {wi(-)/wg}, c —Lz(%)where
= 3 - . 0 — d dJs maxr QF(d%I)F:(Ld%I)

wg(+)/wq is the uniform distribution of directions on ¢! coinciding
with the Haar probability measure on G(d — 1,d). The case of a line
process on the plane (d = 2, k = 1) was considered in the pioneer-
ing paper of R. Davidson (1974) [4]. J. Janson and O. Kallenberg
(1981) [40] investigated the general case using spherical harmonics,
while C. Thomas (1984) [84] employed the isoperimetric inequalities
for Minkowski functionals.
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o k <d—1: J. Mecke and C. Thomas (1986) [60] proved that the Haar
measure is not extremal. Further developments can be found in [54],
[67] and [74].

— d =2k, k> 2: J. Mecke (1988) [56] showed that cney = ’\4—2 and

(9() + 661 () : € € Gk )}

Lo = {90(') = %

where d¢(-) is the Dirac measure concentrated in &.

— d =4, k = 2: the value ¢4, is the same as above the but the
class Ly is essentially larger as in the previous case (cf. J. Mecke
(1988) [55]).

—d—k|d, ie d—kdivides d, k < d—2: J. Keutel (1992) [44]

A2

2

proved that cpq: = % and the class Lg consists of measures

bo(-) = %(5&(') +...+ 5§ﬁ ()

for éz € G(k,d)a ng_ J_fj‘, ¢ 75.7

— d—k | d, k = d—2: ¢pey remains the same as in the previous case,
the class Lo is larger but not yet completely known (cf. [44]).

— d — k does not divide d, k < d — 1 : the problem is still open. In
[44] some bounds for ¢y, are given.

The necessary conditions of maximum (cf. section 4) bring unification in this
variety of results whose form depends heavily on the dimension k: it appears
that for any directional distribution 6y from Lg its rose of intersections with
k—flats Tyx0y should be #yp—almost surely constant.

3 Variational calculus on the space of signed mea-
sures

In what follows we make use of the papers [64], [62], [61] in order to state
results that will be instrumental for us in obtaining the necessary conditions
of extremum in section 4.

Let X be a measurable Polish locally compact space, and let 1\7I(X ) be
the Banach space of all signed measures on X with finite total variation
norm: for y € M(X)

lp(w)I<1

lull = sup / $(w)(dw)| < oo
X
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where the supremum is taken over all measurable functions ¢ : X — R
with the absolute value bounded from above by unity. Let M(X) C M(X)
be the cone of all non—negative finite measures equipped with convergence
in total variation. Let functionals F : M(X) — R, H : M(X) — R be
continuous and Fréchet differentiable (cf. [48]) on a closed convex subset A
of M(X). We shall tackle the following optimization problem with equality
constraints:

F(p) — inf,
neEA, (I1.3.1)
H(p)=0

where the first Fréchet derivative of the constraint function H at y does not
depend on g and has the form

1ol = [ hay (113.2)
X

for some measurable function b : X — R.

Now let us cite the necessary conditions of infimum in the problem
(I1.3.1) with one equality constraint H(u) = 0 (cf. theorem 3.5 and remark
3.3 [64]):

Theorem I1.3.1. Let functionals F and H be twice Fréchet differentiable
at any measure p satisfying constraints in (I1.3.1) and (I1.3.2). Assume
that there exists a measurable function f : X — R such that

F ()] = / fdn, neMIX). (I13.3)

Let pg be a local minimum point in the optimization problem (II.3.1). Let
there exist positive € such that

(i) (1% o € A,
(ii) po+tép € Aforallz € X and 0 <t < e.

Then there exists a real u such that f(z) > wu- h(z) for all x € X and
f(x) =u-h(z) po—a.e.

Necessary conditions of supremum can be deduced from theorem I1.3.1
by replacing F' by —F.
4 Necessary conditions of maximum

Express now the isoperimetric problem (II.1.1) in terms of variational cal-
culus. In this case X = G(k,d) (it is a compact Polish space) and
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A =M (G(k,d)). According to (IL.3.1), we shall write F(0) = C(1,0) (the
intensity A is supposed to be fixed, we put A = 1 without loss of generality),
H(0) = 0(G(k,d)) — 1. Thus the problem (II.1.1) rewrites in the following
optimization setting:

FO)=1 [ [ [&,&]0(d&)0(dEs) — max,
G(k,d) G(k,d)

8 € M(G(k,d)),

H(6) = 0(G(k,d) — 1 = 0.

(11.4.1)

Now we are ready to prove the following result:

Theorem I1.4.1. Let 0y be a directional distribution on G(k,d) that mazi-
mizes the intersection density of order 2 of the stationary k—flat process (19%.
Let cppaq be its mazimal value. Then its rose of intersections Ty satisfies
the following necessary conditions:

(1) (Trrbo) (n) = [ [&,n]00(dE) = 2¢maz Go-a.e.;
Gk,d)

(li) (Tkk00) (77) < 2Cmaz for all RS G(k’d)

Proof. First we check the conditions of theorem II.3.1. Due to the fact that
A = M (G(k,d)), any finite positive measure 6y € A satisfies assumptions
(i) and (ii) of theorem II.3.1. We shall prove now that functionals F' and
H are twice Fréchet differentiable at any u € M (G(k,d)) and

Fuil= [ [ i@, (I1.4.2)
G(k,d) G(k,d)
FY (), 0] = 2F (0),
H' (1)) = v (G(k, ),
H (1) o,] = 0.

Consider the difference

Flp+v)—-F(p) = (I1.4.3)
[ [ eanaguan+y [ [ eavgvan
G(k,d) G(k,d)

; G(k,d) G(k,d)
for an arbitrary v € M (G(k,d)). Tt can be easily seen that the second term
in the right-hand side of (I1.4.3) is o (||v||) as ||v|| = 0: due to the inequality
[€,m] < 1 one can prove that

[ [ envtaguan| <

G(k,d) G(k,d)
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The first term in the right-hand side of (II.4.3) is a linear functional on v,
it is also bounded: its operator norm is not greater than |u (G(k,d))| < oo.
Then it is continuous, and the first Fréchet derivative of F' exists and is

equal to (I1.4.2).
Analogously to the considerations above

F(u+ v)fr] - / / (€, w(d€)r(dn) = F" (). ]

G(k,d) G(k,d)

for all 7 € M (G(k,d)). This bilinear form does not depend on .
Then we find the derivative of H: it is

H(p+v) — H(p) = v (G(k,d) = H (p)[],

this difference does not depend on g, which yields H" (u)[-,-] = 0.
Furthermore, F’(u) has representation (I11.3.3) with

_ / [€, 1) 1(d€) = (Tibo) (1)
G(k,d)

(see (I1.4.2)). The functional H satisfies (I1.3.2) with h(-) = 1. Take a
probability measure 6y on G(k,d) to be the local maximum point of (II1.4.1).
Then by theorem II.3.1 there exists a constant u such that

(Txbo) (n) = f [57 100(dé) =u  Bp-a.e.,
Gk

(Trkkbo) (n) < u fOT all n € G(k,d),

and since cpp = % [ Tirbo(n) Oo(dn) we conclude that u = 2¢pmqq- O
G(k,d)
Let us illustrate this theorem by the following
Example I1.4.1. The measures that are proved to be mazimal in (II.1.1)

can be verified to satisfy the above necessary conditions. We consider for
convenience just the simplest cases:

1) Hyperplane case k = d — 1: it can be shown (cf. corollary II1.8.3) that

I (5)

FEOT (5]

(Ty-1,4-11) (n) =

for all n.

2) Suppose that the maximal directional distribution 0y is discrete:

0y = p15§1 + ... +pn(5§n,
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P14 ... +pp =1, for some {&}7 , C G(k,d). Then due to condition
(i) of theorem II.4.1

ij [éu 5_7] = 2Cmaz
j=1

for each i. In case d —k | d we have & L ij fori # j, pi = 1/n with
n=d/(d — k), which yields cpmqr = k/(2d).

Now consider the class A of all absolutely continuous measures with
respect to the Haar measure on G(k,d).

Proposition I1.4.1. Let 6y be a directional distribution on G(k,d) that
maximizes the intersection density of order 2 of the stationary k—flat process
<I>g. Let ¢inaz be its mazimal value. If 6y is absolutely continuous with respect
to the Haar measure on G(k,d) then the following necessary conditions hold
for its rose of intersections Ty :

(1) (Tkkbo) (n) = 2¢maz a-e.;

(ii) inf sup (Txkbo) (1) < 2Cmazr where M is the ensemble of all sets
EEN qk,d)\E
from & with zero Haar measure.

Proof. Here we have again an optimization problem of the type (II.4.1).
The proof is conducted analogously to theorem I1.4.1 using theorem 4.1 of
[64]. O

5 Remarks and open problems

The necessary conditions of extremum for the isoperimetric problem (I1.1.1)
proven above can not be essentially improved by means of variational cal-
culus: they do not depend on dimensions d and k, while the class Lo of
extremal directional distributions depends heavily on them. Although these
conditions do not solve the problem in general due to the reasons below,
they enable reproducing of the result of [84] in the case k = d — 1. That
is based, in part, on the fact that the directional distribution ch@ff be

uniquely restored from its rose of intersections. For all k different from d— 1
there is no uniqueness (cf. section 1 of chapter IV). So even if we knew that
the rose of intersections was constant (not only fy—a.e.) we could not make
profit from this knowledge.

Nevertheless, the description of the class of directional distributions that
correspond to the same rose of intersections is sometimes possible, e.g. for
d =4, k=2 (cf. section 5 of chapter IV).

Now we outline some other approaches that might be helpful in solving
(IL.1.1) and mention the difficulties that one faces there.
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Remark I1.5.1 (Fourier expansions). R. Davidson [4] proved that the
isotropic stationary process ®% has the mazimal intersection density by using
the Fourier decomposition of the integral kernel |sin(a — )| of T11. The first
Fourier coefficient corresponding to the Haar measure was positive and all
other coefficients were negative, which immediately yields the solution.

One can think of doing the same in higher dimensions. Indeed, the kernel
[€,71] as a simple function of the squares of critical angles y; (cf. proposition
L.3.1) can be expanded into the complete orthonormal system of the so—called
generalized Jacobi polynomials, although the calculations are not trivial there
since the exact form of these polynomials is not known (see also the discus-
sion in section 6 of chapter IV). But even in the solved case d = 4, k = 2
there is an infinite number of positive and negative multipliers of [&,n] in
its expansion in spherical harmonics (see §5.6 of chapter IV), so that the
structure of extremal measures is not clear.

We believe that in the general case the same difficulties arise. So the
advantages of this approach are vague.

Remark I1.5.2 (Potential theory). The problem (II.1.1) can be set in

terms of the potential theory. Namely, the double integral in (II.1.1) is the

energy for the potential Ty0 (see [49]). Unfortunately, the general potential

theory ezpects the integral kernel k(z,y) of the potential [ k(z,y) p(dz) to
X

have a singularity at © = y, which is not true in our case: [€,n] = 0 for
& =mn. So the direct application of the results of the potential theory is not
possible.

Remark I1.5.3 (Mixed volumes). According to the representation (1.3.6),
the kernel [€,7] is a mized volume of some lower dimensional balls lying in
¢ and n. This can lead us to the idea to use the Brunn—Minkowski theory
to investigate the open cases of (II.1.1). The theorem 4.1.6 of [73] can help
us to express the mized volume in (1.8.6) through the usual volume of the
Minkowski sum aB¢ + (1 — a)By, 0 < a < 1. Then some inequalities that
would give sharp upper bounds for this volume are required. The interesting
open problem here is to construct such inequalities.

The last remark of this section gives the simple stochastic meaning to
the projection generating measures introduced in section 1 of this chapter.

Remark I1.5.4. We mentioned on page 16 that the problem (I.1.1) can

have an isoperimetric meaning if the directional distributions of the processes

gﬁ‘or d =2k, k > 1 are chosen from the class of projection generating
measures pi(K,-) of zonoids K with generating measure 0x(-). Now we
shall give a simple description of this class of measures. Let the process

K
Xp(@f_) ={&n..N&: &€, ()& #09}
i=1
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be generated by all intersections of any k hyperplanes of some stationary
process @gfl with directional distribution 0. Then one can show by means
of lemmas 2.1, 2.2 of [7] that the directional distribution of Xy (®% ) is
equal to px(K,-)/pr(K,G(k,d)). Then the intersection density of order 2 of
the original process @g s proportional to the intensity of XQk(q)gq); that is,
to the intersection density of order 2k of @371. Thomas [84] showed that it
is mazimal for Ok being the Haar measure on G(d—1,d). It means that the
measure 0 that mazimizes the intersection density of order 2 of @g in the
class of directional distributions of the form pi(K,-) is equal to the measure
px(B,-)/pr(B,G(k,d)) where B is the ball in R?, i.e. O5(-) is proportional
to wq(-).



Chapter III

Integral transforms

In this chapter we introduce generalized cosine and Radon transforms (sec-
tions 1 and 2) that are necessary to prove certain integral formulae of
Cauchy—Kubota type (section 3). They will enable us to solve the inverse
problem of retrieving the directional distribution of a stationary k-flat pro-
cess from its rose of intersections in chapter IV.

1 Generalized cosine transforms

Denote by C(X) the space of all continuous functions on X. Introduce for
i+ j > d the generalized cosine transform

T;; : M (G(i,d)) — C (G(j,d)),

(T,0) (€)= [ le.notdn), (IL..1)
G(i,d)

where 8 € M (G(i,d)), € € G(j,d). We use here the same notation Tij as
for the rose of intersections of <I>;-i because these objects are identical (up
to a constant factor A in (I.1.3) which we suppose later on to be equal
to one without loss of generality). We shall consider also transforms T;;
of integrable functions f on G(i,d) meaning that the transform (III.1.1) is
applied to the measure f(n)dn where dn denotes the integration with respect
to the Haar measure on the corresponding Grassmannian normalized by
unity. See section 1 of chapter IV about the injectivity of Tj;.

1.1 Spherical cosine and sine transforms

Transforms (II1.1.1) generalize the well-known notion of the spherical cosine
transform (cf. [26] for other generalizations):

T0(u) = / | <uv>[0(d0) = (Tae1n6") (), e st
S§d—1

25
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for € M(S% ') where 6 denotes the measure 8-(d¢) = 0(dé*) on the
Grassmannian G(d — 1,d) (see §2.1 of chapter I). There exists exhaustive
literature on spherical cosine transforms and their use in geometry (see e.g.

[76], [77], [6], [8], [20]).

The sine transform of a signed measure 0 € 1\7I(Sd*1) is by definition

= /\/1— <u,v>20(dv) = (Td_l,d_lﬁj‘) (ut), uwest!
d—1

The cosine and sine transforms can be also defined on integrable functions
g on the sphere:

Tg(u) = / |<u,v>] g(v) wi(dv) = wy (Td_l,ng‘> (u), (I11.1.2)
Qd—1
Kg(u) = / 1— <u,v>2 g(v) we(dv) = wy (Td_l,d_ng‘) (ut) (I11.1.3)
Sd—1

where g stands for the function g*(¢) = g(¢1), € € G(d — 1,4d).

Denote by CZ(S%1), p € NU {oo} the space of all p times continuously
differentiable even functions on S471; let C,(S%!) be the space of all con-
tinuous even functions on S%~!. It is known that cosine and sine transforms
are injective on C°(S41).

1.2 Operator families {7} and {T}}}
Introduce the new families of operators {7}, {Tg} parameterized by a > 0:

TS, T3 : M(G(i,d)) — C (G(j,d))

(T~a-0 = /[fn“Gdn) fori+j7 >d,
G(3,d)

TO‘H /[fn 0(dn) for j >1i
G(3,d)

The above transforms on integrable functions can be introduced as be-
fore. Evidently, these families comprise generalized cosine (Tlﬁ) transforms.
It is also clear that B

(T50) (©) = (T.50") (©). (IIL1.4)

The consideration of such operator families will enable us to obtain some
integral formulae for them which will be used in chapter IV for a = 1.
Although these formulae do not find practical applications for o # 1, they
give interesting relations between the moments of order « of the typical
angles in intersection of a stationary process ®¢ with r—flats (see the next
paragraph).
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1.3 Connection to convex and stochastic geometry

The generalized cosine transforms find important applications in convex and
stochastic geometry.

Thus, (T3;0) () evidently coincides with the rose of intersections of the
stationary i-flat process ®¢ in R? with unit intensity and directional distri-
bution # with an j—dimensional flat  through the origin.

Then

0= [ o= s(earnes)

G(i,d)

is the moment of order o of the ”sine of the angle” between the typical
(chosen at random) i—flat of the process ®¢ and a fixed test flat & € G(j,d)
with respect to the directional distribution 6. Indeed, [£,7] is the natural
generalization of the notion of the sine of the angle between two hyperplanes
to the cases of flats of lower dimensions (cf. §3.2 of chapter I).

One can also find another interpretation for T at least in R? and R3
which can be extended analogously to arbitrary dimensions d. It can be
shown (see [82], p. 286-303) that the measure

J1€,m)6(dn)

A
A T o A€°

G(i,d)

is the distribution of the typical angle in intersection between the test hy-
perplane (or line) ¢ and ®¢ (d = 2 or d = 3). Then if we rewrite T3 in the
form
J 1 me g, ) o(dn)
G(i,d)

c-— (T;]H) (f) =c-F ([&n]a—lm c éf, nOE# (0)

where ¢ = (T3;0) ({) we get that (TZ‘;‘O) (¢) is proportional to the moment

of order a — 1 of the absolute value of the sine of the difference between the
typical angle in intersection of ®¢ with a fixed test flat (line) £ and the angle
attributed to this test plane (line) by appropriate parameterization.

The meaning of (TZIJH) (&) becomes to be transparent due to relation

(IT1.1.4): it is the rose of intersections of a stationary d —i—flat process with
directional distribution 6 and unit intensity with a j—flat ¢.

In convex geometry the ith projection function v;(K;n) of a zonoid K,
i.e. the i—dimensional volume of Pr,(K) for n € G(i,d), is the generalized
cosine transform of the projection generating measure p;(K,-):

'Ui(Ka 77) = (Ti,d—i/)i(K7 )) (nL)’ ne G(Zad)
(ct. [22]).
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2 Radon transforms

In this section we outline some facts about Radon integral transforms on
Grassmannians and on the sphere (cf. [32], [34], [10], [8]).

2.1 Radon transforms on Grassmannians

Let LP(X) be the space of all functions f such that |f|P is integrable on X.
Introduce the Radon transform on Grassmannians and its dual following the
paper of Grinberg [25]: for 1 i< j<d—-1

(Rii ) (€) = / £(n) o(dn),

n€G (i,d): nC¢

(Rjig) () = / 9(6) o(de)

£€G(j5,d):€Dn

where f € L' (G(i,d)), g € L' (G(5,d)), € € G(j,d), n € G(4,d), and o(") is
the unique rotation invariant measure on the appropriate integration space
with total mass 1. Such Radon transforms find numerous applications in
convex geometry, see e.g. [19], [22], [12], [13], [23].

It is known that R;; is injective on the space C* (G(¢,d)) of all infinitely
differentiable functions on G(i,d) if and only if i +j < d,i < jori+j > d,
i> 7 (cf. [9], [25]).

2.2 Spherical Radon transforms and their inversion

An important particular case of R;; form the so-called spherical Radon
transforms. For n € G(r,d), 1 < r < d — 1 denote by Sg_l the totally
geodesic submanifold S~1N7n of S4-1, dz'm(S;"]_l) = r—1. For any integrable
function g on S%! introduce the spherical Radon transform of order r:

1
(Frg) () = - [ gw)w?(du) = (Rarg) (0 (rm.2.1)
T
syt
where wy (+) is the surface area measure on the subsphere Sg_l. Ifr=d-1
we shall write R = Ry 1 and call it simply the spherical Radon transform:
identifying € G(d — 1,d) with the direction unit vector v of the line n* we

have

Ro(v) = / g(w) ety (du) = (Riar g) (v"). (I11.2.2)

<u,v>=0
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Radon transforms R, are injective on C°(S%1). The following inver-
sion formulae being true for all d > 3 follow from the general results of S.
Helgason in [33] and [34], p. 54: for any g € C.(S¢ 1), n € G(r,d)

g(v) = cpX (IT1.2.3)

(o) | -7 [ o
_ ‘T J—
i) y Y +9)(n) o(dn) dy
0

d(S5 !, v)=arccos y

where d(-,-) is the geodesic distance on S%~! and

=g (111.2.4)

T2

2| %
g9(v) = cg (%) /(ac2 — yQ)QQ/Rg(u) wgi’ly(du) dy (I11.2.5)
0

2_1_q2
<u,v>4=1-y =1

1
where w), 3(-) is the surface area measure on the pair of subspheres
{ue St <u,v>2=1-192} of ST ! and

2d—3

1 _
= T e (111.2.6)

We shall find now a more compact form of (II1.2.5) and will use it in
the proofs later on; nevertheless, (II1.2.5) can be also used instead. In our
opinion, formula (I11.2.7) below with its integration over the part of a sphere
gives a reader more geometrical clearness and agrees with the earlier results
of Pogorelov (see remark I11.2.1).

Lemma III.2.1 (Modified inversion formula for the Radon trans-
form).
For any g € C.(S%1) and d > 3 the following inversion formula holds:

o d \*? Rg(u) |<u,v>]
g(v) =cp (d(/ﬂ)) / ( - wq(du) (I11.2.7)

9—d
<u,v>2 —p2)e7z
2 2

<u,v>*>U =0

where
(_ 1)d—2 2d—3

T (111.2.8)

&=



30 CHAPTER III. INTEGRAL TRANSFORMS

Proof. Applying to (II1.2.5) subsequently the following changes of variables:
P=1-12, 2=1-2a2

we get
1 d
1 d—2 vt
v) =cp(—1 —_— Rg(u) w,_7(du) dt

g( ) R( ) (d(u2)> m g( ) d—l( )

H <u,u>2=t2 -0

o

Then using <wu,v >=t the result follows from Fubini’s theorem. O

Remark II1.2.1. A. V. Pogorelov gives another proof of (II1.2.7) for the
case d = 3 (cf. [67]) that does not depend on inversion formula (III.2.5).
See the detailed discussion in [79].

2.3 Useful integral and differential relations

Introduce the differential operator

=1 (Agtd-1) (TT1.2.9)

where A\ is the Beltrami — Laplace operator on S¢!:

Dog() = (Ag(\i—»

Here A denotes the standard Laplace operator. It can be shown (cf. [22])
that

Sd-1

OT = R, (I11.2.10)
wWd—1
K = RT I11.2.11
s ( )
on Ce(S%1), or equivalently to (II1.2.11),
T = @R*IK, (I11.2.12)
Wd—1

as R is invertible. As for relation (II1.2.11) we shall prove it in more gen-
eral form for the Radon transforms on Grassmannians and operators T;7 in
proposition I11.3.2 (see also corollary I11.3.1).

3 Integral formulae

In this section some integral relations for T3, Tfj‘ and R;; will be obtained
that enable the inversion of Tj; in cases of its injectivity (see chapter IV).
The main technical result is proved in §3.1. Its important corollaries are
given in §3.3 and §3.4. Finally, §3.5 yields the bounds for the weighted
images of Radon transform R;; and its dual.
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3.1 Radon transforms of the power of the volume

Let e, ...,eq be the Cartesian unit basis vectors in R% and (g =< ey, ..., e, >
for some k < d. The aim of this paragraph is to investigate the action of
Radon transforms R;; on functions g(n) = [, {o]* for & > 0. One partial
result of that kind for the dual Radon transform with @ = 1 and dimension
k = j can be found in lemma 4.1 of [21]. The argument there uses connec-
tion between volumes [-, -], mixed volumes and projection functions. Then
one applies the following Cauchy—Kubota—type formula (equation (2.3) of
[21]) to the latter:

Ve (3 — i\, .
Rij (0(:) (6) = 1 Pt (1) (1L3.1)
g
for a convex body K and all £ € G(j,d) where i < j < d and V;(K) is the
ith intrinsic volume (cf. [73]) of K.

Our approach differs from the described above that allows us to gain
more generality in dimensions of involved linear subspaces and real positive
powers of the volume.

Let Vol(¢) be the non-oriented volume of the parallelepiped spanned by
the basis vectors of a k—flat & (the choice of the basis will be clear from the
context). Denote by b(¢) a set of the orthonormal basis vectors ay,...,a

such that £ =<ay,...,a;> for &€ € G(k,d). We shall prove the following
Theorem II1.3.1. Let £ € G(j,d), i< j,i+k>d,d>3, a>0. Then

(Rij[ -5 Gol*) (§) = / [, Co]® o(dn) = e()[€, o]* (IT1.3.2)

n€G(i,d):nC¢

where
d—k—1T (J_—l) A (ifl;a)

@=L oy

Proof. Let us fix an orthonormal basis {i,...,& of £ € G(j,d) so that
&1,...,&; is an orthonormal basis of n € G(i,d), i < j. Let

(111.3.3)

(Mg =< &ip1s---165 > (I11.3.4)
be the orthogonal complement of 7 in {&. We denote by &;41,...,&4 a certain
orthonormal basis of £&-. Then vectors &1,...,&; form an orthonormal

basis in nt. If [¢,{o] = 0, i.e. dim (éXN¢G) > 0, then [n, ] = 0 for all
n C € since ¢+ C nt and dim (nJ‘ N Cd‘) > 0. Hence formula (IT1.3.2) holds
automatically. It means that in the following it suffices to prove (I1I1.3.2) for
the case [£, (o] # 0, i.e.

4N < egyn, ..., eq >={0}. (I11.3.5)
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The following relation holds:

[na CO] = VOl(fi-I—la IR afda €k+1y--- aed) =
VOl(fj_H, . ,§d, Ch41y---> ed) Vol (Pr<§j+17---,§d,€k+17---,€d>J‘{§i+1’ . ,fj}) ,
or briefly,

[n, o] = [€, o] Q(&,m) (I11.3.6)

where Q(¢,7n) denotes the (j — 7)—dimensional volume of the parallelepiped
spanned by projections of &;41,...,&; (cf. (IIL.3.4)) onto the plane

<Ejitye s bd ety g >T=<ER G >T (111.3.7)

Thus by (IT1.3.6)

[77’ <O]a0(dn) = Ca(f)[&a (0](1’

n€G(i,d): nC§

cal€) = / Q(€.n) o (dn). (ITL.3.8)

n€G(i,d): nC§

Let us write Q(&,n) in a different form. First we give another representation
to the plane (II1.3.7):
<& G >t=€6n¢. (I11.3.9)

Indeed, if 7 €< &L, ¢ > then 7 L {&41,...,&} and 7 L {egy1,---,eq}-
Hence 7 €< &jy1,...,8a St=¢ 7 €< epyr,...,eq >t= (o, or T € £N (o.
Thus, <&, (g >+ C €N¢p. Since dim (<&, (- >1) = dim(EN¢o) by (1.1.4)
the relation (II1.3.9) is proved.

Let us now show that

def

QEn) = Vol (51, €ab(€N0E)) N comle.  (113.10)

By definition of Q(&,n), owing to (II1.3.9) one can write

Q(&,m) = Vol (Preng, (¢ ) ) - (ITL.3.11)

The following formula holds for any flats a, ¢ in arbitrary ambient space:
[at, ] “ vl (b(a), b(cJ‘)) = Vol (Pr¢(a)) = Vol (P’l"aJ_ (CJ')) .
Hence (II1.3.11) yields

Q&) = Vol (Preng, (¢ ) ) = Vol (Pry (61 )2 ) ) = 6N Gos e
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(here the ambient space is ). Thus, relation (II1.3.10) is proved and (II1.3.8)
gives

cal€) = / € Co. ]2 o(d).
n€G(i,d): nC¢&

Let us prove that ¢, (¢) does not depend on £. According to (IT1.3.5) it
is sufficient to consider only the case

& n¢g = {0} (I11.3.12)

For any £ € G(j,d) there exists a rotation v € SO(d) such that £ = &,
& =<e1,...,e; >. Then

ca(§) = / [v€0NCo, Y115¢, o (dn) = / [€oMy™" Co, Mg, o (dn),

n€G(i,d): nCéo n€G(i,d): nCéo

and (I11.3.12) has the form

(Y&) T NG =& NG =& Ny ¢ = {0}

Without loss of generality one can substitute v by y~!. Thus we should
show that

o def

Ca(7) (&0 N G0, g, o(dn) (IT1.3.13)

nEG(iad): WCEO

is constant on the set
Gk = {7 € S0(d) : & Nt = {0}}. (II1.3.14)
First let us prove that
dim(&o NyG) =j+k—d

for any v € Gj. By (I.1.4) the dimension of £, N y(p can not be less then
j+k—d. Let us prove that it can not be also greater then j+k—d. Suppose,
ex adverso, that dim(& N~y(y) =m > j+k —d. Let 11,..., Ty be the basis
in £ N yCp. Amplify it to the bases in & and v(p:

f() =< Tly-- -y T Tm41ly-- - Tj >,

YC0 =< Tlyenny Ty Tmgly -5 Tk > -

The number of different unit vectors in &y, vy is evidently equal to j+k—m.
Then, as m > j+k—d, this number is less then d. It means that there exists
at least one unit vector z € R?% that does not belong to the linear hull of the
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bases in &y and (. Then z € & N (7(o)~. We arrived at the contradiction
with (IIL.3.14).
Thus we proved that any transform v € G, preserves the dimension

of 8 el €0 NyCo C &. Identifying & with R/ we can rewrite the relation
(II1.3.13) as follows:

Ea(ﬁ): / [Ba Ryadn /[187 IRJ
nEG(i,d): nCRI G(i,5)

for B C &, dim(B) = j + k — d. Let us prove that ¢, () does not depend on
B € G(j+k—d,j). Indeed, we have by rotation invariance (since dim(f)
does not depend on v C Gj) that

Ca(B) =Ca(Bo), Bo=<e€1,-..,€j1k—d> -
Thus we have proved that
@) = [ (o dn
G(i,9)

is a constant, Sy =< e1,...,ej15—q >€ G(j + k — d,j). Now our aim is to
calculate c(«). Introduce the notation

ba(n,m,r) = / [Bo, mlGm dn
G(n,m)

forn+r > m, fo =< ei1,...,e, >. Then c(a) = by(%,5,7 + k — d). Let us
calculate b, (n,m,r) for all n, m, r such that n +r > m > 2. At the first
step, let us prove that

fori+k>d, i<j,i>d/2,d> 2. Integrate with respect to  the equality
[ e otan = g (I1L.3.16)
n€G(i,d): nC¢

where ¢ € G(k,d) and ¢ € G(j,d). Relation (I11.3.16) follows from (II1.3.2)
by rotation invariance. One gets by Fubini’s theorem that

[ | [ marac|otin =cta /[5(

neG(i,d):nce \G(k,d)
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Since the integrand in parentheses in the left—-hand side of the above relation
does not depend on 7 because of the rotation invariance and is equal to
bo(k,d,i) we can write

baldsi) [ oldn) = (@bl
n€G(i,d): nCE
Then, as the total mass of the measure o is one, the above relation completes
the proof of (II1.3.15).

By lemma 2.2 (a) of [70] (one should apply operators A and A* to a
constant function there)

bo(d—1,d,d — k) = bo(d — k,d,d — 1) =
1

Yd—kChk / )(k=2)/2d—k—Ltagy (I1L.3.17)
0
The integral in the right-hand side of (IT1.3.17) is equal to
; k
1/2 /(1 —u)R/2 1y T gy = %F G
0

Then by (II1.3.17)

bo(d—1,d,d — k) = =

Thus we have proved that

bo(d—1,d,d — k) = bo(d — k,d,d — 1) =

Let us prove that for all k&
bo(d — k,d, k) = by(k,d,d — k).
By definition, one can write for some 7 € G(k, d)
bald-kd )= [ Ipadn= [ 165 dn =
G(d—k,d) G(d—k,d)

/[ﬂo,n dnt = /[ﬂé,uJadvzbaw,d,d—k)-

G(k,d) G(k,d)

The said above is true since [3,7] = [+, n*] for all B € G(d — k, d),
n € G(k,d).



36 CHAPTER III. INTEGRAL TRANSFORMS

Furthermore, by (II1.3.18) we have forall 1 <r <d -1
T (5T (52)
bo(d—1,d,7) = bo(r,d,d —1) = —20 -2 2 (I11.3.19)
L (3)T(4%2)

By (II1.3.15) and (III.3.19) the following equality is true:

ba(k,d,d —2) = bo(d — 2,d — 1,k — 1) - ba(k,d,d — 1) =
L (9T (452) T ()T ()

C(E)T(5E) T (T (B

One can prove in the same way by induction on r that for a > 0

r=lp (d=ly p (k=lte
k=0 = Ly

or, more generally,

bo(k,d,r) = k+r>d. (I11.3.20)

Then as c(a) = ba(i,7,j + k — d) and by (II1.3.20) we get that relation
(IT1.3.3) holds, and the theorem is proved. O
3.2 Dual Radon transforms of the power of the volume

Now it will be of interest to us to consider the action of the dual Radon
transform on functions g(n) = [+, (o]* for a > 0.

Proposition II1.3.1. Let i < j < k < d, d > 3. Then for a > 0 the
following relation holds:

(Rii[-5 Gol™) () = (@)™, Go® (IT1.3.21)
where n € G(i,d),

d—k—1 T (d=i=l\ p ( d=izlta
c@= ] (S r (= ) (I11.3.22)

e T (dfgfl) T (d—i;l—l—a)

Proof. Let n C ¢ € G(j,d). Then &+ C 7+, and using the duality relation
(2.3) of [19] for the Radon transform one can write

(Rjil-*, €]V () = (Ra—j,a—il-» Co]®) (n™).

Here d —j < d —i, n* € G(d — i,d), so we can use the result of theorem
I11.3.1:

(Ra—ja—il»Gol®) (") = ¢* () [n™, o]
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where ¢*(a) = by(d — j,d—i,d—i+k—d) = bo(d—j,d— i,k —1i) (cf. proof
of theorem II1.3.1). Then by (I11.3.20)

and the assertion is proved. U

3.3 Cauchy — Kubota — type formulae for the generalized
cosine transforms

First let us prove the following

Proposition II1.3.2. For any a > 0 and dimensions i, j, k withi+k > d,

i < j the following integral relation is valid on the space M (G(k,d)):
RijTlgfi = c(a)T,?‘j

where the constant c(«) is defined in (II1.3.3).

Proof. Integrate both sides of equality (IT1.3.16) with respect to some mea-
sure § € M (G(k,d)) and use Fubini’s theorem:

[ [ mareaoetn =@ [ ec oo

nEG(i,d): nCE G(k,d) G(k,d)

The comparison of both sides of the above equation with the expression for
T} completes the proof. O

The following corollary is an easy consequence of proposition I11.3.2 for
a=1:

Corollary II1.3.1. For any ¢, j, k with i + k > d, © < j the following

relation holds: w w
i+1—d+kWji+1
R;jTy; = ——————1T};.

Wj+1—d+kWi+1

The case i =1, j =r, k = d — 1 will be of importance to us:

Corollary TIL.3.2. For anyd >3,1<r <d—1,n€ G(d,r), and signed
measure § € M(S%1) the following integral relation holds:

(Td_l,rai) (n) = %T ~(B;T0) (n). (I11.3.23)

Remark IIL.3.1. If r = d — 1 then equation (II1.3.28) coincides with
(I11.2.11). Thus proposition II11.3.2 is a generalization of the classical re-
lation (I11.2.11).
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The above connection between generalized cosine transforms of different
orders can be used in practice. For example, in tomography and stereology
there is often a need to estimate the statistical parameters of the shape of
some geometric structure under consideration (e.g. porous media, micro-
scopic shots of tissues, fiber collections, etc.) from the experimental data
gained by sections of examined patterns, or in our terms, by intersections of
patterns with flats of different dimensions. The above mentioned patterns
are sometimes modeled as k—dimensional manifold processes in R which
can be seen locally as k—flat processes with directional distribution 6 if one
considers all k—flats tangent to the pieces of k—manifolds in the correspond-
ing neighborhood. The characteristics known from their intersections with
i—flats will be in this case often their roses of intersections Tj;6 (or the corre-
sponding moments Ty:0). Proposition IT1.3.2 states that from the knowledge
of the characteristics of the lower-dimensional sections of the pattern (T26)
conclusions about the same characteristics in higher—-dimensional sections
(T)50, j > i) can be obtained by simple integration (R;;).

The proof of the theorem II1.3.1 yields the well-known result below (cf.
formula (II1.3.20) with o = 1) that we would like to emphasize: it is the
value of the rose of intersections of the stationary isotropic (i.e. with the
uniform distribution of directions) Poisson k—flat process (cf. [82]) with
arbitrary r—flats (Tk,1). It coincides with the rose of intersections of the
stationary isotropic Poisson r—flat process with k—planes:

Corollary II1.3.3. For any k, r such that k+1r > d

(k+1) (Hl) Wd+1Wk+r—d+1
Terl =101 = = ;
kr rk T ( d+1 ) T (Ic+r d+1) W1 Wr+1

3.4 Double fibration for {T}}} and {T: 5}

The following double fibration relation (cf. [32], p. 168) for R;; takes place
for all absolute integrable f € L' (G(i,d)), ¢ € L' (G(j,d)):

/ (Rij ) (O / f(n) (Rjip) (n) dn. (I11.3.24)

G(]ad) ’L d)

Here Rj; is dual to the transform R;;. Let us investigate now the behaviour
of this relation on functions f(n) = [n,(o]%, n € G(i,d), i < j. By theorem
IT1.3.1 one gets from (IT1.3.24) that

/ i€, Col® - / 0.l (Rjip) () dn,  (ITL.3.25)

G(j,d) G(i,d)

and using the rotation invariance of the above equation we obtain the fol-
lowing result:
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Proposition II1.3.3. For all i < j, i +k > d, a > 0 and all absolute
integrable functions ¢ € L' (G(j,d))

(T50) (©) = ¢ H QTG (Rjsp) (), ¢ € Gk, d) (I11.3.26)
where c(a) is given by (II1.3.3).

It would be of some interest to illustrate the usage of the above propo-
sition in stochastic geometry. Namely, for the values a« = 1, d = 3, 1 = 1,
j =2 and k = 2 we have the equality

(Taag) () = 5 Tiz (Rar) (O), € € G(2,9). (I11.3.27)

The transform (Th2¢) (¢) is the rose of intersections of the stationary process
of planes ®3 in three dimensions with a test plane (. The process ®3 has
the unit intensity and the directional distribution with density ¢. This rose
of intersections is equal by (II1.3.27) to the rose of intersections 779 of the
process ®? of lines with the same test plane ¢ where this new process ®} has
the unit intensity and directional distribution density Ro1¢ obtained from
@ by integration.
Proposition II1.3.4. The adjoint operator of T;3 on L' (G(i,d)) is operator
TS on LM (GG, ):
*

(T5)" = Tj:.

Proof. The desired relation

/ F(n) (T2) (n) dn = / (TS 1) () (€) de
)

G(i,d G(j,d)

for f € L' (G(i,d)) and ¢ € L' (G(j,d)) follows easily from the more general
relation

| @)t = [ (g @t

G(i,d) G(j,d)
for any 0 € M (G(j,d)), p € M(G(i,d)) which can be seen directly by
Fubini’s theorem. O

Let us state now the result for the dual Radon transform similar to the
proposition I11.3.3:

Proposition II1.3.5. For all 1 < j < k < d, a > 0, and all absolute
integrable functions g € L' (G(i,d))

(T59) () = (" (@) " T5i (Rijg) (), ¢ € G(k,d) (I11.3.28)

where ¢*(a) is given by (1I11.3.22).



40 CHAPTER III. INTEGRAL TRANSFORMS

Proof. First it is worth mentioning that the assertion of proposition I11.3.1
is also true for any ¢ € G(k,d) instead of (y by rotation invariance. One can
write by (II1.3.24) and (II1.3.21) that

@ [ draman= [ 150" R @ e, (i3
G(i,d) G(4,d)
which together with the definition of TZOJ‘ completes the proof. O

3.5 Bounds for the weighted images of Radon transforms

For a > 0 introduce the following functionals on the space of absolute inte-
grable functions g on G(7,d) and ¢ on G(j,d):

ol & | [ gtnn.col® ]

G(i,d)

d
ol | [ ot o de|-
G(j,d)
Let || - ||, denote the usual norm in LP—spaces. This paragraph will be de-

voted to the construction of the inequalities that would bound the weighted
images of Radon transforms and their duals from above.

Proposition II1.3.6. Choose the numbers p,q > 1 such that 1/p+1/q = 1.
1) Leti<j,i+k>d, a>0, and ¢ € L (G(j,d)). Then

IRjiell (o) < da; @)ll¢ll, (I11.3.30)
where
d ¢ T (T () " I11.3.31
() = cle) g r (72—l) T (d—l-;a+q> (IT1.3.31)
and c(«) is defined by (I11.3.3);
2) Leti<j<k<d, a>0, and g € L? (G(i,d)). Then
1Rijgllay < d* (@, 9)llgllp (I11.3.32)
where
d—k-1T (&) T (—d_i—12+a+q) 1/a
d*(a; q) = ¢ (@) - (I11.3.33)

T (d—2z—l) r (dfl42—a+(I>

and c* () is defined by (I111.3.22).
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Proof. First let us prove the upper bound for the image of the dual Radon
transform: we have by (II1.3.25) that
[Rjill @) < cla) - lllellla)-
Then applying Holder’s inequality one gets
1/p 1/q

lellle < /|¢<s)\f’ds / € oot de | = [l bYe G d k),
G(j,d) G(j,d)
while by (IIL.3.20)

d—k—1 T (ﬂ) T (j—lga+q) la

bl Ghd k) = | T

T (%1) r (d*l—;a-HI)

The proof of the second statement of the proposition is conducted ana-
logously: by relation (IT1.3.29)

IRisglity < (@) - llgllsy-

By Holder’s inequality

1/p 1/q
gl < /Ig(n)l”dn / Gty | =
G(i,d) G(i,d)
1/q
1 .
lgll, / vl e | = llglly - b (d — i, d, k),

G(d—i,d)
where by (IIL.3.20)

d—k—1T (&) T <—d—i—12+a+q) 1q

a g _ —
ba+q(d 1, d, k) g T (d_gi_l) T (d—l;oﬂ-q)

O

Remark II1.3.2. All results of section 8 can be reformulated for complex
«a. But several technical difficulties arise here because of the singularities
of the kernel [€,1]* for Rea < 0. Indeed, one needs to prove even the
existence of operators T35, which seems to be not trivial. It is very likely that
for complex « the integral formulae of this section could be proved only for
measures 0 that are absolutely continuous with respect to the Haar measure
on the appropriate Grassmannian. A proper normalization of operators Tz‘;‘
by some complex coefficients depending on the gamma functions of o will
be necessary to make this family of operators analytic on a. To avoid these
complications we consider only real positive o here.
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Chapter IV

An inverse problem for the
roses of intersections

Suppose @g is a stationary k—flat process with unit intensity intersected with
any r—flat n, r = d — k + j. In this chapter we prove the formulae that yield
its directional distribution @ from the rose of intersections T},.0.

1 The rose of intersections and the directional dis-
tribution

First of all, the following natural question is to be answered: does the rose

of intersections T} g6 of @z determine the directional distribution 6

uniquely? In other words, for which k£ and j the generalized cosine transform

T),d—k+; is injective on L? Introduce the set Vy(d,k,j) of all probability

measures §p on & such that (Ty 4—k;00) (n) = f(n) for all . Then the

uniqueness would imply | V¢(d, k,j) |= 1. One can distinguish the following
particular cases for any dimension d:

e 7=0 (CIDg N7 is an ordinary point process):

—k=d—-1or1: | Vi(d,k,j)|=1 (G. Matheron, 1975, cf. [51]).

— 2< k< d—2: Vi(d,k,j) is infinite dimensional (P. Goodey,
R. Howard, 1990, cf. [14], [15]).

e 1 <j<k<d—1(P. Goodey, R. Howard, 1990):

— k <d—1: V§(d,k,j) is infinite dimensional.
—k=d—1: | Vi(d,k,j) |= 1.

See also [23] for the description of the subspaces of injectivity of Ty, for
k<d-1.

43
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AsO(A) = [ I4(¢)0(dE) for any A € & and I4(+) can be approximated
G(k,d)
by smooth functions one can easily see that any measure 6 is uniquely de-
termined by all integrals

/ 9(€) 0(de) (IV.1.1)

G(k,d)

where g belongs to some sufficiently large class of functions, say C?(G(k, d)),
p € NU{oo} or C(G(k,d)). J. Mecke [52] provides an easy integral retrieval
formula for fiber processes on the plane (d = 2, k = r = 1) that expresses
(IV.1.1) through the integrals of 77160, while J. Mecke and W. Nagel [58]
obtain a sort of expansion formula in spherical harmonics for the case d = 3,
k=1, r=2. In both cases T},.0 is injective.

In what follows we shall generalize these results (k = d — 1) for arbitrary
dimensions d and r and also consider one case of non—uniqueness d = 4,
k = r = 2. Here the whole set V¢(4,2,0) will be described. The choice
of parameters k£ and r could be explained by the fact that only in these
cases the appropriate Grassmannian G(k,d) is isomorphic to a sphere (or
a product of spheres) (see section 2 of chapter I), and by this means the
standard methods of harmonic analysis on the sphere are applicable. All
other cases of non—uniqueness remain still open.

2 Inversion formulae for k=d—-1,r=1

Let (}371 be a stationary hyperplane process with unit intensity, directional
distribution # and rose of intersections with lines T; 116 = f.

Proposition IV.2.1. If +(-) is absolutely continuous with respect to wq(-)
with density v € Ce(S4 1) then

2

iy Ld_Q Of (u) |<u,v>] wnl(du
y(v) = cg (d(/ﬂ)) / ( — wa(du) (IV.2.1)

9_d
<u,v>2 —p?)
<’IL,'U>2>H2 ’ u:o

where ¢4 is given by (I11.2.8).

Proof. We apply formula (I11.2.7) for ¢ = v and then note that in view of
(IT1.2.10) and provided that f = Ty we get the above result. O

Relation (IV.2.1) in three dimensions can be found in the book of A. V.
Pogorelov [67].

Theorem IV.2.1. Let ‘1)3—1 be a stationary hyperplane process with arbi-
trary directional distribution measure 6 and rose of intersections with lines
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f. Then for any g € C™ (S°1), m > (d +5)/2, and dimension d > 3 the
following formula holds:

/ 9(0) - (dv) = & x

Qd—-1

y /f(u)D(ﬁ)H / (g@) [<wo>l o)

1% <u,v>? —/P)Q_%
Sd-1 <u,v>2>p? ’

pn=0
where c% is given by (I11.2.8).

Proof. By theorem 4.1 in [20], for any g € C™ (S%71) there exists an inte-
grable function h on S%! such that

g=Th. (IV.2.2)

Then by Fubini’s theorem

/ 9(v) 0 (dv) = / (Th) (v) 0~ (dv) = / / <, 0> [h(u) 0 (dv)wa(du) =

gd—1 gd-1 gd—1 gd—1
/ h(w) (70" (u) wa(d) = / h(u) f (1) wa(du).
Sd—1 gd-1

Then as (0 and R~! commute and by (IT1.2.10) we have from (IV.2.2) that
h=T"1¢g=R'0O¢g=0R"1y.

Then using lemma II1.2.1 one gets

[o0)6+(@0) = [ 1R gl watdn) -

Sd-t Sd-

d 2 v) [<u,v
4 [rwolz5) |/ (i(’jlj_u;'% wa(a@)|| | wataw),

Sd-1 <u,u>2>p?

and we are done. O

Remark IV.2.1. A result similar to theorem IV.2.1 was obtained by W. Weil
(cf. [88], [22]) in the setting of distributions. Namely, the support function

of a generalized zonoid is the cosine transform of a finite signed measure.

Weil generalized this idea and introduced the generating distribution for any

centrally symmetric compact convez body in RY. It was shown in [88] how

this distribution can be restored from its cosine transform.
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Remark IV.2.2 (Case k =1, r = d —1). All results of this section can be
applied directly to the dual case of a stationary line process ®¢ intersected
with hyperplanes: r=d — 1.

Remark IV.2.3. One can also use other inversion formulae for the sphe-
rical Radon transform (cf. [31], [32] p. 186-187) in order to prove relations
similar to those of proposition 1V.2.1 and theorem IV.2.1 (see [79]). These
inversion formulae involve certain polynomials of the Beltrami—Laplace ope-
rator, if d is even, and for odd dimensions they can be written in terms of
fractional integrals and wavelets (cf. [69]-[71]).

3 Inversion formulae for k=d—-1,1<r<d—-1

Counsider a stationary hyperplane process Q)g_l with unit intensity, direc-
tional distribution # and rose of intersections with r—planes Ty_1,0 = f.
The results of the previous section allow us to get 6 (or the density y of -
on S9! with respect to wy(-)) if we know T9+ (T, respectively). Now let
us rewrite these expressions in terms of f. It follows from (II1.3.23) that

2k7"71

Wy

TO+ = R 'f.

Then applying inversion formula (II1.2.3) for the spherical Radon transform
of order r one gets

(10+) () = 218

Wr
T
d rl r 3
0 d(sy™ L v)=arccosy =1

Now substituting 76+ from the above relation for f in the results of
section 2 we get the same scope of retrieval formulae for the case
1<r<d-1:

Theorem IV.3.1. Let @g_l be a stationary hyperplane process with direc-
tional distribution 6 and rose of intersections with r—planes f, 1 <r < d—1,
d > 3. Then TO can be determined using (IV.3.1) and we have

1) If 6+ is absolutely continuous with respect to wq(+) with density
v € Ce(S41) then

L, d N\ O (T64) (u) [<u,v>| .
o= () | [ ||

<u,v>2 —p2)%73

<u,v>2>u2 u=0
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2) For arbitrary probability measure @ on G(d—1,d) and any g € C™™ (S%1),
m > (d+5)/2

/g(v) 0+ (dv) = ¢4 x

Sd—l
x / (T@L) (u)D( d(Z2)>d2 / (i (12511’:2;'% wa(dv) || wa(du)
sd-1 <w,u>2>p2 ’

u=0

where ¢ is constant (I1I1.2.8).

Remark IV.3.1. In the case k =r = d—1 the fact that G(d—1,d) = Si_l
and the Haar measure is just the normalized surface area measure on the
sphere makes relation (IV.3.1) simpler (cf. [79]).

4 Inversion via expansions in spherical harmonics

The following section will be devoted to obtaining the inversion formulae
for Ty_1,1 and Ty 4—1 by means of expansions in spherical harmonics. To
this end already known results about the eigenvalues of cosine and sine
transforms (cf. [28]) will be used.

Introduce the scalar product <g,h>ga-1= [ g(u)h(u)wq(du) of any
Sd—1
real functions g and h from L?(S%"1). Let

{Sp,jin€Zy, j=1,...,N(d,n)}

be an orthonormal basis of spherical harmonics on S%~! in the usual norm
|- llsa-1 in L*(S*1) (see [65], [5], [27], [28]),

(2n+d—2)I'(n+d—2) 1
N(d,n) = T(n+1)I'(d—1) =

1, n = 0.

(IV.4.1)

For any integrable function g: [ |g(u)| wa(du) < oo there exists its
Sd—1
expansion in spherical harmonics:

o N(dan)

9(w) ~ > " cnj Sn,j(w) (IV.4.2)

n=0 j=1

where
Cnj =<g,Sn,j >gd-1 (Iv.4.3)
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We know that any measure p on S% ! is defined by the values of its

integrals [ g(u) p(du) for all g € C°(S971). Let g have expansion (IV.4.2).
gd-1

Then because of the uniform convergence of this series to g (cf. [28]) we have

o0 N d,n)
/ g(u) p(du) = Z Cnj Bnj
gd-1 n=0 j=1
where
By — / S () p(du). (IV.4.4)
Qd-1

Therefore is it sufficient to know all B,; to get a complete description of
p. If 1 = 6+ is the directional distribution measure of a hyperplane process
and f its rose of intersections with lines or hyperplanes then B,; can be
determined from f, i.e. from its expansion coefficients b,; =< f, Syj >gd-1.
The following result is a direct corollary from lemmas 3.4.5, 3.4.7 [28]:

Proposition IV.4.1 (Intersections with lines and hyperplanes). Let
@371 be a stationary hyperplane process with directional distribution 0 and
rose of intersections with r—planes Tq_1,60 = f (r € {1,d —1}). Then for
any g € CX(S41) with expansion in spherical harmonics (IV.4.2)

o N(dan)
/ g() 0+ (du) =3 S o B
n=0 j=1

gd—1
where
B 0, n odd . N(d.n)
nj — <fySnj>gd—1 y J =1y L
legn—, n even

The value of a, is

1) in case of lines (r =1):

-1 n=>0
2 —
an =14 @-Dn@+n’ - n=2 ,
n_z 1-3-....(n—3
2(-1) > (dfl)(d+1).7(d+n71)’ Jor even n > 4

2) in case of hyperplanes (r=d —1):

(d-2! T (%) n!
2 T (™) (n+d-2)!(n/2)!

anp = — for even n > 0.
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5 Case G(2,4)

Let us proceed now to the case G(2,4). Suppose the stationary process ®3
is intersected by a 2-plane n € G(2,4). By theorem 1.2.1, the isomorphism
M (cf. (I1.2.5)) maps G(2,4) onto

{(u,v) € 82 x 8% : (u,v) = (—u, —v)}.

Then for all £, n € G(2,4) £ = (u,v), n — (&, D), where u, v, @, 7 € S%. If §
is the directional distribution of ®; (i.e. a probability measure on G(2,4))
then one can prove that its image under the isomorphism M is again a
probability measure § on 2 x $2. By (1.3.1), the rose of intersections of 3
is

(Tys0) (n) = (@, ) :% / <u,@> — <v,5>| 0(d(w,v). (IV.5.1)
S2xS2

It will be shown in the following paragraphs that for absolute continuous
measure 6 with density g, i.e. when 0(d¢) = g(&) d¢, its image 6 has the fol-
lowing form: é(d(u,v)) = ﬁ g (M (u,v)) ws(du)ws(dv). The key point
here is to prove that the Haar measure on £(2,4) is mapped into the product
of surface area measures on S? x S2. Two independent proofs of this fact
(see theorem IV.5.1) will be given in §5.2 and §5.5. The idea of the first
one belongs to Prof. B. Rubin. The second proof is due to Prof. J. Mecke.
Then the inversion formula for Ty, in its parametric representation (IV.5.1)
on S2 x S2 will be given in §5.6.
In the sequel we shall use 0 instead of @ without abuse of notation.

5.1 The Haar measure on £(2,4)

In what follows we shall study the structure of the Haar measure on the
oriented Grassmannian £(2,4). Namely, we shall give two proofs of the
following result:

Theorem IV.5.1. The image of the normalized Haar measure on L(2,4)
under the homeomorphism L£(2,4) — S? x S? is the measure

1

1672 w3 (du)ws(dv),

i.e. the normalized product of the surface area measures on each sphere.

The first proof involves the exact form of the Haar measure on SO(3)
given by integration with respect to the Euler angles (cf. [87], p. 11, 23).
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5.2 The first proof of the theorem IV.5.1

In this proof we shall find another homeomorphism £(2,4) — S? x S? (dif-
ferent to M) such that the assertion of theorem IV.5.1 is true.

Let Stab(¢) be the stabilizer of subspace ¢ C RY, i.e. the subgroup of
SO(d) such that for any rotation x € Stab(§) k€ = €. Denote by eq,...,e4
the Cartesian orthonormal basis in R*. By lemma 2.1 of [70] we have for
any smooth function ¢ on £(2,4) that

w/2
/ (&) de =2 / sinTcosT / o(kgy '&) drdr (IV.5.2)
£(2,4) 0 Stab(es)

where £y =< e1,eg >, Stab(eq) = SO(3), dk is the Haar measure on SO(3)
normalized by unity, and g, ! is the following rotation in the plane

< eg,eq >:
1 sinT —cosT
= ) . IV.5.
9 ( cosT sinT ) (IV.5.3)

Without loss of generality we can identify ¢ with ¢ and & with
£y =< e3,eq4 >. Then by (IV.5.3)
/ﬁg;163 = Kes, ﬁg;164 = —KeaCOST + e4 Sin T,
and
(kg 1) = p(< Ke3, —Keg cOST + egsinT >).
By [87], p- 23 the Haar measure on SO(3) has the following representation:

1
dk = — sin~y dydfda
82

in the parameterization by the Fuler angles 0 < a, 8 < 2w, 0 < v < 7. Then
relation (IV.5.2) rewrites

w227 21 W

/) p(&) dE = 4—712 0/ 0/0/0/<;3(a,ﬁ,7,’r) sin 7y sin 7 cos 7 dydfBdadT =

L£(2,4

s
///cﬁ(a,ﬂ,’y,nﬂ)sin'ysinTld’ydozdfldﬁ:
000

i
—
£
=
€
w
—~
U
<
p—
&
w
U
S

where

95(057185 Y5 T) = 90(< ’k“‘(a’ :857)637 —K,(Ot, :87'7)62 COST + €4 sinT >)

and (a, 8,7) are the Euler angles of the rotation k, 71 = 27, and u, v are the
vectors from S? with spherical coordinates (c,«y) and (8, 71), respectively.
Here @ is equal to ¢ as a function of u, v. The proof is complete.
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5.3 Quaternions and rotations in R*

In order to give the second proof of theorem IV.5.1 we need some facts from
the theory of quaternions (see [2], [68], [30]). Let

K={g=q+qi+q@j+ek:geR [=1,...,4}

be the skew field of all quaternions in R*. We shall denote the real (imagi-

nary) part of a ¢ € K* by Rq def q (S¢=4 def ¢11 + ¢oj + gsk) and the set
of all purely imaginary quaternions (with g = 0) by S (K4). There is an
obvious isomorphism between K* and the vector space R*:

qg=qo+ qi+qj+ak— ¢=(9,91,92,93)-

Later on we shall identify ¢ and ¢ € K* without abuse of notation. It will
be clear from the context which interpretation of it we use. Introduce the
quaternion product of z,y € K*:

T -y = ToYo + ToY + YoZ— <Z,9> +[Z, 9o (IV.5.4)

where < -,- > is the usual scalar product in R? (here d = 3), [-,"]o is the
vector product in R3, and Z, § are understood as vectors in R? with basis

. e . . d n
i, j, k. Introduce the conjugate to a quaternion q: ¢ e qo — 4, the absolute
value |q| = \/<q,q>, the inverse ¢ ! = G/|q|? and the subset

H={geK :|q =1}

Then one can prove that
1 _ - 4
<zy>=5(@-g+y-1), z,yek.

It is also known that every rotation A € SO(4) considered to act on K* can
be presented in the form

Az =a-z-b, zecK! (TV.5.5)

for some a,b € H. The above representation is unique up to the change of
sign of a, b: {a,b} and {—a,—b} form the same rotation. Every rotation
B € SO(3) understood to act on the three-dimensional space of imaginary
quaternions & (K4) can be expressed in the form

Bzx=b-z-b! zek (IV.5.6)

for some b € H. The above representation is unique up to the change of sign
of b.
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5.4 Quaternionic coordinates for £(2,4)

Let us find a good description of any 2-flat from £(2,4) by means of quater-
nions. Let a 2-flat £ € L£(2,4) be spanned over the oriented orthonormal
basis {z,y} in R*: |z| = |y| = 1, <z,y>= 0. We shall consider z and y as
quaternions and write later on & = L{z,y}, =,y € H. Let & = L{1,i} be
the oriented coordinate 2—plane. And as each £ € £(2,4) can be obtained
from &y by rotation one can write by (IV.5.5) that & = L{ab, aib} for some
a,b € H and thus

L(2,4) = {L{ab, aib} : a,b € H}. (IV.5.7)

Note that the representation of £ € £(2,4) by £ = L{ab,aib} is not unique.
Let us prove the following result:

Proposition IV.5.1. For every 2-plane { = L{ab,aib} € L(2,4), a,b € H,
the pair {bib,aia} does not depend on the special choice of a, b (quaternionic
coordinates).

Proof. Tt is clear that for each 2-flat £ such coordinates exist, and vice versa,
for each pair {bib, aia} there exists a plane ¢ € £(2,4) with these coordinates.
Now it should be shown that the above pair does not depend on the choice
of rotation that maps & to &, i.e., on quaternions ¢ and b. Namely, we
shall prove that if £ = L{ab,aib} = L{cd,cid} for some a,b,c,d € H then
aia = cie, bib = did.
Firstclad, us dlescbehall metptiofl i 1

lf preserving orientation. It means that L{1,i} = L{cd, cid}, or that

 lie in L{1,i}. Since cd L cid and they are the linear combination

nd i, then they differ from each other by the factor i: icd = cid (the

{cd, cid} should have the same orientation as {1,i}). Dividing it by

have that ¢ and i commute. This means that ¢, and c3 vanish in

 + c1i + c2j + c3k, or equivalently, ¢ € L{1,i}. And as cd,c € L{1,i}

ve (again by division) that d also belongs to &.

ow let us return to the initial problem. Namely, let two rotations

+axb and B : #» cxd map the same 2-flat ) in €. It means that

1 Cazbd maps & to itself. In detail, B~1A¢y = L{cabd, caibd}

s that éa and bd commute with i:

cai = ica,
bdi = ibd.

plies the first of the above equalities by ¢ on the left and by
ht and the second equality by b on the left and by d on the
s the desired uniqueness of coordinates, and the proposition is
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Let us denote the quaternionic coordinates of a flat £ = L{ab, aib} by u

and v: -
{ u = bib, (IV.5.8)
v = aia.
Evidently 4 = —u, v = —v, which gives us Ru = Rv =0, or

U,V € %(K‘L) ~ R3.

And as u,v € H then considered as vectors in R? they belong to S2. Thus
we proved once again (cf. theorem I1.2.1) that there exists an isomorphism
between £(2,4) and S? x S2.

Proposition IV.5.2. Let £ be a 2-plane with quaternionic coordinates u, v
spanned by the orthogonal unit vectors x and y. Then the following formulas
connecting quaternions u, v and vectors x, y are true:

u =

v =
These coordinate relations coincide with (1.2.4) if one supposes {a;} and
{bi} to be the Cartesian coordinates of the vectors x, y.

("i'y - gz)a
5 — o7, (IV.5.9)

N[0

Proof. One can write by (IV.5.7) that x = ab, y = aib for some a,b € H.
Then u = Ty = —yz, v = yZ = —zy and (IV.5.9) is proved. In order to
verify the second statement of the proposition one should just write down
formulas (IV.5.9) in Cartesian coordinates of z and y and then using (IV.5.4)
check the stated coincidence. O

Now we are ready to give the second proof of theorem IV.5.1.

5.5 Mecke’s proof of theorem IV.5.1

The Haar measure on £(2,4) is by definition the unique (up to a constant
factor) measure on this Grassmannian invariant under the action of the
group SO(4). The transformation group SO(4) acting on £(2,4) generates
by means of the mapping of £(2,4) onto S? x S? the appropriate transfor-
mation group on S2 x S2. Let us explore its properties.

Take an arbitrary rotation A € SO(4): #» qzp for some p,q € H. Let

¢ be a 2-flat with quaternionic coordinates u, v. There exist quaternions
a,b € H such that by (IV.5.8) u = bib, v = aia. Then ¢ = L{ab,aib}. The
image A€ is equal to L{qabp, gaibp} , thus the quaternionic coordinates of
A¢ are & = pup, ¥ = qvg. By (IV.5.6) they are images under two rotations
on two spheres S2. Thus we have proved that any rotation A acts on S2 x S?
as a product of two rotations from SO(3). Then the image of the rotation
invariant measure on S? x S? should not change under all rotations on the
factor spheres. The measure w3(du)ws(dv) obviously satisfies this condition.
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Then due to the uniqueness (up to a constant factor) of the rotation invariant
measure d¢ on £(2,4) the measure

w3 (du)ws(dv)
(w3)?

is its image on S2 x S2. Theorem IV.5.1 is proved.

Remark IV.5.1. Since by proposition 1V.5.2 the quaternionic approach
described above coincides coordinatewise with that of §2.2 of chapter I, it
preserves the view of the integral kernel [€,n)]:

n=1/2| <wu,i>—<v,0 > |

where {u,v} and {4,0} are the quaternionic coordinates of & and 7).

5.6 The structure of V;(2,4,0)

Consider {S,,; : n € Z;, j =1,...,N(3,n)} — an orthonormal basis
of spherical harmonics on S?, N(3,n) = 2n + 1. The generalized cosine
transform of the directional distribution § of ®3 (its rose of intersections
with 2-flats) (T520) (n) = f(@,?) can be expanded in this system of S, ; as
a function of two independent variables (cf. (IV.5.1)):

oo 2n+12k+1
~ D0 D D bugki Sn i (@Ski(9) (IV.5.10)
n,k=0 j=1 i=1
where
bnjki ://f(ﬂa’ﬁ)s 3 (@) Sk, (V) ws (dit)ws (db). (IV.5.11)
S? §?

One can show that {Sy, ;- Sk, i}nk,ji constitute a basis in L?(S? x S?). Again,
we are looking for integrals

g(u,v) 0(d(u,v)) forall g € C> (8% x §?).

S2xS2
If
oo 2n+12k+1
v)~ Y Cnjki Sn, j (1) Sk, i(v) (IV.5.12)
n,k=0 j=1 =1
then
oo 2n+12k+1
9(u,v) 0(d(u,v)) = Z Z Z Cnjki Bnjki
nk=0 j=1 i=1

§2%§?2 w=U 7
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where
Bjii = / S () S 1(v) O(d(u, ). (IV.5.13)
S2xS2

Hence the coefficients B;,;;; define 6 completely. By Funk — Hecke’s theorem
(cf. [65])

|<u, &> — <v,0>|~ (IV.5.14)
[e’s} 2n+12k+1
D AnPank Y Y Snj(w)Sn, (@) Sk,i(v)Sk,i(D),
n,k=0 j=1 =1
1 1
G = / / |t — 2 | Py(x)Py(t) dt da (IV.5.15)
—-1-1
where
P,(t) = 1 (4 n(tQ —1)n (IV.5.16)
P onp\ dt e

are Legendre polynomials in three dimensions (cf. Rodrigues formula in
[65]). Namely, Py(t) =1, Pi(t) =t, Py(t) = 3t> — L, etc. Function

|<u, &> — <wv,0>|

is continuous on (u,v). Therefore its expansion (IV.5.14) converges to it
in the sense of Abel summation (cf. [65]). Moreover, taking into account
the explicit expressions for a,; (cf. theorem IV.5.2) one can show that
uniform convergence in (IV.5.14) takes place. Then integrating (IV.5.14)
with respect to 6 and interchanging integration and summation one gets

oo 2n+12k+1

f(@,7) ~ Z z Z 27 ank Bnjki Sn, (1) Sk, i(D).

n,k=0 j=1 i=1
Ergoif apy Z0 thenforalli=1,...,2k+1,57=1,...,2n+1

bryiki
Brjki = 27:;](1;- (IV.5.17)

As Ty is not injective (see section 1) we shall not be able to find all By, ;.
As proved in [14], p. 102-103, all ang, |n — k| > 2 are equal to zero that
explains the situation.

Theorem IV.5.2. Assume that f : G(2,4) — R, f = T8 is the rose of
intersections of a stationary 2—flat process in R:. Let Vr(2,4,0) be the set of
all directional distributions of 2—flat processes with rose of intersections f.



56 CHAPTER IV. AN INVERSE PROBLEM

Then, the probability measure 6 is an element of Vy(2,4,0) iff its coefficients
(IV.5.13) satisfy the following conditions:

Bhjki = Binj for all n, k, (IV.5.18)
f2 f2f(ﬁaﬁ)sn,j(ﬁ)sk,i(ﬁ)ws(dﬂ)ws(dﬁ)
Bujki=9 ~ . |n -kl €{0,2},
0, In — k| is odd

where coefficients any, defined in (IV.5.15) have the following properties:

Ong = agn for all n, k,

8 n="k=0,
2(2n)! _
~onmmritt etz "=k 1
Ank = —%amm, n=m-—1,k=m+1,
_%G/mm, 'n/:m'i‘].,k:m—].’
0, otherwise,
(m+ 1) def (1+2)@2+3%)-...- (m+3). Then for any g € C(S? x §?)

with expansion in spherical harmonics (IV.5.12)

oo 2n+12k+1

g(u,v) 0(d(u,v)) = Z Z Z Cnjki Bnjki- (IV.5.19)

S2><S2 n,k::O ]:1 =1

Proof. The symmetry of Bjj; on k,i and n,j is evident from relations
(IV.5.13) and (1.2.2): 8(A,B) = 6(B, A) for all spherical Borel sets A and
B. Let n + k be odd; making the change of variables u — —u, v = —v in
(IV.5.13) we get

Bujki = (—1)""*Bpjp; = —Bpjki

by the homogeneity of spherical harmonics. Consequently By j;; = 0. Now
calculate a,; for even n + k. Clearly a,r = ar, because of the symmetry of
(IV.5.15). One can show that an; # 0 iff |n — k| € {0,2} (cf. [16], p. 267).
It is also a consequence of the lemmas below: due to (IV.5.15), (IV.5.20),
the symmetry of a,; on n and k and lemma 1V.5.2 a,; # 0 iff n 4+ k is even
and
n+k—2<2k
{ n+k—2<2n

which yields n — 2 < k < n + 2, and in view of the fact that n + k is even
one gets k =n — 2,n,n + 2. One should note in this regard that the values
of Byji; are undetermined for those n, k (|n — k| even) that a,, = 0 (cf.
(IV.5.17)), i.e. if |n — k| is even and not in {0,2}. These By;; can be chosen
freely as long as their symmetry condition (IV.5.18) holds and by (IV.5.19) a
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probability measure is obtained. Furthermore, calculating directly we have
by (IV.5.15) and (IV.5.16)

11 11
a()o://|t—w| dtdwzg, anz//|t—:v\t:vdtdw:—18—5;
—1-1 -1-1

the rest of a,; will be obtained in lemmas IV.5.1, IV.5.2.

Lemma IV.5.1. For any n,k > 2

(-1 2 d\"

Proof. First one should prove that for n,k > 2

1 d\*2 .,
k= g / Py (a) (ﬁ) (2? - 1)*dz. (IV.5.21)
—1

Then we use lemma 11 on p. 17 of [65]: for all f € C"[-1,1]

1R = 0 / (s — 1" (%)?(w)dx

27 !

to get the desired result. Let us now prove (IV.5.21):

ks :/1 l/m(a:t)Pk(t) dt—/l(x—t)Pk(t) dt

-1 L1

P,(z)dz = (IV.5.22)

where h(z) can be rewritten as

hz) = (/ Pu(t) dt + (~1)**! /Pk(t) dt) -

-1

1
(/ tPy(t) dt + (—1)k/th(t) dt) :
1
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One can easily see that h(z) is the solution of the following Cauchy problem
on [—1,1] with initial conditions due to the orthogonality of Py(t), k > 2 to
Po(t) = 1, Pl(t) =1t

h”(x) = 211316(55)’ S [_15 1]a
R = _f1 Fi(t)dt =0, (IV.5.23)
B = [( -8Rt dt=0.

1

Then solving (IV.5.23) we get

1 a2,
Substituting this representation of h into (IV.5.22) we prove (IV.5.21). O

The following lemma enables us to get all a,; other than zero for all n,

k:
Lemma IV.5.2. Foralln >1

B 2(2n)!
s (n+1+1/2)!(n—1/2)

(2n)!
a = .
nt2 T 92l (n + 2 + 1/2)!

Proof. Casen =1 can be verified by direct calculation. Suppose now n > 2.
Then by lemma IV.5.1

n 1 2n—2
Qpn = 2275_11(),”!)2 /(t2 - 1)n (%) (t2 - 1)” dt =

-1

2(=0" /l(t2 _1)n (@# —n(2n — 2)!) dt =

22n (n!)2 2
n | 1 1
22251_(71})!)2 (2;)' / 22 = 1" dt — n(2n — 2)! / -1 dt | =
-1 -1
2 (2n)!n! 2n! B
22n ()2 (2(n ) G Ly o 1/2)!) -
2 (2n)!

S22l (n4+1+1/2) (n —1/2)
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(—1)n_f11(t2 . 1)n—|—2 (%)2" (t2 —1)" dt

42 = Gngon = Pl (n 1 2) -

(-1)" (2n)!f11 (t2 —1)"+2dt (20)!

20+l (n + 2)! T 2l (n+2+1/2)0

Using the formulae of lemma IV.5.2 one can easily show that
app = —2ap-1p4+1, N2 2.

It could be verified by direct calculations that the above relation holds also
for n = 1,2: apg = ago = 15, a13 = a31 = 705, A1 = — 15, G2 = —po5. O

6 Remarks and open problems

Remark IV.6.1. After the submission of the paper [81] containing most of
the results of this chapter the preprint [70] appeared, where the main problem
considered in sections 2-83 was solved via the inversion of a certain analytic
family of functional operators in LP—spaces that contains both the spherical
Radon and the generalized cosine transforms.

Operators of the form (IV.5.1) arise also in another context in the paper
of Strichartz [83].

Remark IV.6.2 (Generalized Jacobi polynomials). The problem of the
inversion of Ty, for values k and r different from those considered in this
chapter is still open. Here we outline one approach that might be possibly
used to tackle it. By proposition 1.3.1 the integral kernel [€,1] of Tk,
(r<k,k+r>d, k>d/2) is equal to a simple symmetric function of the
squared cosines y;, © = 1,...,d — k of the critical angles of € and 1. By
[39] (see also [86], p. 813), there exists the system of symmetric polynomials
Pi(y1,- -y Yi—k), 7= (n1,...,nq_k) such that

2) Py are orthonormal on
{1, va £ €10,1]:0< yg g <... <1 < 1}

with respect to the invariant measure

d—k

d—k
= — 1 —d—
wdg) =c- [[ w21 -9z @ D] (v — ws) dyr - .. dyar
=1 1<j



60 CHAPTER IV. AN INVERSE PROBLEM

with constant ¢ chosen so that

w(dy) =1
0<yg—x < <y1<l
(cf. also [35], [37]).

These Pz are called the generalized Jacobi polynomials. Since y; are the
squared cosines of the critical angles of €, n one can write Pz(§) = Pr(€,n).
These polynomials have the following interesting property: the operator

9(6) / Pa(e,m)g(¢) dé
G(k,d)

maps one of the invariant subspaces of the irreducible representation of O(d)
in C(G(k,d)) into the corresponding invariant subspace of C(G(r,d)), while
all other invariant subspaces of C(G(k,d)) are mapped into zero. So if
[€,n =/ (L —y1)...(1 —ya—g) has the decomposition

> caPa(i)
P

in the generalized Jacobi polynomials then the coefficients ci equal to zero
will give us the description of the kernel

Ker(Tyy) = {f € C(G(k,d)) : Ty f = 0}.

Then the proof of a result similar to theorem IV.5.2 would be possible. The
main technical obstacle here is to calculate cz, since the exact form of Pz
is not known yet (cf. [86], p. 816), although some recurrent relations exist
(see [38]) that, formally speaking, make these calculations possible.

Another approach would be to get expansions of Ty,0 in the spherical

functions on G(k,d) that are the analogs of the spherical harmonics on S%1
(cf. [50], [36])-
Remark IV.6.3 (Manifold processes). Inversion formulae of sections 2
— 5 of this chapter could be generalized to a wider class of point processes
on abstract spaces, namely, to fiber and hypersurface processes in R¢ or,
more generally, to processes of manifolds in RY. This kind of processes
was extensively studied in a large number of papers by J. Mecke, W. Nagel,
I Molchanov, D. Stoyan, M. Zdhle, etc. ([52], [58], [53], [63], see [82],
chapter 9 for more references). In this case the rose of intersections f(n)
of a stationary process EZ of k—dimensional manifolds with an r—flat n is
the mean total surface area of Eg N B for a unit test window B C n. It
can be shown that f(n) is well-defined and equal to (1.1.3) for almost all
n € G(r,d). Thus the inversion formulae for Ty, of this chapter can be
applied directly to f.



Chapter V

Related problems

In section 1 of this chapter the range characterization of T, ;; will be dis-
cussed. Section 2 is devoted to the new notion of the rose of neighborhood of
<I>% with r—flats, K+ r < d, which is the analogue of the rose of intersections
for the case k + r > d.

1 Characteristic properties of the roses of inter-
sections

Suppose a function f : G(1,d) — R is given. The matter of this section is
to answer to the following question: is f a rose of intersections? In other
words, does there exist a stationary hyperplane process q’gq such that its
rose of intersections with lines coincides with f?

1.1 Preliminaries

In two dimensions such characterization result is well-known (cf. [1] §2.11):
a function f : S' — R is the rose of intersections of a stationary line process
®? with lines iff it is a support function of a centrally symmetric convex
body in R?. It means that f is non-negative and even on S!, and its radial

extension f(x) def || f (ﬁ), z € R? is subadditive: f(z+y) < f(z)+ f(y)
for all z,y € R? (cf. [73], p. 26, 38).

Also in the hyperplane case (d > 3) an elegant characterization criterion
was already proved in [51], theorem 4.5.1 and corollary 3:

Theorem V.1.1 (Matheron). A function f € C(S?1) is the rose of
intersections of some stationary hyperplane process q)g_l with lines iff the

function —f(z), z € R is conditionally positive definite, i.e.

Zn: WiW; (—fA(acz — ]7])) >0 (V.1.1)

4,j=1

61
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n
for all natural n, z; € R* and w; € R such that > w;=0.
i=1

We shall also use Matheron’s idea of the connection between support
functions of zonoids and roses of intersections and prove another version of
the characterization result (see theorem V.1.2). In addition, various suffi-
cient conditions for a function f to be the rose of intersections of some @g_l
with particular directional distribution 8 will be found. The unsolved cha-
racterization problems for other dimensions k£ and r will be touched upon
in section 3.

1.2 Hyperplane processes intersected with lines

Let us formulate the following assumptions for functions f : S¥~! — R that
will be required for the theorem below:

(i) f(z) >0 for all z € S,
(ii) f is even on S¢1;
(iii) the radial extension f (z) is subadditive.

We say that a subset A of the dual space (Ce(Sd_l))* of all even signed
measures on S4~! with the topology of weak convergence is uniformly dense
on the subset of functions D C C,(S%1) if for any even signed measure u
there exists a sequence {y,} C A such that p, — p and this convergence is
uniform on D.

Theorem V.1.2. Let a function f : 841 —» R, d > 3, satisfy the conditions

(i)—(iii) above.
1) Suppose A is a dense subset of (Ce(Sd_l))* which is uniformly dense
on the set of the support functions of all centered line segments of

length 2 in R%. The function f is the rose of intersections of a sta-
tionary hyperplane process @3_1 with lines iff

/ £ () () > 0
sdfl

for all u from A that satisfy
/ \<z,u>|p(du) >0, eS8t
Sd—1
2) The function f € C¥(S%~1) is the rose of intersections with lines of a

stationary hyperplane process ‘Dz_l with directional distribution 6 such
that 6+ has a density g € Co(S?1) with respect to wq(-) if

b — d+2, d even,
| d+3, dodd
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d—2
(—1)d( d ) / (Df(“) |<u’v>|dwd(du) >0 (V.1.2)

d(:u'2) <u,fu>2 —HQ)Q_E

<u,v>2>u? 4=0

for all v € 841,

3) The function f is the rose of intersections with lines of a stationa-
ry hyperplane process (I)g_l with directional distribution 6 that is not
concentrated on any subset of the sphere lying in S N ¢ for some
€ € G(r,d), r < d iff f is strictly positive and —f is conditionally
positive definite.

Proof. Any rose of intersections of @gfl with lines is the support function
of a zonoid. Hence the necessity of the above conditions follows from the
characterization results for zonoids (cf. [20] p. 683-684, [22] theorem 3.3, [17]
theorem 3). Let us prove the sufficiency of the assumptions of the theorem.
For any f satisfying conditions (i)-(iii) its radial extension f is a support
function of a centrally symmetric convex body K. One needs to prove that
K is a zonoid in the three cases above:

1) The required property of K follows from [17], theorem 3.

2) By [20], p. 683684 there exists a function g € C.(S%!) such that

flz) = / |<z,u>|g(u)wg(du), =€ S L.

Qd—1

One needs to prove that g is non—negative which follows from assump-
tion (V.1.2): by proposition IV.2.1 g is proportional to the left—-hand
side expression in (V.1.2) as the inverse of the cosine transform.

3) Since f is positive the centrally symmetric convex body K has inner
points. Then K is a zonoid by theorem 3.3 of [22].

Then there exists an even measure y(-) on S%~! such that

flz)= / |<z,u>|p(du) for z € 841
gd-1

Let A = u(S%1), 6(-) = p(-)/X. Then for this A and the probability
measure 6 construct the measure A(-) on F(d — 1,d) by formula (I.1.2).
There exists a unique stationary Poisson hyperplane process with intensity
measure A. By (I.1.3) its rose of intersections is equal to f. O
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2 Roses of neighborhood

In the previous chapters the main object of our investigations was the rose of
intersections T}, of @% with r—flats. One inevitable restriction on dimensions
k and r was imposed: k+1r > d. Any pair of flats £ and 7 in general position
of dimensions k and 7, k + r < d, do not have any common points: thus a
generalization of the intersection process @g N7 is desirable. In this section
we introduce the so called roses of neighborhood of @,‘g that will remove the
restriction on k£ and r mentioned above.

R. Schneider introduced in [75] the notion of prozimity of ®¢, k < d/2
that generalizes the usual intersection density of order 2 for k > d/2 (cf. [40]
for the similar approach). We shall follow his ideas to construct the process
of neighborhood @% Onfor k+r <d.

Let the relation |f mean that the flats £ and 7 are in general position, i.e.
there does not exist a translation ¢ of R? such that t£ C 5 or tn C €. Let
¢ be a realization of a stationary <I>ﬁ, let n € F(k,d). For any £ € ¢ with
& [ n there exists a unique point z¢ € 7 given by

dist({,m) = inf z,y) = inf p(z¢,
(& m) yef,mﬂ( Y) yegp(gy)

where p(z,y) is the Euclidean distance in R?. Clearly the collection of all
points

{ze €n:dist(&,n) <a, £ € @ﬁ, EWnt

for some a > 0 forms a stationary point process @ﬁ ® 7 in 7 that will be
called the a—process of neighborhood (we suppress a in the notation). Its
intensity Ng,(a,n) will be called the a—rose of neighborhood of @%, and in
case a = 1 we shall write Ni,(n) instead of N, (1,7n) and call it the rose of
neighborhood of ®¢. Due to stationarity of ®¢ consider only those n € F(r,d)
that contain the origin, i.e. n € G(r,d).

For any stationary k—flat process @z with intensity A and directional
distribution 6 introduce the family of dual processes D (A, 6): a stationary
(d—k)-flat process ®¢_, belongs to D (), 0) iff its intensity is equal to A and
its directional distribution is 8 (d¢) = 0(d¢*) for ¢ € G(d — k, d).

Theorem V.2.1. In case k+r < d for the rose of neighborhood Ny, of the
stationary k—flat process <I>% the following equality holds:

Nkr(n) = kd—k—r (Td—k,d—rej_) (nJ_)a ne G(’I", d) (V21)

where Td,k,d,rﬁj- is the rose of intersections of the dual processes
@ , € D(\,0) with (d—r)—flats. By (1.1.8) it is the same for all processes
of that family.
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Proof. For any (d — k)-flat ¢ and (d — r)-flat 8, ¢ |[f B, their intersection is
not empty since d — k +d —r > d. Therefore, the usual rose of intersections
of ¢, € D(),0) with (d — r)-flats is well-defined. The intensity of ® @7
is given by the expression

Nir(a,n) = —E A (V.2.2)
Ce®d

where Jo(C) = Li¢yiy: dist(¢,n)<a,zc € B1 (0)cn} (€); Bm(0) is the ball in the appro-
priate ambient subspace of R? with radius m and the center in the origin.
Determining the expectation in (V.2.2) by means of Campbell’s theorem (cf.
[82]) and using (1.1.2) for the 1nten51ty measure A(-) of ®¢ one gets

Nir (1) = k/ ) = [ [ Tto+ v anotde) -
G(k,d) e+
/ [ Tty & (anpot e
G(d=k,d) £L

Now prove that

1
[ 9w+ €) V8- ) = Rt
gJ_
for any ¢ € G(k,d), & || n. Using the reasoning similar to that of [75],
formulae (7), (8) we get

1
[ 3w+ v ) = ¢4 [l + € vt
&t H
where H = (¢ + 1)+ + n in the sense of Minkowski summation. We shall
show that the integral

/ Jo(z + & vH  (dz) (V.2.3)
H
is equal to ky_j_,kra?*~": as H = n®(n)3;, a direct orthogonal sum, where
(n)3; stands for the orthogonal complement of 7 in H, we have z = Tyse+1
for any z € H, where z,.¢ €7, | € (n)3;- Then

. 1, Tyte € Bl(O) cn, le Ba(o) C (77)1%17
Julz+8) = { 0, otherwise.

It means that integral (V.2.3) is equal to the desired expression. Thus
A ke
N (1) = gohoba a0 [l 0t =
’ G(d—k,d)
ka—k—ra® T (Tdfk,dfr0L> (n*),
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hence Nir(n) = kg—g—r (Ta—k,a—07") (). O

The above theorem shows that the question of restoring the directional
distribution @ of a stationary process @g from its rose of neighborhood
Nir(n) constructed for r—flats , ¥ + r < d, can be reduced to the dual
problem for any ®4 , € D(),0) intersected with (d — r)-planes; its partial
solution was already given in chapter IV. Thus, the directional distribution
6 of a line process ®¢ can be retrieved in this way from its rose of neigh-
borhood with r—flats, 1 < r < d — 1. This means, from the stereological
and statistical point of view, that in order to estimate # we can use now
just lines as test objects instead of planes, which can possibly find potential
statistical applications.

Example V.2.1 (d = 3, k = r = 1). Consider a stationary line process
@3 with intensity \ and directional distribution 6. Let N11(v) be its rose of
neighborhood with lines (v € S? is the direction vector of a test line). Then
by theorem V.2.1

Ny (v )—2(T220 —2/\/\/1— <u,v>20(du) = 22K0(v),

and applying theorem IV.3.1 to invert K one gets that for any g € C2(S?)

1
/ 9(0) Bldv) = = x
SZ
d g(v) |<u,v>| ws(dv
W eorn(g)| [ EUERR IR
S2 <u,v>2>p? ’ #
) [1:0
where
W(u) . ( d ) / N11 <u t>| w3(dt)
d(p?) V<u,t>2 —p?
<u,t>2>p? 4=0

3 Open problems

The problem of characterizing a rose of intersections of <I>z with r—flats for
k=d—-1,1<r<d-—1and k < d—1 is still open. In other terms,
one should describe the range Ty, (M(G(k,d))) of the generalized cosine
transform. By formula (II1.3.23) and theorem V.1.1 the above problem for
k = d—1 can be reduced to the description of the range R, (C¢(S?™!)) of the
totally geodesic Radon transform R, on r—circles of S4~1. Unfortunately, the



3. OPEN PROBLEMS 67

only range description for R, (see [24], [41], [42]) was obtained for C°(S%~1)
in terms of the solutions of partial differential equations. This corresponds
to the case of our setting when the directional distribution of (1)5—1 has a
smooth density. Thus the general characterization can be obtained here only
if R, (Ce(S* ™)), or more precisely, R, (T'(M(S%!))) is known.
Another possible way to state the problem of finding the range

Tir (M(G(E,d))) for r = d — k, k < d — 1 is by means of kth projection
functions of centrally symmetric convex bodies. In §7, theorem 7.1 of [22]
the classes K(k) of centrally symmetric convex bodies are described whose
kth projection function vi(K;n) on n € G(k,d) can be represented as

v (K;5n) = [n*, €] p(d€)
G(k,d)

for some positive measure p on G(k,d). Suppose one can determine whether
a given function f : G(k,d) — R is the kth projection function of some
centrally symmetric convex body K. Then the criterion cited above yields
that f* is the rose of intersections of a stationary k-flat process @% with
d—k—flats. Thus the original problem can be reduced to the characterization
of projection functions which is not obtained yet.
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