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ABSTRACT

A method of spatial extrapolation of traffic data is proposed. The traffic data is given

by GPS signals over downtown Berlin sent by approximately 300 taxis. To reconstruct

the traffic situation at a given time spatially, i.e. in the form of traffic maps, kriging

with moving neighborhood based on residuals is used. Due to significant anisotropy in

directed traffic data, the classical kriging has to be modified in order to include additional

information. To verify the extrapolation results, test examples on the basis of a well–known

model of stochastic geometry, the Boolean random function are considered.

Keywords: anisotropy, asymptotic Gaussian test, Boolean model, kriging, moving neigh-

borhood, random field.

INTRODUCTION

A common difficult problem of large
cities with heavy traffic is the fore-
casting of traffic jams. In this pa-
per, a first step towards mathemat-
ical traffic forecasting, namely the
spatial reconstruction of the present
traffic situation from point measure-
ments is done. To describe the traf-
fic states, models of stochastic ge-
ometry and spatial statistics (or geo-
statistics) are used. A correspond-
ing Java software that implements ef-
ficient algorithms of spatial extrapo-
lation is developed.

This research is based on real
traffic data originating from down-
town Berlin. They were provided
by the Institute of Transport Re-
search of the German Aerospace Cen-
ter (DLR). Approximately 300 test
vehicles (taxis) were equipped with
GPS sensors transmitting their geo-
graphic coordinates, velocity and sta-
tus line (e.g. “free”, “hired”, “at the
taxi rank”, etc.) to a central station
within regular time intervals from 30
sec. up to 3 min. The regularity of
these signals depends on the taxi’s
status. Thus, a large data base of
more than 13 million positions was
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formed since April 2001 (see Fig. 1).

Fig. 1: Observed positions of test vehicles in downtown Berlin

In the present paper, a smaller
data set (taxi positions on all working
days from 30.09.2001 till 19.02.2002,
5.00–5.30 p.m., moving taxis only) is
considered. The observation window
was reduced to downtown Berlin in
order to avoid inhomogeneities in the
taxi positions. To study traffic jams,
the rush hour (5.00–5.30 p.m.) was
chosen.

To produce road traffic maps, the
velocities of all vehicles at time t
are assumed to be induced by a re-
alization of a spatial random field
V (t) = {V (t, u)} where V (t, u) is
a traffic velocity vector at position
u ∈ R

2 and time t > 0. The spa-
tial structure of such random veloc-
ity fields makes the analysis of traffic–
jam mechanisms possible. Thus, the
spatial localization of traffic jams can
be obtained by a threshold operation

on the grey–scale image of the map
of velocities V (t, u): a point u lies
within the traffic jam region at time
t if |V (t, u)| is smaller than a given
threshold value, e.g. 15 kph.

Since V (t, u) can be measured just
pointwise at observation points ui, a
spatial extrapolation of the observed
data is necessary. Notice that the ve-
locities strongly depend on the move-
ment directions, e.g. the speed li-
mits and consequently the mean ve-
locities are higher on motorways than
in downtown streets. Furthermore,
the formation of traffic jams is also di-
rectional since a vehicle can influence
only those vehicles moving behind it
along the same road in the same di-
rection. Moreover, the traffic speed
at position u clearly depends on the
traffic direction on the road, e.g. in
directions of the city center or sub-
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urbs.
The classical extrapolation meth-

ods of geostatistics such as the or-

dinary kriging (see e.g. Stoyan et

al., 1997, Wackernagel, 1998) either
make no use of additional information
or provide measurements V (t, u + ui)
and V (t, u − ui) with equal weights.
Both these features are not relevant
to the above problem setting. An ex-
trapolation method designed for di-
rectional data, the so–called com-

plex cokriging of velocities and their
directions (see e.g. Wackernagel,
1998) can not be used here as well
since there is no one–to–one corre-
spondence between measurement po-
sitions u and traffic directions. An
obvious counterexample is a cross-
roads. Thus, the standard extrap-
olation methods had to be adapted
to our specific problem. Therefore, a
modified ordinary kriging with mov-
ing neighborhood is described that al-
lows to extrapolate directed veloci-
ty fields. First, the original data set
should be split into N directionally
homogeneous subsets. A data unit
(u, V (t, u)) belongs to the data set i
(i = 1, . . . , N) if the polar angle of
the vector V (t, u) lies within the di-
rectional sector

Si = [2π(i − 1)/N, 2πi/N) .

By convention, the zero polar angle
corresponds to the eastward direction
on the city map. Throughout this
paper, we put N = 4. From the
practical point of view, this is suffi-
cient for the separation of opposite
traffic directions and, simultaneously,

keeps the amount of resulting data
sets small. Nevertheless, in principle,
any other N > 4 could be used in-
stead.

The above data sets should be
extrapolated separately from each
other. This yields N velocity maps
corresponding to N directional sec-
tors.

In what follows, the data from
a given time interval [t1, t2] will be
taken for extrapolation. To be pre-
cise, we put t1 = 5.00 p.m. and
t2 = 5.30 p.m. Keeping this in mind,
we shall omit the time parameter t
in further notation. The observed
velocities are not spatially homoge-
neous. Hence, the mean velocity field
{m(u)} obtained by averaging the
traffic velocities over all working days
from 5.00 p.m. till 5.30 p.m. should
be considered. As far as this mean
field is subtracted from the original
data, the deviations of actual veloc-
ity values are extrapolated in order
to create the spatial field of velocity
residuals.

This extrapolation method has
been implemented in Java. Thus, a
software library was developed com-
prising the estimation and fitting of
variograms as well as the ordinary
kriging with moving neighborhood.
As far as it is known to the au-
thors, it is the first complete imple-
mentation of such kriging methods in
Java. An advantage of the Java pro-
gramming language lies in its plat-
form independence. Great attention
was paid to the efficient implementa-
tion of fast algorithms. In contrast to
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classical geostatistics operating with
relatively small data sets, this ef-
ficiency is of great importance for
larger data sets with more than 10000
entries. For instance, the Java pack-
age for variogram fitting described in
Faulkner, 2002 can not be used for
data sets with more than 1000 entries
due to unacceptable runtimes. Effi-
cient image processing and computa-
tional algorithms (see e.g. Mayer et

al., 2004) enabled us to drastically re-
duce the runtimes of the Java library.

The extrapolation method itself
as well as the software quality are ve-
rified on the test example of a Boolean

random function; see Serra (1988).
Remarkable features of this model are
its simplicity of simulation and nice
analytical description. For test pur-
poses, 90 independent realizations of
a Boolean model with a determinis-
tic drift have been simulated. The
quality of extrapolation is proved by
means of statistical significance tests
of the area fraction. It is shown that
extrapolated images perfectly retain
the essential structure of original test
images.

This justifies the application of
the above method to traffic data.
First, the mean velocity fields are
estimated for all directional sectors.
Then, the deviations from the mean
of actual speed values are extrapo-
lated for particular days and time in-
tervals. On their basis, traffic–jam
maps are created; see Figs. 19–20.

There are several interesting per-
spectives for further research. In par-
ticular, using methods recently deve-

loped in Heinrich et al., 2004, Klenk
et al., 2004, and Schmidt and Spo-
darev, 2004, models of stochastic ge-
ometry can be statistically fitted to
extrapolated traffic maps. In a next
step, the fitted models can be used in
order to predict future traffic states
on the basis of currently incoming
traffic data. Such space-time predic-
tion models as well as their applica-
tions to forecasting of traffic states
will be discussed in a forthcoming pa-
per.

SOME PRELIMINARIES

Random fields

To model traffic maps, non–statio–
nary random fields composed of a de-
terministic drift and an intrinsically
stationary random deviation field,
the so-called residual, are used. See
e.g. monographs Cressie, 1993 and
Wackernagel, 1998 for details.

Drift and deviation field

Let X = {X(u), u ∈ R
2} be a non–

stationary random field with finite
second moments

E[X(u)2] < ∞, u ∈ R
2.

Then X can be decomposed into a
sum

X(u) = m(u) + Y (u)

where m(u) = E[X(u)] is the mean
field (drift) and Y (u) = X(u) − m(u)
is the deviation field from the mean or
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residual. Clearly, it holds E[Y (u)] =
0 for all u. Assume that Y is intrinsi-
cally stationary of order two. Denote
by

γ(h) =
1

2
E[(Y (u) − Y (u + h))2] (1)

its variogram function. In practice,
the field X can be observed in a
compact (say, rectangular) window
W ⊂ R

2. Let x(u1), . . . , x(un) be
a sample of observed values of X,
ui ∈ W for all i. The extrapolation
method described in the next section
yields an “optimal” estimator X̂(u)
of the value of X(u) for any u ∈ W
based on the sample random variables
X(u1), . . . , X(un). Among the va-
riety of extrapolation techniques for
non–stationary random fields (see e.g.
the universal kriging in Cressie, 1993,
Kitanidis, 1997, Wackernagel, 1998),
our approach is similar to the so–
called kriging based on the residu-

als; see Cressie, 1993, p. 190. The
main idea of the method is straight-
forward. First of all, an estimator
m̂(u) for the drift m(u) has to be con-
structed. Then, the deviation field
Y ∗ = {Y ∗(u), u ∈ R

2} defined by

Y ∗(u) = X(u) − m̂(u) (2)

is formed and its kriging estimator
Ŷ ∗(u) is computed. Finally, the es-

timator X̂(u) is given by

X̂(u) = m̂(u) + Ŷ ∗(u). (3)

If we suppose that the drift is
known, i.e. m̂(u) = m(u) for

all u then we know the exact va-
lues Y (u1), . . . , Y (un) of the devia-
tion field at u1, . . . , un since

Y ∗(u) = Y (u) = X(u) − m(u).

Let

y(ui) = x(ui) − m(ui), i = 1, . . . , n

be a realization of the sample values
of Y . The extrapolation of Y (u) can
be performed either by simple kriging

based on the covariance function

C(h) = E[Y (u)Y (u + h)]

or by ordinary kriging making use of
the variogram γ(h); see Cressie, 1993,
Kitanidis, 1997, Wackernagel, 1998.
In what follows, the second method
is used.

ORDINARY KRIGING WITH MOVING

NEIGHBORHOOD

The kriging estimator

A simpler version of the following
ordinary kriging with moving neigh-

borhood can be found in Chilès and
Delfiner, 1999, pp. 201–210, Kitani-
dis, 1997, pp. 71 and Wackernagel,
1998, pp. 101–102. Denote by 1 the
usual indicator function

1{x ∈ B} =

{
1 if x ∈ B,
0 otherwise.

Introduce the estimator Ŷ (u) of Y (u)
at u ∈ W as a linear combination
of the sample random variables Y (ui)
with unknown weights λi = λi(u) by

Ŷ (u)

=

n∑

i=1

λiY (ui)1{ui ∈ A(u)}. (4)
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The estimation involves only the sam-
ple random variables Y (ui) such that
ui is positioned in the “neighbor-
hood” A(u) of u, i.e. ui ∈ A(u).
Being an arbitrary set, this moving
neighborhood A(u) contains a pri-

ori information about the geometric
dependence structure of the random
field Y . For instance, it could be de-
signed to model the formation of traf-
fic jams. In the case of a Boolean
model, this set A(u) is influenced by
the shape of the primary grain. In
general, A(u) can be a random closed
set, i.e. A(u) = A (Z(u, ω), u) where
Z = {Z(u), u ∈ R

2} is a random field
containing extra information about
Y . Under such general assumptions
on A(u), the system of linear equa-
tions on the weights λi looks much
more complicated than (7) conside-
red below. In order to solve it, ad-
ditional parameters such as crossco-
variances of Y and Z should be es-
timated. Even in the case of un-
correlated fields Y and Z, it makes
the extrapolation unnecessary com-
plex. To avoid this, the present paper
uses only deterministic sets A(u).

The normalizing condition on the
weights λi

n∑

i=1

λi = 1 (5)

ensures the unbiasedness of the esti-
mator given in (4). In other words, it
holds

E[Ŷ (u)] = E[Y (u)]

even if the mean of Y is not zero.
Moreover, this condition makes it

possible to use variograms in (7) since
variograms are negative conditionally
semidefinite (see e.g. Wackernagel,
1998, pp. 52–53). The “optimality”

of the estimator Ŷ (u) means that its
variance should be minimal, i.e.

E[(Ŷ (u) − Y (u))2] −→ min . (6)

This classical minimization problem
yields further conditions on λi which
can be written together with (5) in
the following system of linear equa-
tions. For all i = 1, . . . , n with
ui ∈ A(u) it holds

n∑

j=1

λjγ(uj − ui)1{uj ∈ A(u)}

+µ = γ(u − ui),
n∑

j=1

λj1{uj ∈ A(u)} = 1. (7)

In order to solve this system of
equations, the knowledge of the vario-
gram function γ(h) is required. How-
ever, in most practical cases γ(h) is
unknown and has to be estimated
from the data y(u1), . . . , y(un).

Estimation of the variogram

In applications, a variogram estima-
tion method to be used should al-
ways be chosen in accordance with
the data framework. The most sim-
ple and popular one is undoubtedly
the estimator of Matheron (see e.g.
Chilès and Delfiner, 1999, Wacker-
nagel, 1998). Its drawback is sen-
sitivity to outliers. Among robust
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estimation methods, the trimmed
mean estimator (see e.g. Lehmann
and Casella, 1998) as well as the
estimators of Cressie–Hawkins (see
Cressie, 1993) and Genton (see Gen-
ton, 1998a, Genton, 2001) should be
mentioned. These methods are de-
signed for noisy data but they are bi-
ased.

Since the traffic data seem to be
not contaminated with outliers, the
estimator of Matheron is used here.
It is defined by

γ̂(h) =
1

2N(h)
×

×
∑

i,j:ui−uj≈h

(Y (ui) − Y (uj))
2 (8)

where ui − uj ≈ h means that ui − uj

belongs to a certain neighborhood
U(h) of vector h and N(h) denotes
the number of such pairs (ui, uj) for
i, j = 1, . . . , n. The choice of U(h) de-
pends on the problem. In the present
paper, the following segment of a cir-
cle is used:

U(h) = {x ∈ R
2 : x = (|x|, ϕ),

| |h| − |x| |< δ, |ϕ − ϕ0| < ε}, (9)

where (|x|, ϕ) and (|h|, ϕ0) are the po-
lar coordinates of x and h; δ, ε > 0.
If γ is continuous then the estimator
in (8) is asymptotically unbiased, i.e.

lim
δ,ε→0

E[γ̂(h)] = γ(h).

Under further assumptions on Y such
as ergodicity, it is also strongly con-
sistent, i.e. it holds

lim
N(h)→∞

γ̂(h) = γ(h)

almost surely.

Variogram models

In practice, the estimated variogram
γ̂ can not be substituted directly for γ
in the system of linear equations (7).
Trying this would make the numerical
computation in (7) unstable because
of the singularity of its coefficient ma-
trix. Even in the case when this com-
putation is possible its result is not
correct. The reason for that is simple:
γ̂(h) is not a valid variogram function
since it is not conditionally negative
semidefinite. Hence, a valid paramet-
ric variogram model γ (the so–called
theoretical variogram) should be fit-
ted to the empirical estimator γ̂. In
the following, some valid variogram
models are considered. The corre-
sponding fitting procedures are dis-
cussed later on. A popular isotropic
variogram model is the exponential

one (see e.g. Cressie, 1993, pp. 61–
63, Wackernagel, 1998, pp. 244–246):

γ(h) =

{
0, h = 0,
a + b(1 − e−|h|/c), h 6= 0,

where a > 0, b > 0 and c > 0 are pa-
rameters with the following geometric
meaning. The value of the nugget ef-

fect a measures the discontinuity of
the realizations of Y at the micro-
scopic scale. If a > 0 then the reali-
zations of Y are not continuous. The
sill b describes the variability of the
data for greater distances |h|. The
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third parameter c is the range of cor-
relation of Y which implies that the
random variables Y (x) and Y (x + h)
are almost uncorrelated for |h| > 3c.

A parametric variogram model γ
is called geometrically anisotropic if
the range value c (and none of the
other parameters) depends on the di-
rection of h. If, in addition, the
sill value b depends on the direction
of h, the variogram is called zonally

anisotropic.
As shown in Fig. 17, the

traffic data lead to empirical var-
iograms that are clearly zonally
anisotropic. Below, we consider
zonally anisotropic variogram models
constructed from isotropic ones (see
Cressie, 1993, Wackernagel, 1998).
Introduce

γ(h) = γ1(h) + γ2(h), (10)

where γ1(h) is an exponential iso–
tropic variogram model with nugget
effect a1 > 0, sill b1 and range c1. The
second term

γ2(h) = b2(1 − e−
√

h>Ch/c2) (11)

is a geometrically anisotropic expo-
nential variogram model with sill
b2 > 0 and further parameter c2 > 0.
Here C is the quadratic matrix of a
linear transformation of the observa-
tion window, i.e.

C = Q>ΛQ,

where

Q =

(
cos α sin α
− sin α cos α

)
(12)

is a rotation by the angle α around
the origin and

Λ =

(
λ1 0
0 λ2

)
(13)

is a scaling transformation with sca-
ling factors λ1, λ2 along the coordi-
nate axes. For a vector h = (h1, h2),
we have

h>Ch = λ2h
2
1 + λ1h

2
2 + (λ2 − λ1)×

×
(
cos2 α(h2

2 − h2
1) − h1h2 sin(2α)

)
.

Level curves of γ2(h) are ellipses with
main axes of polar angles α and
α + π/2. The range values in these di-
rections are equal to

3c2√
λ1

,
3c2√
λ2

. (14)

Figure 2 shows the level curves of
the variogram model (10) with pa-
rameter values a1 = 130, b1 = 20,
c1 = 0.03, b2 = 70, c2

2/λ1 = 109,
c2
2/λ2 = 5 · 10−5, α = 5◦. Higher va-

lues of γ are marked red.

Fig. 2: Zonally anisotropic variogram
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Variogram fitting

Let γ̂(h) be an empirical variogram
estimated from the experimental data
{y(ui)} for the field Y and let γβ(h)
be a theoretical parametric variogram
model with parameter vector

β = (β1, . . . , βk).

In the example mentioned above, we
have

β = (a1, b1, c1, b2, λ1/c
2
2, λ2/c

2
2, α).

In practice, only a finite number m of
values

γ̂(h1), . . . , γ̂(hm)

can be computed. For two rea-
sons, it is enough to confine com-
putations to vectors hi of length
|hi| < diam(W )/2. First, in most
cases the behavior of the variogram in
a small neighborhood of the origin is
decisive for the adequate choice of the
model. Second, for large distances
|h| > diam(W )/2 the estimated va-
lues γ̂(h) are contaminated by noise
due to edge effects.

In order to estimate the parame-
ter vector β, the least-squares method
is used. The generalized least-squares
method (see Genton, 1998b) mini-
mizes the following function of β

F (β) =
m∑

i,j=1

wij(γβ(hi) − γ̂(hi))×

×(γβ(hj) − γ̂(hj))

where the weights can be chosen in
accordance with the a priori assump-
tions on Y (see Cressie, 1993 for

Gaussian random fields). If the dis-
tribution of Y is unknown, the classi-
cal weighting scheme can be applied:

wij =

{
1, i = j,
0, i 6= j

with the function

F (β) =
m∑

i=1

(γβ(hi) − γ̂(hi))
2 (15)

to be minimized. In the case of traffic
data, no a priori assumptions on the
structure of Y have been made. Thus,
the classical least-squares methods is
used.

For isotropic random fields, one
fits the one–dimensional curve of a
parametric variogram model γβ(|h|)
to an empirical one. In the aniso–
tropic case, γ̂(h) is computed for vec-
tors h on a square grid with m points
and is fitted by a two–dimensional
parametric surface γβ(h), h ∈ R

2.
This can be done either by summing
in (15) over all grid points hi or only
over vectors hi in a certain direction
of interest ϕ, i.e.

hi = |hi|(cos ϕ, sin ϕ).

Since traffic data is substantially
anisotropic, the variogram model (10)
has to be fitted to the data on the
whole grid as well as in two directions
with polar angles α and α + π/2.
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DRIFT ESTIMATION

The mean field {m(u)} can be esti-
mated from the data by various me-
thods ranging from radial extrapola-
tion (see e.g. zu Castell et al., 2002
and references therein) to smoothing
techniques such as moving average
and edge preserving smoothing (see
e.g. Tomasi and Manduchi, 1998). In
what follows, the moving average is
used because of its ease and compu-
tational efficiency for large data sets.

By moving average, the value
m(u) is estimated as

m̂(u) =
1

Nu

∑

ui∈W (u)

X(ui) (16)

where W (u) is the “moving” neigh-
borhood of the point u and Nu de-
notes the number of measurement
points ui ∈ W (u). The choice of the
neighborhood W (u) is arbitrary. For
fast computation, we put W (u) to be
a square with side length τ centered
in u.

The estimator (16) yields arbi-
trarily smooth results for large mov-
ing neighborhoods W (u). Thus, an
optimal side length τ should be found
to fit the problem. In the traffic prob-
lem, τ must be small because edges of
the surface {m(u), u ∈ W} are intrin-
sic to the image structure and have to
be preserved by smoothing.

In all large cities, there are ar-
eas D of parks, forests, building
blocks, etc. where no road–traffic
data is available. By (16), this
implies m̂(u) = 0 for all points u

with W (u) ⊂ D. Consequently, such
points u would automatically belong
to traffic–jam regions and so con-
taminate traffic–jam maps with arte-
facts. To avoid this, the neighbor-
hood W (u) of points u with Nu = 0
has to be enlarged till it contains
at least one observation point. In
this way, meaningful average velocity
maps are obtained that allow the cor-
rect analysis of traffic jams.

Since X is not stationary and,
consequently, m(u) is not constant
the estimator (16) is biased. Never-
theless, in practical applications, the
bias E m̂(u)−m(u) is small provided
that the area |W (u)| is small and the
net of observation points is spatially
dense enough.

RESIDUALS FORMED WITH ESTI-

MATED DRIFT

In previous sections, it has been as-
sumed that the drift m(u) was explic-
itly known. If it has to be estimated
from the data, the theoretical back-
ground for the application of the kri-
ging method breaks down.

Indeed, kriging requires intrinsic
stationarity of the field of residuals
Y ∗(u) introduced in (2). This re-
quirement is clearly not satisfied even
in the case of an unbiased estimator
m̂(u) since the variogram

γ∗(h) =
1

2
E[Y ∗(u) − Y ∗(u + h)]2

is not equal any more to the va-
riogram γ(h) of Y (see Chilès and
Delfiner, 1999, pp. 122–125, Cressie,



11

1993 p. 72, Wackernagel, 1998,
p. 214) and depends clearly on u.

Despite these theoretical obsta-
cles, practitioners continue to use
the ordinary kriging of residuals with
estimated drift based on the data
y∗(ui) = x(ui) − m̂(ui), i = 1, . . . , n
legitimized by its ease and satisfac-
tory results.

ALGORITHMS AND IMPLEMENTA-

TION IN JAVA

In the following, some efficient al-
gorithms for spatial extrapolation
are discussed. Their implementa-
tion in Java was integrated into the
GeoStoch library GeoStoch, 2004 as
a separate package. The software is
supplied with detailed comments ge-
nerated by Java–Doc complying with
the Sun standards; see Niemeyer and
Peck, 1996, pp. 80–81.

Fast estimation of variograms

and drifts

Matheron’s estimator (8) requires all
pairs of positions ui and uj with
ui − uj ∈ U(h) to be found for each
lattice vector h. For k lattice vectors
and n positions, it costs k ∗ O(n2)
operations. By means of the binary
search tree structure DTree, this com-
plexity can be significantly reduced.

Such algorithm tessellates the
searching space into rectangles and
saves positions of actual measure-
ments in a binary tree. Thus, search-
ing k points from p costs in average

r + log(p) operations; see Segewick,
1992. Since r � p always holds,
the average complexity of the search
is O(log(p)). Additionally, the com-
plexity of filling the tree with va-
lues is O(p ∗ log(p)). For variogram

estimation, one stores p = n∗(n−1)
2

polar coordinates of the vectors be-
tween any two measurement points in
a DTree. Thus, the overall comple-
xity for the variogram computation
is O(p ∗ log(p)) + k ∗ O(log(p)). For
large square lattices with side length
m > 200 (k = m2), the difference in
run times is significant!

The DTree structures can be used
also for the fast computation of the
moving average. There, measurement
points lying in a certain square neigh-
borhood should be found. The com-
plexity of such computation can be
estimated as mentioned above.

Variogram fitting

In variogram fitting, one employs es-
sentially known algorithms for the
minimization of functions. The idea
of all stochastic algorithms lies in
cleverly modifying parameters of the
variogram model at random till the
maximal quadratic distance to the
empirical curve becomes smaller than
a critical value ε. This can be done
for instance by means of genetic al-

gorithms (see Goldberg, 1989) or the
method of simulated annealing; see
e.g. Press et al., 2002, pp. 448–
460. Genetic algorithms were im-
plemented in Java and integrated in
the GeoStoch library. The simulated
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annealing Java package JSimul is
available from Mégnin, 2001. Addi-
tionally, one–dimensional variogram
fitting by slices was implemented in
Java by Faulkner, 2002. This Java
package provides good GUI but poor
runtime performance for large data
samples.

TEST EXAMPLE: BOOLEAN MODEL

To test the performance of the above
extrapolation method, one needs to
generate synthetic data whose theo-
retical properties are known. In other
words, one has to find a random field
{X(u)} with known structure of dis-
tribution, variogram and shape of re-
alizations that is easy to simulate.
In the following, we construct such a
random field on the basis of the so–
called Boolean random field, a model
that is classical in stochastic geome-
try.

Definition and properties of the

simulation model

In what follows, basic properties of
the Boolean model in R

2 are de-
scribed. For more details, see e.g.
Stoyan et al., 1995. Let

Φ = {X1, X2, X3, . . .}

be a stationary Poisson point process
in R

2 with intensity λ; see Fig. 3.
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Fig. 3: Realization of Φ

For simulation of Poisson processes,
see e.g. Lantuéjoul, 2002, Stoyan et

al., 1995. A Boolean random set Ξ
with deterministic grains can be in-
troduced as

Ξ =
∞⋃
i=1

(Ξ0 + Xi)

where Ξ0 is the so–called primary

grain and Ξ0 + Xi a grain translated
to the germ position Xi.

Fig. 4: Realization Ξ

The primary grain Ξ0 can be an ar-
bitrary compact set in R

2. In the
present paper, a rectangle

Ξ0 = [0, a] × [0, b] (17)



13

with width a > 0 and height b > 0
is considered; see Fig. 4. On the ba-
sis of Ξ, one constructs a stationary
random field Y = {Y (u), u ∈ R

2} by
setting

Y (u) = 1{u ∈ Ξ} − p

where the constant p = 1 − e−λab is
the volume fraction of Ξ. This ran-
dom field is a special case of a Boolean

random function considered e.g. in
Serra, 1988. It can take only values
−p or 1−p. The field Y is stationary
of order two and it holds E Y (u) = 0.
So it can be used to model the “devi-
ations from the mean”.

Fig. 5: Variogram γ (level curves)

The variogram γ(h) of Y is given by

γ(h) = e−λab
(
1 − e−λ(ab−|Ξ0∩(Ξ0−h)|)) .

For a vector h = (h1, h2), the area
|Ξ0∩(Ξ0−h)| is equal to (a−|h1|)(b−
|h2|) for |h1| 6 a, |h2| 6 b, and zero,
otherwise. This variogram is clearly
anisotropic as shown in Fig. 5 for pa-
rameter values a = 40, b = 20 and

λ = 0.0006 in the observation win-
dow W = [0, 200]2.

In order to model a non–statio-
nary field X, one adds a deterministic
drift variable m(u) to the field Y (u).
As a toy example, m(u) is chosen here
to be the indicator function

m(u) = 1{u ∈ Br(u0)} (18)

of a deterministic circle Br(u0) with
center u0 and radius r > 0; see Fig. 6.
The resulting field

X(u) = m(u) + Y (u), u ∈ R
2

attains only three values −p, 1 − p,
2 − p.

Fig. 6: Realization of X

To test the extrapolation quality
on synthetic data, one simulates X
and measures its realization x(u) at
a finite number of points ui. Then
one extrapolates X from the data
x(ui) and compares the result with
the original realization x(u). Mea-
surement points ui are generated by
an independent Poisson process Φ1

with intensity λ1 = 0.01; see Fig. 7.
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Fig. 7: Realization of Φ1

The intensity of Φ1 is substantially
higher than that of Φ since otherwise
the information contained in the data
is insufficient to reconstruct the origi-
nal image.

Synthetic data

Practically, the experiment described
above should be repeated many times
in order to reduce the randomness in
the quality of results. In this pa-
per, 90 realizations of X have been
sampled. They yield 90 data sets
each of them containing ca. 300 pairs
(ui, x(ui)). These data sets corre-
spond to the traffic data of a half an
hour. The intensity of Φ1 is chosen to
produce in average about 300 mea-
surement points to comply with the
real traffic situation.

For simulations, we used the fol-
lowing parameter values:

W = [0, 200]2, u0 = (100, 100),

r = 30, a = 40, b = 20,

λ = 0.0006.

The mean area fraction is then

p = 0.38121662.

In Fig. 4, a realization of Ξ with
these parameter values is shown. By
adding a circle in the middle of the
picture and subtracting p, one ob-
tains a realization of the random field
X; see Fig. 6.

Numerical results; reconstruc-

tion of simulated images

To estimate the drift, moving avera-
ge with the side length τ = 3 of the
square neighborhood was used.

Fig. 8: Estimated drift m̂(u)

As seen in Fig. 8, the estimated drift
preserves the original drift structure.

After subtracting the estimated
drift m̂(u) from the data in each data
set j, j = 1, . . . , 90, the empirical va-
riogram γ̂∗

j of Y ∗ is computed; see
Fig. 9. The parameter values of the
circular segment (9) are δ = 2, ε = 3◦.
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Fig. 9: Estimated variogram γ̂∗(h)
(level curves)

Then, one averages the variogram
over all 90 estimated copies γ̂∗

j by
arithmetic mean:

γ̂∗(h) =
1

90

90∑

j=1

γ̂∗
j (h).

This mean variogram can be well–
fitted by the true variogram of the
Boolean model. For fitting, simu-
lated annealing was used to minimize
the target function (15) in the least
squares method.

The parameters of the simulated
annealing are chosen as follows: max-
imal temperature 106, annealing rate
20, number of iterations 10, toler-
ance value 10−5; see Press et al., 2002
for their meaning. The starting va-
lues of the variogram parameters were
a0 = 20, b0 = 10, λ0 = 0.006. The fit-
ting yields parameter values

â = 39.7605124, b̂ = 20.7768498,
λ̂ = 0.001193

lying quite close to the original ones.
The maximal (mean) deviation of γ̂∗

from γ∗ is 0.03684976 (6.337388·10−5,
respectively); see Fig. 11.

Fig. 10: Fitted variogram model
γ∗(h) (level curves)

Fig. 11: Difference between the fitted
theoretical model γ∗(h) and the em-
pirical variogram γ̂∗(h)

The knowledge of the grain shape
(17) can be integrated in the indi-
cator functions of the kriging with
moving neighborhood. Put the set
{ui ∈ A(u)} in (4) to be equal to

{|x − xi| 6 â, |y − yi| 6 b̂}
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where ui = (xi, yi) and u = (x, y)
denote the Euclidean coordinates of
points ui and u.

Fig. 12: Residual Ŷ ∗(u)

Fig. 13: Extrapolated field X̂(u)

Thus, the extrapolation method will
use only those points ui that can po-
tentially affect the value Y ∗(u). The

extrapolation results Ŷ ∗(u) and X̂(u)
are shown in Figs. 12 and 13. The
striking similarity of the images for
X(u) and X̂(u) in Figs. 6 and 13,
respectively is a clear evidence for
the high quality of the extrapolation
method.

Statistical tests for the area frac-

tion

Fig. 14: The threshold image Ξ̂ of Ŷ ∗

The threshold image of Ŷ ∗ in
Fig. 14 is a binary image that can
be compared with the original image
of Y in Fig. 4. Written in terms
of functions, it is equal to 1{u ∈ Ξ̂}
where Ξ̂ = {u : Ŷ ∗(u) > 1/2−p} and
1/2−p = 0.11878339181. To quantify
visual similarities in both images, sta-
tistical tests for the area fraction can
be used, see Böhm et al., 2004. For
each of 90 threshold images, the null
hypothesis H0 : p̂ = p is tested vs. its
alternative H1 : p̂ 6= p where

p̂ =
|Ξ̂ ∩ W |
|W |

is an estimator of the area fraction of
the threshold image and

p = 0.38121660819385905
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the area fraction of the original
Boolean model. If the threshold
image is a realization of a Boolean
model and the null hypothesis H0 is
true the corresponding test statistic

T =

√
|W |(p̂ − p)√ ∑

|h|6b

|W ∩ (W − h)|Ĉ1(h)

∼ N(0, 1)

is asymptotically N(0, 1) – distribu-
ted as |W | → ∞ where

Ĉ1(h) = |bΞ∩(bΞ−h)∩W∩(W−h)|
|W∩(W−h)| − p̂2

is a consistent estimator of the covari-
ance function

C1(h) = P (o ∈ Ξ̂, h ∈ Ξ̂)−P 2(o ∈ Ξ̂)

of the random set Ξ̂.
Thus, the null hypothesis H0 is re-

jected at the asymptotic significance
level 1 − θ if

|T | > z1−θ/2

where z1−θ/2 is the (1− θ/2)–quantile
of the standard normal distribution.

For θ = 0.04 and z1−θ/2 = 2.054,
the null hypothesis H0 was rejected
in 6 % to 10 % of realizations depen-
ding on the series of the 90 images.
It attests statistically the visual simi-
larity of the images of Ξ and Ξ̂. The
test results can be improved by choos-
ing larger observation windows (e.g.
400× 400 pixels), smaller grains (e.g.
a = 20, b = 10) and more measure-
ment points per image (say, 2000).
The reason for that is the asymptotic

nature of the test. The significance
level is approximately equal to 1 − θ
if W is large enough, i.e. beginning
from a particular relation between
the sizes of grains and the observa-
tion window. Additionally, we sup-
pose that increasing the number of
measurement points would improve
the extrapolation quality and conse-
quently reduce the rejection rate of
H0 to 4 %. However, in our exper-
iments we kept the number of ap-
prox. 300 measurement points con-
stant in order to preserve analogies
to the traffic problem setting.

ANALYSIS OF TRAFFIC DATA

In what follows, the above extrapola-
tion method is applied to real traffic
data.

The original data set contains en-
tries with spatial positions scattered
not only over Berlin but also over a
wide region with radius of approx.
100 km from the city center. To avoid
too large inhomogeneities, the obser-
vation window is reduced to down-
town Berlin with geographic coordi-
nates

13.3 6 x 6 13.46666,

52.48333 6 y 6 52.55 .

Then, the data analysis is per-
formed for the directional sector
S2 = {α : π/2 6 α < π} including
data of taxis moving northwest. This
partial data set contains 19699 en-
tries collected over 90 days (see Fig.
15).
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To calculate the mean velocity
field m̂(u), the moving average in
(16) is applied to the data of sector
2 (see Fig. 16). The side length
of the square moving neighborhood
is τ = 0.005. In Figs. 15 and 16,
the northwest movement direction of
the taxis can be clearly recognized.
Color gradations reflect speed vari-
ation from green and blue for high
values through yellow for the middle
ones up to red for the low ones. Figu-

re 16 shows the corresponding mean
field m̂(u).

The comparison of both maps
confirms that the estimator m̂ pre-
serves the spatial velocity structure of
the data. To estimate the variogram
γ∗ of Y ∗, the mean values m̂(u) have
to be subtracted from the actual ve-
locity values. Then, the empirical va-
riogram γ̂∗

i is calculated for each day
i = 1, . . . , 90.

Fig. 15: Positions of taxis moving northwest

Fig. 16: Mean field m̂(u) of data set 2
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Averaging on all days, one obtains
the following variogram estimator for
Y ∗

γ̂∗(h) =
1

90

90∑

i=1

γ̂∗
i (h) ;

see Fig. 17.

Fig. 17: Empirical variogram γ̂∗(h)
(level curves)

The parameters of the segment in
(9) used for variogram calculation are
δ = 0.006 and ε = 3◦ with maxi-
mal distance h = 0.07 being appro-
ximately a half diameter of W . The
empirical variogram γ̂∗(h) with ma-
xima in northwest direction and mi-
nima in orthogonal direction is zo-
nally anisotropic showing substantial
northwest correlation in the data.

In Fig. 17, level curves are co-
lored in accordance with the increas-
ing variogram values from green, blue
and yellow to red, where the zonally
anisotropic behavior of γ̂∗(h) near the
origin becomes clear. The variogram
values are low in a narrow sector
at the polar angle of approximately

170◦, i.e. traffic velocities are highly
correlated in this direction.

Fig. 18: Fitted variogram model
γ∗(h) (level curves)

The zonally anisotropic variogram
model (10) with two fixed parameters
α = 170◦, λ1/c

2
2 = 1000 taken from

Fig. 17 has been fitted to the empi-
rical one; see Fig. 18. The classical
least squares fitting method applied
to one–dimensional vertical slices of
the empirical variogram in orthogo-
nal directions α = 80◦ and α = 170◦

yields other parameter values:

a1 = 31.77189640437076,

b1 = 116.21092322,

c1 = 245388.67081,

b2 = 22.6344102,

λ2/c
2
2 = 683964.79366.

Thus, the range values in directions
170◦ and 80◦ are r1 = 0.27 km and
r2 = 0.162 km, respectively. So a ve-
hicle driving in direction α = 170◦

influences only those vehicles driving
behind it in the same direction at a
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maximal distance 3r1 = 810 m. Vehi-
cles driving behind it in the orthogo-
nal direction 80◦ are influenced up to
a distance of 3r2 = 648 m.

Additionally, the two–dimensional
surface of the above variogram model
has been fitted by least squares to
the empirical one using genetic min-
imizing algorithms. Resulting para-
meter values are very close to those
obtained above:

a1 = 19.379745108968454,

b1 = 95.3944270699768,

c1 = 245867.97491680854,

b2 = 9.486514644862856,

λ2/c
2
2 = 684317.2022809463,

λ1/c
2
2 = 1023.8357320907359,

α = 146, 84◦.

For extrapolation, the sample of
velocities x(u1), . . . , x(un) (n = 223)
observed on Monday, 18.02.2002 is
used. Compared to the whole data
set 2 representing the “past”, it is in-
terpreted as “actual” data. The ran-
dom field Y ∗ of deviations from mean
velocities is extrapolated using kri-
ging with moving neighborhood (4)
with the following indicator function

1{ui ∈ A(u)} = 1{ϕ(ui − u) ∈ S2}
where ϕ(ui − u) is the polar angle of
the vector ui − u. This assumption

is rather intuitive since only those
measurements with positions ui lying
“ahead” of the current position u can
influence its velocity value.

Extrapolated residuals Ŷ ∗(u) and

the resulting velocity map X̂(u) are
shown in Figs. 19 and 20, re-
spectively. Due to the particular
asymmetric form of the indicators,
the extrapolated field of residuals is
strongly discontinuous. This obvi-
ously affects the geometric characte-
ristics of X̂(u). Discontinuities of the
realizations of X caused by the kri-
ging with moving neighborhood are
essential for precise localization of
traffic–jam areas. In Fig. 21, areas
with velocities X̂(u) 6 15 kph are
marked yellow. Some of these regions
might be caused by traffic jams.
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Fig. 19: Residual field Ŷ ∗(u)

Fig. 20: Velocity field X̂(u)

Fig. 21: Traffic jams: X̂(u) 6 15 kph
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