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Introduction

In stochastic geometry:

Limit theorems for

I Random geometric graphs (Penrose, Yukich, ...)

I Random polytopes (Bárány, Buchta, Hug, Reitzner,
Schneider, ...)

I Random closed sets (RACS), geometrical random fields
and measures (Heinrich, Molchanov, S., Vitale, Weil, ...)
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Introduction
Preliminaries

K family of non–empty compact convex sets
(convex bodies) in Rd

R = {
n⋃

i=1
Ki : Ki ∈ K, i = 1, . . . , n, ∀n} convex ring

S = {K : K ∩W ∈ R, ∀W ∈ K} extended
convex ring

Br (a) ball with center in a and radius r
κj volume of B1(o) in Rj , j = 0, . . . , d
K1 ⊕ K2 =

⋃
x∈K2

(K1 + x) Minkowski addition

K1 ª K2 =
⋂

x∈K2

(K1 + x) Minkowski subtraction

| · | Lebesgue measure (volume)
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Introduction

Limit theorem for random polytopes
(Bárány (1982); Reitzner (2003, 2005); Vu (2005))

For K ∈ K with ∂K ∈ C3, let Kn = conv(X1, . . . , Xn), where
Xi ∼ U(K ) are iid random points in K . Then, as n →∞, it
holds

I E |Kn| = |K | − c1(d , K )n−1/(d+1),

I Var |Kn| ∼ c2(K )n−(d+3)/(d+1),

I (|Kn| − E |Kn|)/
√

Var |Kn| d−→ N(0, 1).
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Introduction

LT for RACS w. r. to Minkowski addition (Weil (1982))
I Hausdorff metric: For two nonempty compacts A, B ⊂ Rd

dH(A, B) = min {r > 0 : A ⊆ B ⊕ Br (o), B ⊆ A⊕ Br (o)} .

I Norm of a set: ‖A‖ = sup{|x | : x ∈ A}
I Support function: for A ∈ K, sA(u) = sup{u · v : v ∈ A}, u ∈ Sd−1.
I Expectation of RACS (Aumann (1965)): EΞ = convex set with

support function E sΞ(·)

For a sequence of iid RACS Ξi
d
= Ξ with E ‖Ξ‖ < ∞, it holds√

n dH ((Ξ1 ⊕ . . .⊕ Ξn)/n,EΞ)
d−→ sup

u∈Sd−1
X (u), n →∞,

where X is the centered Gaussian process on Sd−1 with
cov. f. C(u, v) = E [sΞ(u)sΞ(v)]− E sΞ(u)E sΞ(v), u, v ∈ Sd−1.
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Limit theorems for various characteristics of RACS

For the volume fraction, specific boundary surface,
number of connected components, etc.:

I Baddeley (1980)
I Mase (1982)
I Heinrich (1993)
I Heinrich, Molchanov (1999)
I Böhm, Heinrich, Schmidt (2004)
I ...

For all specific intrinsic volumes:
I Pantle, Schmidt, S. (2006, 2009)
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Intrinsic volumes

Steiner’s formula in Rd

I There exist functionals Vj : K → [0,∞), j = 0, . . . , d ,
(Minkowski functionals, quermassintegrals or intrinsic
volumes) such that for any r > 0 and K ∈ K it holds

|K ⊕ Br (o)| =
d∑

j=0

rd−jκd−jVj(K ) .

I Functionals V0, . . . , Vd are additive, motion invariant,
monotone with respect to inclusion, and continuous with
respect to dH .
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Intrinsic volumes

Theorem (Hadwiger (1957))
Let F : K → R be any additive, motion invariant and continuous
functional. Then, F can be represented in the form

F =
d∑

j=0

ajVj

for some constants a0, . . . , ad ∈ R.

Thus, the intrinsic volumes V0, . . . , Vd form a basis in the
corresponding linear space.
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Intrinsic volumes

Additive extension to the convex ring R

For each j = 0, . . . , d , there exists a unique additive extension
of Vj : K → [0,∞) to R given by the inclusion–exclusion
formula:

Vj(K1∪. . .∪Kn) =
n∑

i=1

(−1)i−1
∑

j1<...<ji

Vj(Kj1∩. . .∩Kji ), K1, . . . , Kn ∈ K
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Intrinsic volumes

Geometrical interpretation: For any K ∈ R with K 6= ∅,
Vd(K ) = |K | (volume)
2Vd−1(K ) = Hd−1(∂K ) (surface area)
V0(K ) = χ(K ) (Euler number)

In R2: χ(K ) = #{clumps} −#{holes}

χ(K ) = 3− 1 = 2
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Random closed sets

I Let (Ω,F ,P) be an arbitrary probability space
I C = family of all compact sets in Rd

I F = family of all closed sets in Rd

I σ(F) = σ–algebra in F, generated by the sets
FC = {F ∈ F : F ∩ C 6= ∅} for any C ∈ C

An (F , σ(F))–measurable mapping Ξ : Ω → F is called a
random closed set (RACS). Its distribution is uniquely
determined by the capacity functional TΞ(C) = P(Ξ ∩ C 6= ∅),
C ∈ C
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Random closed sets

Stationarity and isotropy

A RACS Ξ is called stationary if Ξ
d
= Ξ + x , ∀ x ∈ Rd , and

isotropic if Ξ
d
= gΞ, ∀g ∈ SO(d)

Theorem (Matheron (1975))

I The RACS Ξ is stationary (isotropic) ⇐⇒
TΞ(C + x) = TΞ(C) ∀ x ∈ Rd and TΞ(gC) = TΞ(C)
∀g ∈ SO(d), respectively

I Each stationary RACS Ξ 6= ∅ is a.s. unbounded
I For any stationary convex RACS Ξ, it holds Ξ ∈ {∅,Rd}

a.s.
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Examples

Stationary point processes in R2

Poisson process cluster process hard–core process
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Examples

Stationary germ–grain models in R2

Realizations of germ–grain models: Boolean model with spherical and polygonal
grains, respectively; cluster process of segments
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Examples

Germ–grain models

The germ–grain model Ξ =
∞⋃

i=1
(Ξi + Xi) is called a Boolean

model if
I the point process of germs {X1, X2, . . .} is a stationary

Poisson process in Rd (with intensity λ)
I the grains Ξ1, Ξ2, . . . are i.i.d. and independent of
{X1, X2, . . .}; Ξi

d
= Ξ0

I E |Ξ0 ⊕ K | < ∞, ∀K ∈ K.
Capacity functional: TΞ(C) = 1− e−λE |(−Ξ0)⊕C|, ∀C ∈ C
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Specific intrinsic volumes

I Model assumptions
I Let Ξ be stationary, Ξ ∈ S a.s.
I E2N(Ξ∩[0,1]d ) < ∞, where N(∅) = 0 and

N(K ) = min{m ∈ N : K =
m⋃

i=1
Ki , Ki ∈ K} for K ∈ R \ {∅}

I Specific intrinsic volumes: Let V j(Ξ) = lim
n→∞

EVj(Ξ ∩Wn)

|Wn|
for j = 0, . . . , d , where {Wn} = sequence of monotonously
increasing sampling windows Wn = nW with W ∈ K and
|W | > 0

In particular, V d(Ξ) = P(o ∈ Ξ) = E|Ξ ∩W |/|W |
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Estimation of (V 0(Ξ), . . . V d(Ξ))>

Problem: Estimate V (Ξ) = (V 0(Ξ), . . . V d(Ξ))> on the basis of
a single sample from Ξ ∩W
Solution: For each i = 0, . . . , d , consider a random field
Yi = {Yi(x), x ∈ Rd} such that

I Yi is stationary of second order, i.e. EYi(x) = µi and
Cov(Yi(x), Yi(x + h)) = CovYi (h) ∀ x , h ∈ Rd

I µi = EYi(o) =
d∑

j=0
aijV j(Ξ), where the matrix A = (aij)

d
i,j=0

is regular
Then, it holds V (Ξ) = A−1µ, where µ = (µ0, . . . , µd)>
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Estimation of (V 0(Ξ), . . . V d(Ξ))>

I For any i = 0, . . . , d and x ∈ U ⊂ W , suppose that Yi(x)
can be computed from Ξ ∩W

I Let w(·) be a probability measure with support in U ⊂ W

Examples: w(·) = | · ∩U|/|U| and w(·) =
m∑

k=1
wkδxk (·) with

x1, . . . , xk ∈ U, w1, . . . , wm > 0 and w1 + . . . + wm = 1

Then,
I µ̂ = (µ̂0, . . . , µ̂d)> with µ̂i =

∫
W Yi(x) w(dx) is an unbiased

estimator for µ = (µ0, . . . , µd)>, and
I V̂ (Ξ) = A−1µ̂ is unbiased for V (Ξ)
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Estimation of (V 0(Ξ), . . . V d(Ξ))>

I Method of least squares: Consider n > d random fields Yi
with the properties mentioned above

I ”Solve” the overdetermined system of linear equations
I The solution is the LS–estimator for (V 0(Ξ), . . . V d (Ξ))>

I Minimization of variance
I Reduction of Var(µ̂i) by an appropriate choice of w
I For a discrete averaging measure w : optimal weights

w1, . . . , wm by kriging of the mean (Wackernagel (1998))
I sampling points x1, . . . , xm ∈ W by optimal experimental

design for random fields (Näther (1985), Müller (2001))
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Consistency

I Let E4N(Ξ∩[0,1]d ) < ∞ and
∫
Rd |CovYi (h)|dh < ∞

∀i = 0, . . . , d

Then,
I V̂ (Ξ, Wn) = A−1µ̂(Wn) with Wn = nW and

µ̂(Wn) =




∫

Wn

Y0(x) w(dx), . . . ,

∫

Wn

Yd(x) w(dx)



>

is an L2–consistent estimator for V (Ξ), i.e.,

E|V̂ (Ξ, Wn)− V (Ξ)|2 → 0, n →∞



Seite 22 Limit Theorems in Stochastic Geometry | Evgeny Spodarev | 19 June 2009

Asymptotic normality

If Ξ is a stationary germ–grain modell with iid grains
Ξi

d
= Ξ0 ∈ K that are independent of germs {X1, X2, . . .} and

some additional assumptions on the Yi are fulfilled, then

√
|Wn|

(
V̂ (Ξ, Wn)− V (Ξ)

) d−→ N
(
0, A−1Σ(A−1)>

)

as n →∞ where

I Σ =
(∫
Rd CovYi Yj (h) dh

)d

i,j=0
and

I CovYi Yj (h) = EYi(x)Yj(x + h)− µiµj is the cross
covariance function of Yi and Yj
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Asymptotic normality

Additional assumptions:
I Yj(x) = fj

(
(Ξ− x) ∩ Kj

)
, where the fj are conditionally

bounded valuations on R; Kj ∈ K
I E2pN(Ξ∩Kj ) < ∞, where

N(Ξ ∩ Kj) = #{i : (Mi + Xi) ∩ Kj 6= ∅}
I w(·) = | · ∩Un|/|Un|, Un ⊂ Wn

and either
I X = {X1, X2, . . .} is rapidly β–mixing
I Ξ0 uniformly bounded; p = 2 + δ, δ > 0

or
I X = {X1, X2, . . .} has finite range of correlation
I |CovYi Yj (h)| 6 gij(Ξ0, h) ∈ L1 monotonously w.r.t. Ξ0;

p = 2
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Consistent estimation of covariances

I Let Un ⊂ Wn be averaging sets such that |Un|2/|Wn| → 0
and minh∈Un |Wn ∩ (Wn − h)|/|Wn| → 1 for n →∞

I Then, the L2–consistency limn→∞ E|Σ̂n − Σ|2 = 0 holds,
where Σ̂n = (σ̂nij)

d
i,j=0 with

σ̂nij = 1
|Wn|

∫
Un

Ĉovnij(h) |Wn ∩ (Wn − h)|dh ,

Ĉovnij(h) =

∫
Wn∩(Wn+h)

Yj(x)Yi(x − h) dx

|Wn ∩ (Wn + h)|

−

∫
Wn

Yi(x) dx
∫

Wn

Yj(x) dx

|Wn|2
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Example of random fields Yi

Local Euler number

I Let r0, . . . , rd−1 > 0 with ri 6= rj , i 6= j and |W ª Bri (o)| > 0
I Yi(x) = V0(Ξ ∩ Bri (x)) for i = 0, . . . , d
I Edge–corrected estimator (minus sampling):

U = W ª Br (o)

µ̂i =

∫

WªBri (o)

V0(Ξ ∩ Bri (x)) w(dx) =
m∑

k=1

V0(Ξ ∩ Bri (xk ))wk

I Discrete averaging measure w , where
x1, . . . , xm ∈ W ª Bri (o) and, for example, wk = 1/m,
k = 1, . . . , m
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Scan statistics for point processes

Scan statistic

Let Φ = {Xi} be an independently marked point process in Rd

with iid marks {Mi} observed within a cube W . For a (cubic)
subwindow Wo ⊂ W , define S(Wo) =

∑
i:Xi∈Wo

Mi .

Scan statistic: T = supWo∈W S(Wo)

I Usual scan statistic of fixed size r > 0:
W = {W1 = x + r [0, 1]d , x ∈ Rd : W1 ⊂ W}.

I Multiscale scan statistic: W = {all cubes W1 ⊂ W}

Limit theorems: T = Tn
d−→ ? as W = Wn = n[0, 1]d , n →∞
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Scan statistics for point processes

I Scan statistics in R1 and R2: Glaz, Balakrishnan (1999),
Glaz, Naus, Wallenstein (2001)

I LT for the usual scan statistic in Rd : Φ = stationary
compound Poisson process (Chan (2007))

I LT for the multiscale scan statistic in R1: Cohen (1968),
Iglehart (1972), Karlin, Dembo (1992), Doney, Maller
(2005)

I LT for the multiscale scan statistic in Rd : independently
scattered Lévy measures (Kabluchko, S. (2008))
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Scan statistic for Lévy noise

I Lévy noise: Let ξ = {ξ(t), t ≥ 0} be a Lévy process with
ξ(0) = 0, E ξ(1) = µ, σ2 = Var ξ(1) > 0.
Lévy noise Z = {Z(B), B ∈ B(Rd)} is an independently
scattered stationary random measure on Rd driven by ξ,
i.e. Z(B)

d
= ξ(|B|) for Borel sets B ∈ B(Rd).

I Multiscale scan statistic:

Tn = sup
Wo∈Wn

Z(Wo), n ∈ N

for Wn = {all cubes within Wn = [0, n]d}.
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LT for the scan statistic of Lévy noise

Theorem (Kabluchko, S. (2008))

I If µ > 0 then (Tn − µnd)/(σnd/2)
d−→ Y ∼ N(0, 1)

I If µ = 0 then Tn/(σnd/2)
d−→ supWo∈W1

Z (Wo), where
Z = {Z (B), B ∈ B(Rd)} is the standard Gaussian white
noise on [0, 1]d .

I If µ < 0, the distribution of ξ(1) is non–lattice,
ϕ(s) = logEesξ(1) exists for s ∈ [0, s0) with the maximal
s0 ∈ (0,∞] and ∃ s∗ ∈ (0, s0): ϕ(s∗) = 0 then

s∗Tn − d log n − (d − 1) log log n − c d−→ Y ,

where Y is standard Gumbel distributed r. v. and c is a
constant.
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Open problems

Limit theorems for the Wiener sausage

Let S(T ) = {X (t) : t ∈ [0, T ]} be the path of the Brownian
motion X ⊂ Rd with variance σ2 up to time T > 0.

I Wiener sausage Sr of radius r > 0: Sr = S(T )⊕ Br (o)

r = 10 r = 40

A realization of Sr
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Intrinsic volumes of the Wiener sausage

I Intrinsic volumes V0(Sr ), . . . , Vd(Sr ) are well–defined a.s.
for d 6 3, r > 0;

I Vd (Sr ) = |Sr |
I 2Vd−1(Sr ) = Hd−1(∂Sr )

I Vi(Sr ) = (−1)d−i−1Vi

(
Rd \ Sr

)
, i = 0, . . . , d − 2, where

∂Sr is a Lipschitz manifold with reach
(
Rd \ Sr

)
> 0 a.s.

I Compute EVi(Sr ), i = 0, . . . , d .
It is proved that EVi(Sr ) < ∞, i = d , d − 1 for all d > 2 and
EV0(Sr ) < ∞ for d = 2 (Rataj, Schmidt, Meschenmoser,
S. (2005, 2009).
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Mean volume of the Wiener sausage

I Explicit formulae
I d = 2: Kolmogorov, Leontovich (1933)
I d = 3: Spitzer (1964)
I d > 4: Berezhkovskii et al. (1989)

I Asymptotics of the volume
I Getoor (1965)
I Donsker, Varadhan (1975)
I Le Gall (1988): CLT for shrinking Wiener sausage (T →∞

or r → 0)
I van den Berg, Bolthausen (1994)
I . . .
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Other mean intrinsic volumes

I Mean surface area: Rataj, Schmidt, S. (2005)
I Support measures and mean curvature functions: Last

(2005)
I Mean intrinsic volumes EVi(Sr ) of lower order

i = 0, . . . , d − 2: an open problem.
Approximations can be obtained numerically (Rataj,
Meschenmoser, S. (2009))
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Mean surface area of the Wiener sausage
Theorem (Rataj, Schmidt, S. (2005))
For d > 2, it holds

2EVd−1(Sr ) = dκd rd−1 + 4d2 κd rd−1

π2

∞∫
0

1−e
−σ2y2T

2r2

y3(J2
ν(y)+Y 2

ν (y))
dy

+ dκdσ2rd−3T

(
(d−2)2

2 − 4
π2

∞∫
0

e
−σ2y2T

2r2

y(J2
ν(y)+Y 2

ν (y))
dy

)

for almost all radii r > 0, ν = (d − 2)/2. For d = 2, 3, this
formula holds for all r > 0. In the case d = 3, it simplifies to

EV2(Sr ) = 4πr2 + 8rσ
√

2πT + 2πσ2T .
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Mean surface area of the Wiener sausage
I Asymptotic behaviour (Rataj, Schmidt, S. (2009))

2EVd−1(Sr ) ∼





πσ2Tr−1 log−2 r if d = 2,
2πσ2T if d = 3,

dκdσ2T (d−2)2

2 rd−3 if d > 4
as r → 0.

I LT for the volume (Le Gall (1988)): for d = 2, it holds

(log r)2(|Sr |+ π/ log r)) d−→ c − π2γ, r → 0,

where σ2 = T = 1 and γ is the (renormalized) Brownian
local time of self–intersections. For d > 3: CLT.

I Open problem: LT for the surface area 2Vd−1(Sr ) and other
intrinsic volumes Vj(Sr ) of the shrinking Wiener sausage!
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Open problems

Limit theorems for excursion sets of stationary random fields

Let X = {X (t), t ∈ Rd} be a stationary C2–smooth random
field, A(X , u) = {t ∈ Rd : X (t) > u}, u ∈ R its excursion sets.

I EVj(A(X , u)) for Gaussian and related random fields:
Adler, Taylor (2007)

I LT for Vj(A(X , u)):
I Volume Vd (A(X , u)):

I classical results for random processes and Gaussian
random fields

I (BL, θ)-dependent random fields: Bulinski, S.,
Timmermann; Meschenmoser, Shashkin (2009)

I Other random fields: Open problem
I Other intrinsic volumes: Open problem
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