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Abstract

Most of the known methods for estimating the fractal dimension of fractal sets are based on the

evaluation of a single geometric characteristic, e.g. the volume of its parallel sets. We propose a

method involving the evaluation of several geometric characteristics, namely all the intrinsic volumes

(i.e. volume, surface area, Euler characteristic etc.) of the parallel sets of a fractal. Motivated by

recent results on their limiting behaviour, we use these functionals to estimate the fractal dimension

of sets from digital images. Simultaneously, we also obtain estimates of the fractal curvatures of

these sets, some fractal counterpart of intrinsic volumes, allowing a finer classification of fractal sets

than by means of fractal dimension only. We show the consistency of our estimators and test them

on some digital images of self-similar sets.
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1. Introduction

For the classification of fractal sets, it is common to examine their fractal dimension. Two major

algorithms for estimating fractal dimensions are well known and extensively used: The box counting

algorithm and the sausage method, whose name is due to the use of ε-parallel sets

Fε := {x ∈ Rd : d(x, F ) ≤ ε}, ε ≥ 0, (1)
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for the approximation of a given fractal set F ⊂ Rd (see e.g. [45]). The latter approach is related to

the Minkowski-dimension dimM F , which is the number s ≥ 0 such that

vold(Fε) ∼ c · εd−s, as ε↘ 0 (2)

for some constant c. (Here and throughout ∼ means that the quotient of left and right hand

side converges to 1, vold(·) is the d-dimensional Lebesgue measure and d(x, F ) := infy∈F |x − y|,

where | · | is the Euclidean norm in Rd). The Minkowski dimension is known to be equivalent to

the box counting dimension for any bounded set F ⊂ Rd. Thus both approaches estimate the

same mathematical object. Beside these two most popular algorithms, many other computational

methods such as e.g. the local dimension method, and various refinements of the two basic methods

are available, see e.g. [10, 30, 32, 41, 48, 17] as well as the books [45, 18] and the references therein.

It has been observed in many applications that often the fractal dimension alone is not sufficient

to distinguish or classify different fractal structures and additional texture parameters have been

suggested. One of the simplest and most prominent is the lacunarity, suggested by Mandelbrot in

[28, 29]. For a set F ⊂ Rd with Minkowski dimension dimM F = s it is defined as the reciprocal

of its s-dimensional Minkowski content Ms(F ) := limε↘0 ε
s−dvold(Fε). That is, the lacunarity is

essentially one over the constant c in the relation (2). In the sausage method, the y-intercept of the

regression line is a reasonable estimator for log c and therefore, one gets the lacunarity almost for

free together with the estimate for the dimension s. Lacunarity can be understood as a measure

of how fast the space around the fractal is occupied when the parallel set grows. It is able to

distinguish fractal structures of equal dimension. Algorithms for determining lacunarity and related

texture parameters have been proposed and analyzed, e.g. in [3, 50, 4, 5] and used successfully in

very different fields such as pattern recognition [4], signal processing [31], DNA classification [9],

the analysis of aggregation clusters in statistical mechanics [40] and of breast tumors in medicine

[43], to mention just a few recent studies. Despite these many positive examples, one can not hope

that a single texture parameter like lacunarity will always be able to successfully distinguish or

classify fractal structures of a given class. It is easy to construct sets with very different texture and

visual appearance but the same dimension and lacunarity, from which the need for more texture

parameters is evident.

In the present work, we suggest a whole vector of texture parameters for fractal sets based on

the recently introduced concept of fractal curvatures [51] and we propose some methods how to

estimate these parameters separately or simultaneously from given binary images of a fractal set.

Our approach may be viewed as a generalization of the sausage method: Given a bounded subset

F ⊂ Rd, we look at the parallel sets Fε of F for small radii ε > 0. While the sausage method considers

the behaviour of the volume of these parallel sets only, we propose to study the asymptotic behaviour

of all (or at least several) total curvatures C0(Fε), . . . , Cd(Fε) as ε↘ 0. Total curvatures (or intrinsic

volumes) are important geometric characteristics and are defined for different classes of bounded
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sets A ⊂ Rd, e.g. convex and polyconvex sets, sets of positive reach and their unions, etc. They have

the following interpretations: Cd(A) is the d-dimensional volume, Cd−1(A) is essentially the surface

area and C0(A) is the Euler characteristic of A. The remaining functionals have interpretations as

integrals of mean curvature. For a set A ∈ R2 this means for instance that C2(A), C1(A) and C0(A)

are (up to normalization) area, boundary length and Euler characteristic of A, respectively. The

intrinsic volumes can be determined simultaneously from binary images using e.g. the algorithms

described in [19].

The proposed methods are based on the following ideas and definitions from [51]: For a fractal

set F ⊂ Rd with (Minkowski) dimension dimM F = s, the k-th total curvature Ck(Fε) behaves

typically like εk−s as ε ↘ 0. Often, for instance for non-arithmetic self-similar sets, one has direct

proportionality, that is, the limit

Ck(F ) := lim
ε↘0

εs−kCk(Fε) (3)

exists and is then called the k-th fractal curvature of F . In case the limit in (3) does not exist, e.g. for

the Sierpinski gasket, Ck(Fε) may still be of the order εs−k. Then one often observes oscillations in

the geometry and hence in the total curvatures Ck(Fε) which do not vanish as ε↘ 0. Instead Ck(Fε)

is asymptotic to some periodic function. This is the typical behaviour for instance for arithmetic

self-similar sets. In this case one has Ck(Fε) = Θ(εk−s) as ε↘ 0, that is, the quotient |Ck(Fε)|/εk−s

is bounded from above and below by some constants. Moreover, the following average limit typically

exists:

Ck(F ) := lim
δ↘0

1

| log δ|

∫ 1

δ

εs−kCk(Fε)
dε

ε
, (4)

which is then called the k-th average fractal curvature of the set F . For k = d, the definitions (3)

and (4) are just the well known Minkowski content and its averaged counterpart, which are thus

naturally included in the framework of (average) fractal curvatures. We refer to Section 2 and the

references therein for more details and results on fractal curvatures.

Based on these ideas, we propose two methods for estimating simultaneously the fractal dimen-

sion and the (average) fractal curvatures of a given set F ⊂ Rd from its digital approximations.

The first method is based on a multivariate linear regression and tries to estimate simultaneously all

(or at least several) fractal curvatures in (3) together with the dimension. This attempt does only

make sense under the assumption that for F all the fractal curvatures exist which are to be included

in the regression. Since in many situations this assumption is not satisfied, even for self-similar

sets, we propose a second method, which tries to estimate averaged fractal curvatures instead. The

second method is a more sophisticated quasi–linear regression inspired by a time series approach

with a linear drift and a truncated Fourier series as a seasonal part to model the oscillations in the

geometry. It allows to estimate the average fractal curvatures even when the limits in (3) do not

exist. For this approach to be meaningful, the assumption on the existence of fractal curvatures
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is replaced by the much weaker assumption that the expression εs−kCk(Fε) is asymptotic to some

(multiplicatively) periodic function pk(ε) as ε↘ 0. This is what is typically observed in situations

where some kind of self-similarity is present.

Roughly speaking, the estimation procedure in the first method is as follows: Given a binary

image of a fractal set F ⊂ Rd, we first measure the values of Ck(Fεj ) for a set of dilation radii

{ε1, . . . , εn} and all k ∈ {0, . . . , d}. In this step, we employ the algorithm described in [24] and [19]

which allows for a simultaneous computation of all intrinsic volumes in only one scan of each set

Fεj ; cf. also Remark 4.1. Second, we use the (d+ 1) asymptotic relations

Ck(Fε) ∼ Ck(F )εk−s, as ε↘ 0, (5)

implied by (3) for a linear regression. Multiplying by ε−k and taking logarithms of the absolute

values on both sides in (5), we get the relation log
(
ε−k|Ck(Fε)|

)
∼ βk − s log ε as ε ↘ 0, where

βk := log |Ck(F )|, which suggests to compare the expression log
(
ε−k|Ck(Fε)|

)
to the line βk + sx in

the variable x := − log ε. Similarly, by combining all the data, the set of vectors

{(
log(ε−0

j |C0(Fεj ))|, log(ε−1
j |C1(Fεj ))|, . . . , log(ε−dj |Cd(Fεj ))|

)}
j=1,...,n

plotted against xj = − log εj provides a point cloud in Rd+2 that resembles a line and a least

squares fit will result in an estimate of the dimension s = dimM F of the fractal set F , as well as of

its fractal curvatures Ck(F ), k = 0, . . . , d. Deviations from the line are due to image discretization,

measurement errors and the described geometric oscillations of the intrinsic volumes that may only

vanish as ε ↘ 0. These errors are supposed to be random. They can not be observed directly.

Notice that this is the only source of randomness in this method, since the set F is deterministic.

Due to these assumptions, statistical regression methodology can be used.

In the second method, the linear regression step is replaced by a quasi–linear regression, which

can be interpreted as fitting a periodic function to the above point cloud. For details of both methods

we refer to Section 3.

Under suitable assumptions on the covariance structure of the error in our models and for suitable

choices of the radii εj we prove the weak consistency of our estimators as the number of observations

n tends to ∞. Furthermore, we have implemented the algorithms and tested them on a number of

self-similar sets.

The paper is organized as follows: In Section 2, some notions from fractal geometry are recalled

and the relevant results on curvature measures and fractal curvatures are reviewed. In Section 3,

we introduce the two methods for estimating the fractal dimension s(F ) and the fractal curvatures

Ck(F ), k = 0, . . . , d of a fractal set F and discuss their asymptotic properties, based on a suitable

model for the discretization errors. Section 4 is concerned with the implementation of the meth-

ods and some simulation results: For some self-similar sets in R2 the fractal dimension and the
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fractal curvatures are estimated using the proposed methods and the results are compared to the

(known) exact dimension and fractal curvatures as well as to estimates of the dimension provided

by conventional methods.

2. Fractal dimension and fractal curvatures

In this section we provide some theoretical background required for the justification of our ap-

proach. First we recall a few facts on fractal dimensions and self-similar sets. Then we discuss

curvature measures and review some recent results on fractal curvatures.

Box counting dimension and Minkowski dimension. For a bounded set F ⊂ Rd and ε > 0,

recall the definition of the ε-parallel set Fε from (1). The number

dimM F := d− lim
ε↘0

log vold(Fε)

log ε

is called the Minkowski dimension of F , provided the limit exists (cf. [12]). It is well known that

the Minkowski dimension of any set F coincides with its box dimension dimB F (provided one of

these numbers exists), which is defined by

dimB F := lim
δ↘0

logNδ(F )

− log δ
.

Here Nδ(F ) is the number of boxes in a δ-grid of Rd that intersect F . Moreover, dimM F is always

an upper bound for the Hausdorff dimension dimH F of F . See e.g. [12] for more details on fractal

dimensions and their properties and interrelations.

Self-similar sets. Let Si : Rd → Rd, i = 1, . . . , N , be contracting similarities. Denote the con-

traction ratio of Si by ri ∈ (0, 1). It is a well known fact (cf. [22]), that for a system {S1, . . . , SN}

of similarities there exists a unique, non-empty, compact subset F of Rd satisfying the invariance

relation S(F ) = F , where S is the set mapping defined by

S(A) =

N⋃
i=1

Si(A), A ⊆ Rd.

F is called the self-similar set generated by the system {S1, . . . , SN}. Moreover, the unique solution

s of
∑N
i=1 r

s
i = 1 is called the similarity dimension of F .

The system {S1, . . . , SN} is said to satisfy the open set condition (OSC) if there exists an open,

non-empty, bounded subset O ⊂ Rd such that

SiO ⊆ O for i = 1, . . . , N and SiO ∩ SjO = ∅ for all i 6= j.
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The OSC ensures that the images S1F, . . . , SNF of F do not overlap too much. It is well known, that

for self-similar sets F satisfying OSC, all the different dimensions coincide, i.e. one has dimM F =

dimH F = s, where s is the similarity dimension of F . For sets not satisfying OSC much less is

known; still s is an upper bound for Hausdorff and Minkowski dimension, but these two may be

strictly smaller than s and, furthermore, they might differ. In the sequel we shall assume that the

self-similar sets satisfy OSC.

Let h > 0. A finite set of positive numbers {y1, ..., yN} is called h-arithmetic if h is the largest

number such that yi ∈ hZ for i = 1, . . . , N . If no such number h exists for {y1, ..., yN}, the set

is called non-arithmetic. We attribute these properties to the system {S1, . . . , SN} or to F if the

set {− log r1, . . . ,− log rN} has them. In this sense, each self-similar set F is either h–arithmetic

for some h > 0 or non-arithmetic. Sierpiński carpet and Sierpiński gasket are log 2– and log 3–

arithmetic. For further examples of arithmetic and non-arithmetic sets see Section 4.

Curvature measures and intrinsic volumes. We first recall the notion of curvature measures

for polyconvex sets, as this class of sets includes the parallel sets of digitized sets and hence is a

sufficiently general setting for the implementation of our algorithms. For a general definition of

fractal curvatures we briefly discuss curvature measures on more general classes of sets in the next

paragraph.

Let Kd denote the class of compact, convex subsets of Rd and Rd the class of sets that can be

represented as finite unions of sets in Kd. Rd is called the convex ring, its elements are polyconvex

sets. For sets K ∈ Kd, the volume vold of the ε-parallel sets of K is given by the so called Steiner

formula. For ε ≥ 0, vold(Kε) is a polynomial in ε:

vold(Kε) =

d∑
k=0

εd−kκd−kCk(K). (6)

The coefficients C0(K), . . . , Cd(K) are called the intrinsic volumes or total curvatures of K. κj

denotes the j-dimensional volume of the unit ball in Rj .

The total curvatures are the total masses of certain measures called the curvature measures of

K. They satisfy a local Steiner formula which is due to Federer [13]. Let pK denote the metric

projection onto the set K. For any Borel set A ⊂ Rd, the volume of the set Kε ∩ p−1
K (A) is again a

polynomial in ε:

vold(Kε ∩ p−1
K (A)) =

d∑
k=0

εd−kκd−kCk(K,A). (7)

The coefficients C0(K, ·), . . . , Cd(K, ·) are measures in the second argument. They are called the

curvature measures of K. Their total masses are the total curvatures, Ck(K,Rd) = Ck(K). Cur-

vature measures are additive, i.e. if M,K and M ∪K ∈ Kd, then M ∩K ∈ Kd and the curvature
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measures satisfy

Ck(M ∪K, ·) = Ck(M, ·) + Ck(K, ·)− Ck(M ∩K, ·), k = 0, . . . , d.

This allows to extend curvature measures additively to Rd. Iterating the above formula gives the

inclusion-exclusion formula for sets K1, . . . ,Km ∈ Kd such that their union K := K1 ∪ . . . ∪Km is

in Kd:

Ck(K, ·) =
∑

I⊂{1,...,m}

(−1)|I|−1Ck(
⋂
i∈I

Ki, ·), k = 0, . . . , d. (8)

Here |I| denotes the cardinality of the set I. Now, if the left hand side is not defined, i.e. if K is

in Rd but not in Kd, take the right hand side as its definition. Schneider [42] has shown that this

extension is well defined, i.e. that the left hand side is independent of the chosen representation of

K by a union of convex sets. In general, for K ∈ Rd the curvature measure Ck(K, ·) is a signed

measure, k = 0, . . . , d− 2. Denote by Cvar
k (K, ·) its total variation and put Cvar

k (K) := Cvar
k (K,Rd),

k = 0, . . . , d.

Sets with positive reach. For X ⊂ Rd, let Unp(X) be the set of points y ∈ Rd which have a

unique nearest point in X. Unp(X) consists of those points for which the metric projection onto X

is well defined. The supremum over all radii ε ≥ 0 such that Xε ⊂ Unp(X) is called the reach of X,

reach(X), and X is said to have positive reach, if reach(X) > 0. For any set K with positive reach,

the local Steiner formula (7) holds for all ε such that 0 < ε < reach(K), which allows to define the

curvature measures C0(K, ·), . . . , Cd(K, ·) of K just as before, see [13]. These curvature measures

have similar properties, in particular they are additive, motion invariant and homogeneous of degree

k (meaning Ck(rK) = rkCk(K) for r > 0). They can be extended additively to finite unions of

such sets, although some care is necessary as not all unions are feasible. Instead of discussing this

extension in detail, we address another extension, which is particularly useful in our situation namely

for sets that are themselves parallel sets.

For a bounded set K ⊂ Rd, a radius ε > 0 is called regular, if ε is a regular value of the distance

function of K in the sense of Morse theory, see [15]. According to [15], for d ≤ 3 and K ⊂ Rd a

compact set, almost all ε > 0 are regular for K. Regularity of a radius ε for K implies, that the

boundary of Kε is a Lipschitz manifold and the closed complement K̃ε of Kε has positive reach.

Therefore, the curvature measures of K̃ε are well defined in the sense of Federer and the curvature

measures of Kε are then given by means of the following reflection principle (see [38]):

Ck(Kε, ·) = (−1)d−k−1Ck(K̃ε, ·), k = 0, . . . , d− 1.

As before, we denote by Ck(Kε) := Ck(Kε,Rd) the total masses of the measures Ck(Kε, ·), which

are also called the Lipschitz-Killing curvature measures of Kε. We continue to use the term total
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curvatures for the Ck(Kε). Recall that Cvar
k (Kε, ·) is the total variation measure of the (in general

signed) measure Ck(Kε, ·) and Cvar
k (Kε) its total mass.

Scaling exponents and fractal curvatures. For the definition of fractal curvatures for a set,

it is necessary that sufficiently many of its close parallel sets admit curvatures measures. For a

compact set F ⊂ Rd, we assume that almost all ε > 0 are regular. (As mentioned above, in space

dimensions d ≤ 3, this is always satisfied.) Then, for each k ∈ {0, . . . , d}, the k-th curvature scaling

exponent sk = sk(F ) of the set F is defined by

sk(F ) := inf

{
t ∈ R : esslim

ε↘0
εtCvar

k (Fε) = 0

}
, (9)

cf. e.g. [51, p.13] or [33, eq. (1.5)]. The typical value of sk(F ) for a fractal set F of dimension

dimM F = s is sk = s − k. Although this relation may fail for certain sets F , it is useful to

concentrate on the following essential limit (avoiding the irregular ε) and call it the k-th fractal

curvature of F in case it exists:

Ck(F ) := esslim
ε↘0

εs−kCk(Fε). (10)

In general, the limit in (10) does not exist. Even for self-similar sets, it often fails to exist. Therefore,

the following Cesaro averaged version of the limit is considered, which has a better convergence

behaviour. For k = 0, . . . , d, the k-th average fractal curvature of F is the number

Ck(F ) := lim
δ↘0

1

| log δ|

∫ 1

δ

εs−kCk(Fε)
dε

ε
(11)

provided this limit exists. Note that if Ck(F ) exists, then Ck(F ) exists as well and both numbers co-

incide. The functionals Ck(F ) and Ck(F ) deserve to be called curvatures, since they share some of the

desirable properties of total curvatures. In particular, they are motion-invariant and homogeneous,

though in general Ck is of degree k + sk, cf. [51]. As fractal curvatures are limits of classical total

curvatures, they are expected to carry important geometric information about the fractal set F and

therefore they are natural candidates to be considered as geometric indices or texture parameters.

Remark 2.1. The definition of the fractal curvatures here is slightly different to the one given in
[51], where the exponent sk is put in general instead of s − k. This slightly changed point of view
(taken up e.g. in [53] and [52]) emphasizes the generic case. It may give a zero for some fractal
curvature in the exceptional cases where the exponent s− k is not optimal. However, recent results
in [33] show that these exceptional cases are rare and can be classified completely at least in R and
R2. In general, one could define for each t ∈ R the t-dimensional k-th fractal curvature of a set F
by limε↘0 ε

tCk(Fε) (just in the same way as for the t-dimensional Minkowski content of F ). Then
the two different definitions would be special cases (which often coincide) of this general notion. A
similar remark applies to average fractal curvatures.

The fractal curvatures of self-similar sets. In general it is difficult to determine the fractal

dimension or the Minkowski content of a set exactly and it is even more difficult for fractal curvatures.
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However, for self-similar sets some rigorous results have been established, which exemplify that the

above definitions are reasonable and useful. So let now F be a self-similar set satisfying OSC. In

[51], self-similar sets with polyconvex parallel sets have been considered. Polyconvexity is a rather

restrictive condition, which ensures however that curvature measures are well defined for all parallel

sets Fε of F . Note also that polyconvexity is easy to check, as the following criterion holds, see [26]:

Fε is polyconvex for all ε > 0 if and only if there exists some ε0 > 0 such that Fε0 is polyconvex.

For such sets it was shown that for k = 0, . . . , d, the expression εs−kCvar
k (Fε) is uniformly

bounded as ε ↘ 0, implying in particular that s − k is a general upper bound for the k-th scaling

exponent sk, that is, we have

sk ≤ s− k. (12)

Moreover, a characterization was given of when (average) fractal curvatures exist for these sets:

Theorem 2.2. [51, Theorem 2.3.6 and Remark 4.1.5] Let F ⊂ Rd be a self–similar set generated
by the system {S1, . . . , SN} with contraction ratios ri and similarity dimension s. Suppose that F
satisfies the OSC and has polyconvex parallel sets. Then, for each k ∈ {0, . . . , d}, there exists a
bounded function pk : (0, 1]→ R such that

εs−kCk(Fε) ∼ pk(ε) as ε↘ 0.

Moreover, the following holds:

(i) If F is h-arithmetic (for some h > 0), then pk can be chosen multiplicatively periodic with
period h, i.e. pk(hε) = pk(ε), and Ck(F ) exists.

(ii) If F is non-arithmetic, then pk can be chosen constant, and Ck(F ) exists.

The value of Ck(F ) (and in the non-arithmetic case of Ck(F )) is given by the integral

1

η

∫ 1

0

εs−k−1

(
Ck(Fε)−

N∑
i=1

1(0,ri](ε)Ck((SiF )ε)

)
dε, (13)

where η = −
∑N
i=1 r

s
i log ri.

Note that the last formula allows explicit (but rather tedious) calculations of Ck(F ). These

exact values will be compared with the values estimated from binary images of some fractals F in

Section 4. It follows from [26, Lemma 3.2] that for an h-arithmetic self-similar set F the value of

Ck(F ) is equivalently given by

Ck(F ) =
1

h0

∫ h0

0

pk
(
e−x

)
dx, (14)

where h0 = − log h.

Theorem 2.2 extends to a more general class of self-similar sets. The polyconvexity can be

replaced by the weaker regularity assumption mentioned above, that almost all ε are regular for F .

In this general situation, one needs to assume additionally that a rather technical curvature bound

is satisfied. We refer to [53, 39] for further details. In [53], analogous results have been established
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for random self-similar sets and in [25, 8] for self-conformal sets. For the cases k = d and k = d− 1,

none of these assumptions are necessary. As volume and surface area of the parallel sets are well

defined for any set F ⊂ Rd, the assertions of Theorem 2.2 hold for any self-similar set satisfying

OSC regardless of any polyconvexity or regularity assumption, see [16] for the case k = d and [36]

for the case k = d− 1. In these two cases it has also been shown that Ck(F ) (as well as Ck(F ), if it

exists) are strictly positive. Moreover, some deep connections between Cd−1(F ) and the Minkowski

content Cd(F ) have been established in [36]. In particular, for any self-similar set F ⊂ Rd (with

OSC) one has the equality sd−1 = sd − 1 = s − 1, provided s < d. Moreover, Cd−1(F ) and Cd(F )

coincide up to some normalisation constant:

Cd−1(F ) =
d− s

2
Cd(F ). (15)

The same relation holds for the average counterparts, see [36, Theorems 4.5 and 4.7]. In [37] it is

shown, that the relation (15) holds in fact for arbitrary bounded sets F ⊂ Rd with dimM F < d,

that is, whenever one of these two fractal curvatures exists (as a positive and finite number) then

the other one exists as well and equation (15) holds.

3. Estimators of dimension and fractal curvatures

3.1. Least squares methods

General assumptions. Let F ⊂ Rd be a fractal set satisfying the following assumptions:

(A1) The parallel sets Fε of F are sufficiently regular for curvature measures C0(Fε, ·), . . . , Cd(Fε, ·)

to be well defined for almost all ε > 0.

(A2) For each k = 0, . . . , d, the expression Ck(Fε) (as a function of ε) is either strictly positive or

strictly negative.

(A3) The fractal curvatures C0(F ), . . . , Cd(F ) exist, i.e., for each k = 0, . . . , d, the essential limit in

(10) exists.

Assumption (A1) is a condition on the regularity of the parallel sets. The notion of fractal

curvature does not make sense for F if the curvature measures of its parallel sets are not defined

in some way. However, most sets that one can think of satisfy this assumption. As outlined in

Section 2, in Rd, d ≤ 3, almost all ε > 0 are regular for F and therefore this condition is satisfied.

In higher dimensions the condition may fail but the construction of counterexamples is difficult.

Therefore, from the point of view of applications, assumption (A1) imposes no restriction. Note

in particular that the parallel sets of the digitized fractal images are always polyconvex such that

curvature measures are well defined for all ε > 0.

Assumption (A2) is a technical condition needed simply to be able to work on the logarithmic

scale. It is a serious restriction. On the other hand this condition can easily be checked from
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the data. Single indices k can simply be excluded from the estimation when Ck(Fε) fail to satisfy

condition (A2), see Remark 3.1 below. We point out that this assumption is always satisfied for the

two uppermost indices d− 1 and d: for any set F ⊂ Rd and any ε > 0, volume Cd(Fε) and surface

area Cd−1(Fε) are always strictly positive. As the curvature measures Ck(Fε, ·), k ≤ d−2 are signed

measures in general, the total curvatures may assume negative values. Moreover, as ε ↘ 0 the

total curvatures may switch their sign infinitely many times. Assumption (A2) ensures that we can

estimate the absolute values of the fractal curvatures from the absolute values of the data and put

the correct sign back to the estimated quantities in the end.

Assumption (A3) is the most restrictive but also the most natural assumption. Without the

existence of fractal curvatures, it would not make sense to try and estimate them. Note that

implicitly we assume in (A3) that the k-th scaling exponent of F is bounded from above by s− k,

compare Section 2, where it is also outlined that a rigorous mathematical proof of the existence of

fractal curvatures has up to now only been given for non-arithmetic self-similar sets. Later on we

shall replace (A3) by the weaker assumption (A3’), which ensures that the average fractal curvatures

exist, a setting which includes in particular all self-similar sets.

First method: Ordinary least squares. Assumption (A3) implies that the asymptotic relation

(5) holds for k = 0, . . . , d which (after taking absolute values, multiplying by ε−k and taking logs)

can be written as

log(ε−k|Ck(Fε)|) ∼ log |Ck(F )| − s log ε , as ε↘ 0, (16)

for each k = 0, . . . , d. This allows for a linear regression.

Given a set of ε-values ε1, . . . , εn, we set

xj := − log εj , (17)

ykj := log
(
ε−kj |Ck(Fεj )|

)
, k = 0, . . . , d. (18)

Relation (16) suggests that if the radii εj are small enough, then the points (y0j , y1j , . . . , ydj) ∈ Rd+1,

j = 1, . . . , n will lie close to a line (see Figure 1). Setting βk := log |Ck(F )|, k = 0, . . . , d, we expect
y0j

y1j

...

ydj

 =


β0

β1

...

βd

+ sxj


1

1
...

1

+


δ0j

δ1j
...

δdj

 , j = 1, . . . , n,

whereas the discretisation and computation errors {δkj : k = 0, . . . , d, j = 1, . . . , n} are correlated

random variables with Eδkj = 0 and var δkj ∈ (0,∞) for all k = 0, . . . , d and j = 1, . . . , n. Notice

that we may assume δkj to be random since a fractal F and its parallel sets can be digitized in many

different ways. To do that, it suffices to move F with respect to the digitization lattice of pixels
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(voxels) arbitrarily. The assumption Eδkj = 0 reflects the fact that fractal curvatures and dimension

are motion invariant. The errors are correlated because parallel sets are monotone increasing with

respect to inclusion: Fεi ⊂ Fεj if εi < εj .

5
6

7

y0

4
3

2 6

5

6

7

8

9

10

y1

y2
7

8
9

10
11

Figure 1: The point cloud {(y0j , y1j , y2j)}nj=1 for a (2-dimensional) 3000×3000 binary image of the Triangle Set (see

Figure 3(d)). The 352 data points have been obtained for dilation radii ranging from 2.73 to 89.8 [pixels], chosen in
an equidistant way on a logarithmic scale.

To estimate the fractal dimension s and the quantities βk, k = 0, . . . , d (which encode the fractal

curvatures), we fit a line of the form

y =


β0

β1

...

βd

+ sx


1

1
...

1


to the point cloud {(y0j , y1j , . . . , ydj)}nj=1 by the ordinary least squares method. That is, we find

the values of s and (β0, . . . , βd) for which the expression

e2
n (β0, . . . , βd, s) :=

1

(d+ 1)n

d∑
k=0

n∑
j=1

(ykj − (βk + sxj))
2 (19)

is minimal. Standard least-squares calculations show that these uniquely defined values are

ŝ(n) =

∑d
k=0

∑n
j=1 ykj(xj − x̄n)

(n− 1)(d+ 1)S2
n

, (20)

β̂
(n)
k = ȳkn − x̄nŝ(n), k = 0, . . . , d, (21)

12



where x̄n := 1
n

∑n
j=1 xj , S

2
n = 1

n−1

∑n
j=1(xj − x̄n)2 and ȳkn := 1

n

∑n
j=1 ykj . We propose ŝ(n) as an

estimator of the fractal dimension s and ̂|Ck(F )| = exp(β̂
(n)
k ) as an estimator of |Ck(F )|, k = 0, . . . , d.

Remark 3.1. If for some indices k ∈ {0, . . . , d} assumption (A2) is not satisfied, one can simply
abandon these indices and consider the least-squares estimators based on the remaining data. In
general, for a subset J ⊆ {0, . . . , d} of indices, one can consider the estimators

ŝ(J,n) =

∑
k∈J

∑n
j=1 ykj(xj − x̄n)

(n− 1)|J |S2
n

, (22)

β̂
(J,n)
k = ȳkn − x̄nŝ(J,n), k ∈ J , (23)

which minimize the sum
1

|J |n
∑
k∈J

n∑
j=1

(ykj − (βk + sxj))
2. (24)

Here |J | denotes the cardinality of the finite set J . If J = {d}, i.e. if only the volume Cd(Fε) is
considered, the estimators specialize to those provided by the sausage method. Hence the sausage
method is included as a special case in our considerations. We use the notation ŝ({d},n) and M̂(n) :=

exp(β̂
({d},n)
d ) for the sausage method estimators of the dimension s and the Minkowski content

M(F ) = Cd(F ) of the set F .

Second method: Quasi–linear regression. We assume now that F ⊂ Rd is a set satisfying

assumptions (A1) and (A2) but not (A3). Instead, we assume the following:

(A3’) For some h ∈ (0, 1) and each k = 0, . . . , d, one has the asymptotic relation

εs−kCk(Fε) ∼ pk(ε) as ε↘ 0 (25)

where pk : (0,∞)→ R is a bounded, (multiplicatively) periodic function with period h.

This assumption is on the one hand motivated by the known results for arithmetic self-similar sets,

where the existence of such a periodic function was shown. On the other hand, condition (A3’)

ensures the existence of the average fractal curvatures as defined in (11). Indeed, Ck(F ) is given in

terms of the function pk by (14).

We point out that assumption (A3’) is strictly weaker than (A3). For any set F satisfying (A3),

the relations (25) hold for the constant functions pk ≡ Ck(F ) (and some arbitrary h > 0). This

will allow in particular to apply the second method also when the (non-averaged) fractal curvatures

exist. Indeed, in a way, the first method can be viewed as a special case of the second method

described below.

For a set of ε-values ε1, . . . , εn, recall the notation xj = − log εj and ykj = log
(
ε−kj |Ck(Fεj )|

)
,

k = 0, . . . , d, from (17) and (18). The relation (25) suggests that if the radii εj are sufficiently small,

then the points (y0j , y1j , . . . , ydj), j = 1, . . . , n will lie close to the graph of a function which is the
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sum of a linear and a periodic function (see Figure 1):
y0j

y1j

...

ydj

 ≈ sxj


1

1
...

1

+


log |p0(εj)|

log |p1(εj)|
...

log |pd(εj)|

 , j = 1, . . . , n.

For k = 0, . . . , d, let the functions gk : R→ (0,∞) and fk : R→ R be given by

gk(x) = |pk(e−x)| and fk(x) = log gk(x)− βk, (26)

where

βk :=
1

h0

∫ h0

0

log gk(x) dx.

Note that the multiplicative periodicity of pk (with period h = e−h0) implies that fk (as well as gk)

is additive periodic with period h0 > 0. The reason to subtract βk in (26) is to center fk, that is,

to have
∫ h0

0
fk(x)dx = 0. Observe that, in case assumption (A3) is satisfied, that is, when pk is a

constant function, βk has the same meaning as before in the first method.

It is plausible to expect the following regression structure

yki = βk + s · xi + fk(xi) + δki, i = 1, . . . , n, (27)

where Tk(x) := βk + s · x is the polynomial part and fk(x) is the seasonal part of the above time

series, whereas the errors δkj are assumed to be correlated random variables with Eδkj = 0 and

var δkj ∈ (0,∞) for k = 0, . . . , d and j = 1, . . . , n.

The seasonal part fk is assumed to be the finite Fourier series

fk(x) =

m∑
j=1

(
ãkj cos (2πjx/h0) + b̃kj sin (2πjx/h0)

)
for some m ∈ N. Standard operations with trigonometric functions allow to write fk in the form

fk(x) =

m∑
j=1

bkj cos (µjx+ ϕkj)

with µj = 2πj/h0 and some bkj , ϕkj ∈ R.

First we assume that the number m and the period h0 (and thus all µj) are known. Standard

methods of time series analysis (cf. e.g. [27, Chapter 9]) can be used to design the least squares

estimators β̂
(n)
k , ŝ

(n)
k , b̂

(n)
kj , ϕ̂

(n)
kj of βk, s, bkj , ϕkj so that

f̂
(n)
k (x) =

m∑
j=1

b̂
(n)
kj cos

(
µjx+ ϕ̂

(n)
kj

)
(28)
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is an estimator of fk(x). Namely, regression (27) is interpreted as a linear regression with respect

to the parameters βk, s, bkj cosϕkj , bkj sinϕkj , and those are estimated by ordinary least squares.

By the relation (14) and assumption (A2), we have

|Ck(F )| = exp{βk}
h0

∫ h0

0

exp{fk(x)} dx,

which allows for the following estimator of (the absolute value of) the k–th fractal curvature

|Ĉ(n)
k (F )| =

exp{β̂(n)
k }

h0

∫ h0

0

exp{f̂ (n)
k (x)} dx, k = 0, . . . , d. (29)

In most situations, the numbers m and h0 will be unknown. They may be estimated as follows.

First, the coefficients of the polynomial part are estimated by means of ordinary least squares from

the linear regression equation (27) where fk(xj) + δkj are interpreted as new random errors. Then,

the estimated polynomial part is subtracted from the variables ykj , and the period h0 (and hence

frequences µj) are estimated by means of the periodogram of the resulting time series {ỹkj , j ∈ Z}

without trend, see [27, Section 9.1] and Figure 2. Namely, if {δki} is a stationary ARMA process

then the periodogram

In(t) =
1

2πn

∣∣∣∣∣∣
n∑
j=1

e−ijtỹkj

∣∣∣∣∣∣
2

, t ∈ [−π, π]

behaves on average as EIn(t) = O(n) as n→∞ for t = ±µj and t = 0 whereas it is bounded for all

other t, cf. [27, relation (1.5), p. 204]. A more precise result can be found in [34, Theorem 5, p. 54]

for stationary mixing sequence {δki}:

sup
t∈Jn

In(t) = O(log log n) a.s.

where Jn = (− loga n/(2n)± µj , loga n/(2n)± µj) for some a ≥ 0 and any j = 1, . . . ,m. Thus, the

positions (t–values) of high peaks of In yield estimators for µj (and hence h0).

For the case of stationary regression errors {δki}, the book [34, p. 53-54] proposes an estimate

ĥ0 = 2π/µ̂1 with µ̂1 = argmaxµ

m∑
j=1

In(jµ). (30)

We refer the reader to [34] for a discussion and comparison of other estimation methods of the

frequency µ1.

Then the estimated values of h0 and µj should be plugged into the formula (29). The value of m

should be taken reasonably large. Its order can be estimated counting the number l of high peaks

of In and setting m̂ = b(l − 1)/2c where bbc denotes the integral part of a real number b, cf. [27,

p. 205].

The procedure of estimating the dimension s and the (absolute values of) average fractal cur-

vatures Ck(F ) from a given binary image F̃ of a fractal F now runs as follows: Dilate F̃ by a ball

Bε(0) for the given set of radii ε ∈ {ε1, . . . , εn} and measure the corresponding intrinsic volumes
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Figure 2: The periodogram of the centered and rescaled data (y0, y1, y2) from the Sierpiński gasket. The data
is log(2)-periodic, hence the maxima occur at multiples of 1/ log(2) (vertical dashed lines). The periodogram was
calculated using the R function spec.pgram(), with option pad=10.

|Ck(F̃ε)|, k = 0, . . . , d. Calculate the point cloud {(y0j , y1j , . . . , ydj)}nj=1 and apply the regression

(27) either to the data sets {ykj}nj=1 separately for each k = 0, . . . , d or to the whole cloud as de-

scribed above. This results in the estimators ŝ
(n)
k , |Ĉ(n)

k (F )|, k = 0, . . . , d in the first case and s̃(n),

|C̃(n)
k (F )|, k = 0, . . . , d in the second case of simultaneous regression.

Remark 3.2. Using k separate regressions for estimating s and |Ck(F )|, k = 0, . . . , d, notice that
the fractal dimension s of F does not depend on the order k of a considered curvature measure.

However, the estimator ŝ
(n)
k depends on k = 0, . . . , d as a solution of (27). Hence, the estimation

procedure for s can be made more robust by setting ŝ(n) to be the empirical median of the sample

{ŝ(n)
k , k = 0, . . . , d}.

The first method can be seen as a special case of the second one when the seasonal part is

assumed to be zero.

3.2. Preliminary results from linear regression

The main cause for the inaccuracy of the estimators of Section 3.1 is that a large amount of

information is lost in the digitization procedure. The dilation radius can not be taken arbitrarily

small in practice, which would be necessary for the calculation of a limit. The resolution of the

digitized set determines a lower bound for the dilation radii. However, if we assume that the

radii can be chosen arbitrarily small, i.e., if the resolution increases to infinity, then the weak

consistency (together with rates of convergence for certain choices of the sequence of radii) of the

above estimators can be shown under some rather mild assumptions on the covariance structure

of the (random) discretization and computation errors. Here the choice of the radii can not be

completely arbitrary. For simplicity, we only consider monotone sequences. In the first method,
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some bound on the speed of decay of the radii will be sufficient, while in the second method we only

allow for radii forming an arithmetic sequence on the logarithmic scale.

Weak consistency in the linear regression. Consider the classical multivariate linear regression

of full rank, i.e.

yl = Xlβ + δl (31)

with yl and δl being random vectors of dimension l ∈ N, Xl the deterministic regression matrix of

size l× q and rank q ≤ l, and β being the q–dimensional vector of regression parameters. Note that

rank(Xl) = q implies that the q × q matrix X>l Xl is positive definite and has thus strictly positive

eigenvalues, which we denote by λ1, . . . , λq.

Let β̂(l) be the least-squares estimator of β:

β̂(l) =
(
X>l Xl

)−1
X>l yl . (32)

Assume that the coordinates δlj , j = 1, . . . , l of δl are a sequence of (dependent) random variables

with positive finite variance satisfying E(δlj) = 0. Assume that the covariance matrices Ql :=

E(δlδ
>
l ) satisfy

0 < inf
l∈N

νmin(Ql) ≤ sup
l∈N

νmax(Ql) =: ν∗ <∞, (33)

where νmin(Ql) and νmax(Ql) are the smallest and the largest eigenvalues of Ql, respectively.

Lemma 3.3. ([11, Theorem 3.1]) The estimator β̂(l) is weakly consistent for β if and only if
λmin(X>l Xl) := mini=1,...,q λi →∞ as l→∞.

The following result provides an estimate for the rate of convergence of β̂(l) to β. We write tr(A)

for the trace of a matrix A.

Lemma 3.4. For each ε > 0,

P (|β̂(l) − β| > ε) ≤ ν∗

ε2

tr(X>l Xl)(
λmin(X>l Xl)

)2 . (34)

Proof. It is easy to see that β̂(l) − β =
(
X>l Xl

)−1
X>l δl and the covariance matrix of β̂(l) − β is

given by Cov(β̂(l) − β) =
(
X>l Xl

)−1
X>l QlXl

(
X>l Xl

)−1
. Using the Markov inequality, we get

P (|β̂(l) − β| > ε) ≤ tr
(

Cov(β̂(l) − β)
)
/ε2 .

Since the matrices Ql and XT
l Xl are symmetric, they can be diagonalized, that is, there exist

orthogonal matrices C,B and diagonal matrices

Λ = diag(λ1, . . . , λq) and N = diag(ν1, . . . , νl)

such that X>l Xl = C>ΛC and Ql = B>NB, respectively, where the eigenvalues λi of XT
l Xl and

νj of Ql are strictly positive, since XT
l Xl has full rank and due to assumption (33), respectively.
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Note that
(
X>l Xl

)−1
= C>Λ−1C with Λ−1 = diag(1/λ1, . . . , 1/λq). Using the cyclic commutativity

property of the trace one gets after standard calculations that

tr
(
Cov(β̂(l) − β)

)
= tr

(
Λ−2CX>l B

>NBXlC
>) ≤ max

i=1,...,q
λ−2
i · tr

(
CX>l B

>NBXlC
>)

=
(
λmin(X>l Xl)

)−2
tr
(
XlX

>
l B
>NB

)
≤
(
λmin(X>l Xl)

)−2
max
i=1,...,q

νi · tr
(
BXlX

>
l B
>)

≤
(
λmin(X>l Xl)

)−2
ν∗ · tr

(
XlX

>
l

)
=
(
λmin(X>l Xl)

)−2
ν∗tr

(
X>l Xl

)
.

In the derivation we have used in particular that the matrices CX>l B
>NBXlC

> and BXlX
>
l B
>

are covariance matrices with nonnegative entries on the diagonal. This completes the proof of (34).
�

Asymptotic normality. Imposing additional assumptions on the dependence structure of regres-

sion errors in (31), one can prove the asymptotic normality of the least squares estimator β̂(l). For

simplicity, we do it for δl =
√
Qlγl, where

√
Ql is the square root of the symmetric positive definite

matrix Ql ∈ Rl×l and γl = (γl1, . . . , γll)
> is a random vector with iid coordinates γlj , E(γlj) = 0,

E(γ2
lj) = 1 for all j = 1, . . . , l. This corresponds to the case when for each l (δlj) is a linear process

with a finite range of dependence.

Theorem 3.5. Under the assumptions on Ql in the paragraph above, it holds

t>(β̂(l) − β)√
t>
(
X>l Xl

)−1
X>l QlXl

(
X>l Xl

)−1
t

d−→ Z ∼ N(0, 1), l→∞ (35)

for all t ∈ Rq \ {0} such that
‖A>l t‖2
‖A>l t‖∞

→∞, l→∞, (36)

where Al =
(
X>l Xl

)−1
X>l
√
Ql ∈ Rq×l, ‖ · ‖2 and ‖ · ‖∞ are the Euclidean and the maximum norm

in Rl, respectively, and β̂(l) is the estimator (32).

Proof. The result follows from the central limit theorem with an application of the Lindeberg con-
dition. Define the vector

bl =
A>l t

‖A>l t‖2
∈ Rl.

and write blj for its j-th coordinate. Let Ylj := bljγlj . Since

‖A>l t‖22 = t>
(
X>l Xl

)−1
X>l QlXl

(
X>l Xl

)−1
t,

we notice that Yl :=
∑l
j=1 Ylj equals the left hand side of (35). The doubly indexed sequence

{Ylj : 1 ≤ j ≤ l} satisfies EYlj = 0, EY 2
lj = b2lj ,

∑l
j=1 b

2
lj = 1 for all j = 1, . . . , l and l ∈ N. It also

satisfies the Lindeberg condition (see e.g. [14]), which can be written in the following form: for each
ε > 0,

lim
l→∞

l∑
j=1

E
(
Y 2
lj1(Y 2

lj > ε2)
)

= 0.

Indeed, employing condition (36), for any ε > 0 we have

l∑
j=1

E
(
Y 2
lj1(Y 2

lj > ε2)
)

=

l∑
j=1

b2ljE
(
γ2

111(γ2
11 > ε2/b2lj)

)
≤ E

(
γ2

111(γ2
11 > ε2‖A>l t‖22/‖A>l t‖2∞)

)
·

l∑
j=1

b2lj = E
(
γ2

111(γ2
11 > ε2‖A>l t‖22/‖A>l t‖2∞)

)
→ 0
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as l→∞ due to the integrability of γ2
11. �

The following statement gives a sufficient condition for (36).

Corollary 3.6. If Ql = σ2Il for some σ > 0, where Il is the identity matrix, then condition (36)
in Theorem 3.5 is satisfied for all t 6= 0 provided that

λmin(X>l Xl)/‖Xl‖2∞ →∞, l→∞, (37)

where ‖Xl‖∞ = maxj∈1....,l

∑q
k=1 |(Xl)jk| is the maximum absolute row sum of the matrix Xl and

λmin(X>l Xl) denotes (as before) the smallest eigenvalue of X>l Xl.

Proof. Suppose that Ql = σ2Il. Using the diagonalisation of (X>l Xl)
−1 = CTΛ−1C from the

proof of Lemma 3.4, the matrix AlA
>
l (defined in Theorem 3.5) can be represented by AlA

>
l =

σ2(X>l Xl)
−1 = σ2C>Λ−1C. This yields

‖A>l t‖22 = t>AlA
>
l t = σ2t>C>Λ−1Ct = σ2

q∑
i=1

b2i
λj

where b = (b1, . . . , bq)
> := Ct. Moreover, we have A>l = σXl(X

>
l Xl)

−1 = σXlC
>Λ−1C, and hence

‖A>l t‖2∞ ≤ σ2‖Xl‖2∞‖C>Λ−1Ct‖2∞ ≤ c1σ2‖Xl‖2∞‖C>Λ−1Ct‖22

≤ c1σ2‖Xl‖2∞b>Λ−2b = c1σ
2‖Xl‖2∞

q∑
i=1

b2i
λ2
i

for some constant c1 > 0, using the fact that all norms in finite-dimensional spaces are equivalent.
After some more algebra, we arrive at the desired estimate:

‖A>l t‖22
‖A>l t‖2∞

≥
∑q
i=1 b

2
i /λi

c1‖Xl‖2∞
∑q
i=1 b

2
i /λ

2
i

=

∑q
i=1 b

2
i

(∏
j 6=i λj

)
/(λ1 · . . . · λq)

c1‖Xl‖2∞
∑q
i=1 b

2
i

(∏
j 6=i λ

2
j

)
/(λ1 · . . . · λq)2

=
λ1 · . . . · λq
c1‖Xl‖2∞

∑q
i=1 b

2
i

∏
j 6=i λj∑q

i=1 b
2
i

∏
j 6=i λ

2
j

=
1

c1‖Xl‖2∞

∑q
i=1 λi

∏
j 6=i λ

2
jb

2
i∑q

i=1

∏
j 6=i λ

2
jb

2
i

≥ mini=1,...,q λi
c1‖Xl‖2∞

.

�

Remark 3.7. If Ql is known or can be consistently estimated from m independent copies of yl by

Q̂l,m
P−→ Ql as m → ∞ for each l, then the above theorem (together with a Slutsky argument) can

be used in a standard way (see e.g. [7, Section 6.3.2, p. 398]) to construct an asymptotic confidence
interval for the coordinates of βl as well as a large sample Wald’s test of the hypothesis H0: βj = βj,0
vs. H1: βj 6= βj,0 for a fixed βj,0 and j = 0, . . . , q.

3.3. Asymptotics of the first method

Let δkj , k = 0, . . . , d, j ∈ N be a sequence of (dependent) random variables with positive finite

variance satisfying E(δkj) = 0 and assumption (33). Let n ≥ 2. Since the measured intrinsic volumes

show an almost periodic oscillatory behaviour with a “period” much larger than the step width of

the radii, assuming no correlations would not be very reasonable. We suppose that the random

variables ykj can be represented in the form

ykj = βk + xjs+ δkj , k = 0, . . . , d, j ∈ N .
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Restricting the consideration to the first n observations (i.e. to the data derived from the first n

radii), this is more conveniently expressed in matrix form (31) with l = n(d+ 1), q = d+ 2,

yl :=



y01

...

yd1

...

y0n

...

ydn



, Xl :=



1 0 . . . 0 x1

0
. . .

. . .
...

...
...

. . .
. . . 0

...

0 . . . 0 1 x1

...

1 0 . . . 0 xn

0
. . .

. . .
...

...
...

. . .
. . . 0

...

0 . . . 0 1 xn



, δl :=



δ01

...

δd1

...

δ0n
...

δdn



,

and β := (β0, . . . , βd, s)
>. The vector β contains the total curvatures and fractal dimension to

be estimated. In the sequel, we adopt the notation slightly and write Xn (instead of Xl) for the

regression matrix based on the first n radii (of size n(d + 1) × d + 2) and similarly Qn for the

n(d + 1) × n(d + 1) matrix describing the covariance structure of the errors δlj . Similarly, we will

write β̂(n) := (β̂
(n)
0 , . . . , β̂

(n)
d , ŝ(n))> for the corresponding least-squares estimator (32) of β based on

the first n radii.

Theorem 3.8. Let F ⊂ Rd be a set satisfying the assumptions (A1)-(A3). Let ε1 > ε2 > . . . > 0
be a decreasing sequence of radii satisfying the condition

x̄2
n

S̃2
n

= O(nµ) as n→∞, (38)

for some µ ∈ [0, 1), where xj = − log εj, j ∈ N, x̄n = 1/n
n∑
i=1

xi, and S̃2
n = 1/n

n∑
i=1

(xi − x̄n)2.

Suppose that the covariance matrices Qn of the errors satisfy the assumption (33). Then with the

notation above, the sequence β̂(n) of least-squares estimators of β is weakly consistent, i.e., for each
ε > 0,

P (|β̂(n) − β| > ε)→ 0 as n→∞.

Proof. By Lemma 3.3, (β̂(n)) is a consistent sequence of estimators of β if and only if

lim
n→∞

λ∗min(X>n Xn) =∞ ,

where λ∗min(X>n Xn) denotes the smallest positive eigenvalue of X>n Xn. We have

X>n Xn =



n 0 . . . 0 nx̄n

0
. . .

. . .
...

...
...

. . .
. . . 0

...
0 . . . 0 n nx̄n
nx̄n . . . nx̄n vn

 ∈ R(d+2)×(d+2)
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with vn := (d+1)
∑n
j=1 x

2
j . Since rank(Xn) = d+2, the symmetric matrix X>n Xn is positive definite

implying that all its eigenvalues are positive. Since

det(X>n Xn − λI)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n− λ 0 . . . . . . 0 nx̄n

−(n− λ)
. . .

. . .
... 0

... 0
. . .

. . .
...

...
...

...
. . .

. . . 0
...

−(n− λ) 0 . . . 0 n− λ 0
nx̄n . . . . . . nx̄n vn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

n− λ 0 . . . 0 nx̄n

0
. . .

. . .
... 0

...
. . .

. . . 0
...

0 . . . 0 n− λ 0
(d+ 1)nx̄n nx̄n . . . nx̄n vn − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= (n− λ)(d+1)(vn − λ)− (d+ 1)(nx̄n)2(n− λ)d

= (n− λ)d
(
λ2 − (n+ vn)λ+ n2(d+ 1)S̃2

n

)
,

the eigenvalues of X>n Xn are λ
(n)
0 = n (of multiplicity d) and

λ
(n)
1/2 =

n+ vn
2

±
√

(n+ vn)2

4
− n2(d+ 1)S̃2

n . (39)

Since, obviously, λ
(n)
0 → ∞ as n → ∞ and λ

(n)
1 ≥ λ

(n)
2 > 0, it suffices to show that λ

(n)
2 → ∞ as

n→∞. We have

2λ
(n)
2 = n+ vn −

√
(n+ vn)2 − 4n2(d+ 1)S̃2

n

=
4n2(d+ 1)S̃2

n

n+ vn +

√
(n+ vn)2 − 4n2(d+ 1)S̃2

n

(40)

≥ 4n2(d+ 1)S̃2
n

2(n+ vn)
=

2(d+ 1)nS̃2
n

1 + vn/n
,

where the inequality is due to the fact that the expression under the root is non-negative and not
larger than (n+ vn)2. Since vn = n(d+ 1)S̃2

n + n(d+ 1)x̄2
n, we obtain

λ
(n)
2 ≥ (d+ 1)n

1/S̃2
n + (d+ 1)

(
1 + x̄2

n/S̃
2
n

) ≥ n

1/S̃2
n +

(
1 + x̄2

n/S̃
2
n

) −→∞ (41)

provided that

1/S̃2
n +

(
1 + x̄2

n/S̃
2
n

)
= 1 +

1 + x̄2
n

S̃2
n

= O(nµ), as n→∞ ,

for some 0 ≤ µ < 1. The last condition is satisfied due to assumption (38). �

Example 3.9. Condition (38) is satisfied in particular for any arithmetic sequence of the form xj =
a0 +a · j, j ∈ N where a0 ≥ 0 and a > 0. Without loss of generality, we demonstrate this for a0 = 0,
a = 1, that is xj = j, j ∈ N. In this case we have x̄n = (n+1)/2 and S̃2

n = (n+1)(4n2−n−3)/12n,

hence x̄2
n/S̃

2
n = 3n(n + 1)/(4n2 − n − 3) → 3/4 as n → ∞. The condition (38) is satisfied with

µ = 0. This means that the estimator β̂(n) is weakly consistent for a sequence of dilation radii
εj = e−a0−a·j, j ∈ N, a0 ≥ 0, a > 0.

Recall that the relation f = Θ(g) for f, g : R → R means that there exist constants c1, c2 > 0

such that c1|g(x)| ≤ |f(x)| ≤ c2|g(x)| for all sufficiently large x.
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Theorem 3.10. Let F ⊂ Rd be a set satisfying the assumptions (A1)-(A3). Let ε1 > ε2 > . . . > 0
be a decreasing sequence of radii. Suppose that the covariance matrices Ql of the errors satisfy the
assumption (33). Then, for any ε > 0,

P (|β̂(n) − β| > ε) ≤ 4ν∗

ε2(d+ 1)n

(
1 + x̄2

n + S̃2
n

)(
1/S̃2

n + (d+ 1)

(
1 +

x̄2
n

S̃2
n

))2

. (42)

If there are constants γ, µ ≥ 0 such that the sequence of radii satisfies the conditions

S̃2
n = Θ(nγ), and x̄n = O(n

µ
2 ), as n→∞ (43)

with α := 1 −max{γ, µ} − 2 max{0, µ − γ} > 0, then the sequence β̂(n) of least-squares estimators
of β is weakly consistent with the rate of convergence

P (|β̂(n) − β| > ε) = O(n−α) as n→∞ (44)

for any ε > 0.

Proof. To show (42), we apply Lemma 3.4, compute tr(X>l Xl) and estimate λmin(X>l Xl) from

below. The trace can be read off directly from the matrix. Using that vn = n(d+1)S̃2
n+n(d+1)x̄2

n,
we get

tr(X>l Xl) = n(d+ 1) + vn = n(d+ 1)
(

1 + x̄2
n + S̃2

n

)
.

For the eigenvalues of X>n Xn, we claim that

λmin(X>n Xn) ≥ 1

2
λ

(n)
2 , (45)

where λ
(n)
2 is given in (39). Indeed, from the proof of Theorem 3.10, we have λmin(X>n Xn) =

min{n, λ(n)
1 , λ

(n)
2 } with λ

(n)
1 ≥ λ(n)

2 . To prove the claim, it therefore suffices to show that n ≥ λ(n)
2 /2

that is λ
(n)
2 /n ≤ 2. From (40) it is easily seen that

λ
(n)
2

n
≤ 2n(d+ 1)S̃2

n

vn
= 2

∑n
j=1 x

2
j − nx̄2

n∑n
j=1 x

2
j

≤ 2,

since the last numerator is clearly positive and smaller than the denominator. This proves (45). To
complete the proof of (42), it suffices now to combine (45) with (41) to see that

(λmin(X>n Xn))−2 ≤ 4
(
λ

(n)
2

)−2

≤
4
(

1/S̃2
n + (d+ 1)

(
1 + x̄2

n/S̃
2
n

))2

(d+ 1)2n2
.

The relation (44) follows easily from (42) and (43). The expression in the first parentheses of
the right-hand side in (42) is bounded from above (up to some constant) by nmax{µ,γ}, while the
expression in the second parentheses is bounded up to a constant by nmax{0,µ−γ}. �

Example 3.11. Condition (43) is satisfied for xj = O(jδ), δ ∈ (0, 1/2) with γ = µ = 2δ, and

α = 1− 2δ. This means that the estimator β̂(n) is weakly consistent for a sequence of dilation radii

εj = e−cj
δ

, j ∈ N, c > 0 with the rate of convergence O
(
n−(1−2δ)

)
.

Unfortunately, Lemma 3.4 and Theorem 3.10 are not strong enough to provide a rate of con-
vergence in the case of an arithmetic sequence (xj). For xj = j, j ∈ N, one has tr(X>n Xn) =
(d+ 1)n(6 + (n+ 1)(2n+ 1))/6 = O(n3) as n→∞, while it can be shown that λmin(X>n Xn) = Θ(n)
as n→∞, meaning that the right hand side in the estimate (34) still grows linearly as n→∞.
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Corollary 3.12. Under the assumptions of Theorem 3.10, the estimators ̂|Ck(F )| = exp(β̂
(n)
k ),

k = 0, . . . , d of the (absolute values of) the fractal curvatures are weakly consistent, i.e., for any
ε > 0

P (
∣∣∣ ̂|Ck(F )| − |Ck(F )|

∣∣∣ > ε) = O(n−α) as n→∞, k = 0, . . . , d.

Similarly, the estimator ŝ(n) of the dimension s is weakly consistent with the same convergence rate.

Proof. Let δ > 0. According to Taylor’s theorem, for each t with |t| ≤ δ, there is a ξ = ξ(t) ∈ [−δ, δ]
such that et = 1 + t + t2eξ/2. For x, y ∈ R such that |x − y| ≤ δ this gives ex−y = 1 + (x − y) +
(x − y)2eξ/2 and thus ex − ey = ey

(
x− y + (x− y)2eξ/2

)
for some ξ = ξ(x, y) ∈ [−δ, δ]. Since

e−δ ≤ eξ ≤ eδ, we infer that

ey
(
x− y + (x− y)2e−δ/2

)
≤ ex − ey ≤ ey

(
x− y + (x− y)2eδ/2

)
and thus

|ex − ey| ≤ ey max
s∈{−δ,+δ}

{∣∣x− y + (x− y)2es/2
∣∣} ≤ ey |x− y|+ (x− y)2ey+δ/2 . (46)

Now set x = β̂
(n)
k and y = βk for brevity. Using the relation (46) we infer that, for any ε > 0,

P (|ex − ey| > ε)

≤ P (|ex − ey| > ε, |x− y| ≤ δ) + P
(
|ex − ey| > ε

∣∣ |x− y| > δ
)
P (|x− y| > δ)

≤ P (ey|x− y| > ε/2, |x− y| ≤ δ) + P
(
ey+δ(x− y)2 > ε, |x− y| ≤ δ

)
+ P (|x− y| > δ)

≤ P
(
|x− y| > e−yε/2

)
+ P

(
|x− y| >

√
εe−(y+δ)/2

)
+ P (|x− y| > δ) .

Now we apply the estimate (42) to each of the terms in the last sum. Noting that |β̂(n) − β| ≥
|β̂(n)
k − βk|, we obtain, for each ε > 0 (and each δ > 0),

P
(
| exp(β̂

(n)
k )− exp(βk)| > ε

)
≤ ck

4ν∗

(d+ 1)n

(
1 + x̄2

n + S̃2
n

)(
1/S̃2

n + (d+ 1)

(
1 +

x̄2
n

S̃2
n

))2

.

where the constant ck :=
(
4e2βkε−2 + eβk+δε−1 + δ−2

)
depends on βk (and the chosen δ) but not

n. Now the claimed convergence rate follows from condition (43) in the same way as in the proof of
(44) above. The convergence rate for the dimension estimators is just a reformulation of (44) taking

into account that s = βd+2 and ŝ(n) = β̂
(n)
d+2. �

Note that the same consistency results hold for the estimators ŝ(J,n) and β̂
(J,n)
k for any subset

J ⊆ {0, . . . , d} such that assumption (A2) is satisfied for all k ∈ J , cf. Remark 3.1. In particular, it

applies to the sausage method. In this case, we can formulate the result in greater generality. The

assumption (A1) is not needed (as the volume is always well defined) and (A2) is always satisfied

(as the volume is positive). (A3) simplifies to the existence of the Minkowski content of F .

Corollary 3.13. Let F ⊂ Rd be a set whose Minkowski content exists and let ε1 > ε2 > . . . > 0
be a decreasing sequence of radii. Suppose that the conditions (33) and (43) are satisfied. Then
the sausage method estimators ŝ({d},n) and M̂(n)(F ) are weakly consistent. More precisely, for each
ε > 0,

P (|ŝ({d},n) − s| > ε) = O(n−α) and P (|M̂(n) −M| > ε) = O(n−α) as n→∞ ,

with α as in Theorem 3.10.
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As a last result for the first method, we show the asymptotic normality of the estimators β̂(n)

using Corollary 3.6, for which stronger assumptions on the covariance structure of the errors (no cor-

relation) are required. However, these assumptions are not realistic since δki are clearly dependent,

see Remark 3.15. A more general correlation structure Qn would require to verify the condition (36)

which seems to be quite tedious.

Theorem 3.14. Let F ⊂ Rd be a set satisfying the assumptions (A1)-(A3). Assume that Qn = σ2I
for some σ > 0, where I is the identity matrix. Let ε1 > ε2 > . . . > 0 be a decreasing sequence of
radii and suppose there are constants γ, µ ≥ 0 with max{µ, 2µ− γ} < 1 such that

S̃2
n = Θ(nγ), and xn = O(n

µ
2 ), as n→∞ . (47)

Then, for each t ∈ Rq \ {0},

t>(β̂(l) − β)

σ

√
t> (X>n Xn)

−1
t

d−→ Z ∼ N (0, 1), as n→∞. (48)

Proof. By Corollary 3.6, it suffices to show that

λmin(X>n Xn)/‖Xn‖2∞ →∞, as n→∞.

It is obvious from the monotonicity of the sequence (xi)i that the maximal row sum of Xn is
‖Xn‖∞ = 1+xn and since the assumptions imply xn →∞, we have ‖Xn‖∞ ≤ 2xn for n sufficiently
large. Combining this with (45) and (41), and noting that x̄n ≤ xn, we obtain

λmin(X>n Xn)

‖Xn‖2∞
≥ 1

2

λ
(n)
2

(1 + xn)2
≥ 1

2

n

(1 + xn)2
(

1 +
1+x̄2

n

S̃2
n

) ≥ 1

2

n

(1 + xn)2 +
(1+x2

n)2

S̃2
n

.

The last expression tends to ∞ as n→∞, since, by assumption (47), we have

n−1
(

(1 + xn)2 + (1 + x2
n)2/S̃2

n)
)
≤ C1n

µ−1 + C2n
2µ−γ−1 ,

for some constants C1, C2, which tends to 0, since max{µ, 2µ−γ} < 1. This completes the proof. �

Remark 3.15. To show strong consistency results, independence of discretization and measurement
errors δkj is required, cf. [11]. Unfortunately, this assumption is not realistic in our case, since
discretizations of Fεj clearly depend on each other for various j. Additionally, intrinsic volumes
Ck(Fεj ) are obviously dependent for different j and k.

3.4. Asymptotics of the second method

Assume that the period h0 > 0 and the detail level m ∈ N are known. For simplicity, we

prove weak consistency results only for each curvature measure Ck, k = 0, . . . , d separately (separate

regressions). So fix some k ∈ {0, . . . , d}. We fix the sequence of dilation radii to be arithmetic at

the logarithmic scale, i.e., xi = a0 + a · i, i ∈ N where a0 ≥ 0 and a > 0. Let n ≥ 2m + 2. The

regression (27) can be written in terms of the parameters

β = (βk, s, α1, . . . , αm, γ1, . . . , γm)> (49)

with αj = bkj cosϕkj , γj = bkj sinϕkj , j = 1, . . . ,m as

yki = βk + s · xi +

m∑
j=1

(αj cos(µ1jxi)− γj sin(µ1jxi)) + δki, i = 1, . . . , n ,
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with µ1 = 2π/h0 and dependent errors {δki} of zero mean satisfying condition (33). This can be

equivalently rewritten in form (31) with l = n, q = 2m+ 2, and the design matrix

Xn =


1 x1 cos(µ1x1) cos(µ12x1) . . . cos(µ1mx1) − sin(µ1x1) − sin(µ12x1) . . . − sin(µ1mx1)

1 x2 cos(µ1x2) cos(µ12x2) . . . cos(µ1mx2) − sin(µ1x2) − sin(µ12x2) . . . − sin(µ1mx2)
...

...
...

... . . .
...

...
... . . .

...

1 xn cos(µ1xn) cos(µ12xn) . . . cos(µ1mxn) − sin(µ1xn) − sin(µ12xn) . . . − sin(µ1mxn)

 .

Lemma 3.16. Let F ⊂ Rd be a set satisfying the assumptions (A1), (A2) and (A3’). Assume that
xi = a0 + a · i, i ∈ N, where a0 ≥ 0 and a > 0 such that aj/h0 /∈ Z for j = 1, . . . , 2m. Then under
the above conditions on the sequence of errors {δkj}, the least squares estimator

β̂(n) = (β̂
(n)
k , ŝ

(n)
k , α̂

(n)
k,1 , . . . , α̂

(n)
k,m, γ̂

(n)
k,1 , . . . , γ̂

(n)
k,m)>

in (32) of the parameter vector (49) is weakly consistent.

Proof. Without loss of generality, we only consider the case a0 = 0, a = 1, that is, xi = i, i = 1, . . . , n.
(A constant a0 6= 0 can be incorporated in the parameters αk,j and γk,j , and a 6= 1 can be included in
the constant µ1, such that the same arguments as below work for slightly transformed parameters.)
By Lemma 3.3, it suffices to show that λmin(X>n Xn) → ∞ as n → ∞. We claim that it is in fact
sufficient to show that

tr
(
(X>n Xn)−1

)
→ 0 as n→∞ . (50)

Indeed, if λ1, . . . , λ2m+2 are the eigenvalues of X>n Xn (which are all strictly positive since X>n Xn is
positive definite), then 1/λ1, . . . , 1/λ2m+2 are the eigenvalues of (X>n Xn)−1 and we have

λmin(X>n Xn) = min
j=1,...,2m+2

λj =
1

maxj(
1
λj

)
≥ 1∑

j
1
λj

=
1

tr ((X>n Xn)−1)
,

which tends to +∞ as n→∞, if (50) holds.
Recall now that, by Cramer’s rule, tr

(
(X>n Xn)−1

)
is given by

tr
(
(X>n Xn)−1

)
=

1

det(X>n Xn)

2m+2∑
j=1

M j,j
n , (51)

where M j,j
n is the (j, j) minor of X>n Xn, j = 1, . . . , 2m+ 2. In the sequel we will show that, for each

j = 1, . . . , 2m+ 2,

M j,j
n = O(n2m+3) whereas det(X>n Xn) = Θ(n2m+4) as n→∞, (52)

from which (50) follows at once.
The symmetric matrix X>n Xn =: (ξjk) is given as follows

X>n Xn =

A V > W>

V D F>

W F G

 ,
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where

A =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n
i=1 x

2
i

)
=

(
n n(n+ 1)/2

n(n+ 1)/2 n(n+ 1)(2n+ 1)/6

)
∈ R2×2,

V = (vj,k) ∈ Rm×2 with vj,1 =

n∑
i=1

cos(µ1ij) and vj,2 =

n∑
i=1

i · cos(µ1ij), j = 1, . . . ,m ,

W = (wj,k) ∈ Rm×2 with wj,1 = −
n∑
i=1

sin(µ1ij) and wj,2 = −
n∑
i=1

i · sin(µ1ij), j = 1, . . . ,m ,

D = (dj,k) ∈ Rm×m with dj,k =

n∑
i=1

cos(µ1ij) · cos(µ1ik), j, k = 1, . . . ,m ,

F = (fj,k) ∈ Rm×m with fj,k = −
n∑
i=1

sin(µ1ij) · cos(µ1ik), j, k = 1, . . . ,m , and

G = (gj,k) ∈ Rm×m with gj,k =

n∑
i=1

sin(µ1ij) · sin(µ1ik), j, k = 1, . . . ,m .

Since we assumed j/h0 /∈ Z, the sums in the coefficients vj,1 and wj,1 can be simplified as follows,
cf. e.g. [27, p.206]:

vj,1 =
1

2

(
sin(µ1(n+ 1

2 )j)

sin( 1
2µ1j)

− 1

)
and wj,1 =

1

2

cos(µ1(n+ 1
2 )j)− cos( 1

2µ1j)

sin( 1
2µ1j)

, j = 1, . . . ,m.

The condition j/h0 /∈ Z ensures also that sin( 1
2µ1j) = sin(π j

h0
) 6= 0. Hence

|vj,1| ≤
1

2

| sin(µ1(n+ 1
2 )j)− sin( 1

2µ1j)|
| sin( 1

2µ1j)|
≤ 1

| sin( 1
2µ1j)|

and |wj,1| ≤
1

| sin( 1
2µ1j)|

, j = 1, . . . ,m.

This means that the coefficients vj,1 and wj,1 are bounded from above and below by constants
independent of n for each j = 1, . . . ,m. In fact, they are all bounded by the same constant κ :=(

min
j=1,...,2m

| sin( 1
2µ1j)|

)−1

.

Using the relations cosx cos y = 1
2 (cos(x+y)+cos(x−y)), sinx cos y = 1

2 (sin(x+y)+sin(x−y))
and sinx sin y = 1

2 (cos(x− y)− cos(x+ y)) and the above formulas, one obtains analogously that
the coefficients dj,k, fj,k and gj,k are bounded from above and below by constants independent of
n, whenever j 6= k and for fj,k also in the case j = k. This is ensured by the fact, that j + k ≤ 2m
and so, by the assumptions of the lemma, (j − k)/h0, (j + k)/h0 /∈ Z. In particular,

fj,k = −1

2

n∑
i=1

sin(µ1i(j + k))− 1

2

n∑
i=1

sin(µ1i(j − k)),

and so for j = k the second sum on the right vanishes, while the first sum is absolutely bounded
by κ (similarly as wj,1). Hence all entries of X>n Xn except those on the diagonal and in the second
row and column are bounded absolutely by constant κ independent of n. On the diagonal, we have
similarly as for vj,1 and wj,1

dj,j =
1

2

n∑
i=1

cos(0) +
1

2

n∑
i=1

cos(µ1i(2j)) =
n

2
+

1

4

(
sin(µ1(n+ 1

2 )2j)

sin(µ1j)
− 1

)
, j = 1, . . . ,m,

and

gj,j =
1

2

n∑
i=1

cos(0)− 1

2

n∑
i=1

cos(cµ1i(2j)) =
n

2
− 1

4

(
sin(µ1(n+ 1

2 )2j)

sin(µ1j)
− 1

)
, j = 1, . . . ,m.
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Hence, as n→∞, ξj,j = Θ(n) for j 6= 2 and ξ2,2 = Θ(n3). For the second column of X>n Xn, we use
[27, Lemma 2.3(a), p.220] (which states that for any sequence (an)n of real numbers whose partial
sums are bounded from above and below by a constant C, one has |

∑n
i=1 iai| ≤ 2nC ) to conclude

that

|vj,2| =

∣∣∣∣∣
n∑
i=1

i · cos(µ1ij)

∣∣∣∣∣ ≤ 2κn and |wj,2| =

∣∣∣∣∣
n∑
i=1

i · sin(µ1ij)

∣∣∣∣∣ ≤ 2κn,

for j = 1, . . . ,m. Hence, as n → ∞, ξj,2 = O(n) for j = 3, 4, . . . , 2m, while ξ1,2 = Θ(n2) and
ξ2,2 = Θ(n3).

Having computed the order of growth of all coefficients of X>n Xn, it is now easily seen, that
det(X>n Xn) = Θ(n2m+4) as n → ∞. Indeed, we have for the product of the diagonal entries∏2m+1
j=1 ξj,j = Θ(n2m+4) as n → ∞ and this product is the only term in the Leibnitz expansion of

det(X>n Xn) with this order of growth. All other terms are at most of the order of n2m+3 as n→∞.
Hence the order of growth cannot be reduced by cancellations with other terms.

For the (j, j) minors M j,j
n of X>n Xn we can argue similarly. If the j-th row and column are

deleted, in the remaining matrix the diagonal entries are still those with the maximal order of
growth in each row and column. Hence the order of growth of the determinant M j,j

n is bounded
by the product of the orders of its diagonal entries, that is M j,j

n = O(n2m+3) as n → ∞ for each
j = 1, . . . , 2m. (For j = 2, we even have M j,j

n = O(n2m+1).) This completes the proof of (52) and

thus of the weak consistency of the estimator β̂(n) as stated. �

Theorem 3.17. Under the assumptions of Lemma 3.16, for any k ∈ {0, . . . , d}, the estimators ŝ
(n)
k

of s and |Ĉ(n)
k (F )| of |Ck(F )| are weakly consistent as n→∞.

Proof. By Lemma 3.16, the estimators β̂
(n)
k , ŝ

(n)
k and f̂

(n)
k (x) are weakly consistent as n→∞ in the

regression model (27). More precisely, the estimators b̂
(n)
kj and ϕ̂

(n)
kj in (28) are given by

b̂
(n)
kj =

√
(α̂

(n)
j )2 + (γ̂

(n)
j )2, ϕ̂

(n)
kj = arctan

(
γ̂

(n)
j

α̂
(n)
j

)
, j = 1, . . . ,m.

We split the estimation error into two parts as follows:

|Ĉ(n)
k (F )| − |Ck(F )| = I1,n + I2,n,

where by (29)

I1,n =
exp{β̂(n)

k }
h0

∫ h0

0

(
exp{f̂ (n)

k (x)} − exp{fk(x)}
)
dx,

I2,n =
exp{β̂(n)

k } − exp{βk}
h0

∫ h0

0

exp{fk(x)} dx.

To see the convergence I1,n
P−→ 0 as n→∞, observe that the sequence

(
β̂

(n)
k

)
n

converges to βk

as n→∞ and is thus bounded. Furthermore, f̂
(n)
k (x)

P−→ fk(x) for any x ∈ [0, h0] as n→∞, and
this convergence is uniform with respect to x, since

∣∣∣f̂ (n)
k (x)− fk(x)

∣∣∣ ≤ m∑
j=1

(
|b̂(n)
kj cos ϕ̂

(n)
kj − bkj cosϕkj | + |b̂(n)

kj sin ϕ̂
(n)
kj − bkj sinϕkj |

)
=: ψn

P−→ 0

as n→∞ for any x ∈ [0, h0]. Noting that, for each x ∈ [0, h0] and each n ∈ N, there exists a number

ξn(x) between 0 and f̂
(n)
k (x)− fk(x) such that, by the mean value theorem,

|ef̂
(n)
k (x) − efk(x)| = |efk(x)(ef̂

(n)
k (x)−fk(x) − 1)| = efk(x)eξn(x)|f̂ (n)

k (x)− fk(x)|
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and that ξn(x) ≤ |f̂ (n)
k (x)− fk(x)| ≤ ψn for each x ∈ [0, h0], we conclude that

|I1,n| ≤ eψnψn
∫ h0

0

exp{fk(x)} dx P−→ 0 as n→∞.

For the convergence of I2,n simply observe that, by the continuous mapping theorem,

|eβ̂
(n)
k − eβk | P−→ 0 as n→∞ .

�

Remark 3.18. We believe that under the assumptions of Theorem 3.17, also the estimators s̃(n),

|C̃(n)
k (F )|, k = 0, . . . , d in the case of simultaneous regression are weakly consistent as n → ∞ and

that this can be proved with essentially the same arguments as in the case of separate regression in
the proof of Theorem 3.17. However, in view of the rather long and technical arguments in the ‘easy’
case of separate regression, we did not attempt to verify all the details.

Remark 3.19. The fractal curvature estimates exp(β̂
(n)
k ) only rarely deviate significantly from the

estimates obtained by the second method. Theoretically, since the β̂
(n)
k are now obtained through

averaging over log |pk(e−x)| plus some errors, an application of Jensen’s inequality to the convex
function exp suggests that the estimates of the absolute value of fractal curvature are now systemat-
ically too small; practically, however, this discrepancy between first and second method is not visible
in the examples we consider in Section 4.

Let m ∈ N be fixed and h0 > 0 unknown. In [20, Theorem 1”], strong consistency of β̂(n)

(after estimation and subtraction of the linear trend described in Section 3.1, i.e. setting formally

βk = s = 0) as well as of ĥ0 estimated by (30) is proven under the assumption that {δki} forms a

stationary regular sequence with zero mean. Ergodicity of {δki} together with further assumptions

such as e.g. the continuity of its spectral density fδ imply the asymptotic normality of µ̂j and β̂(n),

see [20, Theorem 2]. A law of iterated logarithm for µ̂j is given in [34, p. 57].

Now let m be unknown. If {δki} is a stationary Gaussian linear process with known positive

spectral density fδ then an a.s. consistent estimate of m (as n → ∞) is given in [34, Theorem 15,

p. 75]. Its idea is to set m̂ to be the smallest possible value of m such that the log likelihood of {ỹki}

decreases when gradually reducing m. For {δki} being an AR process with Gaussian innovations,

see [34, p. 80].

If parameters h0 and m are consistently estimated then the consistency of the estimators of the

fractal curvatures can be proven similarly as in Theorem 3.17.

4. Numerical simulations and results

We obtained the results of this section in the following steps:

1. Binary images of the six fractals were generated using the free software Fractal Explorer [1];

2. Euler characteristic, (half) boundary length and area of their ε-parallel sets were measured

using the Java library GeoStoch [2] of Ulm University. This yields data (xj , ykj) according to

(17) and (18);
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3. Linear and non-linear regression models were fitted to the data using R [49]. This yields

estimates of the fractal curvatures.

4. These estimates were compared with the exact values, which were calculated analytically for

the sets (a), (b) and (c) in [51] (s. below), for the set (d) in [46], and for the set (f) in [47].

For the set (e), only the fractal dimension is known [46].

Images, data, code and documentation are available in a GitHub repository [47]. We now detail the

above four steps:

Binary images of fractals. We assume that binary images consist of pixels which belong to the

rectangular grid Z2, endowed with the Euclidean metric inherited from R2. This means that the

distance between neighbouring pixels is 1, which we henceforth adopt as the unit of length. Pixels

can assume the two values 0 (white) and 1 (black). A binary image is a map from the lattice Z2 to

the set {0, 1}. We say that a binary image F̃ is a discretization of a subset F ⊂ R2 if, for any pixel

(k, l) ∈ Z2, F̃ (k, l) = 1, whenever the square [k, k+ 1)× [l, l+ 1) has non-empty intersection with F .

Binary images of self-similar sets can easily be generated on a computer using iterated function

systems; for algorithms see e.g. [6]. For the generation of the sample images in this paper we have

used the free software Fractal Explorer [1]. We have generated binary images of three arithmetic

and three non–arithmetic fractals on a 3000 by 3000 pixel canvas (see Figure 3).

Obtaining the data. Let F̃ be a discretized fractal set. For ε > 0, we approximate the dilated

set Fε by the dilated binary images F̃ε, which we calculate as follows (cf. e.g. [44]): First, compute

the distance transform of F̃ ,

DF̃ : Z2 → R

p 7→ d
(
p, F̃−1 ({1})

)
,

which records the distance of each pixel on the canvas to the nearest black pixel. Then F̃ε results

from setting all pixels p to black which satisfy DF (p) ≤ ε.

We generated discretized dilated images F̃εi for a set of dilation radii εi = e−xi . The xi were

evenly spaced with distance 0.02 ranging from around −4.5 to −1 (which correspond to radii εi

ranging from 87 down to 2.7). This seemed feasible, as for too large ε > e4.5 ≈ 90 the scaling

behaviour of the intrinsic volumes approached that of a full 2-dimensional set, and for too small

ε < e ≈ 2.71 the discretization errors were too large. We note that especially the choice of the largest

dilation radius ε1 needs to be adapted to each fractal F , since there is no good a priori choice: If ε1

is too small this will result in a shortage of data, whereas a too large ε1 will distort the estimates.

We note that there is a set
{√

1/π,
√

5/π,
√

9/π,
√

37/π, . . .
}

of radii which is special in the

sense that discrete and continuous disks with these radii have the same area. Stoyan and Stoyan

[45] recommend this choice of radii for the sausage method, and it might also be considered for
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(a) Sierpiński Gasket (b) Sierpiński Carpet (c) modified Sierpiński Carpet

(d) Triangle (e) Cross set (f) Supergasket

Figure 3: The sample fractals. Sets (a) – (c) are arithmetic and sets (d) – (f) are non-arithmetic.

the methods discussed in this paper, especially if only a small set of data is to be collected due to

computational limitations.

The next step is to measure the intrinsic volumes Ck(Fεj ) for each εj and each k = 0, . . . , d.

We employ the algorithms described in [24] and [19] which determine for a fixed set Fεj all func-

tionals Ck(Fεj ), k = 0, . . . , d simultaneously. The relevant data set of yki-values is then determined

according to equation (18).

Remark 4.1. The idea of the algorithm proposed in [24] and [19] can be sketched as follows: first,
a polygonal approximation F̄ of the digitized polyconvex set F is made. Then, the polyconvex set
F̄ is dilated at least d times, and for each dilated set the generalized Steiner formula is applied.
It is similar to (6) with the only difference that on the left hand side the volume is counted with
multiplicities, that is, each point x of (∂F̄ )ε is weighted by the number of its metric projections onto
∂F̄ minus the number of concavities seen from x within distance ε. The system of d generalized
Steiner equations is then solved with respect to the vector of Ck(F ), k = 0, . . . , d − 1. The volume
of F can be computed by pixel counting.

The estimates. We have implemented the simultaneous linear least squares regression estimators

(LRE) from eqs. (22) and (23) and the simultaneous non-linear least squares regression estimators

(NRE) of the second method as given by (27) using R [49, 47]. We applied both LRE and NRE to

the data set of each fractal, regardless of whether it was an arithmetic or a non-arithmetic set. The

resulting estimates for the fractal dimension are collected in Table 1 and for the fractal curvatures
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in Table 2.

exact 1.585 1.893 1.893 1.588 1.794 1.893
box-counting 1.54 1.88 1.83 1.57 1.78 1.84

LRE, J = {0, 1, 2} 1.584 1.87 1.84 1.576 1.83 1.88
NRE, J = {0, 1, 2} 1.587 1.87 1.85 1.576 1.83 1.88
LRE, J = {2} 1.586 1.87 1.86 1.589 1.78 1.889
NRE, J = {2} 1.586 1.87 1.86 1.589 1.78 1.889
LRE, J = {1} 1.558 1.8 1.7 1.57 1.73 1.85
NRE, J = {1} 1.558 1.8 1.71 1.57 1.74 1.85
LRE, J = {0} 1.61 1.95 1.95 1.57 1.98 1.89
NRE, J = {0} 1.6 1.93 1.99 1.57 1.94 1.88

Table 1: Estimates of fractal dimension. The first row contains the known exact dimension of each fractal, rounded
to three decimals. The set J describes the orders k of intrinsic volumes Ck used in the estimate. LRE and NRE refer
to the first and second method from Section 3, respectively. For the method NRE, the period h0 was estimated from
the data, and the detail parameter was chosen as m = 4.

Quality of the estimates. Table 1 suggest that for dimension estimation, LRE and NRE perform

equally well. The dimension estimates based on boundary length data only (k = 1) and Euler

characteristic data only (k = 0) are less reliable than estimates based on the volume data (k = 2),

which corresponds to the sausage method. The dimension estimates based on all three intrinsic

volumes (k ∈ {0, 1, 2}), however, seem to be comparable in accuracy to the method “k = 2” and the

standard box counting method, for which we used the free software FracLac [23].

Table 2 reveals that the estimates of 0-th and 1-st curvatures are less accurate compared to the

estimates of the 2-nd curvature. A likely explanation is that measurements of Euler characteristics

and boundary length are subject to much larger discretization errors compared to the measurement

of area.

We remind the reader that in both methods (NRE and LRE), fractal curvatures and fractal

dimension are estimated simultaneously. In order to test the stability of curvature estimates with

respect to the dimension estimate, we have compared the outputs of NRE and LRE to their outputs

conditional on a known fractal dimension s (s. Table 2). Noticeable differences were only found for

the two carpets. We interpret this as some evidence for the curvature estimates being reasonably

stable with respect to errors in the dimensional estimate.

We have also tested the stability of the estimates for images with half the resolution, i.e. 1500×

1500 instead of 3000× 3000, and found a decrease in accuracy as expected (s. Table 2).

Moreover, we noticed that for the arithmetic fractals the periodicity was by far more evident

in the Euler characteristic than in the boundary length or area, which explains why the differences

between the two methods are most apparent for the 0-th curvature estimate. This is consistent with

the observation that the peaks in the periodograms of the time series of Euler characteristics are
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s known, s, h0 known, s unknown, s, h0 unknown
exact LRE NRE LRE NRE

k=0 -0.0423 20%/20% 19%/18% 24%/21% 21%/18%
k=1 0.3761 -1%/1% -1%/1% -6%/-1% -6%/-1%
k=2 1.8100 2%/1% 2%/1% -3%/-1% -3%/-1%
k=0 -0.0162 18%/19% 8%/8% 28%/31% 19%/19%
k=1 0.0725 31%/37% 31%/36% 14%/18% 16%/22%
k=2 1.3520 3%/4% 3%/3% -10%/-11% -9%/-8%
k=0 -0.0140 19%/22% 9%/9% 28%/40% 20%/29%
k=1 0.0720 28%/56% 27%/56% 13%/21% 12%/21%
k=2 1.3440 4%/7% 4%/7% -9%/-17% -9%/-17%
k=0 -0.0234 18%/17% N/A 20%/15% 19%/15%
k=1 0.2393 -3%/0% N/A -5%/2% -5%/2%
k=2 1.1621 1%/0% N/A -1%/2% -1%/2%
k=0 ? -0.0094/-0.0100 N/A -0.0096/-0.0106 -0.0101/-0.0107
k=1 ? 0.2129/0.2192 N/A 0.2184/0.2320 0.2236/0.2321
k=2 ? 1.9936/1.9874 N/A 2.0449/2.1035 2.0902/2.1021
k=0 -0.0018 -40% / -36% N/A -43%/-51% -44%/-52%
k=1 0.0399 1%/6% N/A 4%/18% 4%/17%
k=2 0.7331 1%/1% N/A 3%/12% 3%/11%

Table 2: Estimates of the k-th fractal curvatures for k = 0, 1, 2. The first column contains the exact value of the
corresponding fractal curvature, on a scale where the bases of (a), (b), (c), (e), (f) and the hypotenuse of (d) have
length 1. The remaining columns contain, where known, the two errors of the estimates: for large images (3000×3000),
and for and smaller images (1500 × 1500). These are relative errors, calculated as “(measured − exact) / |exact|.”
For row (e), exact curvatures are not known, and hence the rescaled measurements are reported, using the formula
Ck(rF ) = rdim(F )Ck(F ) (see [51]). Columns two and three contain the LRE and NRE estimates, based on the
assumption that s (dimension) and h0 (period) are known. (Since non-arithmetic sets do not have a period, no values
appear for those sets in column three.) For NRE, the detail level parameter m was chosen as 4; this seemed reasonable
as increasing m further changed the estimates only very slightly. Columns four and five contain simultaneous LRE
and NRE estimates of all curvatures, where the dimension s and the period h0 were also estimated as explained in
Section 3.1.

more pronounced than the peaks of the other time series (s. Fig. 2), making the Euler characteristic

a useful data set for the estimate of the period of arithmetic fractals.

Finally, we remark that non-arithmetic fractals yield virtually the same output for both NRE

and LRE models. Hence NRE should be preferred over LRE whenever there is some doubt about

whether a self-similar fractal is arithmetic or not.

In the examples, we have included three different sets of equal dimension, namely the two carpets

(b) and (c) and the supergasket (f), cf. Figure 3. The structure of the sets (b) and (c) is rather

similar, while the set (f) looks very different. The differences in the geometry are also visible in the

fractal curvatures. While the fractal curvatures of (b) and (c) only differ slightly, those of the set (f)

take completely different values. One can easily distinguish (f) from the other two using any of the

estimated fractal curvatures. The sets (b) and (c) are best distinguished by the estimated fractal

Euler number, compare Table 2.
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5. Summary and outlook

We have introduced two methods for estimating the fractal dimension and the fractal curvatures

of a given fractal set based on binary images. We have shown the consistency of our methods under

suitable assumptions on the covariance structure of the errors and the choice of the radii. We have

implemented and tested these methods on some toy examples of self-similar sets. While for the

estimation of the fractal dimension our methods perform equally well as the standard methods, such

as box counting, we obtain at the same time estimates of the fractal curvatures which we propose

to use as additional geometric characteristics for image classification. The theoretical background

provided by singular curvature theory is a strong argument for using these characteristics in favour

of or in addition to other texture parameters suggested in the literature.

We point out that our consistency results only show that the suggested estimators estimate

indeed the fractal curvatures if the resolution goes to infinity and the sequence of radii tends to zero

in a suitable way. We make no claim about how well our estimators perform if the resolution is kept

finite, that is, in any scenario found in practice. Also, we did not address at all the question of how

well the implemented algorithms perform with respect to computational costs or running time. We

have implemented our methods in the most obvious way, computing the intrinsic volumes for each

dilation radius separately, for which each time a scan of the whole image is necessary. This allowed

to use for this step existing algorithms in the GeoStoch library [2]. Probably, a lot of optimization

is possible in the step of determining the intrinsic volumes of the parallel sets. It may be possible

to obtain the curvature data of all parallel sets in a single scan of the image.

Notice that so far the theoretical foundations (that is, the existence of fractal curvatures) are laid

for fractal sets exhibiting some form of self-similarity, including strictly self-similar sets [51, 53, 39],

self-conformal sets [25, 8] and also some random self-similar fractals, as described in [53]. For fractal

sets exhibiting some weaker form of self-similarity, similar results are expected to hold and therefore

the described methods may be used whenever some form of self-similarity is present. However, one

should be aware that for general (random) fractals F of dimension s, the (expected or almost sure)

scaling exponents sk(F ) might not necessarily be equal to s − k or if they are, that the fractal

curvatures may not exists, not even the averaged versions. For the Brownian path in Rd, d ≥ 2, for

instance, the fractal dimension is s = 2 (almost surely and in the mean) and the scaling exponents

are sk = s− k for the volume (k = d) and the surface area (k = d− 1) for all dimensions d > 2, cf.

[35, 36, 21]. For d = 2, however, the corresponding fractal curvatures are zero because the correct

scaling is − log ε for the area C2(Fε) (almost surely and in the mean) and ε log2 ε for the perimeter

2C1(Fε) as ε→ 0 (at least in the mean).

Against this background, it is important to note that the suggested algorithms may also be used

as a test to check whether the hypothesis sk = s − k (implied by (A3) and (A3’)) is satisfied for a

given set and some k. For this purpose simply a separate regression for the index k (that is with
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J = {k} in the sense of Remark 3.1) can be carried out and the estimate of the fractal dimension

can be compared to the dimension estimate of the simultaneous regression or to one of the sausage

method (J = {d}). It is for instance not too difficult to check that the parallel sets of the Koch curve

have Euler characteristic 1, which means C0(Fε) = 1 for each ε > 0. Hence a separate regression for

k = 0 applied to an image of the Koch curve F should find an estimate for sk(F ) very close to 0.

This is indeed what we observed. Also the violation of assumption (A2) can easily be checked from

the data and the relevant indices can be excluded from the estimation.

Last but not least we point out, that due to the digitization step the proposed methods can be

applied to any set F ⊆ Rd, regardless of whether it satisfies a regularity assumption (like (A1)) or

not. The digitized version of the set has always polyconvex parallel sets and thus the suggested

algorithms apply and yield some geometric quantities which may be regarded as (resolution depen-

dent) digitized fractal curvatures. These quantities may be used for discrimination or classification

purposes regardless of whether the underlying fractal curvatures are defined or not. They can simply

be viewed as independent functionals of the digitization of the set F .
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