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1 Introduction

Minkowski functionals such as the volume, the surface area and the Euler-
Poincaré characteristic are set functions that describe the geometric and topo-
logical structure of a regular set pretty well; cf. e.g. [1]. Known in integral and
convex geometry also as intrinsic volumes or quermaßintegrals and in physics
and differential geometry as curvature measures, these functionals are used
in morphological image analysis for the characterization of binary and gray-
scale images. They are successfully applied to various problems in astronomy,
materials science, medicine, and biology; cf. [2], [3], [4], [5], [6], [7], [8].

Beginning with the pioneering work of Serra [9], several approaches to the
computation of single Minkowski functionals such as the Euler number have
been proposed e.g. in [5], [10], and [11]. In recent papers [12], [13] and [14],
alternative methods are proposed allowing for the simultaneous computation
of all Minkowski functionals of sets from different regularity classes such as
polyconvex sets or sets with positive reach. The above methods can be modified
to estimate the specific intrinsic volumes of stationary random closed sets by
introducing an appropriate edge correction. In this case, it is assumed that
the given data is part of a realization of an unbounded spatially homogeneous
random closed set observed within a bounded sampling window. Alongside
with the development of theoretical methods, the algorithmic issues of the
computation of Minkowski functionals of discrete sets given on lattices or
binary images have been touched upon in [5], [15], [16], [17], [18], and [19].

In the present paper, we embed the methods proposed in [12] and [13] in
the general context provided by the theorem of Hadwiger and the method
of moments; see Sections 2.2 and 3.2 for details. Furthermore, we discuss
the corresponding algorithms for these methods in Section 2.4 and give their
edge–corrected counterparts for the estimation of specific intrinsic volumes of
random sets in Section 3.3. A comparison of the numerical results with those
of methods from [5] and [19] is provided in Sections 2.5 and 3.5. The paper
concludes with a brief discussion of numerical results in Section 4.

In the theoretical part of the paper (Sections 2.1–2.2 and 3.1–3.2), binary
images of arbitrary dimension d > 2 are considered. In this way, we empha-
size that the proposed computational methods are independent of d. However,
the implementation clearly depends on the dimension. This is the reason why
we give the algorithms and numerical results in dimension d = 2 only. The
implementation of the algorithms in three dimensions and the corresponding
numerical studies are ongoing research. They will be considered in a forth-
coming paper.

The proposed algorithms seem to be relatively complex in comparison with
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other known methods. As a consequence, they are slower than e.g. the very
efficient algorithms given in [9]. This is the price one has to pay for the nice
statistical properties of these methods that allow their use in image comparison
based on asymptotical Gauss tests (see [20] for details).

2 Computation of intrinsic volumes for deterministic sets

In this section, we discuss methods for the computation of Minkowski func-
tionals for deterministic sets. For the sake of convenience, we rather use in-

trinsic volumes which differ from Minkowski functionals by a constant factor
and by the inverse order of notation; cf. [21]. First, preliminaries on intrinsic
volumes are given. Then, computational methods based on Hadwiger’s expan-
sion are described for arbitrary dimensions d. In Section 2.3, binary images
are introduced as discretizations of polyconvex sets in R

2. An algorithm for
the computation of intrinsic volumes of binary images is given in Section 2.4.
Finally, numerical results are discussed.

2.1 Intrinsic volumes of polyconvex sets

Let K be the set of all compact convex subsets of R
d. A set is called polyconvex

if it is a finite union of sets from K. The class R of all polyconvex sets in R
d is

often called the convex ring. This set family is general enough to model most
objects in image analysis in the sense of approximation of these objects by
unions of polyhedra as explained in Section 2.3 for the two–dimensional case.
Let A ⊕ B = {x + y : x ∈ A, y ∈ B} be the Minkowski sum of sets A and
B. Denote by Br(x) the ball of radius r > 0 centered in x ∈ R

d. For any set
K ⊂ R

d, the set of inner points of K in R
d is denoted by int(K) = K \ ∂K,

where ∂K is the boundary of K.

For a set K ∈ K, the intrinsic volumes V0(K), . . . , Vd(K) are usually intro-
duced as coefficients in the polynomial expansion of the volume (or Lebesgue
measure) Vd(K ⊕ Br(o)) of the parallel neighborhood K ⊕ Br(o) of K with
respect to r:

Vd(K ⊕ Br(o)) =
d∑

j=0

rd−jκd−jVj(K) , (1)

where κj = Vj(B1(o)) is the j–volume of the j–dimensional unit ball. By
additivity, Vj can be extended in a unique way to R, namely,

Vj(K1 ∪ . . . ∪ Kn) =
n∑

i=1

(−1)i−1
∑

16j1<...<ji6n

Vj(Kj1 ∩ . . . ∩ Kji
) (2)
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for any K1, . . . , Kn ∈ K and j = 0, . . . , d. It can be shown that for any K ∈ R
2Vd−1(K) is the surface area and V0(K) is the Euler–Poincaré characteristic,
that is, a linear combination of Betti numbers of K; see e.g. [1] and [11]. In
two dimensions, V0(K) is equal to the number of “clumps” minus the number
of “holes” in K ∈ R. For compact sets K with C2–smooth boundary ∂K,
intrinsic volumes Vj(K) are integrals of mean curvature of ∂K, cf. [1].

Formula (1) is often referred to as the Steiner formula. It is a special case of the
well–known result of Hadwiger (cf. [22]): any additive rigid motion invariant
continuous functional F on R can be represented as a linear combination of
intrinsic volumes, i.e.,

F (K) =
d∑

j=0

ajVj(K), K ∈ R (3)

with coefficients a0, . . . , ad ∈ R. These coefficients can be defined from the
following system of linear equations

F (Ki) =
d∑

j=0

ajVj(Ki), i = 0, . . . , d, (4)

where K0, . . . , Kd are simple convex bodies (for instance, a ball, a segment, a
square, a cube, and so on) for which the values of F and of Vj can easily be
computed and the matrix (Vj(Ki)) in (4) is not singular.

2.2 Computation of intrinsic volumes

Suppose that there exist functionals F0, . . . , Fn, n > d on R satisfying the
assumptions of the characterization theorem of Hadwiger with coefficients aij

from the expansion

Fi(K) =
d∑

j=0

aijVj(K), i = 0, . . . , n, K ∈ R (5)

that are either known or can be assessed by method (4). If n = d and the
matrix A = (aij) is regular then the vector V (K) = (V0(K), . . . , Vd(K))>

of intrinsic volumes of any polyconvex set K is the solution of the system
of equations (5). In the matrix form, it holds V (K) = A−1F (K), where
F (K) = (F0(K), . . . , Fd(K))>. For the reasons of computational stability, it
is more convenient to consider n � d and solve the overdetermined system
of linear equations (5) by means of the least–squares method. Namely, the
unique solution V ∗(K) = (A>A)−1A>F (K) of the minimization problem

∣∣∣F (K) − A V ∗(K)
∣∣∣ = min

x∈Rd

∣∣∣F (K) − A x
∣∣∣ (6)
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is a good approximation of V (K). Notice that the values V ∗
d (K) and V ∗

d−1(K)
have to be non–negative since they approximate the volume and half the
surface area of K. If the matrix A>A is almost singular one might try to
change the set of functionals Fi in order to get det(A>A) � 0. For functionals
given in (7) and (11) this can be done by changing the values of radii ri.
Alternatively, the singular value decomposition can be used.

Examples for functionals Fi, i = 0, . . . , n given in [12] and [13] are based on the
explicit extension of the Steiner formula to the convex ring and the principal
kinematic formula. In the first case, the value Fi(K), K ∈ R is given by the

volume ρri
(K) of

(
K ⊕ Bri

(o)
)
\ K counted “with multiplicity”:

ρri
(K) =

∫

∂K⊕Bri
(o)

∑

q∈∂K, q 6=x

J (K ∩ Bri
(x), q, x) dx, (7)

where J (B, q, x) is the index of B ∈ R defined by

J(B, q, x) =
(
1 − lim

δ→+0
lim

ε→+0
V0

(
B ∩ B|x−q|−ε(x) ∩ Bδ(q)

))
1∂B(q)

for any q, x ∈ R
d, q 6= x. Here 1∂B(·) is the usual indicator function of the set

∂B. The value of J(B, q, x) can be interpreted as the “local connectivity” of
B at the boundary point q regarded from the point x. If B is convex then the
index of B is zero for all x ∈ B and one for x 6∈ B such that q is the metrical
projection of x onto ∂B. For polyconvex sets B, a similar interpretation is
possible by the additivity of the index. In two dimensions, each point x of the
volume (7) is weighted by the number of its metric projections onto ∂K minus
the number of concavity points of the boundary ∂K lying within the distance
ri from x; cf. [23] for details. Radii r0, . . . , rn have to be positive and pairwise
different. The matrix A determined by the generalized Steiner formula

ρri
(K) =

d−1∑

j=0

rd−jκd−jVj(K), K ∈ R (8)

is equal to

A =




rd
0κd rd−1

0 κd−1 . . . r2
0κ2 r0κ1 0

rd
1κd rd−1

1 κd−1 . . . r2
1κ2 r1κ1 0

. . . . . . . . . . . . . . . . . .

rd
nκd rd−1

n κd−1 . . . r2
nκ2 rnκ1 0




. (9)

Since the last column in the above matrix is zero, it is useful to omit this
column and to exclude the variables xd and Vd(K) from consideration in the
equation (6).
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In the second case, the principal kinematic formula yields

∫

K⊕Bri
(o)

V0(K ∩ Bri
(x)) dx =

d∑

j=0

rd−jκd−jVj(K) , K ∈ R. (10)

If we set

Fi(K) = Rri
(K) =

∫

K⊕Bri
(o)

V0(K ∩ Bri
(x)) dx (11)

for any pairwise different ri > 0, i = 0, . . . , n, the matrix A looks like

A =




rd
0κd rd−1

0 κd−1 . . . r2
0κ2 r0κ1 1

rd
1κd rd−1

1 κd−1 . . . r2
1κ2 r1κ1 1

. . . . . . . . . . . . . . . . . .

rd
nκd rd−1

n κd−1 . . . r2
nκ2 rnκ1 1




. (12)

As it is seen from the comparison of matrices in (9) and (12), functionals ρri
(K)

and Rri
(K) are related to each other by the identity Rri

(K) = ρri
(K)+Vd(K)

for any K ∈ R. This also explains the fact that the volume of K cannot
be determined by the method based on the Steiner formula. However, both
methods lead to completely different numerical algorithms; see [13], [18], and
Section 2.4 for details.

A much more general class of functionals Fi and matrices A can be constructed
by means of the generalized principal kinematic formula given e.g. in [21],
p. 253.

2.3 Discretized sets and polygonal approximation

Consider an arbitrary polyconvex set K ⊂ R
2. In computer applications one

often deals with binary images. We assume that the discretization K ∩ L
2 of

K with respect to the quadratic lattice L
2 = ∆Z

2 + l0 with the lattice spacing

∆ > 0 and the offset l0 = (l0,x, l0,y)
> ∈ R

2 is given. Moreover, any extra
information about K is not available. It is convenient to interpret K ∩ L

2

as a binary image, i.e., as a finite set of “black” or foreground pixels x ∈
K ∩ L

2 on the “white” grid L
2 (the so–called background). This means that

we identify the set K ∩L
2 with its indicator function 1K∩L2 : L

2 → {0, 1}, i.e.,
1K∩L2(x) = 1 if x ∈ K∩L

2, and 1K∩L2(x) = 0, otherwise. Since K is bounded,
the binary image is often represented as a matrix B = (bi,j)06i<ny ,06j<nx

with
bi,j = 1K∩L2((j∆+l0,x, i∆+l0,y)) for 0 6 i < ny, 0 6 j < nx. To avoid problems
with 2 × 2 pixel configurations at the boundary of K ∩ L

2, we assume w. l. g.

6



0 7654321

15141312111098

Fig. 1. All 2 × 2 neighborhood configurations in two dimensions together with pos-
sible codes and polygonal approximations.
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Fig. 2. (a) 8–neighborhood relation and (b) approximation of a discretized set by
F.

that all boundary pixels of the image are white, that is, bi,j = 0 for i = 0,
i = ny − 1, j = 0, and j = nx − 1.

Neighborhood configurations are possible configurations of neighboring pixels.
For two–dimensional binary images, commonly 2 × 2 neighborhood configu-
rations are used, i. e. 4–tuples of neighboring pixels (bi,j, bi+1,j , bi,j+1, bi+1,j+1).
Of course, configurations of other size are also imaginable. Figure 1 shows all
16 possible 2 × 2 neighborhood configurations in two dimensions. For each
configuration, possible polygonal approximations with vertices belonging to
the grid L

2 and the associated boundary are depicted. This approximation is
based on the 8-neighborhood relation (cf. Figure 2 (a)).

Each neighborhood configuration can be assigned a code, for example ci,j =
bi,j ·2

0+bi+1,j ·2
1+bi,j+1 ·2

2+bi+1,j+1 ·2
3. In this case, each of these 16 configura-

tions is associated with a unique number between 0 and 15 (cf. Figure 1). The
absolute frequency of a configuration with code k within the binary image B
can be given as hk =

∑ny−2
i=0

∑nx−2
j=0 δk(ci,j) for k = 0, . . . , 15, where δ·(·) denotes

the Kronecker delta. The vector h of absolute frequencies h = (h0, . . . , h15)
is called the neighborhood histogram. See [9], [5] for more details and for the
efficient computation of h.

To compute the left–hand side (7) and (11) of the system of linear equations (5)
for a set K ∈ R from its discretization K∩L

2, one has to define the “boundary”
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of K ∩L
2. In other words, the boundary of K has to be “reconstructed” from

its discretized version K ∩ L
2. One possible way to do that is to approximate

K by a union of polygons with vertices belonging to the grid L
2. To describe

this approximation procedure more formally, an approximation system F can
be used which consists of all vertices, edges, triangles, and squares of the
whole L

2 as depicted in Figure 1. The “construction bricks” K u F for the
approximation of K with respect to F contain all elements of F whose vertices
lie in K ∩ L

2. Therefore, the polygonal approximation KF of K with respect
to F can be defined as KF =

⋃
P∈KuF P . The above approximation procedure

implicitly uses the notion of connectivity on graphs as considered in [9].

A point x ∈ K ∩ L
2 is called a boundary point with respect to the system F if

x ∈ ∂KF. The boundary ∂KF obtained by the polygonal approximation shown
in Figure 1 could be described by Freeman’s chain code with 8 directions; cf.
[24]. The set of all boundary points of K ∩ L

2 is denoted by ∂(K ∩ L
2). In

other words, a foreground pixel x0 belongs to ∂(K ∩ L
2) if there is at least

one background pixel in its 4–neighborhood, which consists of x1, x3, x5, and
x7 (cf. Figure 2 (a)).

Figure 2 (b) shows a discretized set K ∩ L
2 and its approximation KF. The

geometry of the boundary ∂KF heavily depends on the system F and on the
resolution 1/∆. In particular, significant changes can happen to the connec-
tivity of KF in comparison to K. Hence, any computation of intrinsic volumes
of K based on the discretization K ∩ L

2 and approximation KF is subject to
a substantial error. This phenomenon is well–known especially in the case of
the Euler–Poincaré characteristic; see e.g. [9], p. 220.

2.4 Algorithms

In the sequel, an algorithm for the computation of intrinsic volumes based
on the principal kinematic formula (see formulae (11), (12)) is given in two
dimensions. Generalizations to the d–dimensional case are straightforward.
The algorithm based on the Steiner formula is described in detail in [18].

The computation of intrinsic volumes V (K) of any set K ∈ R is reduced to
the computation of integrals in (11) and subsequent solving the least squares
problem (6) for the polygonal approximation KF of K. The integrals Rri

(K)
can be approximated by

R̂ri
(KF) = ∆̃2

m∑

k=1

V0

((
K ∩ Bri

(xk)
)

F

)
, (13)

where the points x1, . . . , xm belong to a two–dimensional quadratic lattice
with mesh size ∆̃ > ∆. Here, the set K ∩Bri

(xk) is discretized with respect to

8



the lattice L
2 where Bri

(xk) is the ball with center xk and radius ri in R
2 with

respect to the Euclidean distance. Thus, the vector V (K) can be computed
numerically as

V (K) ≈
(
A>A

)−1
A>R̂(KF) , (14)

where R̂(KF) = (R̂r0
(KF), . . . , R̂rn

(KF))
>.

The Euler number

V0

((
K ∩ Bri

(xk)
)

F

)
(15)

can be computed by an arbitrary method known in the literature. We use the
simplest way based on the inclusion-exclusion formula (2). Namely, the set
(K ∩Bri

(xk))F is a union of elementary convex polygons from F. These can be
points, segments, triangles, or squares with vertices on the lattice L

2. Formula
(2) applies directly to their union. This computation is easy to convey since
the Euler number of any compact convex set is either zero in case it is empty
or one, otherwise.

To perform the computation of (13) efficiently, we have to avoid multiple scans
of the image B, which is the matrix representation of K ∩ L

2. Naively, one
scan of the image would be necessary for each point xk and each radius ri,
k = 1, . . . , m; i = 1, . . . , n. However, it can be improved in such a way that
only one scan is required to compute (15) for all radii ri at a point xk. To
this end, we compute the frequencies hk[i][l] of the configurations with codes
l = 0, . . . , 15 of the image K ∩Bri

(xk) for all k = 1, . . . , m and i = 0, . . . , n. In
other words, for each point xk and each radius ri the neighborhood histogram
hk[i] of the image K∩Bri

(xk) must be calculated. The basic idea is as follows.
Let the radii form an arithmetical progression ri = r0 + i∆r for some r0 > 0
and ∆r > 0. We use the data structure of [25] and apply it to the counting of
pixel configurations. This is combined with the Euclidean distance transform,
which can easily be computed for an image that contains exactly one “white”
pixel (namely xk) and is “black” besides this. Furthermore, the pixels of a
configuration are ordered with increasing distance to xk using the idea of
Voronoi diagrams.

In the following, we concentrate on the computation of V0((K ∩Bri
(xk))F) for

one point xk and all radii ri. First we determine the contribution of a single
configuration (p0, p1, p2, p3) as shown in Figure 3 (a) to the neighborhood
histogram (hk[i][0], . . . , hk[i][15]) for all radii ri. A pixel pl, l = 0, . . . , 3 from
the configuration is “black” in the discretization of K ∩Bri

(xk) if it is “black”
in the discretization of K and if its (Euclidean) distance to xk is at most ri.
Therefore, each “white” pixel of K∩L

2 is also “white” within K∩L
2∩Bri

(xk).
If the distance between the pixel and xk is less than or equal to rj and greater
than rj−1 (0 6 j 6 n) then each “black” pixel of K ∩ L

2 is “white” within
K∩L

2∩Bri
(xk) for i < j and “black” for j 6 i 6 n. So, each pixel p with rj−1 <

|p− xk| 6 rj changes its value only during the transfer from (K ∩Brj−1
(xk))F
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0 1 2 3 4 5 6 7

0 p3 p3 p1 p1 p0 p0 p2 p2

1 p2 p1 p3 p0 p1 p2 p0 p3

2 p1 p2 p0 p3 p2 p1 p3 p0

3 p0 p0 p2 p2 p3 p3 p1 p1

(b)

Fig. 3. Sorting the pixels of a neighborhood configuration (p0, p1, p2, p3) with in-
creasing distance to xk based on the region xk belongs to.

to (K ∩ Brj
(xk))F. Consequently, a neighborhood configuration consisting of

four pixels can change its code at most four times within (K ∩ Bril
(xk))F for

l = 0, . . . , 3. To determine the order in which these changes of the code of the
configuration (p0, p1, p2, p3) occur, the pixels of the configuration have to be
sorted according to their distance to xk. This can be accomplished using the
idea of Voronoi diagrams; see [26]. Figure 3 (a) contains all possible edges of
Voronoi diagrams induced by the pixels p0, . . . , p3 or subsets thereof. These
edges determine eight regions 0, 1, . . . , 7. For all xk within one such region, the
order of the pixels of the configuration (p0, p1, p2, p3) is the same with respect
to their distance to xk. Therefore, the angle of the vector xk − c starting at
the center of gravity c of p0, . . . , p3 and ending at xk has to be determined and
translated into the index of the regions 0, 1, . . . , and 7 shown in Figure 3 (a).
Using the region index as a column index in the table of Figure 3 (b) yields
the sorted sequence of pixels with increasing distance to xk in rows 0, . . . , 3 of
the respective column.

Let s[q][t] denote the index of the pixel in the q-th row and t-th column of the
table in Figure 3 (b). Each configuration (p0, p1, p2, p3) has to be counted for
all radii ri. However, the code of this configuration may change as said above
at most four times. Let ri0 , ri1, . . . , ri3 be the radii which produce the change
of the configuration code. These radii can be determined through the distance
of the pixels in sorted order, i. e. il = d(ds[l][t] − r0)/∆re, l = 0, . . . , 3, where dq

denotes the distance from pq to xk and j is the index of the region xk belongs
to.

After having processed all configurations, V0((K ∩ Bri
(xk))F) can easily be

computed from the neighborhood histogram (hk[i][0], . . . , hk[i][15]) and the
inclusion-exclusion formula. In the following, the algorithm is described in
more detail:

1 Initialize hk[i][l] := 0 for each i = 0, . . . , n and l = 0, . . . , 15.
2 For each neighborhood configuration (p0, p1, p2, p3) of the binary image

with c being the center of gravity of p0, p1, p2, and p3 do
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2.1 Let d0, d1, d2, d3 be the distances of p0, . . . , p3 to xk, respectively.
2.2 Compute the index t of the region that contains xk using the angle

of the vector xk − c as depicted in Figure 3 (a).
2.3 Using the table in Figure 3 (b), s[q][t] yields the index of the q-th

pixel in sorted order for q = 0, . . . , 3.
2.4 Initialize konf := 0.
2.5 hk[0][konf ] := hk[0][konf ] + 1
2.6 For q = 0, . . . , 3 do: If the pixel ps[q][t] is black then

2.6.1 Compute di := d(ds[q][t] − r0)/∆re.
2.6.2 If di > n then go to step 2.
2.6.3 Else if di > 0 then

hk[di][konf ] := hk[di][konf ] − 1
konf := konf + 2s[q][t]

hk[di][konf ] := hk[di][konf ] + 1
3 For l = 0, . . . , 15 do

For i = 1, . . . , n do
hk[i][l] := hk[i][l] + hk[i − 1][l]

4 Compute V0((K ∩ Bri
(xk))F) from the neighborhood histogram

(hk[i][0], . . . , hk[i][15]) using the inclusion-exclusion formula (or any other
method) for i = 0, . . . , n

The above algorithm must be repeated for each xk, k = 1, . . . , m. The total
run-time of the presented algorithm is O(mN), where N = nxny is the size of
the binary image, i. e. the number of its pixels, since the computation of V0(·)
can be done in time proportional to the size of the neighborhood histogram.
Usually, the number m of sampling points xk is much smaller than the size of
the image N , i. e. m � N .

Numerical solution (14) heavily depends on the choice of the radii r0, . . . , rn.
Moreover, it does not necessarily preserve the positivity property of the area
V2(K) and the boundary length 2V1(K). The following radii can be practically
recommended for use on the basis of our empirical studies: r0 = 4.2, ri+1 = ri+
1.3, 0 6 i < 15. With these radii, V1 is computed with an acceptable precision,
but the accuracy of computation of V0 varies in dependence of the input image.
Our experiments showed that increasing the computational precision for V1

leads to a decrease in the precision of V0, and vice versa. Unfortunately, there
seems to be no choice of radii to compute both V0 and V1 with the same
precision for any input image.

2.5 Numerical results

To compare the algorithms given in Section 2.4 and papers [18] and [19], the
results for two images given in Figure 4 are presented. The reference values
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(a) (b)

Fig. 4. Test binary images.

Table 1
Overview of the methods used in Tables 2–3

Method based on

(i) inclusion–exclusion formula (2)

(ii) paper [19] by Mrkvička and Rataj

(iii) Steiner formula; see paper [18]

(iv) principal kinematic formula; see Section 2.4

Table 2
Computation results for image (a) of Figure 4

Algorithm V2(K) δ 2V1(K) δ V0(K) δ

(i) 10391.50 — 1063.62 — 8.00 —

(ii) — — 1073.98 0.97% 4.09 -48.88%

(iii) — — 1060.74 -0.27% 8.00 0.00%

(iv) 10464.64 0.70% 1013.31 -4.73% 7.27 -9.13%

Table 3
Computation results for image (b) of Figure 4

Algorithm V2(K) δ 2V1(K) δ V0(K) δ

(i) 16725.50 — 1310.98 — -1.00 —

(ii) — — 1033.03 -21% -1.72 72%

(iii) — — 1310.80 -0.01% -1.00 0.00%

(iv) 16461.02 -1.58% 1295.23 -1.20% -0.94 -6.22%

of the Minkowski functionals for these images are obtained by the application
of the inclusion-exclusion formula (2) which computes these values exactly on
the basis of the polygonal approximation of Section 2.3.

The results for the images (a) and (b) of Figure 4 are shown in Tables 2 and
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3, respectively. In these tables, δ stands for the relative error (in percent)
of the computation results with respect to the corresponding value obtained
by the inclusion-exclusion formula. Note that V2(K) cannot be computed by
methods (ii) and (iii). Both images were analyzed using the same parameters
∆̃ = 5, r0 = 4.2, ri+1 = ri + 1.3 for 0 6 i < 12 in the method (iv). It can
be seen from Tables 2 and 3 that methods (ii) and (iv) yield biased results.
The bias of the area computed by method (iv) is quite surprising. It can be
diminished by better choice of radii ri. At the same time, this can lead to
worse results for the boundary length and Euler number as pointed out at the
end of Section 2.4. On the contrary, the algorithm (iii) is precise and hence
can be preferred for the analysis of deterministic images. Another reason for
the choice of this algorithm is its complexity O(N) where N is the number of
pixels in the image. This leads to a run–time of 0.9 sec. per image (Pentium
IV, 2.8 GHz, N = 60000). For comparison, the corresponding run–time of
method (iv) is 4 sec. per image.

3 Computation of specific intrinsic volumes for stationary random

closed sets

Suppose that the analysed binary image is a realization of a certain stochastic
model observed within a sampling window W ∈ K. A reasonable class of such
models is provided by random closed sets (RaCS) with realizations from the
extended convex ring briefly introduced in Section 3.1. Their intrinsic volumes
averaged over all realizations and increasing observation windows are called
specific intrinsic volumes. A modification of the method of moments for the
estimation of specific intrinsic volumes from one single binary image is given
in Section 3.2. Corresponding algorithmic issues and numerical results are
discussed in Sections 3.3 and 3.5.

3.1 Stationary random closed sets

Let Ξ be a random closed set in R
d, i.e., Ξ can be considered as a random

element whose values are closed sets. Simple examples for RaCS are random
points or closed spheres of random midpoints and random radii. The realiza-
tions ξ of Ξ are taken from the extended convex ring S, i.e., ξ ∩ K belongs
to the usual convex ring R for any K ∈ K and almost every realization ξ of
Ξ. See e.g. [27] and [26] for the exact definition and properties of RaCS. The
random closed set Ξ is stationary if its probability distribution is translation
invariant.

For any nonempty K ∈ R, let N(K) = min{m ∈ N : K =
⋃m

i=1 Ki, Ki ∈ K}
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be the minimal number of convex components of the polyconvex set K, where
we put N(K) = 0 if K = ∅. If E 2N(Ξ∩[0,1]d) < ∞, then for any monotonously
increasing sequence of compact and convex observation windows Wk = k K0,
K0 ∈ K such that Vd(K0) > 0 and o ∈ int(K0), the expectations E Vj(Ξ∩Wk)
are well defined. Moreover, for each j = 0, . . . , d, the limit

V j(Ξ) = lim
k→∞

E Vj(Ξ ∩ Wk)

Vd(Wk)
(16)

exists and is called the j-th specific intrinsic volume of Ξ.

3.2 Estimation of specific intrinsic volumes

Suppose that there exist random fields Yi = {Yi(x), x ∈ R
d}, i = 0, . . . , n,

n > d such that Yi are stationary of second order. It means that E Yi(x) =
µi does not depend on x ∈ R

d and the covariance Cov(Yi(x), Yi(x + h)) =
CovYi

(h) depends only on h ∈ R
d for all i. Furthermore, we assume that their

mean values µi can be represented as µi =
d∑

j=0
aijV j(Ξ), where the matrix

A = (aij) of constant coefficients aij is regular for n = d. Then, it holds

V (Ξ) = A−1µ (17)

for n = d, where V (Ξ) =
(
V 0(Ξ), . . . , V d(Ξ)

)>
and µ = (µ0, . . . , µn)

>.

It follows from (17) that random fields Yi must be somehow connected with
the random set Ξ. A sufficiently large family of such fields is given in [20].
There, one puts Yi(x) = fi((Ξ− x)∩Ki) for a conditionally bounded additive
set functional fi and a small scanning window Ki. In what follows, concrete
examples of such fields will be given; see also [20]. One can expect that such
examples are constructed from set functionals Fi of the form (5). If Fi are
given by relation (7) then

Yi(x) =
∑

q∈∂Ξ∩Bri
(x)\{x}

J
(
Ξ ∩ Bri

(x), q, x
)
, x ∈ R

d (18)

and the matrix A from equation (17) is equal to (9). For Fi given by (11),
corresponding random fields have the form

Yi(x) = V0(Ξ ∩ Bri
(x)), x ∈ R

d (19)

for pairwise different positive radii ri. In this case, matrix A coincides with
(12).

If a single realization ξ of Ξ is given in the observation window W , the mean
values µi of random fields Yi can be estimated as µ̂i =

∫
W Yi(x) wi(dx), where
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wi(·) is a probability measure with support Ui ⊆ W . Frequently used weight-
ing measures wi(·) have the form wi(·) = Vd( · ∩ Ui)/Vd(Ui) and wi(·) =
mi∑
k=1

wikδxik
(·) with xi1, . . . , ximi

∈ Ui, wi1, . . . , wimi
> 0 and wi1+. . .+wimi

= 1.

In the above examples, we set Ui = W 	 Bri
(o) for i = 1, . . . , n (minus sam-

pling; see Figure 6). The choice of weights wik and sampling points xik will be
discussed in the next section.

It is obvious that the vector µ̂ = (µ̂0, . . . , µ̂n)> is an unbiased estimator for
µ = (µ0, . . . , µn)

>. By the method of moments, V̂ (Ξ) = A−1µ̂ is an unbiased
estimator for V (Ξ) in the case n = d. If a sequence of monotonously increasing
observation windows Wk is used, the above estimator is L2–consistent and
asymptotically normally distributed as k → ∞. This fact is used to construct
asymptotic Gaussian tests for the estimated specific intrinsic volumes, see [20].
They enable us to compare the geometrical structure of two homogeneous
binary images by detecting significant difference in their estimated specific
intrinsic volumes.

Similarly to the deterministic case, n � d random fields can be used in the
least squares method (6) to make the above estimation more robust with
respect to the choice of radii ri.

We also point out that besides the minus sampling considered above, there
are many other types of edge correction, which sometimes lead to unbiased
estimators; cf. e.g. the overview [28] and references therein as well as the recent
paper [29]. For rectangular observation windows, the following edge correction
method is computationally very efficient. Suppose that W = [−a, a]d for some
a > 0 and consider the “right upper boundary” ∂+W of W , where ∂+W ={
x = (x1, . . . , xd) ∈ W : max16i6d xi = a

}
. For any i = 0, . . . , n, the estimator

µ̂ +
i =

Fi(Ξ ∩ W ) − Fi(Ξ ∩ ∂+W )

Vd(W )
(20)

is unbiased for µi (see e.g. [30, p. 185], [31]), where Fi is a set functional on
R satisfying the assumptions of Hadwiger’s theorem. However, it is still not
known whether such estimators possess similar asymptotic properties as the
one based on minus sampling.

3.3 Edge–corrected modifications of the algorithms

In the following, modifications of the algorithm given in Section 2.4 and in
paper [18] for two-dimensional stationary random closed sets are discussed.

Suppose that a single realization ξ of the two-dimensional stationary RaCS Ξ
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is observed within a certain (convex and compact) sampling window W ⊂ R
2.

In many cases, this means that Ξ is sampled at the points of intersection
W ∩L

2 of W with a regular square grid L
2. Then, the intersection ξ ∩W ∩L

2

is the only information, which is available about Ξ.

Choose an appropriate sequence of radii r0, . . . , rn. To compute the least-
squares estimator of the three–dimensional vector V (Ξ) of specific intrinsic
volumes of Ξ using random fields (19), one has to select a regular (determin-
istic) design {xi1, . . . , ximi

} ⊂ W 	 Bri
(o) for each radius ri, i = 0, . . . , n,

such that the circles Bri
(xik) do not overlap much. Several variants of these

exploratory designs are described e.g. in Chapter 4 of [32]. Local connectivity
numbers V0(ξ ∩ Bri

(xik)) for any i = 0, . . . , n and k = 1, . . . , mi are com-
puted from ξ ∩ W ∩ L

2 as described in Section 2.4. We use uniform weights
wik = 1/mi, k = 1, . . . , mi for the computation of estimators µ̂i. Finally, the
least squares problem (6) has to be solved to get the estimator V̂ (Ξ).

To keep the estimation variance as small as possible, kriging of the mean and
optimal designs can be used to select locations xi1, . . . , ximi

⊂ W 	Bri
(o) and

the weights wi1, . . . , wimi
as recommended in [13]. However, our experiments

show that this dramatic increase of the complexity of the estimation method
does not yield a significant improvement in the quality of estimation. Hence,
we can not recommend it for use.

If we would like to use random fields (18) for the computation of V̂ (Ξ) in-
stead of (19), the following modification of the algorithm given in [18] can be
proposed. As in Section 2.3, we replace K = ξ ∩ W by its polygonal approx-
imation KF. Due to the particular form of the matrix (9), the area fraction
V 2(Ξ) = E V2(Ξ ∩ W )/V2(W ) has to be estimated separately by

V̂2(Ξ) =
card(K ∩ L

2)

card(W ∩ L2)
,

where card(C) denotes the cardinality of a finite set C.

To estimate the specific boundary length and the Euler–Poincaré characteris-
tic, consider the vector

(
ρr0

(KF)

∆2 card((W 	 Br0
(o)) ∩ L2)

, . . . ,
ρrn

(KF)

∆2 card((W 	 Brn
(o)) ∩ L2)

)
, (21)

where functionals ρri
are given by (7). Discretize the integral in (7) with

respect to the lattice L
2 as

ρr(KF) ≈ ∆2
∑

x∈(∂KF⊕Br(o))∩(W	Br(o))∩L2

∑

q∈∂KF\{x}

J(KF ∩ Br(x), q, x) (22)
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Fig. 5. Computation of Sr(q) and Mr(P )

for each r = r0, . . . , rn, and, after changing the order of summation, get

ρr(KF) ≈ ∆2
∑

q∈∂(K∩L2)

Sr(q) + ∆2
∑

P⊂∂KF

Mr(P ) ,

where
Sr(q) =

∑

x∈(W	Br(o))∩L2 , 0<|x−q|6r

J(KF ∩ Br(x), q, x)

and the second sum runs over all diagonal segments with vertices on L
2 of

the form 6 and 9 of Figure 1 that belong to the boundary of KF. By Mr(P )
we denote the number of all lattice points from (W 	 Br(o)) ∩ L

2 in the
neighborhood P ⊕ Br(o) of a segment P such that they are projected in the
interior of P . On Figure 5, Mr(P ) is the number of lattice points lying on
the outer normal to P at the distance at most r from the diagonal segment
P . For any segment P parallel to the grid lines, Mr(P ) is evidently equal to
zero. The sum Sr(q) is simply the number of lattice points within Br(q) lying
between two outer normals to the boundary of KF. The quantities Sr(q) and
Mr(P ) depend in general on the location of q and P , respectively. Indeed,
only those lattice points x are counted in the above sums which have distance
from q (or P , respectively) not larger than r and lie in the reduced sampling
window W 	 Br(o). However, if the sampling window is large with respect to
the radius r, i.e., if V2(W 	B2r(o)) > 0, then for lattice points q ∈ W 	B2r(o)
and segments P ⊂ W 	 B2r(o), the sums Sr(q) and Mr(P ) do not depend
on the position of q and P and therefore may be computed very fast; see [18]
for more details. However, for those q and P being close to the boundary of
the window W , the quantities Sr(q) and Mr(P ) have to be computed directly
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which is time consuming; compare Figure 6.

As in [18], this edge–corrected algorithm requires only one single scan of the
image. However, the complexity of computation O(N + lr2) is higher than
O(N) in the deterministic case. Here l is the number of boundary points of
K ∩ L

2 and N the total number of pixels in the image.

For a rectangular observation window W , the edge correction (20) can be used
alternatively. Then, the vector (21) must be replaced by

(
ρ+

r0
(KF, W )

∆2 card(W ∩ L2)
, . . . ,

ρ+
rn

(KF, W )

∆2 card(W ∩ L2)

)
,

where ρ+
ri
(KF, W ) = ρri

(KF ∩ W ) − ρri
(KF ∩ ∂+W ) for i = 0, . . . , n. Notice

that ρri
(KF ∩W ) and ρri

(KF ∩ ∂+W ) can be computed in the same way as in
the deterministic case. Therefore, this algorithm has complexity O(N).

3.4 Practical choice of dilation radii

Numerical experiments show that the discretization error of the algorithms is
smaller for rational ri than for integer–valued radii. For the method based on
the principal kinematic formula, the radii r0 = 4.2, ri+1 = ri + 1.3 for 0 6

i < 15 show an acceptable performance (run–time of 32 sec. per 1000 × 1000
image, Pentium IV, 2.8 GHz).

For the method based on the Steiner formula and minus sampling, the radii
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(a) (b)

Fig. 7. Realizations of a Boolean model with (a) circular and (b) square primary
grains.

r0 = 5, ri+1 = ri + 1.3, i = 0, . . . , 49 appear to perform pretty well in the
case W = [0, 1000]2 (run–time of 6 sec. per image, Pentium IV, 2.8 GHz). For
n > 50 and larger radii, the run–time increases dramatically up to more then
one hour. Due to minus sampling, the size of the radii is limited by the half
of the diameter of the observation window W .

For the edge correction (20), a larger number n > 1000 of dilation radii can
be used. For example, the following recursive rule yields good computational
results together with a run–time of 0.2 sec. per image: r0 = 5000, ri+1 =
ri + 20.3, i = 0, . . . , 999. Note that the precision increases when using larger
radii.

3.5 Numerical results

To compare the algorithms of Section 3.3 with those given in [5] and [19], two
Boolean models with discs and squares as primary grains (cf. e.g. [27], [26],
[30]) were used to generate the input images. For each Boolean model, 100
realizations were simulated in the window W = [0, 1000]2. In this section, we
estimate their specific intrinsic volumes. The intensity λ of the underlying Pois-
son point process of germs was chosen to match V̄2(Ξ) = 0.5. Explicit formulae
for the specific intrinsic volumes of Boolean models can be found e.g. in [26]
and [30]. They were used to compute the reference values V̄2(Ξ), 2V̄1(Ξ), V̄0(Ξ).

For the Boolean model Ξ of discs whose radii are continuously uniformly dis-
tributed on (20, 40), the intensity λ = 2.36395286 · 10−4 was chosen; see Fi-
gure 7 (a). The reference values are V̄2(Ξ) = 0.5, 2V̄1(Ξ) = 0.0222800 and
V̄0(Ξ) = 3.919529 · 10−5. The corresponding estimation results are shown in
Table 5. For the Boolean model Ξ with the square primary grain whose side
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length is discretely uniformly distributed on [20, 40], the intensity was set to
λ = 7.4001478 · 10−4; see Figure 7 (b). The reference values are V̄2(Ξ) = 0.5,
2V̄1(Ξ) = 0.044400887 and V̄0(Ξ) = 1.23577546 · 10−4. The estimation results
for this Boolean model are shown in Table 6. The realizations of the Boolean
models were simulated in the Euclidean space and then discretized on the grid
with lattice mesh size ∆ = 1.

In general, the estimation results for V̄2(Ξ) and V̄1(Ξ) are more precise than
the results for V̄0(Ξ). This phenomenon is also well known in the literature.
Methods (iii) and (iv) differ mainly in their run–times. Edge correction (20)
is much faster than minus sampling.

The estimated value 0.5011 of the area fraction in Table 5 is due to the nat-
ural fluctuations of the realizations of the Boolean model. Thus, it does not
contradict the unbiasedness of the method (ii). For larger sequences of images
the estimation results become better because of the law of large numbers.

For the estimation method (v) various exploratory point designs can be used;
see e.g. [32]. In most cases, a rectangular lattice showed good results. A
Fibonacci–type lattice leads to the same results with a slight increase of the
computational variance. Another widely used point pattern is the so called
randomized Vienna coffeehouse design. The results are good on average, but
the variance is about twice as high as for other point designs. In Tables 5–6
calculations are made using a quadratic lattice of points {xik} of mesh size 10.

4 Discussion

As it is clear from Table 2, the best performance (both in precision and run
times) for the computation of intrinsic volumes of a deterministic polyconvex
set is shown by the algorithms based on the inclusion–exclusion formula and
on the Steiner formula. A weak point of the latter algorithm is surely the use
of elementary pixel configurations with 3d neighboring pixels (voxels) in R

d,
compare [18]. For d > 3, this results in a dramatic increase of the number
of possible voxel configurations which leads to a longer run–time. On the
contrary, the algorithm described in Section 2 uses elementary configurations
of 2d pixels (voxels) with acceptable run–time. One more advantage of this
algorithm is its universality, i.e., it is applicable to any dimension with slight
changes.

For isotropic (i.e., motion invariant) random closed sets such as the Boolean
model of discs, Table 5 shows that the best results are achieved by the method
(i). Methods (ii)–(v) yield similar results with an acceptable precision. Smallest
variances of results are demonstrated by method (i). If the random closed set
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Table 4
Overview of the methods used in Tables 5–6

Method based on

(i) paper [19, Section 8] by Mrkvička and Rataj

(ii) books [9] by Serra and [5] by Ohser and Mücklich

(iii) Steiner formula with minus sampling (using random fields (18))

(iv) Steiner formula with alternative edge correction (20)

(v) principal kinematic formula (using random fields (19))

Table 5
Results for the Boolean model with discs as primary grains

Algorithm (i) (ii) (iii) (iv) (v)

V̂2(Ξ) — 0.5011 — — 0.4903

δ — 0.22% — — -1.94%

Var ·104 — 7.1005 — — 8.8878

2V̂1(Ξ) 0.0223 0.0221 0.0218 0.0241 0.0234

δ 0.00% -0.95% -2.28% 8.35% 4.87%

Var ·107 4.9667 5.4412 7.6105 6.4811 11.2925

V̂0(Ξ) · 105 3.9195 1.3035 2.7402 1.6686 1.4357

δ 0.00% -66.74% -30.09% -57.43% -63.37%

Var ·1010 0.5893 1.3567 1.7951 1.3439 2.5404

Table 6
Results for the Boolean model with squares as primary grains

Algorithm (i) (ii) (iii) (iv) (v)

V̂2(Ξ) — 0.50 — — 0.4759

δ — 0.00% — — -4.82%

Var ·104 — 1.951 — — 2.2729

2V̂1(Ξ) 0.0408 0.0412 0.0407 0.0438 0.0433

δ -8.2% -7.19% -8.42% -1.42% -2.47%

Var ·107 6.8933 7.2355 5.7038 8.1127 15.1922

V̂0(Ξ) · 104 1.4469 1.011 1.2963 1.1178 1.0765

δ 17.1% -18.19% 4.9% -9.55% -12.89%

Var ·1010 1.4812 1.5529 1.9203 1.435 2.0614
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is anisotropic (see Figure 7 (b) for the Boolean model of anisotropic squares),
algorithms (iii)–(v) perform equally well. Worse results are shown by methods
(i) and (ii). One should notice that Tables 5 and 6 can not be used to judge the
absolute precision of different algorithms. These tables yield only the relative
comparison of their performance.

Precise results of the method (i) in the case of the Boolean model of discs can
be explained by a particular choice of dilation radii that fit circular grains best.
For other grain shapes, the bias of this method can lead to greater relative
errors. This disadvantage is partially compensated by the simplicity of the
algorithm and small estimation variances. The exactness of method (i) seems
to increase with increasing the area fraction of the random set Ξ. Vice versa,
the exactness of methods (iii)–(v) might decrease. The reason for that lies,
roughly speaking, in the dilation operation that is applied to the set Ξ itself
in methods (iii)–(v) and to the complement of a small parallel set of Ξ in (i).

If the comparison of binary images on the basis of a central limit theorem
of [20] is desirable, the use of methods (iii)–(v) is inevitable due to the nice
asymptotic properties of the corresponding estimators. For other methods,
such properties are still not known.

The best run–times (0.2 sec., 0.12638 sec., 0.1935 sec. per 1000× 1000 image)
are shown by the methods (i), (ii) and (iv), respectively. As in the deterministic
case, the latter method is not so fast in three dimensions and does not admit
an extension to higher dimensions which can be implemented.
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