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Abstract

In this paper we prove the results concerning the limiting behaviour (as time
parameter t → ∞) of closed Jackson networks with an infinite number of nodes and possibly
infinite number of customers. As this system appears to be not ergodic we describe the class of
stationary distributions and explore the character of non–stability in particular cases.
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1 Introduction

For the moment not so much is known about the long–time behaviour of closed Jackson
networks with an infinite number of nodes (ICJN) and customers inside. Although this
consideration would be a logical continuation of the finite case (ordinary closed Jackson
networks (later on CJN) with N nodes and m customers), which is always ergodic (see [1]),
it turns out that the notion of infinity is here essential, and ICJN is never ergodic. The
first attempt to investigate the behaviour of finite CJN as N → ∞, m → ∞, m

N
→ c > 0

was made in [2]. Papers [3, 4] consider the mean–field approximation for the stochastical
dynamics of CJN.

ICJN could be also viewed as a transport network system: Poisson streams of customers
with intensities γi enter the nodes i ∈ J (J is a countable set of nodes) where the vehicles
carrying them to certain destinations (other nodes) are stationed,

∑
i∈J

γi = γ ≤ ∞. If there

is a car in a node i, it carries a passenger to node j with probability pij. Then the customer
leaves the system. Case γ < ∞ was considered in [5].

Our approach here is to consider ICJN as an interaction particle process (see, e.g., [6]),
namely, as a zero–range process introduced by Spitzer [7]. The case of homogeneous zero–
range interaction at Bose – Einstein speeds was investigated by E. Waymire [8], E. D. Andjel
[9], A. Galves and H. Guiol [10]. Here we also allow the transition speeds to be dependent
on the location of a cell (non–homogeneity).

The paper is organized as follows: in section 2 the model of zero–range interaction is
introduced, necessary definitions are made and the existence theorem is proved. The results
of section 3 yield invariant measures and the character of transience. Section 4 is devoted
to the investigation of special case γ < ∞.
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2 Model: Existence and Monotonicity

Consider the following non–homogeneous zero–range interaction model at Bose – Einstein
speeds: a number of indistinguishable particles is located in a countable set of sites J .
Transitions of particles at a site i ∈ J are made after random periods of time τ — i. i.
exponentially d. r. v. with parameter γi: if site i is not empty, then one (and only one)
particle chosen randomly at this site instantly moves to any site j with probability pij.
Transitions are made independently for any i ∈ J . Probabilities of jumps from i to j form
together single particle law matrix P = (pij)i,j∈J , ∀ i ∈ J

∑
j∈J

pij = 1. One can describe the

state of the system by process η(t) = {ηi(t)}i∈J , t ≥ 0, where ηi(t) is a number of particles
in cell i at time t.

Let Z+ = N ∪ {0}, Z+ = Z+∪{∞}. Then the state space of our system W =Z
J

+ is a
compact metrizable space. Let B be a σ – algebra generated by open sets in the product
topology. Let C(W) be the Banach space of all real–valued continuous functions on W with
the uniform norm.

Let ∀ f ∈ C(W) ∀ i ∈ J the ”measure of dependence on coordinate i” be

∆f (i) = sup {| f(η)− f(ζ) |: η, ζ ∈ W, ηj = ζj ∀ i 6= j} .

Introduce D(W) =

{
f ∈ C(W) : ||| f |||def

=
∑
i∈J

∆f (i) < ∞
}

. D(W) is dense in C(W)

(see [6]). Define the following operator on D(W) :

Af(η) =
∑

i∈J

∑

j∈J

[I{ηi > 0}γipij (f(. . . ηi − 1 . . . ηj + 1 . . .)− f(η))] .

Theorem 2.1 (Existence) If

sup
i∈J

γi < ∞, sup
i∈J

∑

j∈J

γjpji < ∞, (2.1)

then

1. There exists unique Feller process η(t) : (Ω,=,P) → (W,B) that describes our system;
(Ω,=,P) — some probability space.

2. Operator A (closure of A) is an infinitesimal operator for process η. D(W) is a core
of A.

Proof:
The infinitesimal properties of any particle system are described by the collection of tran-

sition intensity measures cT (η, ξ) on Z
T

+ : here η = (ηi)i∈J , T = {i1, . . . in} is any fi-
nite subset of J , and cT (η, ξ) is the intensity of transition from state η of the system to
ηξ = (ζj, j ∈ J : ζj = ηj ∀j /∈ T, ζik = ξk ∀k = 1 . . . n) involving only T = {i1, . . . in} coor-
dinates. We have for

|T | > 2, |T | = 1 : cT (η, ξ) = 0

|T | = 2, T = {i, j} : cT (η, ξ) =





γipijI {ηi > 0} , if ξ1 = ηi − 1, ξ2 = ηj + 1
γjpjiI {ηj > 0} , if ξ1 = ηi + 1, ξ2 = ηj − 1
0, otherwise

.
(2.2)
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Construct Af(η) =
∑
T

∫

Z
T
+

cT (η, dζ)
(
f(ηζ)− f(η)

)
. Let

cT (i) = sup{‖cT (η1, dζ)− cT (η2, dζ)‖T | η1, η2 : η1(j) = η2(j) ∀j 6= i} where ‖·‖T is a total

variation norm of a measure on Z
T

+. Let us define ν(i, j) =
∑
T3i

cT (j), i 6= j, and ν(i, i) = 0.

In order to apply existence theorem 3.9 [6] we need to verify the following conditions:

sup
i∈J

∑

T3i

sup
η∈Z

T
+

cT

(
η,Z

T

+

)
< ∞, (2.3)

sup
i∈J

∑

j∈J

ν(i, j) < ∞

Taking into account (2.2) one can rewrite these conditions as follows:

sup
i∈J

∑

j∈J

(γipij + γjpji) < ∞. (2.4)

Since by our assumptions
∑
j∈J

pij = 1 ∀i, condition (2.4) is obviously equivalent to (2.1).

Then A is a pregenerator of the semigroup of transition operators that uniquely define the
desired Markov process. The application of the general existence theory in [6] fulfils the
proof.

Corollary 2.1 If one of the following holds:

• sup
i∈J

γi < ∞, sup
i∈J

∑
j∈J

pji < ∞

• ∑
i∈J

γi < ∞,

then conditions (2.1) are satisfied.

Later on assume that (2.1) holds.
Introduce a partial ordering on W: we say that ξ ≺ ξ′ for ξ, ξ′ ∈ W if ξi ≤ ξ′i for all

i ∈ J (if ξ′i = ∞ the last inequality always holds).

Lemma 2.1 (Monotonicity) Consider two ICJN processes η(t) and η′(t) with the same
γ = {γi}i∈J and single particle law P such that η(0) = ξ ∈ W, η′(0) = ξ′ ∈ W, and
ξ ≺ ξ′. Then there exists a process S(t) = (ξ(t), ξ′(t)) on the phase space W×W such that
S(0) = (ξ, ξ′) and ξ(t) ≺ ξ′(t) a.s., and processes ξ(t) and ξ′(t) are the stochastic copies of
η(t) and η′(t), respectively (in the sense of finite-dimensional distributions).

The proof of the lemma is standard and involves the construction of processes η(t) and
η′(t) on the same probability space (see [8], theorem 4.2 and [13], lemma 2).

We shall say (under the conditions of lemma 2.1) that η′(t) stochastically majorizes η(t):
η(t) ≺ η′(t).

Suppose the Markov chain with state space J and transition matrix P to be homoge-
neous, aperiodic, and irreducible. Introduce
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Conjecture A: There exists a non–trivial invariant measure π = (πi)i∈J for P (not neces-
sarily finite).
Conjecture B: There exists unique non–trivial invariant probability measure π = (πi)i∈J

for P (later on called stationary).
Conjecture C: A countable Markov chain with transition matrix P is transient.

3 General case γ ≤ ∞
Denote

a
def
= sup

i∈J

πi

γi

< ∞. (3.1)

Let ρmax = 1/a. For any ρ ∈ [0; ρmax] and ρ = ∞ introduce product measures Lρ(·) on
(W,B) with marginal factors liρ(·), i ∈ J defined in the following two cases:

if ρ ∈ [0; ρmax] and ρ(πi/γi) < 1, then

liρ(k) =

{
(1− ρ(πi/γi)) (ρ(πi/γi))

k , k ∈ Z+,
0, k = ∞

else we have ρ = ρmax, ρ(πi/γi) = 1 or ρ = ∞, and

liρ(k) =

{
0, k ∈ Z+,
1, k = ∞.

Introduce L = {Lρ(·) : ρ ∈ [0; ρmax], ρ = ∞}. Denote by L̃ the closed convex hull of L:

L̃ =
⋂

K–closed convex set, K⊇L

K.

Let M be the class of all invariant measures for Markov process {η(t)}t≥0 .
The following four assertions could be proved by slight modification of the proofs of

propositions 2.14, 3.1, 2.15, 2.16 given in [8]; to see that one should take measure
{

πi

γi

}
i∈J

instead of ā = (ā(x) : x ∈ J) (using the notations of [8]) there.

Theorem 3.1 (Invariant measures) Suppose that conjecture A and (3.1) hold. Then the

closed convex hull L̃ of the set of measures {Lρ(·) : ρ ∈ [0; ρmax], ρ = ∞} belongs to the class
M of all invariant measures for Markov process {η(t)}t≥0.

Proof:
The class of measures L belongs to M according to theorem 2.14 [8]. But M itself is a
compact closed subset of the set P of all probability measures on (W,B) (see [6],

proposition 1.8). Then L̃ ⊆M by definition of L̃.

Let ∑

i∈J

πi

γi

< ∞. (3.2)
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Proposition 3.1 Suppose that conjecture A and (3.2) hold. Then ∀ ρ ∈ [0; ρmax]

Lρ

(
η :

∑

i∈J

ηi < ∞
)

= 1.

Theorem 3.2 (Clustering) Let conjecture A and 3.2 hold. Suppose j0 ∈ J satisfies
πj0/γj0 = max

i∈J
πi/γi. Then ∀ k ∈ Z+ ∀η0 :

∑
i∈J

η0
i = ∞

lim
t→∞P

{
ηj0(t) > k | η(0) = η0

}
= 1.

Corollary 3.1 (All invariant measures on
(
ZJ

+,B∩ZJ
+

)
)

If conjecture A and (3.2) hold, then

{
LN

ρ (·) = Lρ

(
· | ∑

i∈J

ηi = N

)
: N ∈ N, ρ ∈ (0; ρmax)

}

are all invariant measures on
(
ZJ

+,B∩ZJ
+

)
.

Say Gij =
∞∑

n=0
p

(n)
ij ∀i, j ∈ J where p

(n)
ij is the probability to reach state i from state j in

n steps.
Denote by ηJ̄(t) the restriction of η(t) to some subset J̄ of the nodes of J . Let {Jn}∞n=1

be the sequence of non–decreasing finite subsets of J : J1 ⊂ J2 ⊂ J3 . . .,
⋃
n

Jn = J , chosen so

that matrices P (n) = (pij)i,j∈Jn are irreducible. For given {γi}i∈J , P and ξ ∈ ZJ
+ let η(t) be

the ICJN–process starting from η(0) = ξ, and η(n)(t) be the one that starts from

η(n)(0) =

{
ξj, j ∈ Jn,
∞, j /∈ Jn.

It follows from lemma 2.1 that η(t) ≺ η(n)(t). One can see that the restriction η
(n)
Jn

(t) is an

opened Jackson network on the set Jn with input intensities ∆(n) = (∆
(n)
j )j∈Jn ,

∆
(n)
j =

∑
i∈J\Jn

γipij. Let ρ(n) = (ρ
(n)
j )j∈Jn be the unique solution of the stream conservation

equation (see [1]):
ρ(n) = ρ(n)P (n) + ∆(n).

Matrix I − P (n) is invertible as P (n) is an irreducible submatrix of P (n+1) with the spectral
radius not greater then 1. Due to that one can write

ρ(n) = ∆(n)(I − P (n))−1 = ∆(n)(I + P (n) + (P (n))2 + . . .).

Now we are ready to formulate the following proposition that would give us the tool to
obtain the conditions under which all particles in the system vanish as t →∞.

Proposition 3.2 Suppose η(0) = ξ. If for any n0 and k ∈ Jn0 ρ
(n)
k → 0 as n → ∞, then

for all ξ ∈ ZJ
+ η(t) −→ 0 weakly as t →∞.
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Proof:
As the convergence of any finite marginal distributions of η(t) is obviously equivalent to the
weak convergence of the distribution measures of η(t) we shall actually prove that for any
finite J̄ ⊂ J

lim
t→∞P (ηJ̄(t) = 0 | η(0) = ξ) = 1.

In what follows we shall use the next result given in [11]: let un,j be the unique solution of
the finite system of equations

un,j =
∑

k∈Jn

min[1, un,k]pij + ∆
(n)
j .

Say J0
n = {j ∈ Jn : un,j < 1}, J1

n = {j ∈ Jn : un,j ≥ 1}. Then the distributions of

η
(n)
Jn

(t) ∈ ZJn
+ weakly converge to the invariant measure

πun(z) =
∏

j∈J0
n

(1− un,j)u
zj

n,j

∏

j∈J1
n

δ∞(zj),

where δ∞(·) is a Dirac measure concentrated in ∞. The inequality un ≤ ρ(n) yields un,k → 0
for any k ∈ Jn0 .

It follows from η(t) ≺ η(n)(t) that

P (ηJn0
(t) = 0 | η(0) = ξ) ≥ P (η

(n)
Jn0

(t) = 0 | η(0) = ξ).

Consequently,

lim inf
t→∞ P (ηJn0

(t) = 0 | η(0) = ξ) ≥ lim
t→∞P (η

(n)
Jn0

(t) = 0 | η(0) = ξ).

The r.h.s. term tends to 1 as n → ∞. Therefore, P (ηJn0
(t) = 0 | η(0) = ξ) → 1 as t → ∞.

Then we note that for arbitrary finite subset J̄ one can choose n0 such that Jn0 ⊃ J̄ ; thus
the proposition is proven.

Theorem 3.3 (Devastation) Suppose that one of the following conditions holds:

1. γ < ∞ and conjecture C

2. γ < ∞ and ∀j ∈ J
∑
i∈J

pij ≤ 1

3. ∀j ∈ J
∑
i∈J

pij ≤ 1 and there exists a sequence of non–decreasing finite sets {Jn}∞n=1,

J1 ⊂ J2 ⊂ . . .,
⋃
n

Jn = J such that sup
j∈J\Jn

γj −→ 0 as n →∞ and matrices

P (n) = (pij)i,j∈Jn are irreducible

4. Let ∀j ∈ J
∑
i∈J

pij ≤ 1. Introduce the terminating Markov chain Y = {Ym}∞m=1 with

state space J and transition matrix P T = (pji)i,j∈J . Denote by P̄j(J) the probability of
terminating for Y provided that Y0 = j. Let P̄j(J) = 1 for all j ∈ J and sup

j∈J
γj < ∞.

Then for any η(0) ∈ ZJ
+ the process η(t) → 0 weakly as t →∞.
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Proof:
Let us verify that the conditions of proposition 3.2 hold in any of the cases 1) – 4). Then
immediately applying the above proposition one can come to the desired conclusion.

1) Because of the transience of P the sum I +P +P 2 + . . . = G = (Gij)i,j∈J < ∞ is finite

(i. e. Gij < ∞ ∀i, j ∈ J). Obviously,

G(n) = (I − P (n))−1 = I + P (n) + (P (n))2 + . . . ≤ GJn = (Gij)i,j∈Jn
.

It is a well–known fact (see [12], theorem 13 of Chapter 2) that Gjk ≤ Gkk ∀j, k ∈ J .

The explicit form of ρ
(n)
k is

ρ
(n)
k = (∆(n)G(n))k =

∑

i∈J\Jn

∑

j∈Jn

γipijG
(n)
j,k . (3.3)

It follows from the inequalities G
(n)
j,k ≤ Gjk ≤ Gkk that

ρ
(n)
k ≤ Gkk

∑

i∈J\Jn

∑

j∈Jn

γipij,

and as
∑

j∈Jn

pij ≤ 1, we get

ρ
(n)
k ≤ Gkk

∑

i∈J\Jn

γi. (3.4)

Due to the convergence of the series
∑
i∈J

γi the right–hand side of (3.4) tends to zero as

n →∞. Hence ρ
(n)
k → 0 as n →∞.

2) Let for any i ∈ Jn Ln,j be the set of all sequences (j, j1, . . . , jl) of arbitrary length l
such that jk ∈ Jn, k < l, while jl ∈ J \ Jn. Then one can rewrite (3.3) in the following way:

ρ
(n)
j =

∑

Ln,j

(
l−2∏

k=0

pT
jkjk+1

)pT
jl−1jl

γjl
,

where pT
ij are the elements of the transpose of P : pT

ij = pji. Evidently,

ρ
(n)
j ≤ γ̄Jn

∑

Ln,j

(
l−2∏

k=0

pT
jkjk+1

)pT
jl−1jl

= γ̄Jnx
(n)
j ,

where γ̄Jn = sup
j∈J\Jn

γj. One can interpret x
(n)
j as the probability of the event that the

terminating Markov chain Y with state space J and transition matrix P T starting from j

ever enters the set J \ Jn. In view of that x
(n)
j ≤ 1. Hence, ρ

(n)
j ≤ γ̄Jn . Then γ̄Jn → 0 as

n →∞ because of the convergence of
∑
j∈J

γj, that yields ρ
(n)
k → 0 as n →∞.

3) The above reasoning holds also for this case, as the requirement γ̄Jn → 0 is stated now
in the assumptions of 3).

4) One can adopt the proof in 2) for the case γ = ∞. Namely, it is clear that

x
(n)
j → 1 − P̄j(J) as n → ∞. Then it is sufficient to require P̄j(J) = 1, sup

j∈J
γj < ∞ to get

ρ
(n)
j → 0.
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Definition 3.1 The i-th coordinate ηi(·) of the process η (the i-th cell of the system) is
stochastically bounded if lim

m→∞ sup
t∈R+

P{ηi(t) > m} = 0.

Theorem 3.4 (Stochastical boundedness) If ∃i0 ∈ J : γi0 >
∑
j∈J

γjpji0 and ηi0(0) ∈ Z+,

then ηi0(t) is stochastically bounded, and

lim sup
t→∞

Eηi0(t) ≤
∑

j∈J, j 6=i0

γjpji0

γi0 −
∑
j∈J

γjpji0

.

Proof:
Construct the process η′(t) such that

η′(0) =

{
ηj(0), j = i0,
∞, j 6= i0.

Again, using lemma 2.1, we obtain η(t) ≺ η′(t). Note that η′(0) is an opened finite Jackson

network with only one node i0. The intensity of the input stream ∆
(1)
i0 of this network is

equal to
∑

j∈J, j 6=i0

γjpji0 , the intensity of service equals γi0 . The probability to quit the system

is 1−pi0i0 . Then the stream conservation equation would be ρ
(1)
i0 = ∆

(1)
i0 +ρ

(1)
i0 pi0i0 , and η′i0(·)

is ergodic iff ρ
(1)
i0 < γi0 , i. e., ∆

(1)
i0 /(1− pi0i0) < γi0 , or

∑

j∈J, j 6=i0

γjpji0 < γi0(1− pi0i0).

The last inequality holds due to the assumptions of the theorem. Consequently, η′i0(·) is er-
godic and stochastically bounded. Therefore, ηi0(·) is stochastically bounded. Let η′i0(∞) =

lim
t→∞ η′i0(t). Then η′i0(∞) has a geometrical distribution P

{ ∼
ηi0 (∞) = n

}
= (1−α)αn, n ∈ Z+

with parameter (see [1])

α =

∑
j∈J, j 6=i0

γjpji0

(1− pi0i0)γi0

.

It follows from η(t) ≺ η(n)(t) that Eηi0(t) ≤ Eη′i0(t) for all t ≥ 0 and

lim sup
t→∞

Eηi0(t) ≤ Eη′i0(∞) =
α

1− α
.

Substituting α, we obtain the last statement of the theorem.

4 Case γ < ∞
In this case one can prove that the transitions of particles occur a. s. only in discrete random
moments of time tn, tn − tn−1 = τn ∼ i. i. exponentially d. r. v. with parameter γ =

∑
i∈J

γi,

n — number of transition since t = 0. Then

P {n–th transition is made from cell i | ηi(tn − 0) > 0} =
γi

γ

def
= βi,

∑

i∈J

βi = 1.
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Introduce embedded Markov chain η(n) = {ηi(tn)}i∈J ∀n∈ N. Later on we shall write ηi(n)
instead of ηi(tn). Suppose ηi(0) = xi ∀ i,

∑
i∈J

xi = ∞. Let us introduce the non–decreasing

family of σ−algebras {Fn}n∈N,

Fn = σ (η(m), m ≤ n) = σ (ηi(m), i ∈ J, m ≤ n) ∀n .

Definition 4.1 Measure µ(·) on J (possibly σ-finite) is called (strictly) excessive for tran-
sition matrix P = (pij)i,j∈J iff µ ≥ µP : ∀i µi ≥ ∑

j∈J
µjpji (µ > µP , respectively).

Definition 4.2 Function f on J is called harmonious (resp. excessive) for transition matrix
P = (pij)i,j∈J iff Pf = f : ∀i fi =

∑
j∈J

pijfj (Pf ≤ f).

Lemma 4.1 Let µ(·) and ν(·) be finite measures on the same measurable space (Ω,L),
µ(Ω) = ν(Ω) = a < ∞. If ∀A ∈ L ν(A) ≥ µ(A), then µ(·) = ν(·).
Proof:
Suppose the contrary holds: ∃A ∈ L : ν(A) > µ(A). But by condition of the lemma
ν(Ā) ≥ µ(Ā). Summing these inequalities up one can obtain a > a. We arrived at a contra-
diction. Thus the statement of lemma is proved.

Lemma 4.2 If conjecture B holds and {βi}i∈J 6= {πi}i∈J or if conjecture B does not hold,
then

∃ i0, j0 : γi0 >
∑

j∈J

γjpji0 , γj0 <
∑

j∈J

γjpjj0

Proof:
If γ < ∞, then measures β(·) : β(i) = βi, µ(·) = (βP ) (·) : µi =

∑
j∈J

βjpji are probability

measures on J . Suppose one of the following inequalities holds:

β ≥ µ (4.1)

β ≤ µ (4.2)

Then lemma 4.1 yields β = µ, β = βP . If conjecture B is true, it means β = π, otherwise
it implies that β is a stationary distribution for P . Both cases are prohibited by the condi-
tions of lemma 4.2. Then none of the inequalities (4.1), (4.2) holds which fulfils the proof.

Remark 4.1 In case γ < ∞ under general assumptions on {γi}i∈J (see lemma 4.2) there
exists i0 such that the conditions of theorem 3.4 are satisfied. So at least one node of the
system is always stochastically bounded. On the other hand, lemma 4.2 shows that this
situation might not hold for all i ∈ J .

Remark 4.2 Lemma 4.2 states that if γ < ∞ then excessive probability measures β do not
exist for P . But if γ = ∞, conjecture C holds, then there exist infinitely many σ−finite
strictly excessive measures µ :

∑
i∈J

µi = ∞, µ > µP. Then in case γ = ∞ for {γi}i∈J :

γi >
∑
j∈J

γjpji ∀i ∈ J all coordinates ηi(t) are stochastically bounded.
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Proof:
If conjecture C holds, then for some i Gii < ∞. The assumptions concerning the proper-
ties of a Markov chain with the transition matrix P guarantee the last inequality to hold
∀i ∈ J . Then for any {νi}i∈J : νi ≥ 0 ∀i ∈ J construct the measure µ = {µi}i∈J in the
following way: µi =

∑
j∈J

νjGji. One can choose {νi}i∈J such that ∀i µi < ∞ (for example,

νj = δjj0 ⇒ µi = Gj0i < ∞ ∀i), {µi}i∈J is strictly excessive. The application of theorem
3.4 fulfils the proof.

For some {ai}i∈J , ai ≥ 0,
∑
i∈J

ai < ∞ and for all x ∈ W define f(x) =
∑
i∈J

aixi ≤ ∞.

Theorem 4.1 (Existence of supermartingales) If conjecture C holds and there exist
numbers {ϕi}i∈J : ϕi ≥ 0,

∑
i∈J

∑
j∈J

Gijϕj < ∞, then for ai = (Gϕ)i =
∑
j∈J

Gijϕj and ini-

tial distributions of Markov chain η such that
∑
i∈J

aiηi(0) < ∞ a. s. and E
∑
i∈J

aiηi(0) < ∞
sequence (f(η(n)),Fn)∞n=1 is a supermartingale.

Proof:
First let us prove that f (η(n)) defined above is finite ∀n ∈ N provided that the conditions
of theorem 4.1 hold: f (η(0)) is clearly finite; then on each step n at most two coordinates
are changed. It means that if η(0) = x, then | ηi(n) − xi |≤ n a. s. for all i. Therefore
f (η(n)) is also finite ∀n. (f(η(n)),Fn)∞n=1 is a supermartingale iff by definition

E (f (η(n + 1)) | Fn)− f (η(n)) ≤ 0 a. s.

This inequality could be rewrited as

∑

i: ηi(n)>0

γi


∑

j∈J

pijaj − ai


 ≤ 0 (4.3)

So if
∀i ai ≥ 0,

∑

j∈J

pijaj ≤ ai, (4.4)

∑

i∈J

ai < ∞ (4.5)

(function ai is summable and excessive for P ), then inequality (4.3) holds and our theorem
is proved. By the well-known criterion of ergodicity of countable Markov chains if P is
transient, then there exist finite excessive functions for P that are not constant. Then by
Riesz theorem (see [14], p.22) and condition (4.5) this function ai must have the following
representation:

ai = (Gϕ)i =
∑

j∈J

Gijϕj < ∞ (4.6)

for some {ϕi}i∈J : ϕi ≥ 0 ∀i. And vice versa, all {ai}i∈J introduced in (4.6) are excessive.
This representation is correct as ∀i, j Gij < ∞. For {ai}i∈J to be summable we require the
following condition: ∑

i∈J

∑

j∈J

Gijϕj < ∞.
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Then the function ai introduced in the statement of theorem 4.1 satisfies (4.4) and (4.5),
thus f(η(n)) appears to be a supermartingale.

Proposition 4.1 If ∃ j0 :
∑
i∈J

Gij0 < ∞, then there exist numbers {ϕi}i∈J : ϕi ≥ 0 such

that the conditions of theorem 4.1 hold.

Proof:
It is sufficient to choose ϕj = δjj0 . If the statement of proposition 4.1 holds, then∑
i∈J

∑
j∈J

Gijϕj < ∞, and thus the conditions of theorem 4.1 are satisfied.

Proposition 4.2 There exist matrices P for which the conditions of proposition 4.1 are
satisfied.

Proof:
Consider J = N,

P =




q p 0 0 0 0 0 0 . . .
q 0 p 0 0 0 0 0 . . .
0 q 0 p 0 0 0 0 . . .
0 0 q 0 p 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .




,
p + q = 1
p, q > 0
p > q

.

This matrix P as a transition operator of a Markov chain describes the behaviour of the
integer–valued random walk with impenetrable barrier at origin:

Wk = max(0,Wk−1 + Bk), k ≥ 1, W0 = i, Bk =

{
1, with probability p,
−1, with probability q.

This random walk is an irreducible aperiodic homogeneous Markov chain. According to the
well–known results for random walks it is also transient (as p > q, see [15], p.28). Therefore

for i, j ∈ J Gij < ∞. Suppose j0 = 1 and prove that
∞∑
i=1

Gi,j0 < ∞. Gi,1 = E (A | W (0) = i)

where A = ] {k : W (k) = 1} denotes the number of k such that W (k) = 1. Introduce the

following sequence of moments
{
τ

(i)
k

}∞
k=1

:

τ
(i)
1 = inf {n ≥ 1 : W (n) = 1} , τ

(i)
k = inf

{
n > τ

(i)
k−1 : W (n) = 1

}
, k > 1, in which our

chain W returns to state 1 provided that W (0) = i. These moments τ
(i)
k form the sequence

of regeneration times for W (which could be also viewed as a regeneration process). Then

θ1 = τ
(i)
1 , θk = τ

(i)
k −τ

(i)
k−1, k > 1 are independent and {θk}k≥2 are also identically distributed

as the duration of regeneration cycles (see [16], p.90). If p > q, then θ1, θ2, θ3, . . . consist
together the terminating renewal process. Let

b1 = P {θ1 = ∞} > 0, b = P {θk = ∞} > 0, k > 1.

Then the number of the last renewal has a distribution P {A = k} = (1−b1)b(1−b)k−1, k ≥ 1,
P {A = 0} = b1. b1 depends on W (0) = i, but b does not. Calculate E (A | W (0) = i) :
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E (A | W (0) = i) = b(1 − b1)
∑
k≥1

k(1 − b)k−1 = (1 − b1)

(
∑
k≥0

kb(1− b)k−1 + b
∑
k≥0

(1− b)k

)
=

(1− b1)
(

1−b
b

+ b
1−(1−b)

)
= 1−b1

b
.

Then

Gi,1 =
P

{
τ

(i)
1 < ∞

}

b
.

Let us prove that P
{
τ

(i)
1 < ∞

}
=

(
q
p

)i−1 ∀i ≥ 1. In order to do that we shall use the method

of generating functions developed in [17], p.84, lemma 1. Denote

τ
(i)
1 (n) =

{
inf {k ≥ 1 : W (k) = 1} , if Wk < n ∀k < τ

(i)
1

∞, otherwise
.

(as before W (0) = i). Let Cn =
{
τ

(i)
1 (n) < ∞

}
, Cn ⊆ Cn+1 ∀n,

∞⋃
n=1

Cn =
{
τ

(i)
1 < ∞

}
,

hence P {Cn} −→
n→∞ P

{
τ

(i)
1 < ∞

}
. Let us calculate P {Cn} ∀n. Introduce the generating

function of τ
(i)
1 (n) :

F n
i (z) = E

(
zτ

(i)
1 (n) | τ (i)

1 (n) < ∞
)

=
∞∑

k=1
zkP

{
τ

(i)
1 (n) = k

}
. Then the following recurrent

formulae could be deduced by means of the total probability formula:

F n
i (z) =





pzF n
i+1(z) + qzF n

i−1(z), 1 < i < n
1, i = 1
0, i = n

. (4.7)

Solving this equation one can see that F n
i (z) = A(z)

(
1−
√

1−4pqz2

2pz

)i

+ B(z)
(

1+
√

1−4pqz2

2pz

)i

,

where A(z) and B(z) could be found from boundary conditions (4.7). And as

P {Cn} = F n
i (1) one can calculate that P {Cn} =

( q
p)

n−( q
p)

i

( q
p)

n− q
p

−→
n→∞

(
q
p

)i−1
. Then

∞∑
i=1

Gi,1 = 1
b

∞∑
i=1

(
q
p

)i−1
= p

b(p−q)
< ∞, so the conditions of proposition (4.1) are satisfied.
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