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Abstract Random closed sets (RACS) in the d–dimensional Euclidean space are consid-
ered, whose realizations belong to the extended convex ring. A family of non-
parametric estimators is investigated for the simultaneous estimation of the vec-
tor of all specific Minkowski functionals (or, equivalently, the specific intrinsic
volumes) of stationary RACS. The construction of these estimators is based on
a representation formula for the expected local connectivity number of station-
ary RACS intersected with spheres, whose radii are small in comparison with
the size of the whole sampling window. Asymptotic properties of the estimators
are given for unboundedly increasing sampling windows. Numerical results are
provided as well.
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Introduction

The theory of random closed sets (RACS) and its morphological aspects
with emphasis on applications to image analysis have been developed in the
second half of the 20th century. This scientific process has been significantly
influenced by the pioneering monographs of G. Matheron [6] and J. Serra [15,
16]. It turned out that Minkowski functionals or, equivalently, intrinsic volumes
are important characteristics in order to describe binary images, since they
provide useful information about the morphological structure of the underly-
ing RACS. In particular, the so–called specific intrinsic volumes of stationary
RACS have been intensively studied for various models from stochastic geom-
etry.

There exist several approaches to the construction of statistical estimators
for particular specific intrinsic volumes of stationary RACS in two and three
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dimensions. However, in many cases, only little is known about goodness
properties of these estimators, like unbiasedness, consistency, or distributional
properties. Furthermore, an extra algorithm has to be designed for the estima-
tion of each specific intrinsic volume separately.

In contrast to this situation, the method of moments proposed in the present
paper provides a unified theoretical and algorithmic framework for simultane-
ous nonparametric estimation of all specific intrinsic volumes, in an arbitrary
dimension d > 2. The construction principle of these estimators, which is sim-
ilar to the approach considered in [11], is based on a representation formula for
the (expected) local connectivity number of stationary RACS intersected with
spheres, whose radii are small in comparison with the size of the whole sam-
pling window. It can be considered as a statistical counterpart to a method
for the simultaneous computation of all intrinsic volumes of a deterministic
polyconvex set based on the principal kinematic formula.

Our estimators are unbiased by definition. Moreover, under suitable inte-
grability and mixing conditions, they are mean–square consistent and asymp-
totically normal distributed. This can be used in order to establish asymptotic
tests for the vector of specific intrinsic volumes.

Notice that the method of moments (which is also called the method of
intensities by some authors) has been used in the analysis of various further
statistical aspects of models from stochastic geometry, for example, in order to
estimate the intensity of germs and other characteristics of the Boolean model;
see e.g. [7], and Sections 5.3–5.4 in [13].

The present paper is organized as follows. Some necessary preliminaries on
Minkowski functionals and intrinsic volumes, respectively, are given in Sec-
tion 1. In Section 2, the computation of intrinsic volumes of deterministic
polyconvex sets is briefly discussed. The above–mentioned representation for-
mula for the (expected) local connectivity number of stationary RACS is stated
in Section 3; see Proposition 3.1. We give an alternative proof of this represen-
tation formula which makes use of an explicit extension of Steiner’s formula
for convex bodies to the convex ring. The result of Proposition 3.1 is then used
in Section 4 in order to construct a family of nonparametric estimators for all
d + 1 specific intrinsic volumes simultaneously. The construction principle
of these estimators is described and their asymptotic properties are discussed.
A related family of least–squares estimators is also provided in Section 4. In
Section 5, some aspects of variance reduction using kriging of the mean are
touched upon. Finally, in Section 6 numerical results are given for the planar
Boolean model with spherical primary grains. They are compared with those
obtained by another method described in [10] for the computation of specific
intrinsic volumes.
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1. Minkowski functionals and intrinsic volumes

Let d > 2 be an arbitrary fixed integer and let K be the family of all convex
bodies, i.e., compact convex sets in Rd. The convex ring R in Rd is the family
of all finite unions

⋃m
i=1 Ki of convex bodies K1, . . . ,Km ∈ K. The elements

of R are called polyconvex sets. Furthermore, the extended convex ring S is
the family of all subsets A ⊂ R

d such that A ∩ K ∈ R for any K ∈ K.
For A,B ⊂ R

d, the Minkowski sum A ⊕ B and the Minkowski difference
A 	 B are defined by A ⊕ B = {x + y : x ∈ A, y ∈ B} and A 	 B =
{x ∈ R

d : B + x ⊂ A}, respectively. For any Borel set B ⊂ R
d, denote

by Vd(B) its Lebesgue measure. It is well known that there exist nonnegative
functionals Vj : K → [0,∞), j = 0, . . . , d such that for each r > 0 the volume
Vd(K ⊕ Br(o)) of the so–called parallel body K ⊕ Br(o) of any K ∈ K is
given by Steiner’s formula

Vd(K ⊕ Br(o)) =

d∑

j=0

rd−jκd−jVj(K) , (1)

where o ∈ R
d denotes the origin, Br(x) = {y ∈ R

d : |y−x| 6 r} is the closed
ball with midpoint x ∈ R

d and radius r, and κj is the volume of the unit ball in
R

j . The functionals Vj are called intrinsic volumes. They are closely related
to the widely known quermassintegrals or Minkowski functionals Wj given by
Wj(K) = Vd−j(K)κj

/(
d
j

)
, K ∈ K. There exists a unique additive extension

of the functionals Vj to the convex ring R given by the inclusion–exclusion
formula

Vj(K1 ∪ . . . ∪ Km) =
m∑

k=1

(−1)k−1
∑

i1<...<ik

Vj(Ki1 ∩ . . . ∩ Kik) (2)

for any K1, . . . ,Km ∈ K. The intrinsic volumes Vj(K), j = 0, . . . , d provide
information about the morphological structure of the polyconvex set K ∈ R.
For example, Vd(K) is the usual volume, 2Vd−1(K) is the surface area, and
the Euler–Poincaré characteristic V0(K) reflects the connectivity properties
of K . Notice that in the planar case, that is d = 2, V0(K) is equal to the
number of ”clumps“ minus the number of ”holes“ of K ∈ R, i.e., the number
of connected outer boundary components of K minus the number of its inner
boundary components. In particular, V0(K) = 1 for any convex body K 6= ∅.
Furthermore, for any K ∈ R and q, x ∈ R

d, q 6= x, the so–called index
J(K, q, x) of K is given by

J(K, q, x) = 1 − lim
δ→+0

lim
ε→+0

V0

(
K ∩ B|x−q|−ε(x) ∩ Bδ(q)

)
(3)

for q ∈ K . For all q 6∈ K , we put J(K, q, x) = 0. In particular, J(∅, q, x) = 0
for arbitrary q, x ∈ R

d.
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2. Computation of intrinsic volumes of a polyconvex set

Given a polyconvex set K ⊂ R
d, apply the principal kinematic formula of

integral geometry (cf. formula (4.5.3) in [12]) to the Euler–Poincaré charac-
teristic of the intersection of K with an arbitrary translation of the ball Br(o).
This yields

∫

K⊕Br(o)
V0(K ∩ Br(x)) dx =

d∑

j=0

rd−jκd−jVj(K) , (4)

where the integration domain is K ⊕ Br(o) since V0(K ∩ Br(x)) = 0 for
x 6∈ K ⊕ Br(o). Introduce the notation Rr =

∫
K⊕Br(o) V0(K ∩ Br(x)) dx.

Writing equation (4) for d + 1 pairwise different radii r0, . . . , rd yields the
following system of d + 1 linear equations:

Ar0...rd
V = R , (5)

where V =
(
V0(K), . . . , Vd(K)

)>
, R = (Rr0

, . . . , Rrd
)> and

Ar0...rd
=




rd
0κd rd−1

0 κd−1 . . . r2
0κ2 r0κ1 1

rd
1κd rd−1

1 κd−1 . . . r2
1κ2 r1κ1 1

. . . . . . . . . . . . . . . . . .

rd
dκd rd−1

d κd−1 . . . r2
dκ2 rdκ1 1


 (6)

is a regular matrix. Then, V = A−1
r0...rd

R is the unique solution of (5). The
integrals Rri

can be approximated by

R̂ri
= ∆d

m∑

k=1

V0(K ∩ Br(xk)) , (7)

where the points x1, . . . , xm belong to a d–dimensional cubic lattice with mesh
size ∆. Thus, the vector V can be computed numerically as

V ≈ A−1
r0...rd

R̂ , (8)

where R̂ is the vector (R̂r0
, . . . , R̂rd

)> of approximations given in (7). This
numerical solution heavily depends on the choice of radii r0, . . . , rd. To reduce
this dependence, a least–squares method can be used; see also [5]. Instead of
(5), consider the (overdetermined) system of linear equations R̂ = Ar0...rk−1

x

for k > d+1 pairwise different radii r0, . . . , rk−1 where x = (x0, . . . , xd)
> ∈

R
d+1. It is well known that the vector

v∗ =
(
A>

r0...rk−1
Ar0...rk−1

)−1
A>

r0...rk−1
R̂ (9)
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is the unique solution of the least–squares minimization problem

| R̂ − Ar0...rk−1
v∗ | = min

x∈Rd+1
| R̂ − Ar0...rk−1

x |

and, therefore, can be regarded as an approximation to the vector V of intrinsic
volumes of K . For a discussion of the practical choice of radii r0, . . . , rk−1,
see [4, 5].

In general, the numerical solutions (8) and (9) of (5) do not necessarily
preserve the positivity property of the volume Vd(K) and the surface area
2Vd−1(K). Practically one can cope with this problem by changing the values
and the number of radii ri as well as distances between them. For a detailed
discussion, see [4].

3. Stationary random closed sets

Let Ξ be a stationary random closed set (RACS) in R
d whose realizations

belong to the extended convex ring S with probability 1. Recall that stationar-
ity of Ξ means the invariance of its distribution with respect to arbitrary trans-
lations in R

d. More details on stationary RACS can be found in many books;
see e.g. [6, 7, 13, 15, 16, 18].

Specific intrinsic volumes

For any K ∈ R, let N(K) = min{m ∈ N : K =
⋃m

i=1 Ki, Ki ∈ K}
denote the minimal number of convex components of the set K , where we put
N(K) = 0 if K = ∅. Assume that

E 2N(Ξ∩[0,1]d) < ∞ . (10)

Then, for any sequence {Wn} of compact and convex observation windows
Wn = nW with W ∈ K such that Vd(W ) > 0 and o ∈ int(W ), the limit
V j(Ξ) = limn→∞ E Vj(Ξ ∩ Wn)

/
Vd(Wn) exists for each j = 0, . . . , d (see

[13], Theorem 5.1.3) and is called the jth specific intrinsic volume of Ξ.

Local Euler–Poincaré characteristic

The expectation E V0 (Ξ ∩ Br(x)) is called local Euler–Poincaré charac-
teristic or, equivalently, local connectivity number of Ξ, where r > 0 is an
arbitrary fixed number. For r = 1, the following representation formula for
E V0 (Ξ ∩ B1(x)) can be found e.g. in [13], Corollary 5.3.2, where its proof
is based on the principal kinematic formula. In the present paper, we give an
alternative proof for any r > 0, which makes use of an explicit extension of
Steiner’s formula (1) to the convex ring; see [12].
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Proposition 3.1. For any r > 0 and x ∈ R
d, it holds

E V0 (Ξ ∩ Br(x)) =

d∑

j=0

rd−jκd−jV j(Ξ) . (11)

Proof. Consider the stationary random field {Zr(x), x ∈ R
d}, where

Zr(x) =
∑

q∈∂Ξ∩Br(x), q 6=x

J(Ξ ∩ Br(x), q, x) .

and J
(
Ξ ∩ Br(x), q, x

)
is given by (3). In [11], we showed that E Zr(x) =∑d−1

j=0 rd−jκd−jV j(Ξ) holds for any x ∈ R
d. Thus, it suffices to prove that

E V0 (Ξ ∩ Br(x)) = E Zr(x) + V d(Ξ). Notice that the function f(r) =
E Zr(x) is continuously differentiable as a polynomial in r, where f(r) =∫ r

0 f (1)(s) ds since f(0) = 0. Furthermore, for any s > 0, we have

f (1)(s) =
d

ds
E V0(Ξ ∩ Bs(x)) , (12)

where the derivative on the right–hand side does not depend on x by the sta-
tionarity of Ξ. In order to show (12), let Ao be a sufficiently small open cube
with diagonals crossing at the origin o such that Ao ⊂ int(Bs(o)). Then, for
any ∆s > 0, we have

Zs+∆s(o) − Zs(o) =
∑

q∈∂Ξ∩(Bs+∆s(o)\Bs(o))

J
(
Ξ ∩ Bs+∆s(o), q, o

)

=
∑

q∈∂Ξ∩(Bs+∆s(o)\Bs(o))

J
(
(Ξ \ Ao) ∩ Bs+∆s(o), q, o

)

= V0((Ξ \ Ao) ∩ Bs+∆s(o)) − V0((Ξ \ Ao) ∩ Bs(o))

= V0(Ξ ∩ Bs+∆s(o)) − V0(Ξ ∩ Bs(o)) ,

where the third equality follows from the fact that
∑

q∈∂A∩Br(o)

J((A \ Ao) ∩ Br(o), q, o) = V0((A \ Ao) ∩ Br(o))

for each A ∈ S and for any r > 0 such that Ao ⊂ int(Br(o)). This gives

f (1)(s) = lim
∆s↓0

E
Zs+∆s(o) − Zs(o)

∆s

= lim
∆s↓0

E
V0(Ξ ∩ Bs+∆s(o)) − V0(Ξ ∩ Bs(o))

∆s
=

d

ds
E V0(Ξ ∩ Bs(o)) .
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Now, using (12), f(r) can be rewritten as

f(r) =
∫ r

0
d
ds

E V0(Ξ ∩ Bs(o)) ds = E V0(Ξ ∩ Br(o)) − E V0(Ξ ∩ {o})

= E V0(Ξ ∩ Br(o)) − E 1Ξ(o) = E V0(Ξ ∩ Br(o)) − V d(Ξ) ,

where 1Ξ denotes the indicator of Ξ.

It is well known that the Minkowski functionals of polyconvex sets can be
defined through the Euler–Poincaré characteristics of their lower dimensional
sections by means of Crofton’s formula; see e.g. [13, 18]. Proposition 3.1
immediately implies that

V j(Ξ) =
1

(d − j)!κd−j

·
d(d−j)E V0(Ξ ∩ Br(x))

dr(d−j)

∣∣∣
r=0

for any j = 0, . . . , d−1 and x ∈ R
d. Thus, similarly to Crofton’s formula, the

specific intrinsic volumes of stationary RACS can be expressed by their local
Euler–Poincaré characteristics.

4. Estimation of specific intrinsic volumes

In this section, similar to the approach considered in [11], the method of
moments is used to construct joint nonparametric estimators for the specific
intrinsic volumes V j(Ξ), j = 0, . . . , d.

Indirect estimation via local Euler–Poincaré characteristics

For any d + 1 positive pairwise different radii rj , Proposition 3.1 yields the
following system of d+1 linear equations with respect to the variables V j(Ξ),
j = 0, . . . , d:

Ar0...rd
v = c, (13)

where Ar0...rd
is the matrix introduced in (6), v = (V 0(Ξ), . . . , V d(Ξ))> and

c = (E V0(Ξ ∩ Br0
(o)), . . . , E V0(Ξ ∩ Brd

(o)))>. Similar to the determin-
istic case of Section 2, choose an appropriate estimator ĉ for c and define the
estimator v̂ for v by

v̂ = A−1
r0...rd

ĉ (14)

in order to estimate the vector v of specific intrinsic volumes from a single re-
alization of Ξ observed in a certain window W ∈ K. For any r > 0 such that
Vd(W 	 Br(o)) > 0, consider the stationary random field {Yr(x), x ∈ R

d}
with Yr(x) = V0 (Ξ ∩ Br(x)). An unbiased estimator for yr = E Yr(o) is
given by ŷr =

∫
W	Br(o) Yr(x)µ(dx), where µ is an arbitrary probability mea-

sure concentrated on W 	Br(o) ⊂ R
d. For instance, µ can be the normalized

Lebesgue measure µ(·) = Vd(· ∩W 	Br(o))/Vd(W 	Br(o)) on W 	Br(o),
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or a discrete measure µ(·) =
∑m

i=1 wiδxi
(·) with measurements at locations

x1, . . . , xm ∈ W 	 Br(o) and weights wi > 0 such that w1 + . . . + wm = 1.
Notice that integration is performed over the reduced window W 	 Br(o) to
avoid edge effects, since the computation of V0 (Ξ ∩ Br(x)) for x ∈ W re-
quires the knowledge of Ξ in the r–neighborhood of x while Ξ is observed only
within W . Thus, assuming that Vd(W 	 Brj

(o)) > 0 for each j = 0, . . . , d,
an unbiased estimator ĉ for c is given by

ĉ =
(∫

W	Br0
(o)

Yr0
(x)µ(dx) , . . . ,

∫

W	Brd
(o)

Yrd
(x)µ(dx)

)>
.

Mean–square consistency and asymptotic normality

For µ(·) = Vd(· ∩ W 	 Br(o))/Vd(W 	 Br(o)), the integral

ŷr =

∫

W	Br(o)
Yr(x)µ(dx)

is the least–squares estimator for yr, which is mean–square consistent as W ↑
R

d provided that some integrability conditions are satisfied; see e.g. [3], p. 131.
This means that for a sequence {Wn} of unboundedly increasing sampling
windows with Wn = nW , we have E (ŷr,n − yr)

2 → 0 as n → ∞, where
ŷr,n =

∫
Wn	Br(o) Yr(x)µn(dx) and

µn(·) = Vd(· ∩ Wn 	 Br(o))/Vd(Wn 	 Br(o)) ;

see also [11]. Assuming that E 4N(Ξ∩[0,1]d) < ∞, it can be shown that the
covariance functions Crirj

(x) = E (Yri
(o)Yrj

(x)) − yri
yrj

are well defined;
i, j = 0, . . . , d. Furthermore, under suitable mixing conditions on Ξ and as-
suming that

∫
Rd |Crirj

(x)| dx < ∞, the random vector
√

Vd(Wn 	 Br(o))
(
ŷr0,n − yr0

, . . . , ŷrd,n − yrd

)

is asymptotically normal distributed, where the asymptotic covariance matrix
is given by (

∫
Rd Crirj

(x) dx)d
i,j=0 and can be consistently estimated; see [3],

Section 3.1, and [11]. Notice that the integrability and mixing conditions men-
tioned above are fulfilled, for example, for rapidly mixing germ–grain models
including the well–known Boolean model; see e.g. [6, 7, 14]. We also re-
mark that the estimator v̂n = A−1

r0...rd
(ŷr0,n, . . . , ŷrd,n)> for v is mean–square

consistent and asymptotically normal distributed, provided that the estimator
(ŷr0,n, . . . , ŷrd,n)> for c possesses these properties.

Least–squares estimator

The least-squares approach of Section 2 also applies (with minor changes) to
the case of stationary RACS. For k > d+1 pairwise different radii r0, . . . , rk−1
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such that Vd(W 	Brj
(o)) > 0, j = 0, . . . , k, the corresponding solution of the

least squares minimization problem is v∗ = (A>
r0...rk−1

Ar0...rk−1
)−1A>

r0...rk−1
ŷ,

where ŷ = (ŷr0
, . . . , ŷrk−1

)> with ŷrj
=

∫
W	Brj

(o) Yrj
(x)µ(dx). Notice that

the estimator v∗ = (v∗0 , . . . , v∗d)
> for the vector v = (V 0(Ξ), . . . , V d(Ξ))> of

specific intrinsic volumes of Ξ is much more robust with respect to the choice
of radii r0, . . . , rk−1 than the estimator v̂ given in (14).

5. Estimation variance and spatial sampling designs

Besides unbiasedness, another important criterion for goodness of the es-
timator v̂ given in (14) is related to its variance properties, where the radii
r0, . . . , rd and the averaging probability measure µ should be chosen in such a
way that the estimation variance σ2 = V ar(v̂) = E |v̂− v|2 is possibly small.

Bound on the estimation variance

Unfortunately, it seems to be impossible to determine the estimation vari-
ance σ2 = V ar(v̂) = E |A−1

r0...rd
(ĉ − c)|2 explicitly. However, it is easy to get

an upper bound for σ2. Namely, (14) implies that

σ2
6 ‖A−1

r0...rd
‖2E |ĉ − c|2 = ‖A−1

r0...rd
‖2

d∑

j=0

V ar(ŷrj
) , (15)

where

‖A−1
r0...rd

‖2 = max
i=0,...,d

λi

(
(Ar0...rd

A>
r0...rd

)−1
)

=
1

min
i=0,...,d

λi(Ar0...rd
A>

r0...rd
)

is the squared matrix norm of A−1
r0...rd

and λi(A) is the ith eigenvalue of the
matrix A. Notice that ‖A−1

r0...rd
‖ is finite. Thus, it is reasonable to choose

r0, . . . , rd and µ such that the bound in (15) becomes small. Consider the
variance V ar(ŷrj

) = E(ŷrj
− yrj

)2 appearing in (15). For any fixed r > 0,
let P denote the family of all probability measures on W 	 Br(o) and let the
function L : P → (0,∞) be defined by L(µ) = E(ŷr − yr)

2 for each µ ∈ P .
By Fubini’s theorem, we can write

E(ŷr − yr)
2 =

∫

W	Br(o)

∫

W	Br(o)
Crr(x − x′)µ(dx)µ(dx′) . (16)

Suppose that L(µ0) = minµ∈P L(µ) holds for some µ0 ∈ P . Then, using the
methods of variational analysis developed e.g. in [8] (see also [17]), it can be
shown that the function g(x) =

∫
W	Br(o) Crr(x − h)µ0(dh) necessarily has

the following properties:

g(x) = L(µ0) µ0–a.e. and g(x) > L(µ0) for all x ∈ R
d .
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Discrete sampling designs

Suppose now that L(µ0) = minµ∈P L(µ) holds for some discrete probabil-
ity measure µ0 ∈ P such that µ0(·) =

∑m
i=1 wiδxi

(·) for some integer m > 1,
where x1, . . . , xm ∈ W 	Br(o) and w1, . . . , wm > 0 with w1+. . .+wm = 1.
Then, it can be shown that L(µ0) = (e>Q−1

r e)−1 =
(∑n

i,j=1 q−1
ij

)−1
holds

provided that the number of atoms m and the atoms x1, . . . , xm themselves
satisfy the condition

q>r (x)Q−1
r e > 1 for all x ∈ R

d (17)

and the covariance matrix Qr = (Crr(xi − xj))
m
i,j=1 is regular, where e =

(1, . . . , 1)>, Q−1
r =

(
q−1
ij

)m

i,j=1
denotes the inverse matrix of Qr and qr(x) =

(Crr(x − x1), . . . , Crr(x − xn))> for any x ∈ R
d. Moreover, in this case, the

vector of weights w = (w1, . . . , wm)> is given by

w = L(µ0)Q
−1
r e . (18)

Notice that, for fixed sampling points x1, . . . , xm, formula (18) coincides with
the kriging of the mean; see [19]. In this case, the estimator ŷr with weights
given by (18) is also known as the generalized least–squares estimator of the
trend; see [9], p. 11. On the other hand, the locations x1, . . . , xn can be chosen
iteratively using gradient algorithms described e.g. in [9].

Anyhow, the choice of an appropriate number m of sampling points, loca-
tions x1, . . . , xm and weights w1, . . . , wm depends on the covariance function
Crr : R

d → R which is unknown in general. Therefore, Crr(h), h ∈ R
d

has to be estimated from data. Sometimes it is preferable to consider the va-
riogram function γr : R

d → R with γr(h) = 1
2 E (Yr(x) − Yr(x + h))2,

h, x ∈ R
d, instead of Crr since it can be estimated more easily. For cor-

responding estimation techniques and algorithms, see e.g. [1, 2, 19]. Since
γr(h) = Crr(o)−Crr(h) holds for any h ∈ R

d, (17) and (18) can be rewritten
as

p>r (x)Γ−1
r e 6 1 for all x ∈ R

d (19)

and
w = γ0Γ

−1
r e , (20)

respectively, where Γr = (γr(xi − xj))
m
i,j=1, γ0 = (e>Γ−1

r e)−1 and pr(x) =

(γr(x − x1), . . . , γr(x − xm))>.

6. Numerical results

To test the performance of the above estimation method, 200 realizations of
a planar Boolean model Ξ (d = 2) with circular grains were generated in the
observation window W = [0, 1000]2 . Let λ be the intensity of the stationary
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Poisson point process X = {Xi} of germs and let the grains Ξi be independent
circles with radii that are uniformly distributed on [20, 40]. Then, Ξ is given
by Ξ =

⋃∞
i=1(Ξi +Xi). The intensity λ was chosen to fit the volume fractions

V 2(Ξ) = 0.2, 0.5, 0.8, respectively. For each realization, the vector v of
specific intrinsic volumes of Ξ was estimated using the radii r0 = 10, ri+1 =
ri+1.3, i = 0, . . . , 49 in the least–squares method. In the estimation, sampling
was performed on the regular square lattice of points x1, . . . , xm with mesh
size ∆ = 5. Finally, vector v∗ = (v∗0, v

∗
1, v

∗
2) was built being the arithmetic

mean over the results of 200 realizations. Its values are compared with the
theoretical counterparts v = (V 0(Ξ), V 1(Ξ), V 2(Ξ)) in Table 1. Additionally,
the specific intrinsic volumes were estimated by the method described in [10]
from the same 200 realizations of Ξ. The resulting arithmetic means ṽ0, ṽ1, ṽ2

are also presented in Table 1. To compare the precision of both algorithms, the
relative error δA,B = B−A

A
· 100% of an estimated quantity B with respect to

the theoretical value A is given. It is clear from Table 1 that the performance of

Table 1. Theoretical and estimated values of specific intrinsic volumes

V 2(Ξ) 0.2 0.5 0.8

v∗

2 0.194299 0.490611 0.793328
ev2 0.199362 0.498217 0.798085
δV 2,v∗

2

, % −2.85 −1.88 −0.83

δV 2,ev2
,% −0.32 −0.36 −0.24

2V 1(Ξ) 0.011476 0.02228 0.020693

2v∗

1 0.012123 0.023402 0.021547
2ev1 0.011361 0.021947 0.02022
δV 1,v∗

1

, % 5.64 5.04 4.13

δV 1,ev1
, % −1.0 −1.5 −2.29

V 0(Ξ) × 104 0.4778163 0.3919529 −0.6059316

v∗

0 × 104 0.4348681 0.1555031 −0.10798772
ev0 × 104 0.4312496 0.1595565 −0.10672334
δV 0,v∗

0

, % −8.99 −60.33 78.22

δV 0,ev0
, % −9.75 −59.29 76.13

our algorithm is comparable to that of the method described in [10]. Hovewer,
the above results can be improved by taking e.g. ∆ = 1. In fact, the precision
of our computations can be controlled by changing the sampling design as
well as the number and values of dilation radii. The increase of the numbers of
radii and sampling points results in a higher precision. This implies longer run
times. Hence, the parameters of the algorithm should be tuned in accordance
with the needs of specific applications; see [4] for an extensive discussion.
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