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Abstract. An algorithm is proposed for the simultaneous computation of all Minkowski functionals
(except for the volume) of sets from the convex ring in R

d discretized with respect to a given regular
lattice. For this purpose, a polyhedral approximation is used to reconstruct their boundary structure.
In the planar case d = 2, the performance and precision of the algorithm is studied on various examples
of particular polyconvex sets. The algorithm is implemented in Java for two different approximation
systems. The results of numerical experiments are compared with those obtained by other methods
known in the literature.
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1 Introduction

Morphological characteristics of binary images such as volume, boundary area, curvature and connectivity
number known as Minkowski functionals , quermaßintegrals , or intrinsic volumes are of great importance
in geometry and image analysis; see e.g. [2], [8], [10]. They characterize the geometric structure of
images and provide the basis for image modelling and classification. Mathematically, binary images
can be thought of as continuous sets discretized with respect to a certain regular lattice. Likewise, in
many cases, continuous geometric objects must be represented as ensembles of pixels on discrete grids
in order to be processed by computers. Thus, the problem of fast, precise and robust computation of
morphological characteristics of discretized sets has been lively discussed in the mathematical literature
of the last decade; see e.g. [4], [5], [6], [13].

In the present paper, a new approach to the computation of Minkowski functionals for finite unions of
convex sets (or, equivalently, polyconvex sets) is described. It leads to an algorithm that has the following
advantages. First, unlike other related methods, it computes all Minkowski functionals (except for the
volume) of a polyconvex set in R

d simultaneously. Thus, separate algorithms for the computation of each
Minkowski functional are superfluous. Second, in numerical experiments for the planar case d = 2, our
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algorithm showed high computational precision. Third, it is fast requiring only one single scan of the
image. Finally, it is quite flexible since it possesses free parameters, which have the meaning of dilation
radii.

The paper is organized as follows. In Section 2, some necessary preliminaries are given. In particular, the
theoretical background for the algorithm is provided by an explicit extension of Steiner’s formula to the
convex ring; see Section 2.1. In Section 2.2, a short introduction into the discretization of continuous sets
and their polyhedral approximation is given, because we suppose that the input image is given by a finite
number of points and that no extra information about the image structure is available. In Section 3, the
general idea of the algorithm is described. It is shown how a polyhedral approximation of the underlying
continuous set is constructed and how the Minkowski functionals of this approximated set are computed.
An upper bound on the computational error is given in Section 3.4. Some thoughts for an appropriate
choice of the dilation radii are discussed in Section 3.6. The general framework of Section 3, which does
not depend on dimension d, is then specified in Section 4 for the planar case d = 2 where weight functions
are explicitly determined for each possible configuration of neighborhood pixels of a given boundary pixel
of the input set. The three–dimensional case d = 3 is briefly touched upon in Section 5. Notice that for
the cases d = 2, 3, the algorithm has been implemented in Java and integrated into the GeoStoch library
(see [1]), where the code has been tested on various examples of particular polyconvex sets. In Section 6,
the results of numerical experiments are discussed and compared to those of conventional computation
methods. For test purposes, polyconvex sets with known Minkowski functionals are used.

2 Preliminaries

2.1 Intrinsic volumes of polyconvex sets

Let K be the family of all compact, convex sets (or convex bodies) in R
d, where d > 2 is an arbitrary

fixed integer. Let R be the convex ring in R
d, i.e. the family of all finite unions of convex bodies in R

d.
The elements of R will be referred to as polyconvex sets. By Vd(K) we denote the d–dimensional volume
of K ∈ K. Let o ∈ R

d be the origin in R
d and Br(x) the closed ball in R

d with radius r > 0 and center
at x ∈ R

d. It is well known that nonnegative functionals Vj : K → [0,∞), j = 0, . . . , d, exist such that
for each r > 0 the volume Vd(K ⊕ Br(o)) of the so–called parallel set K ⊕ Br(o) of any K ∈ K is given
by Steiner’s formula

Vd(K ⊕ Br(o)) =

d∑

j=0

rd−jkd−jVj(K) , (2.1)

where kj is the (j–dimensional) volume of the unit ball in R
j, j = 0, . . . , d. Notice that the functionals

Vj : K → [0,∞) in (2.1) are called intrinsic volumes. Numbered in reverse order and properly normed,
these functionals are also known as Minkowski functionals or quermaßintegrals Wj : K → [0,∞), where

Wj(K) = kj Vd−j(K)
/ (d

j

)
for any K ∈ K. Later on, we shall use intrinsic volumes because of convenience

of notation. Intrinsic volumes have a nice geometric interpretation. In the 2D case, that is d = 2, V2(K)
is the area and 2V1(K) is the boundary length of K. In the 3D case, V3(K) is the usual volume, 2V2(K)
is the surface area and V1(K)/2 is the mean breadth of K ∈ K. For any d > 2, we have V0(K) = 1 for
any convex body K ⊂ R

d.
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Figure 2.1: Computation of J(K, q, x)
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Figure 2.2: Computation of Ir(K,x)

For each j = 0, . . . , d, there exists a unique additive extension of the functional Vj to the convex ring R,
given by the usual inclusion–exclusion technique; see e.g. formula (2) in [7]. Some of the intrinsic volumes
(in particular, Vd and Vd−1) preserve their geometric interpretation, while others do not. For instance,
V0(K) is equal to the Euler–Poincaré characteristic χ(K) of K ∈ R, which describes the connectivity of
the set K. In the 2D case, χ(K) is equal to the number of “clumps” minus the number of “holes” in K.
In general, χ(K) can be represented as a linear combination of Betti numbers; see e.g. [6].

Our algorithm for the computation of intrinsic volumes is based on an explicit extension of Steiner’s
formula (2.1) to R. This extension method makes use of the index function J (K ∩ Br(x), q, x) defined
by

J(K, q, x) =

{
1 − lim

δ→+0
lim

ε→+0
V0

(
K ∩ B|x−q|−ε(x) ∩ Bδ(q)

)
, if q ∈ K,

0, otherwise,
(2.2)

for any K ∈ R and q, x ∈ R
d. Figure 2.1 illustrates the computation of J(K, q, x) for a simple convex

body K ⊂ R
2. Furthermore, for any r > 0, the functional ρr : R → R is defined by

ρr(K) =

∫

Rd

Ir(K,x) dx with Ir(K,x) =
∑
q 6=x

J (K ∩ Br(x), q, x) (2.3)

for each K ∈ R. Notice that the sum in (2.3) runs only over a finite set of boundary points q of K;
see [8]. In Figure 2.2, the computation of Ir(K,x) is illustrated. For the points q1, q3 and q5 in Figure
2.2 that are projections of x on the boundary ∂K ∩ Br(x) the index function is equal to 1, whereas it
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Figure 2.3: Volume of the parallel set counted with multiplicities

is equal to −1 for q2 and q4 that are concavity points of ∂K ∩ Br(x). For all other q ∈ K ∩ Br(x) the
index function vanishes, i.e. J(K ∩ Br(x), q, x) = 0. Consequently, in this example, Ir(K,x) = 1 holds.
For any K ∈ K we have Ir(K,x) = 1(x ∈ (K ⊕Br(o)) \ K) and therefore ρr(K) = Vd((K ⊕ Br(o)) \ K).
In general, ρr(K) can be interpreted for K ∈ R as the volume of the parallel set K ⊕ Br(o) counted
with multiplicities; see Figure 2.3. Considering the weighted volume ρr(K) instead of the usual volume
Vd(K ⊕ Br(o)) of the parallel set K ⊕ Br(o), the following extension of Steiner’s formula (2.1) to the
convex ring R holds (see e.g. [8], pp. 220–222):

ρr(K) =
d−1∑

j=0

rd−jkd−jVj(K) , K ∈ R . (2.4)

For pairwise different radii r0, . . . , rd−1 > 0, we get d equations of the type (2.4) which form the following
system of linear equations

ρr0(K) =
d−1∑

j=0

rd−j
0 kd−jVj(K) , . . . , ρrd−1

(K) =
d−1∑

j=0

rd−j
d−1kd−jVj(K) , (2.5)

or, equivalently, in matrix form we have Ar0...rd−1
V (K) = ρ(K), where

Ar0...rd−1
=




rd
0kd rd−1

0 kd−1 . . . r2
0k2 r0k1

rd
1kd rd−1

1 kd−1 . . . r2
1k2 r1k1

. . . . . . . . . . . . . . .

rd
d−1kd rd−1

d−1kd−1 . . . r2
d−1k2 rd−1k1


 , (2.6)

V (K) = (V0(K), . . . , Vd−1(K))> and ρ(K) = (ρr0(K), . . . , ρrd−1
(K))>. Since the matrix Ar0...rd−1

in (2.6)
is regular, a unique solution V (K) = A−1

r0...rd−1
ρ(K) of the above system of linear equations exists. Hence,

using (2.5), one can compute the vector V (K) of the intrinsic volumes of K ∈ R, provided that the
vector ρ(K) is known.
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2.2 Discretization and polyhedral approximation

Consider the subset L
d = {x ∈ R

d : x =
∑d

i=1 λiui, λi ∈ Z} of R
d, where the vectors

u1 = (∆1, 0, . . . , 0)
>, . . . , ud = (0, . . . , 0,∆d)

>

form an orthogonal basis of R
d and ∆1, . . . ,∆d > 0 are some constants. The set L

d is called a rectangular

lattice with lattice spacings ∆1, . . . ,∆d. The unit cell L of the lattice is the Minkowski sum of the
half-open segments [o, u1), . . . , [o, ud). In the following, we will consider cubic lattices L

d = ∆Z
d, i.e.,

∆1 = ∆2 = . . . = ∆d = ∆ > 0. However, our results can be easily extended to the case of general
rectangular lattices.

Consider an arbitrary set K ∈ R. Since in many computer applications one deals with binary images that
are represented by finite sets of black pixels on the white background, we assume that the discretization

K ∩ L
d of K with respect to the lattice L

d is given and any other extra information about K is not
available. It is convenient to interpret K ∩ L

d as a binary image, i.e., as a finite set of “black” or
foreground pixels x ∈ K ∩ L

d on the “white” grid L
d (the so–called background). This means that we

identify the set K ∩L
d with its indicator function 1K∩Ld : L

d → {0, 1}, i.e., 1K∩Ld(x) = 1 if x ∈ K ∩L
d,

and 1K∩Ld(x) = 0, otherwise.

In order to compute the left–hand sides of the linear equations considered in (2.5) for a set K ∈ R from
its discretization K ∩ L

d, one should be able to evaluate the sum of index functions in (2.3). Due to the
geometric nature of the index function that implicitly involves the boundary of K, one has to define the
“boundary” of K ∩ L

d. In other words, the boundary of K has to be “reconstructed” or, better to say,
approximated from its discretized version K ∩ L

d. One possible way to do that is to approximate K by
a union of polytopes with vertices belonging to the grid L

d.

To describe this approximation procedure formally, the following notation is useful. For any polytope
P ⊂ R

d and for each k = 0, . . . , d, the set of k-facets of P is denoted by F k(P ). For instance, F 0(P ) is the
set of vertices, F1(P ) is the set of edges of P , and F d(P ) is the polytope P itself. Let G = {P1, P2, . . . , Pn}
be a set polytopes with Pi ⊆ L and F0(Pi) ⊆ F0(L), for i = 1, . . . , n , where L denotes the topological
closure of the lattice cell L. The set G is called a generator of the approximation. The invariance group
of L

d, i.e., the group of all rigid motions in R
d that map L

d onto itself is denoted by T
d. Applying this

group to the generator G results in the set

G = {T (P ) : P ∈ G, T ∈ T
d} . (2.7)

The approximation system F(G) with respect to the generator G is defined by F(G) =
⋃d

k=0 Fk(G), where
Fk(G) =

⋃
Q∈G Fk(Q) for each k = 0, . . . , d.

For any K ∈ R, the family of those elements of F(G) whose vertices belong to K ∩ L
d is denoted by

K u F(G) =
⋃d

k=0(K u Fk(G)), where K u Fk(G) = {P ∈ Fk(G) : F0(P ) ⊂ K ∩ L
d}. The polyhedral

approximation KF(G) of K with respect to F(G) is then defined as KF(G) =
⋃

P∈KuF(G) P .

Notice that in contrast to the family of “construction bricks” KuF(G), the set KF(G) is the (finite) union

of all polytopes from K u F(G). A point x ∈ K ∩ L
d is called a boundary point of the discretized set

K ∩L
d with respect to the system F(G) if x ∈ ∂KF(G). The set of all boundary points of K ∩L

d will be

denoted by ∂(K ∩ L
d).
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Figure 2.4: 4–neigborhood and 8–neighborhood

The above approximation method is bound to the connectivity or neighborhood relation on graphs. A
neighborhood relation γ for F(G) is given by the set γ of non–ordered pairs 〈x, y〉 of vertices x, y ∈ L

d

such that
γ =

{
〈x, y〉 : x, y ∈ F0(L), (x, y) ⊂ L, [x, y] ⊂ F 1(G)

}
, (2.8)

where (x, y), [x, y] are the open and closed segments, respectively, connecting the vertices x and y. The
neighborhood graph Γ with respect to F(G) is then defined as Γ =

(
L

d,
⋃

x∈Ld(x+γ)
)
, where L

d is the set
of nodes and

⋃
x∈Ld(x + γ) the set of non–oriented edges. For any point x ∈ L

d, its neighborhood NΓ(x)
with respect to the graph Γ is introduced as NΓ(x) = {y ∈ L

d : 〈x, y〉 ∈ ⋃
z∈Ld(z + γ)} ∪ {x}.

2.3 Examples for the planar case

In the following, two special approximation systems for the 2D case are described. Let d = 2 and let
l0 = (0, 0), l1 = (∆, 0), l2 = (∆,∆), l3 = (0,∆) be the vertices of the unit cell L of the square lattice
L

2 = ∆Z
2. Furthermore, by conv{x1, . . . , xk} we denote the convex hull of points x1, . . . , xk ∈ R

2.

The generator Gmax of the so–called maximal approximation system F(Gmax) consists only of one triangle,
namely Gmax = {conv{l0, l1, l2}}. It can be easily seen that F(Gmax) implies the neighborhood relation
γ that is well–known as the 8–neighborhood in image analysis; see [11]. Namely, each point x0 ∈ L

2 has
exactly ν = 8 neighbors x1 = x0+l1, x2 = x0+l2, x3 = x0+l3, x4 = x0−l1+l3, x5 = x0−l1, x6 = x0−l2,
x7 = x0 − l3, x8 = x0 + l1 − l3, where we briefly write NΓ(x0) = {x0, . . . , x8}. Notice that the pixels of
NΓ(x0) are counterclockwise ordered in a “spiral” way beginning with the central pixel x0; see Figure
2.4. Roughly speaking, the approximation system F(Gmax) contains all lattice points, all edges between
neighboring lattice points and all triangles whose vertices are neighboring lattice points in the sense of
the 8–neighborhood.

The minimal approximation system F(Gmin) in R
2 is generated by the closed lattice cell L of L

2, i.e.,
Gmin =

{
L

}
. It can be easily seen that F(Gmin) yields the so–called 4–neighborhood; see Figure 2.4. That

is, each point x0 ∈ L
2 has exactly ν = 4 neighbors x1 = x0 + l1, x3 = x0 + l3, x5 = x0 − l1, x7 = x0 − l3.

Suppose that the discretization K ∩ L
2 of a polyconvex set K ⊂ W ⊂ R

2 is given. Using the polygons
of F(Gmax) as construction stones, the approximation KF(Gmax) can be built, which itself is a polygon
with the following boundary structure. A point q0 ∈ K ∩ L

2 is a boundary point of KF(Gmax), that is
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Figure 2.5: Approximation of a discretized set by F(Gmin) and F(Gmax) (left to right)

q0 ∈ ∂KF(Gmax), if at least one pixel qi of its 4–neighborhood {q1, q3, q5, q7} does not belong to K ∩ L
2,

where q1 = q0 + l1, q3 = q0 + l3, q5 = q0 − l1, q7 = q0 − l3. In terms of binary images, a foreground pixel
q0 belongs to ∂KF(Gmax) if there is at least one background pixel in its 4–neighborhood.

Analogously, on the basis of F(Gmin), the polygonal approximation KF(Gmin) of a polyconvex set K can
be built from its digitized version K ∩ L

2. Then, a point q0 ∈ K ∩ L
2 is a boundary point of KF(Gmin),

that is q0 ∈ ∂KF(Gmin), if at least one lattice point qi of its 8–neighborhood {q1, . . . , q8} does not belong to
K ∩L

2. Hence, although the 4–neighborhood relation is used for the polygonal approximation of the set
K, we have to consider the 8–neighborhood of a given pixel to decide whether it belongs to the boundary
∂KF(Gmin) or not.

Figure 2.5 shows a discretized set K ∩ L
2 as well as its approximations using F(Gmin) and F(Gmax),

respectively. It is clear that the boundary structure of KF(G) can look very different depending on the
generator G and on the resolution ∆. In particular, significant changes can happen with respect to the
connectivity of KF(G) in comparison to K. Hence, any computation of intrinsic volumes of K based on an
approximation KF(G) is subject to a substantial approximation error. This phenomenon is well–known
especially in the case of the Euler–Poincaré characteristic; see e.g. [10], p. 220. An upper bound on the
approximation error is given in Section 3.4.

3 Algorithm

3.1 Basic idea and computational efficiency

In the following, saying that we compute the intrinsic volumes of the discretized set K ∩L
d, we mean the

computation of the intrinsic volumes of the polyhedral approximation KF(G) of K ∈ R. In other words,
an algorithm is described that approximates the vector V (K) of intrinsic volumes on the basis of the
polyhedral approximation KF(G) of K defined in Section 2.2. Thus, instead of ρ(K) and V (K), we will
compute the corresponding approximations ρ(KF(G)) and V (KF(G)), respectively.

Recall that formulae (2.4)–(2.5) provide the theoretical background for the practical computation of
V (KF(G)). This means that first an algorithm should be constructed in order to compute the vector
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ρ(KF(G)) whose components are given by (2.3). Then, the vector V (KF(G)) = A−1
r0...rd−1

ρ(KF(G)) can be

easily determined, where A−1
r0...rd−1

is the inverse of the matrix Ar0...rd−1
given in (2.6).

Thus, the main task is to compute the quantity ρr(KF(G)) for a fixed r > 0. This will be done in three

steps. First, we discretize the integral in (2.3) with respect to the lattice L
d, which gives

ρr(KF(G)) ≈ Rr(KF(G)) = ∆d
∑

x∈(∂KF(G)⊕Br(o))∩Ld

∑

q∈∂KF(G)\{x}
J(KF(G) ∩ Br(x), q, x) (3.1)

or, equivalently,

Rr(KF(G)) = ∆d
∑

x∈(∂KF(G)⊕Br(o))∩Ld

( ∑

q∈∂(K∩Ld)\{x}
+

∑

q∈∂KF(G)\
(
∂(K∩Ld)∪{x}

)

)
J(KF(G) ∩ Br(x), q, x) ,

where the inner sum in (3.1) has been decomposed into two sums considering those boundary points
q 6= x of KF(G) separately which belong to the lattice L

d and those which do not possess this property,
respectively. Recall that the first as well as the second inner sum extend over finitely many q ∈ ∂KF(G)

only. For reasons of computational efficiency, we interchange the resulting sums getting

Rr(KF(G)) = ∆d
∑

q∈∂(K∩Ld)

Sr(q) + ∆d
d−1∑

k=1

∑

P∈Fk(G), P⊂∂KF(G)

Mr(P ) , (3.2)

where

Sr(q) =
∑

x∈Ld, 0<|x−q|6r

J(KF(G) ∩ Br(x), q, x) , Mr(P ) =
∑

x∈Dr(P )

J(KF(G) ∩ Br(x), τP (x), x) , (3.3)

and

Dr(P ) = {x ∈ L
d : J(KF(G) ∩ Br(x), τP (x), x) 6= 0, τP (x) ∈ int(P ), 0 < |x − τP (x)| 6 r}

is the set of those lattice points x for which their orthogonal projection τP (x) on the k–dimensional
“plane” induced by the k–facet P belongs to the (k–dimensional) interior int(P ) of P and the Euclidean
distance |x− τP (x)| is positive, but not larger than r. Finally, in the third step of the algorithm, we have
to compute the inner sums Sr(q) and Mr(P ) given in (3.3).

Notice that τP (x) 6∈ L
d if x ∈ Dr(P ). Furthermore, the “weight” Mr(P ) of the k–facet P ⊂ ∂KF(G)

is equal to the cardinality cardDr(P ) of the set Dr(P ), since J(KF(G) ∩ Br(x), τP (x), x) = 1 for each
x ∈ Dr(P ). We also remark that the direct computation of the sum (3.1) would not be efficient. Indeed,
let l be the number of (boundary) pixels in ∂(K ∩ L

d) and m be the total number of pixels in the
(discretized) sampling window W ∩ L

d, where K ⊂ W ⊂ R
d. Then, the direct computation of the sum

(3.1) would require O(m + l2rd) operations for each radius r, whereas the fast algorithm based on (3.2)
has complexity O(m); see also Section 3.3.
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3.2 Computation of the sums Sr(q) and Mr(P )

In what follows, we show how the computational complexity, which is necessary to determine the sums
in (3.2)–(3.3), can be reduced to O(m) arithmetic operations by means of linear binary filtering. Then,
the computations can be arranged in such a way that only one single scan of the image is required.

To see this, we first notice that the index function J(KF(G) ∩Br(x), q, x) can be interpreted as one minus
the “local” Euler–Poincaré characteristic of KF(G) ∩ Br(x) at q ∈ ∂KF(G) “in direction” q − x. Hence,

the sum Sr(q) in (3.3) does not depend on the location of q ∈ ∂(K ∩ L
d) but only on the behavior of

the boundary ∂KF(G) in a small neighborhood of q, i.e., on the configurations of foreground pixels in the
lattice neighborhood NΓ(q) introduced in Section 2.2. To handle this situation, a standard tool of image
analysis, the so–called linear binary filter can be used to code all possible configurations of foreground and
background pixels in the lattice neighborhoods of the image; see e.g. [4], [11]. Let NΓ(q) = {q0, . . . , qν}
be the lattice neighborhood of a pixel q = q0 ∈ L

d that contains the lattice points q1, . . . , qν ∈ L
d. For

each q ∈ ∂(K ∩ L
d), the binary image {1K∩Ld(x), x ∈ NΓ(q)} is coded by a sum of exponents of two,

considering the bijective mapping

{1K∩Ld(x), x ∈ NΓ(q)} 7→ b(K ∩ L
d, NΓ(q)) =

ν∑

j=0

1K∩Ld(qj)2
j . (3.4)

Then, instead of computing the sum Sr(q) for each point q ∈ ∂(K ∩ L
d), it can be computed for each

neighborhood configuration i = b(K ∩ L
d, NΓ(q)), i = 0, . . . , 2ν − 1, and weighted by its frequency hS,i

among all coded neighborhood configurations of the image 1K∩Ld . In other words, the first sum in (3.2)
rewrites ∆d

∑2ν−1
i=0 hS,iSr,i, where Sr,i denotes the sum Sr(q) for a boundary point q ∈ ∂(K ∩ L

d) with
the neighborhood NΓ(q) such that b(K ∩ L

d, NΓ(q)) = i. This approach is efficient since the number 2ν

of possible neighborhood configurations is, as a rule, much smaller than the number m of pixels in the
window W ∩ L

d.

Anyhow, the algorithm for the computation of Sr,i for each i = 0, . . . , 2ν − 1 heavily depends on the
dimension d. In Section 4, the case d = 2 is considered in detail. Notice however that for a boundary
pixel q ∈ ∂(K ∩ L

d) with neighborhood configuration {1K∩Ld(x), x ∈ NΓ(q)} of a given code i, it is not
necessary to compute the index J(KF(G) ∩ Br(x), q, x) in the sum

Sr,i =
∑

x∈Ld, 0<|x−q|6r

J(KF(G) ∩ Br(x), q, x) (3.5)

separately for each x ∈ L
d with 0 < |x − q| 6 r. Instead, the sum Sr,i can be computed as a whole; see

Section 4 for details in the planar case d = 2.

Likewise, the sum Mr(P ) in (3.3) does not depend on the location of the k–dimensional polytope P but
on its orientation with respect to the lattice L

d. Hence, there exist at most µ =
∑d−1

k=1 cardFk(L̄) possible
types of partial sums Mr(P ) that we denote by Mr,i, i = 0, . . . , µ − 1. Each of them can be computed

just by computing the cardinality of the set Dr(P ). For any polytope P ∈ ⋃d−1
k=1 Fk(G) of a given type

i, let hM,i be the number of such polytopes in ∂KF(G). Notice that these numbers can be computed on
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the basis of neighborhood configurations simultaneously with the frequencies hs,i during the first scan of
the image. Finally, an approximation of ρr(KF(G)) is obtained by

ρr(KF(G)) ≈ Rr(KF(G)) = ∆d
(2ν−1∑

i=0

hS,iSr,i +

µ−1∑

i=0

hM,iMr,i

)
. (3.6)

3.3 Overview of the individual steps

The algorithm described above can be summarized as follows.

1. Scan the image and code all its neighborhood configurations according to (3.4).

2. For each neighborhood configuration of type i = 0, . . . , 2ν−1, compute its frequency hS,i > 0 among
all coded neighborhoods {1K∩Ld(x), x ∈ NΓ(q)} of type i with q ∈ ∂(K ∩ L

d), i.e., compute the
neighborhood histogram of the boundary ∂(K ∩ L

d).

3. For each polytope P of type i = 0, . . . , µ − 1, compute the frequency hM,i > 0 of its occurrence in
∂KF(G).

4. For any i with hS,i > 0, compute Sr,i for r = r0, . . . , rd−1 as given in (3.5).

5. For any i with hM,i > 0, compute Mr,i for r = r0, . . . , rd−1.

6. For r = r0, . . . , rd−1, compute the approximation Rr(KF(G)) of ρr(KF(G)) using (3.6). Deter-

mine the corresponding approximation R(KF(G)) = (Rr0(KF(G)), . . . , Rrd−1
(KF(G)))

> of the vector

ρ(KF(G)) = (ρr0(KF(G)), . . . , ρrd−1
(KF(G)))

>.

7. Compute the approximation Ṽ (K) = A−1
r0...rd−1

R(KF(G)) of V (K).

Notice that for an arbitrary number n of d–tuples of dilation radii (r0j , . . . , rd−1,j), j = 1, . . . , n, only
one scan of the image is required to perform the above algorithm n times. Furthermore, it is possible to
compute the values Sr,i, Mr,i for all plausible radii r in advance and to store them in an array in order
to use these values in each program run. Doing so, the complexity of the algorithm is O(m).

3.4 Bound on the approximation error

Introduce the maximum norm in R
d by ‖x‖ = max06i6d−1 |xi| for x = (x0, . . . , xd−1) ∈ R

d . For any

(d × d)–matrix A = (aij), the corresponding matrix norm is ‖A‖ = max06i6d−1
∑d−1

j=0 |aij | . For any

x ∈ R
d, let Cx = x + [−∆/2,∆/2]d be the d–dimensional cube with side length ∆ and centroid x. The

following theorem yields an upper bound on the approximation error ‖V (K) − Ṽ (K)‖, where Ṽ (K) =
A−1

r0...rd−1
R(KF(G)) and the components of R(KF(G)) are given by (3.6).
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Proposition 3.1. For any 0 < r0 < r1 < . . . < rd−1, it holds

‖V (K) − Ṽ (K)‖ 6 ‖A−1
r0...rd−1

‖ ‖ρ(K) − R(KF(G))‖ , (3.7)

where

‖A−1
r0...rd−1

‖ 6
d! r1r

2
2 . . . rd−1

d−1

r0
∏
i>j

(ri − rj)
(3.8)

and

‖ρ(K) − R(KF(G))‖ 6 max
r∈{r0,...,rd−1}

(
∆dσ1,r cardL1,r + ∆dσ2,r cardL2,r

)
. (3.9)

Here,

L1,r =
{
x ∈ (∂K ⊕ Br+

√
d∆(o)) ∩ L

d :

∫

Cx

(Ir(K, y) − Ir(K,x)) dy 6= 0
}

,

L2,r =
{
x ∈ (∂K ⊕ Br+2

√
d∆(o)) ∩ L

d : Ir(K,x) − Ir(KF(G), x) 6= 0
}

and

σ1,r = max
x∈L1,r

(
max
y∈Cx

Ir(K, y) − min
y∈Cx

Ir(K, y)
)
, σ2,r = max

x∈L2,r

|Ir(K,x) − Ir(KF(G), x)| .

Proof. The inequality (3.7) immediately follows from V (K) − Ṽ (K) = A−1
r0...rd−1

(ρ(K) − R(KF(G))) and
from well–known properties of matrix norms. In order to show that (3.8) holds, notice that Cramer’s
rule gives

‖A−1
r0...rd−1

‖ =

max
06i6d−1

d−1∑
j=0

|Dji|

|det Ar0...rd−1
| 6

d max
06i,j6d−1

|Dji|

|det Ar0...rd−1
| . (3.10)

Here, Dij = (−1)i+j detA
(ij)
r0...rd−1 is the so–called cofactor of the (i, j)th matrix element of Ar0...rd−1

, where

A
(ij)
r0...rd−1 is the matrix obtained by eliminating the ith row and the jth column of Ar0...rd−1

. Furthermore,
using linearity and antisymmetry of determinants one gets

detAr0...rd−1
= k1 . . . kd r0 . . . rd−1 (−1)bd/2c det Ãr0...rd−1

,

where bd/2c denotes the integer part of d/2 and Ãr0...rd−1
represents Vandermonde’s matrix, i.e.,

Ãr0...rd−1
=




1 r0 . . . rd−1
0

1 r1 . . . rd−1
1

. . . . . . . . . . . .

1 rd−1 . . . rd−1
d−1


 .

Then, applying the formula for the determinant of Vandermonde’s matrix, the following equation is
obtained

det Ar0...rd−1
= k1 . . . kd r0 . . . rd−1 (−1)bd/2c ∏

i>j

(ri − rj) . (3.11)
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Similarly, the cofactor Dji is equal to

Dji =
∏

l 6=i

kl

∏

l 6=j

rl (−1)b(d−1)/2cD̃ji ,

where D̃ji is the (j, i)th cofactor of Ãr0...rd−1
. Thus, by the upper bound |D̃ji| 6 (d−1)! r1 . . . rd−1

d−1 and the

inequalities 0 < r0 < r1 < . . . < rd−1, we get that |Dji| 6 (d−1)! k1 . . . kd r2
1r

3
2 . . . rd

d−1 for 0 6 i, j 6 d−1.
By (3.10) and (3.11), this shows that (3.8) holds. To prove the upper bound (3.9), notice that

‖ρ(K) − R(KF(G))‖ = max
i=0,...,d−1

|ρri
(K) − Rri

(KF(G))| .

Furthermore, for any r > 0, we have

ρr(K) − Rr(KF(G)) = ρ̃r,1(K, F(G)) + ρ̃r,2(K, F(G)) , (3.12)

where

ρ̃r,1(K, F(G)) =

∫

∂K⊕Br(o)
Ir(K, y) dy − ∆d

∑

x∈(∂K⊕Br(o))∩Ld

Ir(K,x)

is the error arising from the discretization of the integral given in (2.3) and

ρ̃r,2(K, F(G)) = ∆d
∑

x∈(∂K⊕Br(o))∩Ld

Ir(K,x) − ∆d
∑

x∈(∂KF(G)⊕Br(o))∩Ld

Ir(KF(G), x)

is the error of approximation of K by KF(G). Notice that

ρ̃r,1(K, F(G)) =
∑

x∈(∂K⊕Br+δ(o))∩Ld

∫

Cx

(Ir(K, y) − Ir(K,x)) dy

and ∣∣
∫

Cx

(Ir(K, y) − Ir(K,x)) dy
∣∣ 6 ∆dĨr(K,Cx) ,

where Ĩr(K,Cx) = maxy∈Cx Ir(K, y) − miny∈Cx Ir(K, y) and δ =
√

d∆ is chosen to satisfy

∂K ⊕ Br(o) ⊂
⋃

x∈(∂K⊕Br+δ(o))∩Ld

Cx .

This gives the bound |ρ̃r,1(K, F(G))| 6 ∆dcardL1,r maxx∈L1,r
Ĩr(K,Cx). Similarly, for the second sum-

mand in (3.12), we have

ρ̃r,2(K, F(G)) = ∆d
∑

x∈(∂K⊕Br+2δ(o))∩Ld

(
Ir(K,x) − Ir(KF(G), x)

)

and, therefore,
|ρ̃r,2(K, F(G))| 6 ∆dcardL2,r max

x∈L2,r

|Ir(K,x) − Ir(KF(G), x)| .

This completes the proof.
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3.5 Asymptotic behaviour of the approximation error as ∆ ↓ 0

Since K is the union of finitely many convex bodies, i.e. K =
⋃m

i=1 Ki, it is not difficult to see that the
quantity σ1,r introduced in Proposition 3.1 is uniformly bounded for ∆ ↓ 0. Furthermore, the following
inequality holds.

Proposition 3.2. For each r > 0, there exists a constant c < ∞ such that for any ∆ > 0

cardL1,r 6
c

∆d−1
. (3.13)

Proof. Because of the additivity of Ir(., x), the inclusion–exclusion principle yields

Ir(K, y) − Ir(K,x) =

m∑

i=1

(−1)i−1
∑

j1<...<ji

[
Ir(Kj1 ∩ . . . ∩ Kji

, y) − Ir(Kj1 ∩ . . . ∩ Kji
, x)

]
.

Thus, if Ir(Kj1 ∩ . . . ∩ Kji
, y) − Ir(Kj1 ∩ . . . ∩ Kji

, x) = 0 holds for all y ∈ Cx, for all i and for all
j1 < . . . < ji , then

∫
Cx

(
Ir(K, y) − Ir(K,x)

)
dy = 0 is valid, too. Let L = (∂K ⊕ Br+

√
d∆(o)) ∩ L

d. The
complement of the set L1,r in L can be described by

L \ L1,r = {x ∈ L :

∫

Cx

(Ir(K, y) − Ir(K,x)) dy = 0}

⊇
m⋂

i=1

⋂

j1<...<ji

{x ∈ L : Ir(Kj1 ∩ . . . ∩ Kji
, y) = Ir(Kj1 ∩ . . . ∩ Kji

, x) ∀ y ∈ Cx} .

That implies the following relation for L1,r:

L1,r = (L \ L1,r)
c ∩ L

⊆
m⋃

i=1

⋃

j1<...<ji

{x ∈ L : ∃ y ∈ Cx with Ir(Kj1 ∩ . . . ∩ Kji
, y) 6= Ir(Kj1 ∩ . . . ∩ Kji

, x)}

⊆
m⋃

i=1

⋃

j1<...<ji

{x ∈ (∂(Kj1 ∩ . . . ∩ Kji
) ⊕ Br+

√
d∆(o)) ∩ L

d : ∃ y ∈ Cx with

Ir(Kj1 ∩ . . . ∩ Kji
, y) 6= Ir(Kj1 ∩ . . . ∩ Kji

, x)} .

From this it is easily seen that the cardinality of L1,r is bounded from above, i.e.,

cardL1,r 6

m∑

i=1

∑

j1<...<ji

card {x ∈ (∂(Kj1 ∩ . . . ∩ Kji
) ⊕ Br+

√
d∆(o)) ∩ L

d : ∃ y ∈ Cx with

Ir(Kj1 ∩ . . . ∩ Kji
, y) 6= Ir(Kj1 ∩ . . . ∩ Kji

, x)} .

Due to the convexity of Kj1 ∩ . . . ∩ Kji
, it is sufficient to show that

card {x ∈ (∂K ⊕ Br+
√

d∆(o)) ∩ L
d : ∃ y ∈ Cx with Ir(K, y) 6= Ir(K,x)} 6 c/∆d−1
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holds for a convex body K ∈ K and some constant c < ∞ . Recall that for K ∈ K the computation of
Ir(K,x) simplifies to Ir(K,x) = 1(x ∈ (K ⊕ Br(o)) \ K). Therefore, the inclusion

{x ∈ (∂K ⊕ Br+
√

d∆(o)) ∩ L
d : ∃ y ∈ Cx with Ir(K, y) 6= Ir(K,x)}

⊆ {x ∈ L
d : Cx ∩ ∂K 6= ∅} ∪ {x ∈ L

d : Cx ∩ ∂(K ⊕ Br(o)) 6= ∅}

holds. The cardinality of the latter union of sets is bounded from above by

2 · 2d ·

d∑
i=1

τe⊥i
(K) + τe⊥i

(K ⊕ Br(o))

∆d−1
=

c

∆d−1
,

where e1, . . . , ed is an orthonormal basis of R
d and τe⊥i

(K)/∆d−1 is the number of lattice points lying in

the orthogonal projection of K onto the (d−1)–dimensional plane perpendicular to ei. Note that exactly
2d cubes Cx share a common vertex in R

d.

Thus, by the uniform boundedness of σ1,r, the inequality (3.13) implies that the first summand in (3.9)
tends to zero as ∆ ↓ 0. However, for general polyconvex sets K, the second summand ∆dσ2,r cardL2,r of
the upper bound in (3.9) need not converge to zero. This happens e.g. if the structural properties of ∂K
are changed by the discretization of K with respect to the lattice L

d. For instance, this is the case if the
boundary of K contains lower dimensional parts such as isolated points, pieces of curves or surfaces, etc.
that are not grasped by the sequence of lattices L

d with ∆ ↓ 0. Another example of such problematic sets
K is a union of at least two convex bodies touching each other in one single point that does not belong
to any lattice from the lattice sequence; see Figure 6.1. However, for all polyconvex sets K satisfying the
conditions

L2,r ⊆ ∂K ⊕ Br+2
√

d∆(o) \ ∂K ⊕ Br−h∆(o) (3.14)

for some constant h > 0, and
sup
∆>0

σ2,r < ∞ , (3.15)

the expression ∆dσ2,r card L2,r converges to zero as ∆ ↓ 0. Indeed, it can be shown by similar arguments
as in the proof of Proposition 3.2 that by (3.14) we have cardL2,r 6 c1/∆

d−1 for some constant c1 < ∞
and for any ∆ > 0. Two–dimensional polyconvex sets K that satisfy (3.14) and (3.15) will be considered
in detail in Section 4.4.

3.6 Appropriate choice of dilation radii

Computer experiments showed that the accuracy of the algorithm heavily depends on the choice of
the d-tuple of dilation radii r0, . . . , rd−1, where ∆ < r0 < r1 < . . . < rd−1. In particular, the error
‖V (K) − Ṽ (K)‖ is substantial for small radii ri ≈ ∆. On the other hand, by (3.8), we have

‖A−1
r0...rd−1

‖ 6
d! r1r

2
2 . . . rd−1

d−1

r0
∏
i>j

(ri − rj)
−→ 0
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if r0 → ∞ and ri/ri+1 6 1 − ε for all i = 0, . . . , d − 2 and some ε > 0. Furthermore, in many cases, the
bound in (3.9) tends to zero as ∆ → 0 provided that the radii r0, . . . , rd−1 are fixed; see the discussion
at the end of Section 3.4. Hence, one might expect that the accuracy of the algorithm is much better
for larger ri. Notice that there are no algorithmic restrictions on ri from above. Thus, the largest value
rd−1 of the radii ri can be chosen in such a way that the run times of the algorithm are still acceptable.
In practice, this could be rd−1 ≈ 10000.

Moreover, the computational results can be significantly improved if, instead of taking d dilation radii
r0, . . . , rd−1, the image is analyzed for more than d radii. Then, our approach can be combined with
various standard methods of statistics in order to further improve the estimation of Minkowski functionals.
In the following, we just mention two of such possibilities.

Suppose that the polyconvex set K ∈ R is analyzed for n > 1 different d–tuples of dilation radii
r(i) = (r0i, . . . , rd−1,i). Let V (i)(KF(G)) denote the output of our algorithm for the ith d–tuple r(i) of

radii; i = 1, . . . , n. Then, the sample (V (1)(KF(G)), . . . , V
(n)(KF(G))) of size n is formed, where the

numerical experiments showed that the sample mean

V (KF(G)) =
1

n

n∑

i=1

V (i)(KF(G))

is more precise and much less sensitive to outliers resulting from the discretization error. Notice that
instead of the sample mean, other sample functions like e.g. the median can be used in order to compute
approximations for V (KF(G)).

On the other hand, even better results can be obtained by the least–squares method, where a single n–
tuple of radii (r0, . . . , rn−1) with n > d is considered. This leads to the following overdetermined system
of linear equations, which corresponds to (2.5):




ρr0(KF(G))
...

ρrn−1(KF(G))


 =




rd
0kd rd−1

0 kd−1 . . . r2
0k2 r0k1

. . . . . . . . . . . . . . .

rd
n−1kd rd−1

n−1kd−1 . . . r2
n−1k2 rn−1k1







x0
...

xd−1


 , (3.16)

or, in matrix form, ρ(KF(G)) = Ar0...rn−1 x, where ρ(KF(G)) =
(
ρr0(KF(G)), . . . , ρrn−1(KF(G))

)>
and x =

(x0, . . . , xd−1)
> ∈ R

d is some d–dimensional vector. Notice that, typically, there exists no x ∈ R
d which

solves (3.16) exactly. However, it is well known that the vector

V ∗(KF(G)) =
(
A>

r0...rn−1
Ar0...rn−1

)−1
A>

r0...rn−1
ρ(KF(G))

is the unique solution of the minimization problem
∣∣ ρ(KF(G)) − Ar0...rn−1 V ∗(KF(G))

∣∣ = min
x∈Rd

∣∣ ρ(KF(G)) − Ar0...rn−1 x
∣∣

and, therefore, can be regarded as an approximation of V (KF(G)) = (V0(KF(G)), . . . , Vd−1(KF(G)))
>.

4 The planar case

In this section, the algorithm given above for general dimensions d and generators G will be illustrated
in the 2D case for G = Gmin and G = Gmax.
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4.1 Neighborhood configurations of boundary points

We first consider the maximal approximation system F(Gmax) in R
2 and analyze all possible types of

neighborhood configurations for pixels on the boundary of the polygon KF(Gmax), for which the sums
Sr,i appearing in (3.5) coincide. Altogether, there are 29 = 512 possible neighborhood configurations for
the 8–neighborhood. After coding them as described in (3.4), we only need to consider neighborhoods
NΓ(x0) = {x0, . . . , x8} of foreground lattice points x0 ∈ K ∩ L

2. They can be easily recognized by their
code b(K ∩ L

2, NΓ(x0)) > 0 which is an odd number because 1K∩L2(x0) = 1 if x0 ∈ K ∩ L
2. Thus, the

number of different neighborhood configurations of foreground pixels is reduced to 256. Notice that by
rigid motions from T

2 and reflections, one can reduce the above number of 256 different configurations to
51. Furthermore, we omit those configurations {1K∩L2(x), x ∈ NΓ(x0)} with x0 6∈ ∂(K ∩L

2). Then, the
number of remaining different neighborhood configurations of boundary pixels is 45; see Figures 4.6–4.7.
For the neighborhood NΓ(q0) = {q0, . . . , q8} of each boundary point q0 ∈ ∂(K∩L

2), we consider the pixel
values b0, . . . , b8, where bi = 1(qi ∈ K ∩ L

2) for i = 0, . . . , 8. These pixel values are given in Table 4.1.
Notice that the image frequencies of different (up to rotations or reflections) neighborhood configurations
of the same type i are summed up to hS,i. For instance, the neighborhood configurations 100001001,
101001000, 110000100, 100010010, 100100001, 101000010, 110010000, and 100100100 are of type i = 7.
They differ from each other only by rotations on 90◦, 180◦, 270◦ and reflections with respect to the axes
(x1, x5), (x3, x7) and diagonals (x2, x6), (x4, x8); see Figure 2.4. After scanning the image, the frequencies
of occurrence of these neighborhood configurations are summed up to hS,7.

Considering the minimal approximation system F(Gmin), the family of neighborhood configurations for
pixels on the boundary of the polygon KF(Gmin) can be analyzed in a similar way. As before, the number of
different 8–neighborhood configurations of foreground pixels is equal to 256. Then, by rigid motions from
T

2 and reflections, the number of different neighborhood configurations of boundary points q0 ∈ ∂(K∩L
2)

is reduced to 50. The first 45 neighborhood configurations coincide with those given in Table 4.1. The five
new configurations given in the left part of Table 4.5 result from the changed definition of the boundary
pixels of KF(Gmin).

i b0, . . . , b8 i b0, . . . , b8 i b0, . . . , b8 i b0, . . . , b8 i b0, . . . , b8

1 100000000 10 100001110 19 100010101 28 101011010 37 111011001
2 100001000 11 110011000 20 100011110 29 101011100 38 111011010
3 100000100 12 101011000 21 110111000 30 100011011 39 101011011
4 110001000 13 100011001 22 100111001 31 101010101 40 101110101
5 100001010 14 100011010 23 111011000 32 110001111 41 101111110
6 100001100 15 100011100 24 110011001 33 101111001 42 101111011
7 100001001 16 110101000 25 110011010 34 101111010 43 101110111
8 100000101 17 100101001 26 110011100 35 111000111 44 111110101
9 101000100 18 101001001 27 101011001 36 110111001 45 101111111

Table 4.1: Pixel values for the neighborhood configurations of boundary points
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4.2 Computation of Sr,i and Mr,i for the maximal approximation system F(Gmax)

4.2.1 Polygonal approximation

Consider the maximal approximation system F(Gmax) in R
2. Then, for each type of 45 neighborhood

configurations given in Table 4.1, the sums Sr,i have to be computed using (3.5). In connection with
this, the polygonal approximations of these neighborhood configurations given in Figures 4.6–4.7 must
be analyzed. It turns out that they contain 11 different types of boundary elements of which the whole
boundary ∂KF(Gmax) is made; see Figure 4.8. These boundary elements are given by the neighborhood
configurations enumerated in Table 4.1 by 1, 2, 3, 6, 15, 10, 20, 32, 35, 41, and 45, respectively. Further-
more, each neighborhood configuration in Table 4.1 can contain up to 4 different boundary elements; see
Figures 4.6–4.7. Thus, in accordance with (3.5), we can write

Sr,i =
11∑

j=1

ωijJj , i = 1, . . . , 45 , (4.1)

where Jj denotes the partial sum in (3.5) which corresponds to a boundary element of type j = 1, . . . , 11
and ωij ∈ {0, 1, 2, 3, 4} is the number of such boundary elements in the neighborhood configuration of
type i. The complete list of weights ωij is given in Table 4.2.

i ωi1, . . . , ωi11 i ωi1, . . . , ωi11 i ωi1, . . . , ωi11 i ωi1, . . . , ωi11 i ωi1, . . . , ωi11

1 10000000000 10 00000001000 19 00000000020 28 00000000011 37 00000000011
2 01000000000 11 00010000001 20 00000000100 29 00010000010 38 00000000010
3 00100000000 12 00000000110 21 00010000000 30 00001000000 39 00000000020
4 00002000000 13 00001000001 22 00000000002 31 00000000040 40 00000000030
5 00000001000 14 00000000100 23 00010000010 32 00010000000 41 00000000001
6 00000100000 15 00000010000 24 00000000002 33 00000000011 42 00000000010
7 00000000101 16 00010000000 25 00000000001 34 00000000001 43 00000000020
8 00000010010 17 00000000002 26 00000000002 35 00001000000 44 00000000020
9 00002000000 18 00000000012 27 00000000021 36 00000000001 45 00000000010

Table 4.2: Number of boundary elements ωij for F(Gmax)

4.2.2 Partial sums Jj corresponding to given boundary elements

In this section, we describe how the partial sums Jj introduced in (4.1) can be computed. Let q ∈
∂(K ∩ L

2) be the central pixel of a neighborhood configuration which contains a boundary element of
type j as shown in Figure 4.8. Introduce the set

H(q) = H(NΓ(q),KF(Gmax)) = {x ∈ R
2 : x 6= q, J(KF(Gmax), q, x) 6= 0} .

Depending on the type j of the boundary element, the set H(q) can be a half–line (j = 4, 5), a sector
between two half–lines (j = 2, 3, 6, . . . , 11) or the whole plane without one point (j = 1). By the definition
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of the index function given in (2.2), we have J(KF(Gmax), q, x) = j0 ∈ {1,−1} for each x ∈ H(q) , where
the values j0 are given in Table 4.3. Notice that the rule in computing j0 is simple. If q is a point of
convexity of KF(Gmax), then j0 = 1. Otherwise, we have j0 = −1.

j 1 2 3 4 5 6 7 8 9 10 11

j0 1 1 1 1 1 1 1 1 1 −1 −1

Table 4.3: Computation of partial sums Jj for F(Gmax)

Introduce the index sector ISj = H(q) ∩ L
2 ∩ Br(q). For the 11 possible types of boundary elements,

their index sectors are marked red in Figure 4.8. The dashed parts of the boundary do not belong to the
index sectors whereas the solid parts do. Then, Jj can be rewritten as

Jj = j0 · card ISj . (4.2)

The number of lattice points card ISj as a function of the radius r is given in Table 4.4, where the
following notation is used: a0(r) = card (Br(o) ∩ L

2) − 1, a1(r) = br/∆c, a2(r) = br/(
√

2∆)c, and
bac = max{n ∈ N ∪ {0} : n 6 a} is the integer part of a > 0.

j card ISj j card ISj

1 a0(r) 7 a0(r)/4 + a2(r)
2 a0(r)/2 + a1(r) 8 a0(r)/4 + a1(r)
3 a0(r)/2 + a2(r) 9 a0(r)/8 + (a1(r) + a2(r))/2
4 a1(r) 10 a0(r)/4 − a2(r)
5 a2(r) 11 a0(r)/8 − (a1(r) + a2(r))/2
6 3a0(r)/8 + (a1(r) + a2(r))/2

Table 4.4: Cardinality of index sectors ISj for F(Gmax)

4.2.3 Computation of Mr,i

In the planar case, there are only two different types of segments on the boundary of the polygon
KF(Gmax). Modulo lattice translations and rotations, these segments are P0 = [l0, l1] and P1 = [l0, l2].
Thus, for the number µ of different types of segments introduced in Section 3.2, we have µ = 2. It is
evident that D(P0) = ∅ and, therefore, Mr,0 = 0. On the other hand, for the diagonal P1, we have
Mr,1 = br/(

√
2∆) − 1/2c + 1. The number hM,1 of diagonals of type P1 can be computed during the

first scan of the image. Indeed, any diagonal [x, y] ⊂ ∂KF(Gmax) belongs to the neighborhoods NΓ(x) and
NΓ(y). Thus, the frequency hM,1 is equal to the total number of such diagonals in the neighborhood
configurations of all boundary points divided by two.
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4.3 Computation of Sr,i and Mr,i for the minimal approximation system F(Gmin)

The polygonal approximation of 50 neighborhood configurations on the basis of F(Gmin) yields 5 different
types of boundary elements; see Figure 4.9. These boundary elements are given by the neighborhood
configurations enumerated in Tables 4.1 and 4.5 by 1, 2, 32, 10, and 50, respectively. Any neighborhood
configuration from Tables 4.1 and 4.5 can contain up to 4 different boundary elements. Thus, as in

i b0, . . . , b8

46 110101010
47 110111010
48 111111010
49 110111011
50 110111111

j 1 2 3 4 5

j0 1 1 1 1 −1

j card ISj

1 a0(r)
2 a0(r)/2 + a1(r)
3 a1(r)
4 a0(r)/4 + a1(r)
5 a0(r)/4 − a2(r)

Table 4.5: New neighborhood configurations (left); computation of the partial sums Jj (center);
cardinality of index sectors ISj (right) for F(Gmin)

i ωi1, . . . , ωi5 i ωi1, . . . , ωi5 i ωi1, . . . , ωi5 i ωi1, . . . , ωi5 i ωi1, . . . , ωi5

1 10000 11 00200 21 00101 31 10000 41 00100
2 01000 12 01000 22 00010 32 00100 42 00101
3 10000 13 01000 23 00200 33 00010 43 00200
4 00200 14 00011 24 00200 34 00101 44 00010
5 00011 15 01000 25 00102 35 00010 45 00100
6 01000 16 00102 26 00200 36 00101 46 00004
7 01000 17 00011 27 01000 37 00200 47 00003
8 10000 18 01000 28 00011 38 00102 48 00002
9 10000 19 10000 29 01000 39 00011 49 00002
10 00010 20 00010 30 00011 40 01000 50 00001

Table 4.6: Number of boundary elements ωij for F(Gmin)

the case of system F(Gmax), we can write Sr,i =
∑5

j=1 ωijJj for i = 1, . . . , 50, where Jj denotes the
partial sum in (3.5) which corresponds to a boundary element of type j = 1, . . . , 5 and ωij ∈ {0, 1, 2, 3, 4}
is the number of such boundary elements in the neighborhood configuration of type i. The values of
Jj = j0 card ISj are given in Table 4.5. All possible index sectors ISj , j = 1, . . . , 5 are marked red in
Figure 4.9. The weights ωij are given in Table 4.6. Notice that the boundary of F(Gmin) consists of one
type of segments only, i.e., µ = 1. Modulo lattice translations and rotations, this is P0 = [l0, l1] with
Mr,0 = 0. Hence, the second sum

∑µ−1
i=0 hM,iMr,i in (3.6) vanishes.
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4.4 Polyconvex sets with small discretization error

In this section, we give simple examples of two-dimensional polyconvex sets satisfying the conditions
(3.14) and (3.15).

First of all, let us show that these conditions hold for any nonempty two–dimensional convex set K
without lower dimensional parts, i.e., K = int(K). Then, it holds for any r ∈ {r0, . . . , rd} that

Ir(K,x) = 0, x ∈ K and Ir(KF(Gmax), x) = 0, x ∈ KF(Gmax) (4.3)

for all resolutions ∆ > 0. This implies that

Ir(K,x) = Ir(KF(Gmax), x), x ∈ L
2 ∩ K . (4.4)

Additionally, one can easily see that

χ
(
K ∩ Br(x)

)
= χ

(
KF(Gmax) ∩ Br(x)

)
, x ∈ L

2 ∩
(
K ⊕ Br−h∆(o)

)
\ K (4.5)

holds for all ∆ > 0 and some h > 0. Thus, it follows from the relation Ir(C, x) = χ
(
C ∩ Br(x)

)
for any

C ∈ R and x /∈ K (cf. [8], p. 224) that

Ir(K,x) = Ir(KF(Gmax), x), x ∈ L
2 ∩

(
K ⊕ Br−h∆(o)

)
\ K . (4.6)

Hence, by (4.4) and (4.6), we have shown that Ir(K,x) = Ir(KF(Gmax), x) for any x ∈ L
2∩

(
K⊕Br−h∆(o)

)
,

i.e., the inclusion (3.14) holds. As for condition (3.15), it is easily seen that

σ2,r 6 max {1, max
x∈R2

sup
∆>0

χ
(
KF(Gmax) ∩ Br(x)

)
} < ∞.

Indeed, for each x ∈ R
2, the Euler number χ

(
KF(Gmax) ∩ Br(x)

)
is bounded as a function of ∆ due

to the convexity of K. Its maximum value is the maximum number of disconnected components of
KF(Gmax) ∩ Br(x). Since K is convex, this number is uniformly bounded in x ∈ R

2.

Suppose now that K = K1∪ . . .∪Kn is a polyconvex set with nonempty convex components Ki satisfying
the condition

Ki1 ∩ . . . ∩ Kik = int(Ki1 ∩ . . . ∩ Kik), 1 6 i1 < . . . < ik 6 n, k = 1, . . . , n. (4.7)

It is clear that there are examples of polyconvex sets such that (4.7) does not hold; see Figure 6.1.

By induction on n, it can be proved that the condition (4.7) is sufficient for (3.14) and (3.15). Let us
show this for n = 2. Using the additivity of Ir, we have

Ir(K,x) − Ir

(
KF(Gmax), x

)
= Ir(K1, x) − Ir

(
(K1)F(Gmax), x

)
+ Ir(K2, x) − Ir

(
(K2)F(Gmax), x

)

−
(
Ir(K1∩K2, x)−Ir

(
(K1∩K2)F(Gmax), x

))
−

(
Ir

(
(K1∪K2)F(Gmax), x

)
−Ir

(
(K1)F(Gmax)∪(K2)F(Gmax), x

))

−
(
Ir((K1 ∩ K2)F(Gmax), x

)
− Ir

(
(K1)F(Gmax) ∩ (K2)F(Gmax), x

))
.

(4.8)
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Since the sets K1, K2 and K1 ∩K2 are convex it follows from the above reasoning that the set of lattice
points where the first three differences in the equation (4.8) are not zero is “thin” in the sense of condition
(3.14).

The boundaries of (K1 ∪ K2)F(Gmax) and (K1)F(Gmax) ∪ (K2)F(Gmax) as well as of (K1 ∩ K2)F(Gmax) and
(K1)F(Gmax) ∩ (K2)F(Gmax) can slightly differ only in the vicinity of the points in ∂K1 ∩ ∂K2 where this
difference becomes smaller with decreasing ∆. Arguing similarly as in the proof of (4.3) and (4.5) one
can show that the domain of lattice points x ∈ L

2 where this difference affects the values of Ir(·, x) is
also “thin” in the sense of condition (3.14). Hence, one can conclude that the condition (3.14) is satisfied
for K = K1 ∪ K2.

As for the condition (3.15), it follows from (4.8) that

sup
∆>0

max
x∈L2,r

|Ir(K,x) − Ir

(
KF(Gmax), x

)
| 6 sup

∆>0
max

x∈L2,r

∣∣∣Ir(K1, x) − Ir

(
(K1)F(Gmax), x

)∣∣∣

+ sup
∆>0

max
x∈L2,r

∣∣∣Ir(K2, x) − Ir

(
(K2)F(Gmax), x

)∣∣∣ + sup
∆>0

max
x∈L2,r

∣∣∣Ir(K1 ∩ K2, x) − Ir

(
(K1 ∩ K2)F(Gmax), x

)∣∣∣

+ sup
∆>0

max
x∈L2,r

∣∣∣Ir

(
(K1 ∪ K2)F(Gmax), x

)
− Ir

(
(K1)F(Gmax) ∪ (K2)F(Gmax), x

)∣∣∣

+ sup
∆>0

max
x∈L2,r

∣∣∣Ir((K1 ∩ K2)F(Gmax), x
)
− Ir

(
(K1)F(Gmax) ∩ (K2)F(Gmax), x

)∣∣∣ ,

where the first three terms in the right–hand side are finite due to the convexity of K1, K2 and K1 ∩K2.
The last two terms are finite as well. The proof is similar to the convex case. Thus, the condition (3.15)
holds for K = K1 ∪K2. Hence, for polyconvex sets satisfying (4.7) the expression ∆dσ2,r cardL2,r in the
upper bound in (3.9) converges to zero as ∆ ↓ 0; see Section 3.5.

5 Challenge of three dimensions

In the 3D case, the implementation of the algorithm gets more complex. The main reason is the necessity
to deal with 26–neighborhoods instead of 8–neighborhoods in the 2D case. This implies that the number
of possible voxel neighborhood configurations is equal to 227 = 134217728.

For a detailed analysis of neighborhood voxel configurations, each of them can be modelled separately
by a graph. Then, the depth–first search algorithm (see [9]) is used to detect connected components
of white or black voxels within the configuration. If white connected components of all neighborhood
voxel configurations are known, all 324454 different boundary elements for F(Gmax) can be determined.
Unlike the 2D case with 11 different boundary elements, it is impossible to give a direct formula for the
cardinality of the index sector for each element explicitly — this has to be done automatically using a
complex algorithm containing strategies like backtracking, depth–first search, etc. In the 2D case, we
have J(KF(Gmax), q, x) = j0 ∈ {1,−1} for each x of the index sector. In three dimensions, the index
function takes values 1, 0,−1,−2,−3. Again, the correct value must be determined automatically for
each boundary element.
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In the 2D case, there are only two different types of segments of the boundary for F(Gmax). In three
dimensions, three different types of segments (edges, face diagonals and spatial diagonals of the unit cell)
as well as three different types of triangles forming the surface of the polytope KF(Gmax) must be taken
into consideration for the calculation of the sum Mr.

Similarly to the two–dimensional case, the 3D–algorithm yields precise results if the dilation radii are
chosen large enough. However, the obvious drawback is its complexity that makes software tests much
more difficult. A remedy for this can be the use of another related method based on the principle
kinematic formula of integral geometry as considered in [12].

6 Numerical examples

In this section, the results of numerical experiments are discussed and compared to those of conventional
computation methods such as the marching cube algorithm. For test purposes, we use planar polyconvex
sets with known Minkowski functionals.

We consider several examples of polyconvex sets K ⊂ R
2 such that the Euler–Poincaré characteristic

V0(KF(G)), the boundary length 2V1(KF(G)) and the area V2(KF(G)) of the polygonal approximation
KF(G) of K can be computed directly. Using the algorithm described in Section 4 for the planar case
d = 2, we compute V ∗

0 (KF(G)) and 2V ∗
1 (KF(G)) (see Section 3.6 for notation), where we compare these

values with V0(KF(G)) and 2 V1(KF(G)), respectively. The computations are performed for both the
minimal and the maximal approximation system, i.e., for G = Gmin and G = Gmax, respectively.

In particular, in order to evaluate the accuracy of our algorithm, we first compute the exact length
2V1(KF(G)) of the boundary ∂KF(G) consisting of a sequence of line segments. Notice that in the case of
the minimal approximation system F(Gmin), there is only one type of such segments, namely those that
connect a point x0 ∈ L

2 to another one from its 4-neighborhood {x1, x3, x5, x7}. Each line segment of
this type has length ∆. In case of the maximal approximation system F(Gmax), diagonal line segments
must be considered as well. These are the segments that link a point x0 ∈ L

2 with one of its neighbors
x2, x4, x6 or x8. Their length is

√
2∆. The number of the above described line segments (and hence

the boundary length) is computed using a method similar to the marching squares algorithm; see [3].
In Figures 6.5 and 6.6, five basic types of such squares are presented for the minimum and maximum
adjacencies F(Gmin) and F(Gmax), respectively. The remaining squares can be generated by rotation.
The boundary length and the area attributed to each square type are given in Table 6.1. They clearly
differ from the canonical weights of the marching squares algorithm since our computations have to be
conform with the algorithmic approach stated in Sections 3 and 4.

Hence, the exact values of the boundary length 2V1(KF(G)) and, similarly, the area V2(KF(G)) of KF(G)

can be computed easily. Furthermore, for the numerical examples considered below, the Euler-Poincaré
characteristic V0(KF(G)) is determined by counting the number of “clumps” minus the number of “holes”.

For the images given in Figures 6.1–6.7, the values obtained for 2 V1(KF(G)), V0(KF(G)), 2 V ∗
1 (KF(G)),

and V ∗
0 (KF(G)) are presented in Table 6.2, where these values are rounded up to the 6th digit. For

the algorithm described in Sections 3 and 4, we used the dilation radii r0 = 5000, ri+1 = ri + 20.3,
i = 0, . . . , 999 combined with the least–squares method.
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G square type boundary length area G square type boundary length area

Gmin 1 0 0 Gmax 1 0 0
Gmin 2 ∆ 0 Gmax 2 ∆ 0

Gmin 3 0 0 Gmax 3 2
√

2∆ 0

Gmin 4 2∆ 0 Gmax 4
√

2∆ ∆2/2
Gmin 5 0 ∆2 Gmax 5 0 ∆2

Table 6.1: Weights for the basic types of squares

Figure G 2V1(KF(G)) V0(KF(G)) 2V ∗
1 (KF(G)) V ∗

0 (KF(G))

6.1 Gmin 756.0 3 755.998293 3.0
6.1 Gmax 758.828427 2 758.827287 2.0

6.2 Gmin 1084.0 1 1083.99943 1.0
6.2 Gmax 1040.651804 1 1040.651169 1.0

6.3 Gmin 632.0 2 631.998862 2.0
6.3 Gmax 528.901587 2 528.900294 2.0

6.4 Gmin 1346.0 1 1345.99943 1.0
6.4 Gmax 1151.217388 -2 1151.218213 -2.0

6.7 Gmin 3428.0 0 3427.999997 4.009811E-11
6.7 Gmax 2970.584053 -5 2970.586176 -5.0

Table 6.2: Exact and approximated values of intrinsic volumes

Notice that the Euler-Poincaré characteristic V0(KF(G)) of the polyconvex set K in Figure 6.1 depends
on its polygonal approximations KF(Gmin) and KF(Gmax). Evidently, the two upper rectangles are not
connected in KF(Gmin), whereas they form one “clump” in KF(Gmax). However, in both cases the boundary
lengths are similar (but not equal!). Furthermore, the polygonal approximation KF(Gmax) of the union K
of overlapping balls in Figure 6.4 produces three little holes of side length ∆ at the intersection points
of their bounding circles. For convenience, in Figure 6.4, the regions of their location are zoomed in.
Notice that these holes do not exist in KF(Gmin), which leads to different values for the Euler-Poincaré
characteristic.

In Figure 6.7, a discretized set is considered that contains the five possible boundary elements for F(Gmin),
which have been described in Figure 4.9, and the 11 possible boundary elements for F(Gmax) given in
Figure 4.8. If the computations for the image in Figure 6.7 are based on the minimal approximation
system F(Gmin), then 7 clumps and 7 holes are obtained (see the marked regions). However, using
F(Gmax) for the polygonal approximation, 4 clumps and 9 holes occur.
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Figure 4.6: Polygonal approximation of neighborhood configurations for F(Gmax)
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Figure 4.7: Polygonal approximation of neighborhood configurations for F(Gmax) (continuation)

26



1

r

r

1r

r

1

1

1

1

IS2 IS3IS1

1r

IS4

1
r

IS5

1
r

r

IS6

1

r

r

IS7

1r

r

IS8

1
r

r

IS9

-1

r

r

IS10

-1
r

r

IS11

Figure 4.8: Boundary elements with their index sectors for F(Gmax)

1

r

r

1

1

1

1

IS2IS1

1r

IS3

1r

r

IS4

-1r

r

IS5

Figure 4.9: Boundary elements with their index sectors for F(Gmin)

27



Figure 6.1: Union of non-overlapping rectangles Figure 6.2: Rotated, overlapping rectangles

Figure 6.3: Unions of non-overlapping balls Figure 6.4: Overlapping balls
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Figure 6.5: Basic squares for F(Gmin)

2 31 4 5

Figure 6.6: Basic squares for F(Gmax)

Figure 6.7: Image containing all possible boundary elements
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