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Abstract. A new fast algorithm is proposed for simultaneous computation of all Minkowski functionals
(or, equivalently, intrinsic volumes) of sets from the convex ring in R

d discretized with respect to a given
rectangular lattice. For this purpose, a certain kind of polyhedral approximation is used to reconstruct
their boundary structure. Furthermore, two efficient edge–corrected algorithms are given in order to
estimate the specific intrinsic volumes of discretized stationary random closed sets in R

d from a single
realization. For the planar case d = 2, the performance and precision of these algorithms is studied
on various examples ranging from particular polyconvex sets to samples from Boolean models. The
algorithms are implemented in Java for two different adjacency systems. Numerical experiments show
that they are not sensitive to anisotropies. Comparisons to other related methods known in the literature
are also provided.

Keywords. Stochastic geometry, random closed set, stationarity, Boolean model, discretization, ad-
jacency system, volume fraction, specific boundary area, Euler–Poincaré characteristic, nonparametric
estimation.

1 Introduction

Morphological characteristics of binary images such as volume, boundary area, curvature and connectivity
number known as Minkowski functionals or intrinsic volumes are of great importance in statistical image
analysis. They characterize the geometric structure of images and provide the basis for image modelling
and classification. Mathematically, binary images can be thought of as continuous sets discretized with
respect to a certain rectangular lattice. Furthermore, continuous geometric objects must be represented
as ensembles of pixels on discrete grids in order to be processed by computers. Thus, the problem of
fast, precise and robust computation of morphological characteristics of discretized sets has been lively
discussed in the mathematical literature of the last decade; see e.g. [8], [9], [10], [17].

In the present paper, a new approach to the computation of Minkowski functionals for unions of convex
sets (or, equivalently, polyconvex sets) is described. It leads to a fast and efficient algorithm that has the
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following advantages. First, unlike other related methods, it computes all d+1 Minkowski functionals of
a polyconvex set in R

d simultaneously. Thus, separate algorithms for the computation of each Minkowski
functional are superfluous. Second, our algorithm shows high computational precision. Its edge–corrected
counterparts for stationary random closed sets are on average more precise than other related methods
described e.g. in [8]. Third, it is fast requiring only one single scan of the image. Finally, our algorithms
are quite flexible since they depend on d free parameters, which have the meaning of dilation radii.

Notice that the theoretical background for our algorithms is provided by the recent paper [11] where
tools of convex and stochastic geometry have been used to introduce new nonparametric estimators
for specific intrinsic volumes of random closed sets (RACS) and to study their (asymptotic) statistical
properties. This estimation method for deterministic and random polyconvex sets is briefly sketched in
Section 2.1. The discretization of such sets with respect to a given rectangular lattice as well as their
polyhedral approximation based on adjacency systems is discussed in Section 2.2. In connection with
this, we suppose that the input image is given by a finite number of points and no other extra information
about the image structure is available.

In Section 3, the corresponding computational algorithms are introduced for discretized deterministic
and random polyconvex sets. In the deterministic case, a polyhedral approximation of the underlying
continuous set is constructed and the intrinsic volumes of this approximated set are computed; see
Section 3.1. If the input image is a discretized realization of a stationary RACS from the extended convex
ring, then the edge–corrected algorithms presented in Section 3.2 are used to compute the estimators
of specific intrinsic volumes. Some ideas for an appropriate choice of the dilation radii are discussed in
Section 3.3.

The general framework of Section 3, which does not depend on the dimension d, is specified in Section 4
for the planar case d = 2 where weight functions are explicitly determined for each possible configuration
of neighborhood pixels of a given boundary pixel of the input set. The three-dimensional case d = 3 will
be discussed separately in a forthcoming paper.

For the planar case d = 2, the algorithmic approach explained in Section 4 has been implemented in
Java and integrated into the GeoStoch library; see [2]. The code has been tested on various synthetic
(i.e., simulated) images. In Section 5, the results of numerical experiments are discussed and compared
to those of conventional computation methods such as the marching cube algorithm for deterministic
polyconvex sets as well as the algorithms based on Crofton’s formula, which are given in [8] for samples
from stationary RACS. For test purposes, we used polyconvex sets with known Minkowski functionals as
well as stationary germ–grain models with realizations from the extended convex ring and with known
specific intrinsic volumes. Special attention is paid to anisotropic Boolean models with simple convex
primary grains such as segments and rectangles.

2 Preliminaries

In this section, the theoretical background as introduced in [11] is briefly outlined, on which the practical
computation of (specific) intrinsic volumes for deterministic and stationary random closed sets is based.
Its algorithmic counterpart is discussed in Section 3. In the second part of the present section, a short
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introduction to discretization of continuous sets and their polyhedral approximation is given. A more
detailed account of polyhedral approximation by means of adjacency systems can be found e.g. in [9].

2.1 Intrinsic volumes

2.1.1 Intrinsic volumes of deterministic sets

Let K be the family of all convex bodies in R
d. Let R be the convex ring, i.e. the set of all finite unions

of convex bodies in R
d. By Vd(K) we denote the volume of K ∈ K. Let o ∈ R

d be the origin in R
d and

Br(x) the closed ball in R
d with radius r > 0 and center at x ∈ R

d. For each j = 0, . . . , d, nonnegative
functionals Vj : K → [0,∞) exist such that for each r > 0 the volume Vd(K ⊕ Br(o)) of the so–called
parallel set K ⊕ Br(o) of any K ∈ K is given by Steiner’s formula

Vd(K ⊕ Br(o)) =

d∑

j=0

rd−jkd−jVj(K) , (2.1)

where kj is the volume of the unit ball in R
j, j = 0, . . . , d. The functionals Vj : K → [0,∞) are called

intrinsic volumes. Numbered in reverse order and properly normed, these functionals are also known as
Minkowski functionals Wj : K → [0,∞), where Wj(K) = kj Vd−j(K)

/ (d
j

)
for any K ∈ K. Later on, we

shall use only intrinsic volumes because of convenience of notation.

Notice that for each j = 0, . . . , d, there exists a unique additive extension of the functional Vj to the
convex ring R, where this extension is given by the usual inclusion–exclusion technique; see e.g. Formula
(2.2) in [11]. Our algorithm for the computation of intrinsic volumes is based on the following explicit
extension of Steiner’s formula to R proposed by Schneider (see e.g. [12]). For any r > 0 and K ∈ R, we
have

ρr(K) =

d−1∑

j=0

rd−jkd−jVj(K) , (2.2)

where the functional ρr : R → R is given by

ρr(K) =

∫

Rd

Ir(K,x) dx with Ir(K,x) =
∑

q 6=x J (K ∩ Br(x), q, x) (2.3)

for each K ∈ R and the so-called index function J (K ∩ Br(x), q, x) is defined by

J(K, q, x) =

{
1 − lim

δ→+0
lim

ε→+0
V0

(
K ∩ B|x−q|−ε(x) ∩ Bδ(q)

)
, if q ∈ K,

0, otherwise,
(2.4)

for any K ∈ R and q, x ∈ R
d. Notice that the sum in (2.3) extends only over a finite set of boundary

points q of K; see [12]. Thus, for pairwise different radii r0, . . . , rd−1 > 0, we get d equations of the type
(2.2) which form the following system of linear equations

ρr0(K) =

d−1∑

j=0

rd−j
0 kd−jVj(K) , . . . , ρrd−1

(K) =

d−1∑

j=0

rd−j
d−1kd−jVj(K) , (2.5)
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or, equivalently, in matrix form we have Ar0...rd−1
V (K) = C(K), where

Ar0...rd−1
=




rd
0kd rd−1

0 kd−1 . . . r2
0k2 r0k1 0

rd
1kd rd−1

1 kd−1 . . . r2
1k2 r1k1 0

. . . . . . . . . . . . . . . . . .

rd
d−1kd rd−1

d−1kd−1 . . . r2
d−1k2 rd−1k1 0

0 0 . . . 0 0 1




, (2.6)

V (K) = (V0(K), . . . , Vd−1(K), Vd(K))> and C(K) = (ρr0(K), . . . , ρrd−1
(K), Vd(K))>. Since the matrix

Ar0...rd−1
in (2.6) is regular, a unique solution V (K) of the above system of linear equations exists. Hence,

using (2.5) one can compute the vector V (K) of the intrinsic volumes of K ∈ K, provided that the vector
C(K) is known.

2.1.2 Specific intrinsic volumes of stationary RACS

Let Ξ be a stationary RACS in R
d with realizations ξ from the extended convex ring S, i.e., ξ∩K belongs

to the usual convex ring R for any (compact and convex) K ∈ K and almost every realization ξ of Ξ.
See e.g. [5], [13], [16] for definition and properties of stationary RACS.

For any set K ⊂ R
d, the set of inner points of K in R

d is denoted by int(K) = K \ ∂K, where ∂K is the
boundary of K. Furthermore, for any nonempty K ∈ R, let N(K) = min{m ∈ N : K =

⋃m
i=1 Ki,Ki ∈ K}

be the minimal number of convex components of the polyconvex set K, where we put N(K) = 0 if

K = ∅. If E 2N(Ξ∩[0,1]d) < ∞, then for any (monotonously increasing) sequence {Wn} of compact and
convex observation windows with Wn = nK0 for some K0 ∈ K such that Vd(K0) > 0 and o ∈ int(K0),
the expectations E Vj(Ξ ∩ Wn) are well defined. Moreover, for each j = 0, . . . , d, the limit

V j(Ξ) = lim
n→∞

E Vj(Ξ ∩ Wn)

Vd(Wn)
(2.7)

exists and is called the j-th specific intrinsic volume of Ξ. Thus, (2.5) implies that the following system

Ar0,...,rd−1
v = c (2.8)

of d + 1 linear equations holds, where v =
(
V 0(Ξ), . . . , V d(Ξ)

)>
is the vector of specific intrinsic volumes

and

c =

(
lim

n→∞

E ρr0(Ξ ∩ Wn)

Vd(Wn)
, . . . , lim

n→∞

E ρrd−1
(Ξ ∩ Wn)

Vd(Wn)
, lim
n→∞

E Vd(Ξ ∩ Wn)

Vd(Wn)

)>

. (2.9)

2.1.3 Unbiased and consistent estimators

The following approach to simultaneous estimation of all components of v has been introduced in [11].
For any n > 1 and i = 0, . . . , d − 1, let ĉni = ρri

(Ξ ∩ Wn)
/

Vd(Wn), where

ρri
(Ξ ∩ Wn) =

∫

∂(Ξ∩Wn)⊕Bri
(o)

( ∑

q∈∂(Ξ∩Wn)∩Bri
(x)\{x}

J
(
Ξ ∩ Wn ∩ Bri

(x), q, x
))

dx . (2.10)
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For i = d, we put ĉnd = Vd(Ξ ∩ Wn)
/

Vd(Wn). Hence, in view of (2.8) and (2.9), a natural estimator

v̂n for v is given by v̂n = A−1
r0...rd−1

ĉn. Notice that ĉn =
(
ĉn0, . . . , ĉnd

)>
and v̂n =

(
v̂n0, . . . , v̂nd

)>
are

asymptotically unbiased for c and v, respectively, as n → ∞. Furthermore, a slightly modified estimator
c̃n for the vector c (and, in consequence, for v) has been considered in [11], which is based on the
reduced observation window Wn 	 Bri

(o). Namely, for each i = 0, . . . , d − 1 and any n ≥ 1 such that
Vd(Wn 	 Bri

(o)) > 0, let

c̃ni =
ρ̃n,ri

(Ξ)

Vd(Wn 	 Bri
(o))

, (2.11)

where

ρ̃n,ri
(Ξ) =

∫

Wn	Bri
(o)

( ∑

q∈∂Ξ∩Bri
(x)\{x}

J
(
Ξ ∩ Bri

(x), q, x
))

dx , (2.12)

and put c̃nd = ĉnd. Then, the edge–corrected estimators c̃n = (c̃n0, . . . , c̃nd)
> and ṽn =

(
ṽn0, . . . , ṽnd

)>
=

A−1
r0...rd−1

c̃n are unbiased for c and v, respectively, where it is assumed that Vd(Wn 	 Br(o)) > 0 for
r = max{r0, . . . , rd−1}. Moreover, it has been shown in [11] that the estimators ĉn and c̃n as well as
v̂n ṽn possess nice asymptotic second–order properties, as n → ∞. In particular, under some additional
conditions, c̃n, ĉn and ṽn, v̂n are mean–square consistent for c and v, respectively. Furthermore, the
asymptotic covariance matrix of these estimators can be determined, and a mean–square consistent
estimator for the asymptotic covariance matrix can be constructed.

We also remark that besides the minus sampling considered in (2.11)–(2.12), there is still another type of
edge correction, which leads to unbiased estimators if the observation windows Wn are parallelepipeds.
For example, suppose that Wn = [−na, na]d for some a > 0 and consider the “right upper boundary”
∂+Wn of Wn, where ∂+Wn =

{
x = (x1, . . . , xd) ∈ Wn : max16i6d xi = na

}
. For any n > 1 and

i = 0, . . . , d − 1, let

ĉ +
ni =

ρri
(Ξ ∩ Wn) − ρri

(Ξ ∩ ∂+Wn)

Vd(Wn)
, (2.13)

where ρri
(Ξ∩Wn) and ρri

(Ξ∩∂+Wn) are given as described in (2.3) and (2.10). Then, putting ĉ +
nd = ĉnd,

the estimator ĉ +
n =

(
ĉ +
n0, . . . , ĉ

+
nd

)>
is unbiased for c; see e.g. [13], [19]. Furthermore, this implies that

v̂ +
n = A−1

r0...rd−1
ĉ +
n is unbiased for v and, under some additional conditions, it can be shown that ĉ +

n

and v̂ +
n possess similar asymptotic properties as the other two estimators ĉn, c̃n and v̂n, ṽn for c and v,

respectively, considered above.

2.2 Discretization and polyhedral approximation

2.2.1 Rectangular lattices and adjacency systems

Consider the subset L
d = {x ∈ R

d : x =
∑d

i=1 λiui, λi ∈ Z} of the d-dimensional Euclidean space
R

d, where the vectors u1 = (∆1, 0, . . . , 0)
>, . . . , ud = (0, . . . , 0,∆d)

> form an orthogonal basis of R
d and

∆1, . . . ,∆d > 0 are some constants. Notice that L
d is called a rectangular lattice in R

d, where ∆1, . . . ,∆d

are the lattice spacings. The unit cell of the lattice, i.e., the Minkowski sum of the half-open segments
[o, u1), . . . , [o, ud) will be denoted by L. In the following, we only consider cubic lattices, i.e., we assume
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that ∆1 = ∆2 = . . . = ∆d = ∆ > 0, i.e., L
d = ∆Z

d. However, the results given below can easily be
extended to the case of a general rectangular lattice.

For a polytope P ⊂ R
d and for each k = 0, . . . , d, the set of k-facets of P is denoted by F k(P ). For

instance, F0(P ) is the set of vertices, F 1(P ) is the set of edges of P , and F d(P ) is the polytope P
itself. A family of convex polytopes G = {P1, P2, . . .} with inner points is called a tessellation of R

d if
int(Pi)∩ int(Pj) = ∅ for any i 6= j, if G is locally finite, i.e., the number of its cells P1, P2, . . . that intersect
an arbitrary bounded subset of R

d is finite, and if G covers the whole R
d, i.e., ∪∞

i=1Pi = R
d. Notice that

the intersection Pi ∩ Pj of two different cells Pi, Pj is either empty or a k-facet of these cells for some
k < d. A tessellation G = {P1, P2, . . .} is called admissible with respect to L

d if F0(Pi) ⊂ L
d for each

i = 1, 2, . . ., i.e., the vertices of each cell Pi are lattice points, and if G is invariant with respect to lattice
translations, i.e., G + x = G for all x ∈ L

d. In particular, this implies that the polytopes from G are
subsets of the lattice cells. A superposition G of admissible tessellations G1, . . . , Gm, m ∈ N is defined
as G = {P : P = Q1 ∩ . . . ∩ Qm, Q1 ∈ G1, . . . , Qm ∈ Gm}. Notice that the superposition of admissible
tessellations must not be admissible, due to possible existence of vertices that are not lattice points.

The adjacency system F(G) with respect to the tessellation G is defined as F(G) =
⋃d

k=0 Fk(G), where
Fk(G) =

⋃∞
i=1 Fk(Pi) for each k = 0, . . . , d. Furthermore, the neighborhood relation γ for F(G) is given

by the set γ of non–ordered pairs 〈x, y〉 of vertices x, y ∈ L
d such that

γ =
{
〈x, y〉 : x, y ∈ F0(L), (x, y) ⊂ L, [x, y] ⊂ F 1(G)

}
, (2.14)

where L denotes the topological closure of the lattice cell L, and (x, y), [x, y] are the open and closed
segments, respectively, connecting the vertices x and y. The neighborhood graph Γ with respect to F(G)
is then defined as Γ =

(
L

d,
⋃

x∈Ld(x + γ)
)
, where L

d is the set of nodes and
⋃

x∈Ld(x + γ) the set of non–
oriented edges. For any point x ∈ L

d, its neighborhood NΓ(x) with respect to the graph Γ is introduced
as NΓ(x) = {y ∈ L

d : 〈x, y〉 ∈ ⋃z∈Ld(z + γ)} ∪ {x}. Finally, we mention two special adjacency systems
that will be used later on. Let Gmin be the tessellation that consists only of the lattice cells. Then the
adjacency system F(Gmin) is called the minimum adjacency. On the other hand, F(Gmax) is called the
maximum adjacency if Gmax is the superposition of all admissible tessellations with respect to the lattice
L

d.

2.2.2 Polyhedral approximation of continuous sets

Consider a set K ∈ R where K ⊂ W for some observation window W . In computer applications, one
often deals with binary images that are represented by finite sets of black pixels on the white background.
To comprehend this situation, we assume that instead of the set K, its discretization K ∩L

d with respect
to the lattice L

d is given and any other extra information about K is not available. It is convenient to
represent K ∩ L

d as a binary image, i.e., as a finite set of “black” or foreground pixels x ∈ K ∩ L
d on

the “white” grid L
d (the so–called background). This means that we identify the set K ∩ L

d with its
indicator function 1K∩Ld : L

d → {0, 1}, i.e., 1K∩Ld(x) = 1 if x ∈ K ∩ L
d, and 1K∩Ld(x) = 0 otherwise.

In order to compute the left–hand side of the linear equations considered in (2.5) for a set K ∈ R from
its discretization K ∩L

d, one should be able to determine the sum of index functions in (2.3). Due to the
geometric nature of the index function that implicitly involves the boundary of K, one has to define the
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“boundary” of K ∩ L
d. In other words, the boundary of K has to be “reconstructed” or, better to say,

approximated from its discretized version K∩L
d. One possible way to do that is the following polyhedral

approximation of K by means of an adjacency system F(G). For any K ∈ R, the set of those elements of
the adjacency system F(G) whose vertices belong to K∩L

d is denoted by KuF(G) =
⋃d

k=0(K uFk(G)),
where K u Fk(G) = {P ∈ Fk(G) : F0(P ) ⊂ K ∩ L

d}. The polyhedral approximation KF(G) of K with
respect to the adjacency system F(G) is then defined as KF(G) =

⋃
P∈KuF(G) P .

Notice that in contrast to the family of “construction bricks” K u F(G), the set KF(G) is the (finite)

union of all polytopes from K u F(G). A point x ∈ K ∩ L
d is called a boundary point of the discretized

set K ∩ L
d with respect to the adjacency system F(G) if x ∈ ∂KF(G). The set of all boundary points of

K ∩ L
d will be denoted by ∂(K ∩ L

d).

In the following, saying that we compute the intrinsic volumes of the discretized set K ∩ L
d, we mean

the computation of the intrinsic volumes of the polyhedral approximation KF(G) of K.

3 Algorithm

In this section, we describe a new fast algorithm for the computation of intrinsic volumes of deterministic
polyconvex sets and their random counterparts, respectively.

3.1 Deterministic polyconvex sets

Consider a set K ∈ R which entirely lies in a sampling window W , i.e. K ⊂ W ⊂ R
d. In the following,

an algorithm is described that approximates the vector of intrinsic volumes V (K) on the basis of the
polyhedral approximation KF(G) of K defined in Section 2.2. Thus, instead of ρr(K), C(K), and V (K),
we will compute the corresponding approximations ρr(KF(G)), C(KF(G)), and V (KF(G)), respectively.

3.1.1 Basic idea and computational efficiency

Recall that formulae (2.2)–(2.5) provide the theoretical background for the practical computation of
V (KF(G)). This means that first an algorithm should be constructed in order to compute the vector
C(KF(G)) whose components are given by (2.3). Then, the vector V (KF(G)) = A−1

r0,...,rd−1
C(KF(G)) can

be easily determined, where A−1
r0,...,rd−1

is the inverse of the matrix Ar0,...,rd−1
given in (2.6).

Thus, the main task is to compute the quantity ρr(KF(G)) for a fixed r > 0. This will be done in three

steps. First, we discretize the integral in (2.3) with respect to the lattice L
d, which gives

ρr(KF(G)) ≈ ∆d
∑

x∈(∂KF(G)⊕Br(o))∩Ld

∑

q∈∂KF(G)\{x}

J(KF(G) ∩ Br(x), q, x) (3.1)

or, equivalently,

ρr(KF(G)) ≈ ∆d
∑

x∈(∂KF(G)⊕Br(o))∩Ld

( ∑

q∈∂(K∩Ld)\{x}

+
∑

q∈∂KF(G)\
(
∂(K∩Ld)∪{x}

)
)
J(KF(G) ∩ Br(x), q, x) ,
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where the inner sum in (3.1) has been decomposed into two sums considering those boundary points
q 6= x of KF(G) separately which belong to the lattice L

d and those which do not possess this property,
respectively. Recall that the first as well as the second inner sum extend over finitely many q ∈ ∂KF(G)

only. For reasons of computational efficiency, we interchange the resulting sums getting

ρr(KF(G)) ≈ ∆d
∑

q∈∂(K∩Ld)

Sr(q) + ∆d
d−1∑

k=1

∑

P∈Fk(G), P⊂∂KF(G)

Mr(P ) , (3.2)

where

Sr(q) =
∑

x∈Ld, 0<|x−q|6r

J(KF(G) ∩ Br(x), q, x) , Mr(P ) =
∑

x∈Dr(P )

J(KF(G) ∩ Br(x), τP (x), x) , (3.3)

and Dr(P ) = {x ∈ L
d : τP (x) ∈ int(P ), 0 < |x − τP (x)| 6 r} is the set of those lattice points x for which

their orthogonal projection τP (x) on the k–dimensional “plane” induced by the k–facet P belongs to the
(k–dimensional) inner part int(P ) of P and the Euclidean distance |x− τP (x)| is positive, but not larger
than r. Finally, in the third step of the algorithm, we have to compute the inner sums Sr(q) and Mr(P )
given in (3.3).

Notice that τP (x) 6∈ L
d if x ∈ Dr(P ). Furthermore, the “weight” Mr(P ) of the k–facet P ⊂ ∂KF(G)

is equal to the cardinality card(Dr(P )) of the set Dr(P ), since J(KF(G) ∩ Br(x), τP (x), x) = 1 for each
x ∈ Dr(P ). We also remark that the direct computation of the sum (3.1) would be not efficient. Indeed, let
l be the number of (boundary) pixels in ∂(K∩L

d) and m be the total number of pixels in the (discretized)
window W ∩ L

d. Then, the direct computation of the sum (3.1) would require O(m + l2rd) operations
for each radius r, whereas the fast algorithm based on (3.2) has complexity O(m); see Section 3.1.3.

3.1.2 Computation of the sums Sr(q) and Mr(P )

In what follows, we show how the computational complexity, which is necessary to determine the sums
in (3.2)–(3.3), can be reduced to O(m) arithmetic operations by means of linear binary filtering. Then,
the computations can be arranged in such a way that only one single scan of the image is required.

To see this, we first notice that the index function J(KF(G) ∩Br(x), q, x) can be interpreted as one minus
the “local” Euler–Poincaré characteristic of KF(G) ∩ Br(x) at q ∈ ∂KF(G) “in direction” q − x. Hence,

the sum Sr(q) in (3.3) does not depend on the location of q ∈ ∂(K ∩ L
d) in W ∩ L

d but only on the
behavior of the boundary ∂KF(G) in a small neighborhood of q, i.e., on the configurations of foreground
pixels in the lattice neighborhood NΓ(q) introduced in Section 2.2. To handle this situation, a standard
tool of image analysis, the so–called linear binary filter can be used to code all possible configurations
of foreground and background pixels in the lattice neighborhoods of the image; see e.g. [8], [15]. Let
NΓ(q) = {q0, . . . , qν} be the lattice neighborhood of a pixel q = q0 ∈ L

d that contains the lattice points
q1, . . . , qν ∈ L

d. For each q ∈ ∂(K ∩ L
d), the binary image {1K∩Ld(x), x ∈ NΓ(q)} is coded by a sum of

exponents of two, considering the bijective mapping

{1K∩Ld(x), x ∈ NΓ(q)} 7→ b(K ∩ L
d, NΓ(q)) =

ν∑

j=0

1K∩Ld(qj)2
j . (3.4)
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Then, instead of computing the sum Sr(q) for each point q ∈ ∂(K ∩ L
d), it can be computed for each

neighborhood configuration i = b(K ∩ L
d, NΓ(q)), i = 0, . . . , 2ν − 1, and weighted by its frequency hS,i

among all coded neighborhood configurations of the image 1K∩Ld . In other words, the first sum in (3.2)
rewrites ∆d

∑2ν−1
i=0 hS,iSr,i, where Sr,i denotes the sum Sr(q) for a boundary point q ∈ ∂(K ∩ L

d) with
the neighborhood NΓ(q) such that b(K∩L

d, NΓ(q)) = i. This approach is efficient since the number 2ν of
possible neighborhood configurations is, as a rule, much smaller than the number m of pixels in W ∩Ld.

Anyhow, the algorithm for the computation of Sr,i for each i = 0, . . . , 2ν − 1 heavily depends on the
dimension d. In Section 4, the case d = 2 is considered in detail, whereas the 3–dimensional case will be
discussed separately in a forthcoming paper. Notice however that for a boundary pixel q ∈ ∂(K ∩ L

d)
with neighborhood configuration {1K∩Ld(x), x ∈ NΓ(q)} of a given code i, it is not necessary to compute
the index J(KF(G) ∩ Br(x), q, x) in the sum

Sr,i =
∑

x∈Ld, 0<|x−q|6r

J(KF(G) ∩ Br(x), q, x) (3.5)

separately for each x ∈ L
d with 0 < |x − q| 6 r. Instead, the sum Sr,i can be computed as a whole; see

Section 4 for details in the planar case d = 2.

Likewise, the sum Mr(P ) in (3.3) does not depend on the location of the k–dimensional polytope P
but on its orientation with respect to the lattice L

d. Hence, there exist at most µ =
∑d−1

k=1 card(Fk(L̄))
possible types of partial sums Mr(P ) that we denote by Mr,i, i = 0, . . . , µ − 1. Each of them can be

computed just by computing the cardinality of the set Dr(P ). For any polytope P ∈ ⋃d−1
k=1 Fk(G) of a

given type i, let hM,i be the number of such polytopes in ∂KF(G). Notice that these numbers can be
computed on the basis of neighborhood configurations simultaneously with the frequencies hs,i during
the first scan of the image. Finally, an approximation of ρr(KF(G)) is obtained by

ρr(KF(G)) ≈ ∆d
(2ν−1∑

i=0

hS,iSr,i +

µ−1∑

i=0

hM,iMr,i

)
. (3.6)

3.1.3 Overview of the individual steps

The algorithm described above can be summarized as follows.

1. Scan the image and code all its neighborhood configurations according to (3.4)

2. For each neighborhood configuration of type i = 0, . . . , 2ν−1, compute its frequency hS,i > 0 among
all coded neighborhoods {1K∩Ld(x), x ∈ NΓ(q)} of type i with q ∈ ∂(K ∩ L

d), i.e., compute the
neighborhood histogram of the boundary ∂(K ∩ L

d).

3. For each polytope P of type i = 0, . . . , µ − 1, compute the frequency hM,i > 0 of its occurrence in
∂KF(G).

4. For any i with hS,i > 0, compute Sr,i for r = r0, . . . , rd−1 as given in (3.5).
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5. For any i with hM,i > 0, compute Mr,i for r = r0, . . . , rd−1.

6. For r = r0, . . . , rd−1, compute an approximation of ρr(KF(G)) using (3.6). Form the corresponding

approximation of the vector C(KF(G)) = (ρr0(KF(G)), . . . , ρrd−1
(KF(G)), Vd(KF(G)))

>, where the

value Vd(KF(G)) is approximated just by counting of all foreground pixels in W ∩ L
d.

7. Compute an approximation of V (KF(G)) = A−1
r0...rd−1

C(KF(G)).

Notice that for an arbitrary number n of d–tuples of dilation radii (r0j , . . . , rd−1,j), j = 1, . . . , n, only
one scan of the image is required to perform the above algorithm n times. Furthermore, it is possible to
compute the values Sr,i, Mr,i for all plausible radii r in advance and to store them in an array in order
to use these values in each program run. Doing so, the complexity of the algorithm is O(m).

3.2 Samples from stationary RACS

Let K = ξ∩W be that part of a realization ξ of a stationary RACS Ξ sampled in a (compact and convex)
observation window W ⊂ R

d. Notice that this leads to edge effects, because the (unbounded) stationary
RACS Ξ is sampled only in the bounded window W . Thus, two edge–corrected modifications of the

algorithm described in Section 3.1 are proposed in order to compute the estimators ṽ =
(
ṽ0, . . . , ṽd

)>
=

A−1
r0...rd−1

c̃ and v̂ + =
(
v̂ +
0 , . . . , v̂ +

d

)>
= A−1

r0...rd−1
ĉ + introduced in Section 2.1 for the vector v of specific

intrinsic volumes of the stationary RACS Ξ.

3.2.1 Two edge–corrected modifications of the algorithm

As in Section 3.1, we replace K by its polyhedral approximation KF(G). In particular, in the definition
of the estimator c̃ = (c̃0, . . . , c̃d) given in (2.11)–(2.12), we replace Ξ by KF(G) and Vd(W 	 Bri

(o)) by

∆dcard(W 	 Bri
(o)) ∩ L

d), respectively. Thus, we consider the vector

c̃(KF(G)) =

(
ρ̃r0(KF(G))

∆d card((W 	 Br0(o)) ∩ Ld)
, . . . ,

ρ̃rd−1
(KF(G))

∆d card((W 	 Brd−1
(o)) ∩ Ld)

,
card(K ∩ L

d)

card(W ∩ Ld)

)
,

where we discretize the integral in (2.12) with respect to the lattice L
d getting

ρ̃r(KF(G)) ≈ ∆d
∑

x∈(∂KF(G)⊕Br(o))∩(W	Br(o))∩Ld

∑

q∈∂KF(G)\{x}

J(KF(G) ∩ Br(x), q, x) (3.7)

for each r = r0, . . . , rd−1, and, after changing the order of summation,

ρ̃r(KF(G)) ≈ ∆d
∑

q∈∂(K∩Ld)

S̃r(q) + ∆d
d−1∑

k=1

∑

P∈Fk(G), P⊂∂KF(G)

M̃r(P ) ,

where

S̃r(q) =
∑

x∈(W	Br(o))∩Ld , 0<|x−q|6r

J(KF(G) ∩ Br(x), q, x) , M̃r(P ) =
∑

x∈ eDr(P )

J(KF(G) ∩ Br(x), τP (x), x) ,
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and D̃r(P ) = {x ∈ (W 	 Br(o)) ∩ L
d : τP (x) ∈ int(P ), 0 < |x − τP (x)| 6 r}.

In the present case, the quantities S̃r(q) and M̃r(P ) depend not only on the type i of neighborhood
configuration but also on the location of q and P , respectively. Indeed, only those lattice points x
are counted in the above sums which have distance from q and P , respectively, not larger than r and
lie in the reduced sampling window W 	 Br(o). However, if the sampling window is large relative to

the radius r, i.e., if Vd(W 	 B2r(o)) > 0, then S̃r(q) = Sr(q) and M̃r(P ) = Mr(P ) for lattice points
q ∈ ∂(K ∩ L

d) ∩ (W 	 B2r(o)) and P ⊂ (W 	 B2r(o)), respectively. In fact, for such q and P , the circle
Br(q) and the set {x ∈ R

d : 0 < |x − τP (x)| 6 r} belong to the reduced sampling window W 	 Br(o).
Thus, we have

ρ̃r(KF(G)) ≈ ∆d
∑

q∈∂(K∩Ld)∩W	B2r(o)

Sr(q) + ∆d
d−1∑
k=1

∑
P∈P1

Mr(P )

+∆d
∑

q∈∂(K∩Ld)\W	B2r(o)

S̃r(q) + ∆d
d−1∑
k=1

∑
P∈P2

M̃r(P ) ,

(3.8)

where P1 = {P ∈ Fk(G) : P ⊂ ∂KF(G) ∩ (W 	 B2r(o))} and P2 = {P ∈ Fk(G) : P ⊂ ∂KF(G)} \ P1.
The first two sums of the latter expression can be computed as in Section 3.1 using (3.6). However, for

those q and D being close to the boundary of the window W , the quantities S̃r(q) and M̃r(P ) have to
be computed directly.

Suppose now that W = [−a, a]d is a cubic observation window for some a > 0. Then, in order to compute
the estimators ĉ + and v̂ + = A−1

r0...rd−1
ĉ + introduced in Section 2.1, we consider the vector

ĉ +(KF(G)) =

(
ρ+

r0
(KF(G),W )

∆d card((W 	 Br0(o)) ∩ Ld)
, . . . ,

ρ+
rd−1

(KF(G),W )

∆d card((W 	 Brd−1
(o)) ∩ Ld)

,
card(K ∩ L

d)

card(W ∩ Ld)

)
,

where ρ+
ri

(KF(G),W ) = ρri
(KF(G)∩W )−ρri

(KF(G)∩∂+W ) for i = 0, . . . , d−1. Notice that ρri
(KF(G)∩W )

and ρri
(KF(G) ∩ ∂+W ) can be computed in the same way as it has been discussed in Section 3.1 for the

deterministic case.

3.2.2 Overview of the individual steps

For each radius r = r0, . . . , rd−1, the first edge–corrected algorithm described in Section 3.2.1 can be split
into the following steps:

1. Scan the reduced image {1ξ∩Ld(x), x ∈ W 	 B2r(o)} and code all its neighborhood configurations
according to (3.4).

2. For each neighborhood configuration of type i = 0, . . . , 2ν−1, compute its frequency hS,i > 0 among
all coded neighborhoods {1(K∩Ld(x), x ∈ NΓ(q)} of type i with q ∈ ∂(K ∩L

d)∩ (W 	B2r(o)), i.e.,

compute the neighborhood histogram of the boundary ∂(K ∩ L
d) ∩ (W 	 B2r(o)).

3. For each polytope P ∈ P1 of type i = 0, . . . , µ−1, compute the frequency hM,i > 0 of its occurrence
in P1.
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4. For any i with hS,i > 0, compute Sr,i as given in (3.5).

5. For any i with hM,i > 0, compute Mr,i.

6. Scan the rest of the image {1ξ∩Ld(x), x ∈ W \ (W 	B2r(o))}. For any q ∈ ∂(K∩L
d)\ (W 	B2r(o))

and P ∈ P2, compute the sums M̃r(P ) and S̃r(q).

7. Compute an approximation of ρ̃r(KF(G)) using (3.8). Form the corresponding approximation of the
vector c̃(KF(G)).

8. Compute the approximation of ṽ(KF(G)) = A−1
r0...rd−1

c̃(KF(G)).

As in the deterministic case of Section 3.1, the first edge–corrected algorithm requires only one single
scan of the image. However, the complexity of computation is O(m + lrd) and, therefore, higher than in
the deterministic case. On the other hand, if W is a parallelepiped, then the edge–corrected algorithm
considered in (2.13) can be used, which is based on the computation of ĉ +(KF(G)). This algorithm can
be entirely reduced to the deterministic case and, therefore, has complexity O(m).

3.3 Appropriate choice of dilation radii

3.3.1 Selection of d dilation radii

Computer experiments showed that the accuracy of our algorithm for the computation of V (KF(G)),
ṽ(KF(G)), and v̂ +(KF(G)), respectively, heavily depends on the choice of the d-tuple of radii (r0, . . . , rd−1).
For instance, the error that appears in discretizing the integral in (2.3) is substantial for small radii, e.g.
r0 = 1, . . . , rd−1 = d. Therefore, the problem of an appropriate choice of the radii r0, . . . , rd−1 arises.

For deterministic polyconvex sets K, there are no restrictions on the ri from above. Thus, the largest
values of ri can be chosen in such a way that the run times of the algorithm are still acceptable. In
practice, this could be ri ≈ 10000. If K = ξ ∩ W for some realization ξ of a stationary RACS Ξ and
the first edge–corrected algorithm based on minus–sampling is considered, then the maximum radius
r = max{r0, . . . , rd−1} should not exceed the half–diameter of W , which ensures that Vd(W 	Br(o)) > 0.
However, if the reduced observation window W	Br(o) is too small, the computations are unstable because
the number of lattice points within W 	Br(o) is not large enough to provide a good approximation (3.7)
of the integral in (2.12). Hence, the radii r0, . . . , rd−1 should be chosen not too small and not too large
compared to the diameter of W . Furthermore, enlarging the window W , i.e., increasing the resolution of
the image allows larger values of the radii r0, . . . , rd−1. On the other hand, if the observation window W
is a parallelepiped and the second edge–corrected algorithm is used, then the radii ri should be chosen
possibly large. The above recommendations have been proved by numerical experiments; see Section 5.

3.3.2 Methods for more than d dilation radii

The computational results can be significantly improved if, instead of taking d dilation radii r0, . . . , rd−1,
the image is analyzed for more than d radii. Then, our approach can be combined with various standard
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methods of statistics in order to further improve the estimation of Minkowski functionals. In the following,
we just mention two of such possibilities.

Suppose that the image is a polyconvex set K ⊂ W which is analyzed for n different d–tuples of dilation
radii r(i) = (r0i, . . . , rd−1,i). Let V (i)(KF(G)) denote the output of our algorithm for the i-th d–tuple r(i)

of radii; i = 1, . . . , n. Then, the sample
(
V (1)(KF(G)), . . . , V

(n)(KF(G))
)

of size n is formed, where the
numerical experiments showed that the sample mean

V (KF(G)) =
1

n

n∑

i=1

V (i)(KF(G))

is more precise and much less sensitive to outliers resulting from the discretization error. Notice that
instead of the sample mean, other sample functions like e.g. the median can be used in order to compute
approximations for V (KF(G)).

On the other hand, even better results can be obtained by the least squares method, where a single
n–tuple of radii (r0, . . . , rn−1) with n > d is considered. In the case of a deterministic polyconvex set
K ⊂ W , this leads to the following overdetermined system of linear equations, which corresponds to
(2.5): 


ρr0(KF(G))

...
ρrn−1(KF(G))


 =




rd
0kd rd−1

0 kd−1 . . . r2
0k2 r0k1

. . . . . . . . . . . . . . .

rd
n−1kd rd−1

n−1kd−1 . . . r2
n−1k2 rn−1k1







x0
...

xd−1


 , (3.9)

or, in matrix form, C ′(KF(G)) = A′ x, where C ′(KF(G)) =
(
ρr0(KF(G)), . . . , ρrn−1(KF(G))

)>
, A′ denotes

the matrix at the right-hand side of (3.9), and x = (x0, . . . , xd−1)
> ∈ R

d is some d–dimensional vector.
Notice that, typically, there exists no x ∈ R

d which solves (3.9) exactly. However, it is well known that

the vector V ∗(KF(G)) =
(
(A′)>A′

)−1
(A′)>C ′(KF(G)) is the unique solution of the minimization problem

∣∣C ′(KF(G)) − A′ V ∗(KF(G))
∣∣ = min

x∈Rd

∣∣C ′(KF(G)) − A′ x)
∣∣

and, therefore, can be regarded as approximation of V ′(KF(G)) = (V0(KF(G)), . . . , Vd−1(KF(G)))
>. If

K = ξ ∩ W for some realization ξ of a stationary RACS Ξ and the first edge–corrected algorithm is
used, then a system of linear equations can be considered which is similar to (3.9) and which leads to
a quite good approximation of the vector v ′(KF(G)) = (v0(KF(G)), . . . , vd−1(KF(G)))

> of specific intrinsic
volumes. In the case of the second edge–corrected algorithm, we can proceed in a completely analogous
way; see Section 5 for further details.

4 The planar case

The general description of our algorithm, which has been given in Section 3 for the d–dimensional case, can
be specified for d = 2 and d = 3, respectively. In the present section, the planar case d = 2 is considered
in detail, where we focus on the case of deterministic polyconvex sets, since its stochastic counterparts
for realizations of stationary RACS differ only in performing the edge correction. A thorough study of
the algorithmic specifications for 3D binary images will be the subject of a forthcoming paper.
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4.1 Neighborhood configurations of boundary points

Two particular adjacency systems for the polyhedral approximation of discretized sets are standard in
image analysis: the minimum adjacency F(Gmin) and the maximum adjacency F(Gmax) mentioned in
Section 2.2. Anyhow, recall that the general algorithmic approach of Section 3 can be applied to any
adjacency system.

4.1.1 4–neighborhood and 8–neighborhood

In this section, we briefly describe how F(Gmin) and F(Gmax) are specified in the planar case d = 2.

Let l0 = (0, 0), l1 = (∆, 0), l2 = (∆,∆), l3 = (0,∆) be the vertices of the unit cell L of the square lattice
L

2 = ∆Z
2. Furthermore, by conv{x1, . . . , xk}, we denote the convex hull of the points x1, . . . , xk ∈ R

2.
The maximum adjacency F(Gmax) in R

2 can be generated by all lattice rotations, translations, and
intersections of the following family

F = {conv{l0, . . . , li}, i = 0, . . . , 3} =
{
{l0}, [l0, l1], conv{l0, l1, l2}, L

}

of polygons in R and R
2, i.e., F(Gmax) = {T1(P1) ∩ . . . ∩ Tk(Pk) : Pi ∈ F, Ti ∈ T

2, i = 1, . . . , k, k ∈ N},
where T

2 is the invariance group of L
2, i.e., the group of all rigid motions in R

2 that map L
2 into

itself. It can be easily seen that F(Gmax) implies the neighborhood relation γ that is well–known as the
8–neighborhood in image analysis; see [15]. Namely, each point x0 ∈ L

2 has exactly ν = 8 neighbors
x1 = x0 + l1, x2 = x0 + l2, x3 = x0 + l3, x4 = x0 − l1 + l3, x5 = x0 − l1, x6 = x0 − l2, x7 = x0 − l3,
x8 = x0 + l1 − l3, where we briefly write NΓ(x0) = {x0, . . . , x8}. Notice that the pixels of NΓ(x0) are
counterclockwise ordered in a “spiral” way beginning with the central pixel x0; see Figure 4.1.

The minimum adjacency F(Gmin) in R
2 can be generated by all lattice translations and intersections of

the closed lattice cell L of L
2:

F(Gmin) = {T1(L) ∩ . . . ∩ Tk(L) : Ti ∈ T
2, i = 1, . . . , k, k ∈ N} .

It can be easily seen that F(Gmin) yields the so–called 4–neighborhood; see Figure 4.1. That is, each point
x0 ∈ L

2 has exactly ν = 4 neighbors x1 = x0 + l1, x3 = x0 + l3, x5 = x0 − l1, x7 = x0 − l3.

x

2

x

0x 1

x3x4x

6

x5

x7 x8

x

2

x

0x 1

x3x4x

6

x5

x7 x8

Figure 4.1: 4–neigborhood and 8–neighborhood

14



4.1.2 Boundary points

Suppose that the discretization K ∩ L
2 of a deterministic polyconvex set K ⊂ W ⊂ R

2 is given. Using
the polygons of F(Gmax) as construction stones, the approximation KF(Gmax) can be built, which itself is
a polygon with the following boundary structure. A point q0 ∈ K ∩ L

2 is a boundary point of KF(Gmax),
i.e., q0 ∈ ∂KF(Gmax), if at least one pixel qi of its 4–neighborhood {q1, q3, q5, q7} does not belong to K∩L

2,
where q1 = q0 + l1, q3 = q0 + l3, q5 = q0 − l1, q7 = q0 − l3. In terms of binary images, a foreground pixel
q0 belongs to ∂KF(Gmax) if there is at least one background pixel in its 4–neighborhood.

Analogously, on the basis of F(Gmin), the polygonal approximation KF(Gmin) of a polyconvex set K can
be built from its digitized version K ∩ L

2. Then, a point q0 ∈ K ∩ L
2 is a boundary point of KF(Gmin),

i.e., q0 ∈ ∂KF(Gmin), if at least one lattice point qi of its 8–neighborhood {q1, . . . , q8} does not belong to
K ∩L

2. Hence, although the 4–neighborhood relation is used for the polygonal approximation of the set
K, we have to consider the 8–neighborhood of a given pixel to decide whether it belongs to the boundary
∂KF(Gmin).

4.1.3 Neighborhood configurations

Altogether, there are 29 = 512 possible configurations of 8–neighborhoods. After coding them as described
in (3.4), we only need to consider neighborhoods NΓ(x0) = {x0, . . . , x8} of foreground lattice points
x0 ∈ K ∩L

2. They can be easily recognized by their code b(K ∩L
2, NΓ(x0)) > 0 which is an odd number

because 1K∩L2(x0) = 1 if x0 ∈ K ∩ L
2. Thus, the number of different neighborhood configurations of

foreground pixels is reduced to 256.

We first consider the maximum adjacency F(Gmax) in R
2 and analyze all possible types of neighborhood

configurations for pixels on the boundary of the polygon KF(Gmax), for which the sums Sr,i appearing in
(3.5) coincide. Notice that by rigid motions from T

2 and reflections, one can reduce the above number of
256 different configurations to 51. Furthermore, we omit those configurations {1K∩L2(x), x ∈ NΓ(x0)}
with x0 6∈ ∂(K ∩L

2). Then, the number of remaining different neighborhood configurations of boundary
pixels is 45; see Figures 4.2–4.3. For the neighborhood NΓ(q0) = {q0, . . . , q8} of each boundary point
q0 ∈ ∂(K ∩ L

2), we consider the pixel values b0, . . . , b8, where bi = 1(qi ∈ K ∩ L
2) for i = 0, . . . , 8.

These pixel values are given in Table 4.1. Notice that the image frequencies of different (up to rotations
or reflections) neighborhood configurations of the same type i are summed up to hS,i. For instance,
the neighborhood configurations 100001001, 101001000, 110000100, 100010010, 100100001, 101000010,
110010000, and 100100100 are of type i = 7. They differ from each other only by rotations on 90◦, 180◦,
270◦ and reflections with respect to the axes (x1, x5), (x3, x7) and diagonals (x2, x6), (x4, x8); see Figure
4.1. After scanning the image, the frequencies of occurrence of these neighborhood configurations are
summed up to hS,7.

Considering the minimum adjacency F(Gmin), the family of neighborhood configurations for pixels on the
boundary of the polygon KF(Gmin) can be analyzed in a similar way. As before, the number of different
8–neighborhood configurations of foreground pixels is equal to 256. Then, by rigid motions from T

2 and
reflections, the number of different neighborhood configurations of boundary points q0 ∈ ∂(K ∩ L

2) is
reduced to 50. The first 45 neighborhood configurations coincide with those given in Table 4.1. The five

15



new configurations given in the left part of Table 4.5 result from the changed definition of the boundary
pixels of KF(Gmin).

i b0, . . . , b8 i b0, . . . , b8 i b0, . . . , b8 i b0, . . . , b8 i b0, . . . , b8

1 100000000 10 100001110 19 100010101 28 101011010 37 111011001
2 100001000 11 110011000 20 100011110 29 101011100 38 111011010
3 100000100 12 101011000 21 110111000 30 100011011 39 101011011
4 110001000 13 100011001 22 100111001 31 101010101 40 101110101
5 100001010 14 100011010 23 111011000 32 110001111 41 101111110
6 100001100 15 100011100 24 110011001 33 101111001 42 101111011
7 100001001 16 110101000 25 110011010 34 101111010 43 101110111
8 100000101 17 100101001 26 110011100 35 111000111 44 111110101
9 101000100 18 101001001 27 101011001 36 110111001 45 101111111

Table 4.1: Pixel values for the neighborhood configurations of boundary points

4.2 Computation of Sr,i and Mr,i for the maximum adjacency F(Gmax)

4.2.1 Polygonal approximation

Consider the maximum adjacency F(Gmax) in R
2. Then, for each type of the 45 neighborhood config-

urations given in Table 4.1, the sums Sr,i have to be computed using (3.5). In connection with this,
the polygonal approximations of these neighborhood configurations given in Figures 4.2–4.3 must be
analyzed. It turns out that they contain 11 different types of boundary elements of which the whole
boundary ∂KF(Gmax) is made; see Figure 4.4. These boundary elements are given by the neighborhood
configurations enumerated in Table 4.1 by 1, 2, 3, 6, 15, 10, 20, 32, 35, 41, and 45, respectively. Further-
more, each neighborhood configuration in Table 4.1 can contain up to 4 different boundary elements; see
Figures 4.2–4.3. Thus, in accordance with (3.5), we can write

Sr,i =

11∑

j=1

ωijJj , i = 1, . . . , 45 , (4.1)

where Jj denotes the partial sum in (3.5) which corresponds to a boundary element of type j = 1, . . . , 11
and ωij ∈ {0, 1, 2, 3, 4} is the number of such boundary elements in the neighborhood configuration of
type i. The complete list of weights ωij is given in Table 4.2.

4.2.2 Partial sums Jj corresponding to given boundary elements

In this section, we describe how the partial sums Jj introduced in (4.1) can be computed. Let q ∈
∂(K ∩ L

2) be the central pixel of a neighborhood configuration which contains a boundary element of
type j as shown in Figure 4.4. Introduce the set

H(q) = H(NΓ(q),KF(Gmax)) = {x ∈ R
2 : J(KF(Gmax), q, x) 6= 0} .
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i ωi1, . . . , ωi11 i ωi1, . . . , ωi11 i ωi1, . . . , ωi11 i ωi1, . . . , ωi11 i ωi1, . . . , ωi11

1 10000000000 10 00000001000 19 00000000020 28 00000000011 37 00000000011
2 01000000000 11 00010000001 20 00000000100 29 00010000010 38 00000000010
3 00100000000 12 00000000110 21 00010000000 30 00001000000 39 00000000020
4 00002000000 13 00001000001 22 00000000002 31 00000000040 40 00000000030
5 00000001000 14 00000000100 23 00010000010 32 00010000000 41 00000000001
6 00000100000 15 00000010000 24 00000000002 33 00000000011 42 00000000010
7 00000000101 16 00010000000 25 00000000001 34 00000000001 43 00000000020
8 00000010010 17 00000000002 26 00000000002 35 00001000000 44 00000000020
9 00002000000 18 00000000012 27 00000000021 36 00000000001 45 00000000010

Table 4.2: Number of boundary elements ωij for F(Gmax)

Depending on the type j of the boundary element, the set H(q) can be a half–line (j = 4, 5), a sector
between two half–lines (j = 2, 3, 6, . . . , 11) or the whole plane (j = 1). By the definition of the index
function given in (2.4), we have J(KF(Gmax), q, x) = j0 ∈ {1,−1} for each x ∈ H(q) , where the values
j0 are given in Table 4.3. Notice that the rule in computing j0 is simple. If q is a point of convexity of
KF(Gmax), then j0 = 1. Otherwise, we have j0 = −1.

j 1 2 3 4 5 6 7 8 9 10 11

j0 1 1 1 1 1 1 1 1 1 −1 −1

Table 4.3: Computation of partial sums Jj for F(Gmax)

Introduce the index sector ISj = H(q)∩L
2∩Br(q)\{q}. For the 11 possible types of boundary elements,

their index sectors are marked red in Figure 4.4. The dashed parts of the boundary do not belong to the
index sectors whereas the solid parts do. Then, Jj rewrites

Jj = j0 · card(ISj) . (4.2)

The number of lattice points card(ISj) as a function of the radius r is given in Table 4.4, where the
following notation is used: a0(r) = card(Br(o) ∩ L

2) − 1, a1(r) = br/∆c, a2(r) = br/(
√

2∆)c, and
bac = max{n ∈ N ∪ {0} : n 6 a} is the integer part of a > 0.

4.2.3 Computation of Mr,i

In the planar case, there are only two different types of segments on the boundary of the polygon
KF(Gmax). Modulo lattice translations and rotations, these segments are P0 = [l0, l1] and P1 = [l0, l2].
Thus, for the number µ of different types of segments introduced in Section 3.1.2, we have µ = 2. It
is evident that D(P0) = ∅ and, therefore, Mr,0 = 0. On the other hand, for the diagonal P1, we have
Mr,1 = br/(

√
2∆) − 1/2c + 1. The number hM,1 of diagonals of type P1 can be computed during the

first scan of the image. Indeed, any diagonal [x, y] ⊂ ∂KF(Gmax) belongs to the neighborhoods NΓ(x) and
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j card(ISj) j card(ISj)

1 a0(r) 7 a0(r)/4 + a2(r)
2 a0(r)/2 + a1(r) 8 a0(r)/4 + a1(r)
3 a0(r)/2 + a2(r) 9 a0(r)/8 + (a1(r) + a2(r))/2
4 a1(r) 10 a0(r)/4 − a2(r)
5 a2(r) 11 a0(r)/8 − (a1(r) + a2(r))/2
6 3a0(r)/8 + (a1(r) + a2(r))/2

Table 4.4: Cardinality of index sectors ISj for F(Gmax)

NΓ(y). Thus, the frequency hM,1 is equal to the total number of such diagonals in the neighborhood
configurations of all boundary points divided by two.

4.3 Computation of Sr,i and Mr,i for the minimum adjacency F(Gmin)

The polygonal approximation of 50 neighborhood configurations on the basis of F(Gmin) yields 5 different
types of boundary elements; see Figure 4.5. These boundary elements are given by the neighborhood
configurations enumerated in Tables 4.1 and 4.5 by 1, 2, 32, 10, and 50, respectively. Any neighborhood
configuration from Tables 4.1 and 4.5 can contain up to 4 different boundary elements. Thus, as in

i b0, . . . , b8

46 110101010
47 110111010
48 111111010
49 110111011
50 110111111

j 1 2 3 4 5

j0 1 1 1 1 −1

j card(ISj)

1 a0(r)
2 a0(r)/2 + a1(r)
3 a1(r)
4 a0(r)/4 + a1(r)
5 a0(r)/4 − a2(r)

Table 4.5: New neighborhood configurations (left); computation of the partial sums Jj (center);
cardinality of index sectors ISj (right) for F(Gmin)

the case of adjacency F(Gmax), we can write Sr,i =
∑5

j=1 ωijJj for i = 1, . . . , 50, where Jj denotes the
partial sum in (3.5) which corresponds to a boundary element of type j = 1, . . . , 5 and ωij ∈ {0, 1, 2, 3, 4}
is the number of such boundary elements in the neighborhood configuration of type i. The values of
Jj = j0 card(ISj) are given in Table 4.5, where all possible index sectors ISj, j = 1, . . . , 5 are marked
red in Figure 4.5. The weights ωij are given in Table 4.6. Notice that the boundary of F(Gmin) consists
of one type of segments only, i.e., µ = 1. Modulo lattice translations and rotations, this is P0 = [l0, l1]
with Mr,0 = 0. Hence, the second sum

∑µ−1
i=0 hM,iMr,i in (3.6) vanishes.
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i ωi1, . . . , ωi5 i ωi1, . . . , ωi5 i ωi1, . . . , ωi5 i ωi1, . . . , ωi5 i ωi1, . . . , ωi5

1 10000 11 00200 21 00101 31 10000 41 00100
2 01000 12 01000 22 00010 32 00100 42 00101
3 10000 13 01000 23 00200 33 00010 43 00200
4 00200 14 00011 24 00200 34 00101 44 00010
5 00011 15 01000 25 00102 35 00010 45 00100
6 01000 16 00102 26 00200 36 00101 46 00004
7 01000 17 00011 27 01000 37 00200 47 00003
8 10000 18 01000 28 00011 38 00102 48 00002
9 10000 19 10000 29 01000 39 00011 49 00002
10 00010 20 00010 30 00011 40 01000 50 00001

Table 4.6: Number of boundary elements ωij for F(Gmin)

4.4 Edge correction

For d = 2, the edge correction considered in (2.13) can be efficiently implemented as follows. Instead of
correcting the functionals ρr, apply the edge correction directly to V0 and V1, i.e., consider

v̂ +
0 =

V0(ξ ∩ W ) − V0(ξ ∩ ∂+W )

V2(W )
, v̂ +

1 =
V1(ξ ∩ W ) − V1(ξ ∩ ∂+W )

V2(W )
,

where ξ is a realization of a stationary RACS Ξ and W is a parallelepiped. Notice that the values of
V0(ξ ∩ W ) and V1(ξ ∩ W ) are computed as described in Sections 4.1–4.3 above. However, the term
V0(ξ ∩ ∂+W ) can be computed by counting the number of connected components (line segments) of
ξ∩∂+W . Likewise, 2V1(ξ∩∂+W ) is equal to the number of foreground pixels in the right upper boundary
∂+W of W . We also remark that the precision of this method can be improved if the same procedure is
simultaneously applied to the left upper, right lower, and left lower boundaries of W , respectively, and if
then the arithmetic mean of the four results is taken, cf. [14].

The edge correction described in (2.11)–(2.12) posesses different properties. In particular, this method
based on minus sampling is less restrictive with respect to the geometry of the observation window. On
the other hand, it is slower (with complexity O(m + lr2), see Section 3.2) whereas the edge correction
considered in (2.13) runs faster and is easier to implement. However, numerical experiments show that
the estimators with the edge correction (2.13) mostly have lower accuracy of computation for G = Gmax

than those with the edge correction described in (2.11)–(2.12), cf. Tables 5.3–5.4.

4.5 Practical choice of dilation radii

Numerical experiments show that the discretization error of the algorithms is smaller for rational values
of the radii ri than for integer–valued radii. The reason lies in the fluctuations of the function a0(r) for
integer–valued and rational r, respectively. Furthermore, the precision of the above algorithm without
edge correction can be significantly improved by using a larger number n > 1000 of dilation radii in the
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least squares method mentioned in Section 3.3.2. For example, the following recursive rule for the choice
of ri yields good computational results together with nice run times of a couple of seconds: r0 = 5000,
ri+1 = ri + 20.3, i = 0, . . . , 999. The same rule is applicable to the edge–corrected algorithm based on
(2.13). For the edge correction based on minus sampling, the radii r0 = 5, ri+1 = ri + 1.3, i = 0, . . . , 49
appear to perform pretty well in the case W = [0, 999]2 . For n > 50 and larger radii, the run times
increase drastically. Then, a Penthium IV processor (1.9 GHz) requires up to two hours to process a
1000 × 1000 binary image with complicated boundary structure.

5 Numerical examples

In this section, the results of numerical experiments are discussed and compared to those of conventional
computation methods such as the marching cube algorithm for deterministic polyconvex sets as well as the
algorithms based on Crofton’s formula, which are given in [8] for samples from stationary RACS. For test
purposes, we use polyconvex sets with known Minkowski functionals as well as stationary Boolean models
with realizations from the extended convex ring and with known specific intrinsic volumes. Besides the
comparison of various algorithmic approaches, this allows the comparison of numerical results with the
theoretical values of intrinsic volumes, which are determined by means of analytical formulae.

5.1 Deterministic polyconvex sets

We first consider several examples of deterministic polyconvex sets K such that the Euler–Poincaré
characteristic V0(KF(G)), the boundary length 2V1(KF(G)) and the area V2(KF(G)) of the polygonal ap-
proximation KF(G) of K can be computed directly. Then, using the algorithm described in Section 4 for
the planar case d = 2, we compute V ∗

0 (KF(G)) and 2V ∗
1 (KF(G)) (see Section 3.3.2 for notation), where

we compare these values with V0(KF(G)) and 2 V1(KF(G)), respectively. The computations are performed
for both the minimum and the maximum adjacency, i.e., for G = Gmin and G = Gmax, respectively.

In particular, in order to evaluate the accuracy of our algorithm, we first compute the exact length
2V1(KF(G)) of the boundary ∂KF(G) consisting of a sequence of line segments. Notice that in the case
of the minimum adjacency F(Gmin), there is only one type of such segments, namely those that connect
a point x0 ∈ L

2 to another one from its 4-neighborhood {x1, x3, x5, x7}. Each line segment of this type
has length ∆. In case of the maximum adjacency F(Gmax), diagonal line segments must be considered as
well. These are the segments that link a point x0 ∈ L

2 with one of its neighbors x2, x4, x6 or x8. Their
length is

√
2∆.

The number of the above described line segments (and hence the boundary length) is computed using a
method similar to the marching squares algorithm; see [4]. In Figures 5.1 and 5.2, five basic types of such
squares are presented for the minimum and maximum adjacencies F(Gmin) and F(Gmax), respectively.
The remaining squares can be generated by rotation. The boundary length and the area attributed to
each square type are given in Table 5.1. They clearly differ from the canonical weights of the marching
squares algorithm since our computations have to be conform with the algorithmic approach stated in
Sections 3 and 4.
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G square type boundary length area G square type boundary length area

Gmin 1 0 0 Gmax 1 0 0
Gmin 2 ∆ 0 Gmax 2 ∆ 0

Gmin 3 0 0 Gmax 3 2
√

2∆ 0

Gmin 4 2∆ 0 Gmax 4
√

2∆ ∆2/2
Gmin 5 0 ∆2 Gmax 5 0 ∆2

Table 5.1: Weights for the basic types of squares

Hence, the exact values of the boundary length 2V1(KF(G)) and, similarly, the area V2(KF(G)) of KF(G)

can be computed easily. Furthermore, for the examples considered in the present section, the Euler-
Poincaré characteristic V0(KF(G)) is determined by counting the number of “clumps” minus the number
of “holes”.

For the images given in Figures 5.3–5.7, the values obtained for 2 V1(KF(G)), V0(KF(G)), 2 V ∗
1 (KF(G)), and

V ∗
0 (KF(G)) are presented in Table 5.2, where these values are rounded up to the 6th digit after comma.

For the algorithm described in Sections 3 and 4, we used the dilation radii r0 = 5000, ri+1 = ri + 20.3,
i = 0, . . . , 999 combined with the least squares method.

Figure G 2V1(KF(G)) V0(KF(G)) 2V ∗
1 (KF(G)) V ∗

0 (KF(G))

5.3 Gmin 756.0 3 755.998293 3.0
5.3 Gmax 758.828427 2 758.827287 2.0

5.4 Gmin 1084.0 1 1083.99943 1.0
5.4 Gmax 1040.651804 1 1040.651169 1.0

5.5 Gmin 632.0 2 631.998862 2.0
5.5 Gmax 528.901587 2 528.900294 2.0

5.6 Gmin 1346.0 1 1345.99943 1.0
5.6 Gmax 1151.217388 -2 1151.218213 -2.0

5.7 Gmin 3428.0 0 3427.999997 4.009811E-11
5.7 Gmax 2970.584053 -5 2970.586176 -5.0

Table 5.2: Exact and approximated values of intrinsic volumes

Notice that the Euler-Poincaré characteristic V0(KF(G)) of the polyconvex set K in Figure 5.3 depends
on its polygonal approximations KF(Gmin) and KF(Gmax). Evidently, the two upper rectangles are not
connected in KF(Gmin), whereas they form one “clump” in KF(Gmax). However, in both cases the boundary
lengths are similar (but not equal!). Furthermore, the polygonal approximation KF(Gmax) of the union K
of overlapping balls in Figure 5.6 produces three little holes of side length ∆ at the intersection points
of their bounding circles. For convenience, in Figure 5.6, the regions of their location are zoomed in.
Notice that these holes do not exist in KF(Gmin), which leads to different values for the Euler-Poincaré
characteristic.

In Figure 5.7, a discretized set is considered that contains the five possible boundary elements for F(Gmin),
which have been described in Figure 4.5, and the 11 possible boundary elements for F(Gmax) given in
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Figure 4.4. If the computations for the image in Figure 5.7 are based on the minimum adjacency
F(Gmin), then 7 clumps and 7 holes are obtained (see the marked regions). However, using F(Gmax) for
the polygonal approximation, 4 clumps and 9 holes occur.

5.2 Samples from stationary Boolean models

Let X = {X1, X2, . . .} be a stationary Poisson point process in R
2 with intensity λ and let Ξ1,Ξ2, .... be

a sequence of independent and identically distributed random compact sets in R
2 that are independent

of X. Furthermore, assume that the realizations of Ξn belong to the convex ring R with probability one.
Suppose that E V2(Ξ0 ⊕K) < ∞ for each K ∈ K, where Ξ0 is a compact RACS distributed as Ξn. Then,
one can show that Ξ =

⋃∞
n=1(Xn + Ξn) is a stationary RACS in R

2, whose realizations belong to the
extended convex ring S with probability one, where Ξ is called a Boolean model with intensity λ and
generic grain Ξ0. Notice that Boolean models form a special case of so–called germ–grain models, where
the X1, X2, . . . are interpreted as germs and the Ξ1,Ξ2, .... as (primary) grains.

Boolean models possess nice analytical properties; see e.g. [7] and [16]. In particular, their specific
intrinsic volumes can be determined explicitly. The area fraction pΞ = V 2(Ξ) and the specific boundary
length LΞ = 2V 1(Ξ) are given by

pΞ = 1 − exp
(
−λEA(Ξ0)

)
, LΞ = λ (1 − pΞ)EU(Ξ0) , (5.1)

where A(Ξ0)
(
= V2(Ξ0)

)
denotes the area of the generic grain Ξ0 and U(Ξ0)

(
= 2V1(Ξ0)

)
is its perimeter.

If the generic grain Ξ0 is convex and isotropic, i.e., its distribution is invariant with respect to rotations,
then the specific Euler–Poincaré characteristic χΞ = V 0(Ξ) is given by

χΞ = (1 − pΞ)
(
λ − λ2

4π
(EU(Ξ0))

2
)

;

see [1] and [6]. However, for anisotropic primary grains, the Euler–Poincaré characteristic χΞ is more
involved. Then,

χΞ = (1 − pΞ) (λ − A(M(Ξ0),−M(Ξ0))) , (5.2)

where A(M(Ξ0),−M(Ξ0)) is the mixed area of the so–called mean body M(Ξ0). A detailed description
of the meaning of formula (5.2) can be found e.g. in [13] and [18]. If the mean body M(Ξ0) is a convex
polygon, then the mixed area is given by

A(M(Ξ0),−M(Ξ0)) =
1

2

n∑

i=1

lih(M(Ξ0),−ni) ,

where l1, . . . , ln are the lengths and n1, . . . , nn the outer unit normals to the edges of the polygon. For a
convex body K ∈ K, the support function h(K, .) is given by h(K,u) = maxx∈K〈x, u〉 for u ∈ R

2, where
〈x, u〉 = x1u1 + x2u2 is the scalar product in R

2.

In our numerical experiments, we used formula (5.2) in order to determine χΞ for the following two
special cases. If the generic grain Ξ0 is a square Ξ0 = Rα[0, a]2 with random side length a rotated by a
deterministic angle α, then

χΞ = (1 − pΞ)
(
λ − λ2(E a)2

)
;
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see [3]. For a line segment Ξ0 = Rα[0, a] with random length a and rotation angle α taking values α0 and
α1 with probabilities 1/2, respectively, it can be shown that the specific Euler–Poincaré characteristic χΞ

is given by
χΞ = λ − λ2(E a)2 sin |α0 − α1|/4 .

In the following, the computational results are discussed, which have been obtained for different Boolean
models using the edge corrected algorithms described in Sections 3 and 4. In each case, 200 realizations
of the corresponding Boolean model have been simulated in the observation window W = [0, 999]2, where
the intensity λ is chosen to match the volume fraction of 0.2, 0.5, and 0.8, respectively. The simulated
images were analyzed using the dilation radii r0 = 5, ri+1 = ri + 1.3, i = 0, . . . , 49 combined with the
least squares method. The results presented in Tables 5.3–5.4 are the arithmetic means of estimated
specific intrinsic volumes taken over 200 realizations. The mean estimated specific boundary length will
be denoted by L̃ and the mean estimated specific Euler–Poincaré characteristic by χ̃ if the edge correction
(2.11)–(2.12) is used. In the case of the edge correction (2.13), the corresponding notation is L̂+ and χ̂+.
These values are compared with the theoretical values LΞ = 2V1(Ξ) and χΞ = V0(Ξ) as well as with the
specific intrinsic volumes LΞF(G)

= 2V1(ΞF(G)) and χΞF(G)
= V0(ΞF(G)), where the primary grains Ξn are

replaced by their polygonal approximations Ξn,F(G). In order to determine the area and the perimeter of
the correspondingly approximated generic grain Ξ0,F(G), the “marching squares”-like method described in
Section 5.1 is used. Furthermore, the specific intrinsic volumes are estimated using the integral-geometric
algorithms given e.g. in [8]. The resulting mean estimated specific boundary length and mean estimated
specific Euler–Poincaré characteristic will be denoted by L̂ and χ̂, respectively.

In this connection, we consider the following relative errors, that is, the relative deviations of the algo-
rithmic values from the theoretical ones expressed in percent:

δeL,LΞ
F(G)

=
(
L̃/LΞF(G)

− 1
)
· 100 , δeχ,χΞ

F(G)
=

(
χ̃/χΞF(G)

− 1
)
· 100 ,

δeL,LΞ
=

(
L̃/LΞ − 1

)
· 100 , δeχ,χΞ

= (χ̃/χΞ − 1) · 100 ,

δbL,LΞ
F(G)

=
(
L̂/LΞF(G)

− 1
)
· 100 , δbχ,χΞ

F(G)
=

(
χ̂/χΞF(G)

− 1
)
· 100 ,

δbL,LΞ
=

(
L̂/LΞ − 1

)
· 100 , δbχ,χΞ

= (χ̂/χΞ − 1) · 100 ,

δbL+,LΞ
F(G)

=
(
L̂+/LΞF(G)

− 1
)
· 100 , δbχ+,χΞ

F(G)
=

(
χ̂+/χΞF(G)

− 1
)
· 100 ,

δbL+,LΞ
=

(
L̂+/LΞ − 1

)
· 100 , δbχ+,χΞ

= (χ̂+/χΞ − 1) · 100 .

For the following three types of examples, computations have been performed for 200 realizations of
Boolean models with particular generic grains Ξ0.

1. Spherical generic grain Ξ0 = Ba(o), where the radius a ∼ U [20, 40] is distributed uniformly in the
interval [20, 40].

2. Generic grain Ξ0 = Rα[0, a]2 being a square of side length a ∼ U [20, 40] rotated by an angle α.
In total, one isotropic (α ∼ U [0, π/2]) and three anisotropic cases (α = 0, π/6, π/4) have been
considered.
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3. Generic grain Ξ0 = Rα[0, a] being a line segment with side length a ∼ U [20, 40]. Likewise, we consid-
ered both isotropic grains (α ∼ U [0, π]) and the anisotropic Manhattan model (the distribution of the
rotation angle α has two atoms at π/12 and π/3 with weights 1/2, i.e., α ∼ 1/2

(
δπ/12(·) + δπ/3(·)

)
).

In the first two examples, the intensity λ is chosen to match the volume fraction of 0.2, 0.5, and 0.8. In
the last example, intensity values λ = 0.008, 0.003490658, 0.0001 (λ = 0.008, 0.006285393, 0.0006285393)
have been used to cover the situations of negative, zero, and positive Euler-Poincaré numbers for the
process of isotropic line segments and for the Manhattan model, respectively.

Due to the lack of space and the similarity of trends in estimation, the numerical results are given only for
Boolean models with isotropic and anisotropic square grains (α = π/4) of Example 2, see Tables 5.3 and
5.4, respectively. It can be seen from the tables that the use of Gmin can not be recommended because
of the substantial discretization error. Namely, the precision of the estimation methods proposed above
depends on the goodness of the polygonal approximation of the boundary of the underlying unknown
geometric object. Smooth boundary structure can be hardly approximated by Gmin unless the grains
of the germ–grain model are rectangles with sides parallel to the main directions of L

2. In this case,
our edge corrected algorithms perform pretty well both with Gmin and Gmax. This dependance on the
quality of discretization can be seen clearly on the example of a Boolean model with square primary
grains that have the same deterministic orientation angle α. The estimation is very precise for α = 0 and
then diminishes for α = π/6 for both Gmin and Gmax. For α = π/4, the accuracy of estimation is quite
acceptable for Gmax and miserable for Gmin.

On the opposite, the adjacency system Gmax mostly provides the polygonal approximation of satisfactory
quality. Numerical results show the significant growth of precision of the estimators L̃, χ̃ and L̂+, χ̂+

in comparison with L̂, χ̂ (on average up to 10% of the relative error). Notice that the improvement of
estimation is stronger for the specific Euler–Poincaré characteristic than for the boundary length. It is a
general trend. It is also worth mentioning that the values L̃, χ̃ are much closer to LΞ, χΞ than to LΞF(G)

,

χΞF(G)
. Vice versa, the values L̂+, χ̂+ fit LΞF(G)

, χΞF(G)
better.

The estimation methods remain practicable also for lower dimensional geometric structures such as the
line–segment processes of Example 3 or the point processes in R

2. Since the total boundary length
increases in these cases, the run times of the algorithms increase as well, especially for the slow edge
correction (2.11)–(2.12) based on the minus sampling. For point processes, the specific Euler number
(i.e., the intensity of the point process) is reproduced by our algorithms quite well whereas the theoretical
zero boundary length is not. Instead of it, the algorithms yield a quite random positive or negative
output. The reason for that lies possibly in the high discretization error of the integral (2.10). Hence,
straightforward counting methods seem to be more effective for point processes because of their simplicity.

Acknowledgements

The authors are grateful to Dietrich Stoyan for his valuable comments on the efficient choice of dilation
radii. Furthermore, they would like to thank Ralph Guderlei for his help in implementing and testing
the algorithms in Java.

24



G Gmin Gmax Gmin Gmax Gmin Gmax

pΞ 0.2 0.2 0.5 0.5 0.8 0.8

LΞ 0.022888 0.022888 0.044511 0.044511 0.041475 0.041475
LΞF(G)

0.028811 0.023716 0.058168 0.047360 0.058311 0.046472

L̃ 0.018226 0.022690 0.036120 0.044440 0.033269 0.041903
δeL,LΞ

, % -20.37 -0.87 -18.85 -0.16 -19.79 1.03

δeL,LΞ
F(G)

, % -36.74 -4.33 -37.90 -6.17 -42.95 -9.83

L̂+ 0.028674 0.023810 0.056379 0.046826 0.053679 0.044644
δbL+,LΞ

, % 25.28 4.03 26.66 5.20 29.42 7.64

δbL+,LΞ
F(G)

, % -0.47 0.40 -3.08 -1.13 -7.94 -3.93

L̂ 0.022655 0.022655 0.043692 0.043692 0.039933 0.039933
δbL,LΞ

, % -1.02 -1.02 -1.84 -1.84 -3.72 -3.72

δbL,LΞ
F(G)

, % -21.37 -4.47 -24.89 -7.74 -31.52 -14.07

χΞ × 104 1.386668 1.386668 0.563821 0.563821 -3.349056 -3.349056
χΞF(G)

× 104 1.131163 1.379504 -1.162705 0.432863 -7.901173 -4.017129

χ̃ × 104 2.692086 1.258333 2.977282 -0.286120 -0.998591 -4.968132
δeχ,χΞ

, % 94.14 -9.25 428.05 -150.75 -70.18 48.34
δeχ,χΞ

F(G)
, % 137.99 -8.78 -356.07 -166.10 -87.36 23.67

χ̂+ × 104 1.353650 1.225650 0.384400 -0.339450 -3.516950 -5.000850
δbχ+,χΞ

, % -2.38 -11.61 -31.82 -160.21 5.01 49.32
δbχ+,χΞ

F(G)
, % 19.67 -11.15 -133.06 -178.42 -55.49 24.49

χ̂ × 104 1.379808 1.195991 0.433003 -0.403219 -3.485730 -5.070448
δbχ,χΞ

, % -0.49 -13.75 -23.20 -171.52 4.08 51.40
δbχ,χΞ

F(G)
, % 21.98 -13.30 -137.24 -193.15 -55.88 26.22

Table 5.3: Boolean model with isotropic square grains
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G Gmin Gmax Gmin Gmax Gmin Gmax

pΞ 0.2 0.2 0.5 0.5 0.8 0.8

LΞ 0.022888 0.022888 0.044511 0.044511 0.041475 0.041475
LΞF(G)

0.032148 0.022568 0.065477 0.045029 0.066769 0.044114

L̃ 0.013878 0.021603 0.027354 0.042629 0.025931 0.041438
δeL,LΞ

, % -39.37 -5.62 -38.54 -4.23 -37.48 -0.09

δeL,LΞ
F(G)

, % -56.83 -4.27 -58.22 -5.33 -61.16 -6.07

L̂+ 0.031687 0.022710 0.062301 0.045258 0.059374 0.044245
δbL+,LΞ

, % 38.44 -0.78 39.97 1.68 43.16 6.68

δbL+,LΞ
F(G)

, % -1.43 0.63 -4.85 0.51 -11.08 0.30

L̂ 0.021539 0.021539 0.041826 0.041826 0.038733 0.038733
δbL,LΞ

, % -5.89 -5.89 -6.03 -6.03 -6.61 -6.61

δbL,LΞ
F(G)

, % -33.00 -4.56 -36.12 -7.11 -41.99 -12.20

χΞ × 104 1.498411 1.498411 1.238828 1.238828 -1.888622 -1.888622
χΞF(G)

× 104 1.160484 1.538032 -1.022177 1.418247 -7.773372 -1.763065

χ̃ × 104 3.881478 1.097168 5.847188 -1.165512 2.374416 -6.973096
δeχ,χΞ

, % 159.04 -26.78 371.99 -194.08 -225.72 269.22
δeχ,χΞ

F(G)
, % 234.47 -28.66 -672.03 -182.18 -130.55 295.51

χ̂+ × 104 1.481650 1.065450 1.168650 -1.253500 -1.986300 -7.014900
δbχ+,χΞ

, % -1.12 -28.89 -5.66 -201.18 5.17 271.43
δbχ+,χΞ

F(G)
, % 27.68 -30.73 -214.33 -188.38 -74.45 297.88

χ̂ × 104 1.480372 1.062937 1.164503 -1.264403 -2.000587 -7.040211
δbχ,χΞ

, % -1.20 -29.06 -6.00 -202.06 5.93 272.77
δbχ,χΞ

F(G)
, % 27.57 -30.89 -213.92 -189.15 -74.26 299.32

Table 5.4: Boolean model with anisotropic square grains; α = π/4

26



References

[1] Davy, P. J. (1976). Projected thick sections through multi-dimensional particle aggregates. J.

Appl. Probab. 13, 714–722. Correction: J. Appl. Probab. 15 (1978), 456.

[2] GeoStoch. Java library, Departments of Stochastics and Applied Information Processing, Univer-
sity of Ulm. http://www.geostoch.de 2003.

[3] Hall, P. (1988). Introduction to the Theory of Coverage Processes. J. Wiley & Sons, New York.

[4] Lorensen, W. and Cline, H. (1987). Marching cubes: a high resolution 3d surface reconstruction
algorithm. Computer Graphics 21, 163–169.

[5] Mecke, J., Schneider, R., Stoyan, D. and Weil, W. (1990). Stochastische Geometrie.
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Figure 4.2: Polygonal approximation of neighborhood configurations for F(Gmax)
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Figure 4.3: Polygonal approximation of neighborhood configurations for F(Gmax) (continuation)
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Figure 4.4: Boundary elements with their index sectors for F(Gmax)
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Figure 5.1: Basic squares for F(Gmin)
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2 31 4 5

Figure 5.2: Basic squares for F(Gmax)

Figure 5.3: Union of non-overlapping rectangles Figure 5.4: Rotated, overlapping rectangles
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Figure 5.5: Unions of non-overlapping balls Figure 5.6: Overlapping balls
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Figure 5.7: Image containing all possible boundary elements
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