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Abstract. Stationary random closed sets Ξ in R
d are considered whose realizations belong to the

extended convex ring. A new approach is proposed to joint estimation of the specific intrinsic volumes
V 0(Ξ), . . . , V d(Ξ) of Ξ, including the specific Euler–Poincaré characteristic V 0(Ξ), the specific surface
area 2V d−1(Ξ), and the volume fraction V d(Ξ) of Ξ. Nonparametric estimators are constructed, which
can be represented by integrals of some stationary random fields. This implies in particular that these
estimators are unbiased. Moreover, conditions are derived which ensure that they are mean–square
consistent. A positive definite and consistent estimator for their asymptotic covariance matrix is derived.
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1 Introduction

We consider stationary random closed sets (RACS) Ξ in R
d, d > 2, assuming that each realization of Ξ

belongs to the extended convex ring and that the convex components of these realizations satisfy certain
(local) integrability conditions. For this class of stationary RACS Ξ, we propose a new approach to joint
estimation of the specific intrinsic volumes V 0(Ξ), . . . , V d(Ξ) of Ξ including the specific Euler–Poincaré
characteristic V 0(Ξ), the specific surface area 2V d−1(Ξ), and the volume fraction V d(Ξ), where

V j(Ξ) = lim
n→∞

E Vj(Ξ ∩ Wn)

Vd(Wn)
, j = 0, . . . , d,

Vj(Ξ ∩ Wn) denotes the j–th intrinsic volume of Ξ ∩ Wn, and {Wn} is some sequence of unboundedly
increasing (convex and compact) sets Wn ⊂ R

d.

Based on an explicit extension of the classical Steiner formula to the convex ring R, which has been proven
by Schneider [21], this new approach yields a natural estimator v̂ = (v̂0, . . . , v̂d)

> for all specific intrinsic
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volumes V 0(Ξ), . . . , V d(Ξ) simultaneously as a solution of a simple system of d + 1 linear equations.
We show that v̂ is asymptotically unbiased. Furthermore, we consider a slightly modified estimator

ṽ = (ṽ0, . . . , ṽd)
> for the vector

(
V 0(Ξ), . . . , V d(Ξ)

)>
of specific intrinsic volumes of Ξ, which can be

represented by integrals of some stationary random fields Zr =
{
Zr(x), x ∈ R

d
}
; r > 0. This implies in

particular that ṽ is unbiased. Moreover, using a proving technique which has been considered in [1] and
[2] for similarly structured functionals of stationary RACS, we derive conditions which ensure that the
estimators v̂ and ṽ are mean–square consistent, and that a positive definite and consistent estimator for
the asymptotic covariance matrix of ṽ can be provided.

Notice however that there is yet another explicit extension of Steiner’s formula, introduced by Matheron
[12], which leads to nonnegative functionals V ′

j on R, whereas Schneider’s approach mentioned above
is based on an inclusion–exclusion formula and therefore leads to additive functionals which can take
negative values as well. Thus, for j = 0, . . . , d−2, the functionals V ′

j on R are different from the intrinsic
volumes Vj : R → R. Nevertheless, for j = 0, . . . , d, the limits

V
′
j(Ξ) = lim

n→∞

E V ′
j (Ξ ∩ Wn)

Vd(Wn)

can be jointly estimated by considering some stationary random fields Z ′
r =

{
Z ′

r(x), x ∈ R
d
}
, which are

similar to the fields Zr used in the present paper in order to construct the estimator ṽ = (ṽ0, . . . , ṽd)
> for(

V 0(Ξ), . . . , V d(Ξ)
)>

. Besides that, a more general concept of additive as well as nonnegative extensions
of this type has been developed in Hug and Last [8] for so–called support measures.

In Rataj [19], intrinsic volumes of unions of sets of positive reach are approximated by the volumes of
corresponding parallel sets. Estimators for the Euler–Poincaré characteristic, based on integral–geometric
formulae, can be found e.g. in Nagel et al. [14], Ohser and Nagel [16]. Recently, Tscheschel and Stoyan
[25] studied the variance of an estimator for the Euler–Poincaré characteristic of random networks, which
can be used to approximate stationary RACS with realizations from the extended convex ring.

In the case of the underlying stationary RACS Ξ being induced by an independently marked germ–grain
process, we discuss examples for which our conditions on Ξ are fulfilled and for which ṽ is asymptoti-
cally normal. Thus, asymptotic tests can be constructed in order to check hypotheses about the vector(
V 0(Ξ), . . . , V d(Ξ)

)>
of specific intrinsic volumes of Ξ. In particular, we discuss the Boolean model

Ξ =
⋃∞

i=1 Ξi with compact and convex grains Ξ1,Ξ2, . . .. In this case, an asymptotic Gaussian test

can be derived for simultaneous verification of hypotheses about
(
V 0(Ξ), . . . , V d(Ξ)

)>
. The asymptotic

normality of estimators for certain specific intrinsic volumes such as the specific Euler–Poincaré charac-
teristic, specific surface area or the volume fraction has been discussed e.g. in Heinrich [5, 6], Heinrich
and Molchanov [7], Mase [11], Böhm et al. [1]; see also [13], pp. 30–43 for further references.

Algorithms for practical computation of the estimators v̂ and ṽ for discretized sets on a grid will be
discussed in a forthcoming paper; see [10]. Other estimation algorithms for specific intrinsic volumes
and, in particular, the Euler–Poincaré characteristic have been described e.g. in Ohser and Mücklich
[15], Ohser, Nagel and Schladitz [17, 18], Vogel [26]. In Robins [20], the determination of the Euler–
Poincaré characteristic of discretized sets by means of Betty numbers is discussed using the approach of
homology groups.
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2 Preliminaries

2.1 Intrinsic volumes

We begin with recalling some basic notions from convex geometry which will be used in the following;
see e.g. [21], [22].

Denote the family of all convex bodies in R
d by K and let Vd(K) be the usual volume of K ∈ K.

Furthermore, let Br(x) be the closed ball in R
d with radius r > 0 and center at x ∈ R

d. By o ∈ R
d we

denote the origin in R
d, and by kj the volume of the unit ball in R

j; j = 0, . . . , d. For any convex bodies
K1, K2 ∈ K, let K1 ⊕ K2 = {x1 + x2 : x1 ∈ K1, x2 ∈ K2} and K1 	 K2 = {x ∈ R

d : K2 + x ⊂ K1} be
the Minkowski sum and the Minkowski difference, respectively. One can prove that for each j = 0, . . . , d
there exist nonnegative functionals Vj : K → [0,∞) such that for each r > 0 the volume Vd(K ⊕ Br(o))
of the so–called parallel body K ⊕ Br(o) of any K ∈ K is given by

Vd(K ⊕ Br(o)) =

d∑

j=0

rd−jkd−jVj(K) . (2.1)

This polynomial expansion in r is often referred to as Steiner’s formula. The functionals Vj, j = 0, . . . , d
are called intrinsic volumes. Let R be the convex ring, i.e., the family of all finite unions of convex
bodies. It can be proven that for each j = 0, . . . , d there exists a unique additive extension of the
functional Vj : K → [0,∞) to the convex ring R given by the inclusion–exclusion formula

Vj(K1 ∪ . . . ∪ Kn) =

n∑

i=1

(−1)i−1
∑

j1<...<ji

Vj(Kj1 ∩ . . . ∩ Kji
) (2.2)

for any K1, . . . ,Kn, where K1 ∪ . . . ∪ Kn ∈ R. Notice that the value Vj(K1 ∪ . . . ∪ Kn) in (2.2) does not
depend on the representation of the set K1 ∪ . . . ∪ Kn ∈ R by its convex components K1, . . . ,Kn ∈ K.
Moreover, intrinsic volumes have a nice geometric interpretation based on Crofton’s formula (cf. e.g.
[22], p. 78–79).

2.2 Stationary random closed sets and specific intrinsic volumes

Let Ξ be a stationary RACS in R
d (see e.g. [12], [23], [24]) with realizations ξ from the extended convex

ring S almost surely. This means that ξ ∩ K belongs to the usual convex ring R for any (compact and
convex) K ∈ K and almost every realization ξ of Ξ.

For K ∈ R \ {∅}, let N(K) = min{m ∈ N : K =
⋃m

i=1 Ki , Ki ∈ K} denote the minimal number
of convex components of the set K, where we put N(K) = 0 if K = ∅. One can show that the
mapping N(Ξ ∩ [0, 1]d) : Ω → R is measurable, i.e. N(Ξ ∩ [0, 1]d) is a random variable. Assume that
EN(Ξ ∩ [0, 1]d) < ∞. Then, Ξ can be represented by a point process {Ξi} of compact and convex sets,
i.e. a sequence of compact and convex RACS Ξ1,Ξ2, . . . such that #{i : Ξi ∩ Br(o) 6= ∅} < ∞ for each
r > 0, and Ξ =

⋃∞
i=1 Ξi (see [23], Satz 4.4.2). Furthermore, if

E 2N(Ξ∩[0,1]d) < ∞ (2.3)
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holds, then it follows that for any (monotonously increasing) sequence {Wn} of compact and convex
observation windows Wn with

Wn = nK0 for some K0 ∈ K such that Vd(K0) > 0 and o ∈ int(K0), (2.4)

the expectations E Vj(Ξ ∩ Wn) are well defined and the limit

V j(Ξ) = lim
n→∞

E Vj(Ξ ∩ Wn)

Vd(Wn)
(2.5)

exists for each j = 0, . . . , d (see [23], Satz 5.1.3). The functional V j(Ξ) is called the intensity of the
intrinsic volume Vj or the specific intrinsic j–volume of Ξ.

Notice that (2.4) implies in particular that for each r > 0

lim
n→∞

Vd(Wn ⊕ Br(o))

Vd(Wn)
= lim

n→∞
Vd(Wn 	 Br(o))

Vd(Wn)
= 1 , lim

n→∞
Vd(∂Wn ⊕ Br(o))

Vd(Wn)
= 0 . (2.6)

2.3 Explicit extension of intrinsic volumes

In order to construct a joint estimator for the vector (V 0(Ξ), . . . , V d(Ξ))> of specific intrinsic volumes
introduced in (2.5), we use an explicit extension of Steiner’s formula (2.1) to the convex ring R, which
has been proven by Schneider [21]. The idea of this extension is based on the index of sets from the
convex ring R, where for any K ∈ R and q, x ∈ R

d, q 6= x, the index of K is defined by

J(K, q, x) =

{
1 − lim

δ→+0
lim

ε→+0
V0

(
K ∩ B|x−q|−ε(x) ∩ Bδ(q)

)
if q ∈ K,

0, otherwise.
(2.7)

In particular, we have J(∅, q, x) = 0 for arbitrary q, x ∈ R
d, q 6= x and J(K, q, x) = 0 for q 6∈ ∂K. For

any r > 0, define the functional ρr : R → R by

ρr(K) =

∫

Rd

Ir(K,x) dx , K ∈ R , (2.8)

where
Ir(K,x) =

∑

q 6=x

J (K ∩ Br(x), q, x) . (2.9)

The last sum consists of finitely many summands (being different from zero). It can be proven that the
quantities introduced in (2.7) to (2.9) are well defined. By this, the following extension

ρr(K) =
d−1∑

j=0

rd−jkd−jVj(K) , K ∈ R (2.10)

of Steiner’s formula (2.1) to the convex ring R holds. Notice that the functionals Vj that arise from the
latter construction coincide with those introduced in (2.2).
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Since (2.10) holds for any r > 0, by choosing d pairwise different r0, . . . , rd−1 > 0, we are able to get the
following system of linear equations

ρri
(K) =

d−1∑

j=0

rd−j
i kd−jVj(K) , i = 0, . . . , d − 1 (2.11)

with respect to V0(K), . . . , Vd−1(K). Thus, instead of computing (V0(K), . . . , Vd−1(K))> directly, we can
first compute the vector (ρr0(K), . . . , ρrd−1

(K))> given by (2.7)–(2.9) and solve (2.11) subsequently. This
approach has the advantage that the computation of ρr0(K), . . . , ρrd−1

(K) only requires the computation
of the local Euler–Poincaré characteristics of K, which can be done much easier than the direct computa-
tion of (global) intrinsic volumes V0(K), . . . , Vd−1(K). The reason for this is that the local Euler–Poincaré
characteristic V0

(
K ∩ B|x−q|−ε(x) ∩ Bδ(q)

)
in (2.7) can be easily computed by the inclusion–exclusion

formula (2.2) for small ε, δ > 0, since then the right–hand side of (2.2) consists of a small number of
summands being either 1 or −1; see also [10]. The idea to represent the intrinsic volumes of convex sets
by a system of linear algebraic equations similar to (2.11) is due to [22], p. 45. Furthermore, this indirect
approach leads to joint estimators for all V 0(Ξ), . . . , V d(Ξ) simultaneously, possessing an integral repre-
sentation by stationary random fields and, therefore, having useful asymptotic properties; see Section 3
below.

For x 6∈ K, the sum Ir(K,x) in (2.9) exhibits a nice geometric interpretation (see [21], p. 224), namely,
Ir(K,x) = V0(K ∩ Br(x)) for all x 6∈ K. In particular, for each K ∈ K

Ir(K,x) = 1
(
x ∈ (K ⊕ Br(o)) \ K

)
(2.12)

holds and consequently ρr(K) = Vd

(
(K ⊕ Br(o)) \ K

)
. Besides this, we have

Ir(K,x) =

N(K∩Br(x))∑

k=1

(−1)k−1
∑

i1<...<ik

Ir(Ki1 ∩ . . . ∩ Kik , x) (2.13)

for each K ∈ R, where the compact and convex sets K1,K2, . . . are the convex components of a minimal
decomposition of K ∩ Br(x). Notice that (2.13) follows from the fact that the functional Ir : R× R

d →
R defined in (2.7) and (2.9) is additive in the first argument. Furthermore, for each K ∈ R, the
representation formulae (2.12) and (2.13) imply that

|Ir(K,x)| 6

N(K∩Br(x))∑

k=1

(
N(K ∩ Br(x))

k

)
= 2N(K∩Br(x)) − 1 6 2N(K∩Br(x)) . (2.14)

With the notation [z, z + e] = [0, 1]d + z for any z ∈ Z
d and A(x, r) = {z ∈ Z

d : [z, z + e] ∩ Br(x) 6= ∅}
for any x ∈ R

d, r > 0, the following lemma yields a useful upper bound on |Ir(K,x)|.
Lemma 2.1. For any K ∈ R, x ∈ R

d and r > 0,

|Ir(K,x)| 6

2d∑

k=1

∑

z∈A(x,r)

∑ 6=
z1,...,zk∈A(x,r): z∈

Tk
i=1[zi,zi+e]

2N(
Tk

i=1[zi,zi+e]∩K) , (2.15)

where the inner sum extends over all pairwise disjoint z1, . . . , zk ∈ A(x, r) such that z ∈ ⋂k
i=1[zi, zi + e].
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Proof. Since K =
⋃

z∈Zd(K ∩ [z, z + e]) and Ir is additive on R, we have

Ir(K,x) =
2d∑

k=1

(−1)k−1
∑ 6=

z1,...,zk∈A(x,r)
Ir(
⋂k

i=1
[zi, zi + e] ∩ K,x) . (2.16)

The first sum on the right–hand side of (2.16) runs from 1 to 2d since
⋂k

i=1[zi, zi + e]∩K = ∅ for k > 2d

if all zi are different. Besides this, for any A,B ∈ K with A ⊂ B, we have N(K ∩ A) 6 N(K ∩ B) for
each K ∈ R. Thus, (2.14) and (2.16) imply that

|Ir(K,x)| 6

2d∑

k=1

∑ 6=
z1,...,zk∈A(x,r)

2N(
Tk

i=1[zi,zi+e]∩K)

=

2d∑

k=1

∑

z∈A(x,r)

∑ 6=
z1,...,zk∈A(x,r): z∈

Tk
i=1[zi,zi+e]

2N(
Tk

i=1[zi,zi+e]∩K) . �

2.4 Representation of specific intrinsic volumes

Assume that condition (2.3) is fulfilled. Furthermore, let {Wn} be a sequence of compact and convex
observation windows Wn such that (2.4) holds. Then, putting K = Ξ∩Wn in (2.10) for each n = 1, 2, . . .,
taking expectation and dividing by Vd(Wn) on both sides of Steiner’s formula (2.10), we get

ρr(Ξ) =

d−1∑

j=0

rd−jkd−jV j(Ξ), r > 0 , (2.17)

where

ρr(Ξ) = lim
n→∞

E ρr(Ξ ∩ Wn)

Vd(Wn)
.

The limit on the left–hand side of (2.17) exists due to the existence of the specific intrinsic volumes
V 0(Ξ), . . . , V d−1(Ξ) on the right–hand side of (2.17) as defined in (2.5).

Considering (2.17) for any positive radii ri, i = 0, . . . , d − 1, one gets the following system of linear
equations

ρri
(Ξ) =

d−1∑

j=0

ri
d−jkd−jV j(Ξ) , i = 0, . . . , d − 1 (2.18)

with respect to V j(Ξ), j = 0, . . . , d − 1. If we add one more equation, namely

lim
n→∞

E Vd(Ξ ∩ Wn)

Vd(Wn)
= V d(Ξ) , (2.19)

which holds since E Vd(Ξ ∩ Wn) = V d(Ξ)Vd(Wn) for each n = 1, 2, . . ., we get a system of d + 1 linear
equations on the variables V j(Ξ), j = 0, . . . , d.
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Suppose that the radii r0, . . . , rd−1 > 0 are pairwise different. Then, there exists a unique solution

v =
(
V 0(Ξ), . . . , V d(Ξ)

)>
of the system of linear equations (2.18)–(2.19) which can be written in matrix

form as
Ar0...rd−1

v = c, (2.20)

where

c =
(
ρr0

(Ξ), . . . , ρrd−1
(Ξ), V d(Ξ)

)>
(2.21)

and the deterministic (d + 1) × (d + 1)–dimensional matrix

Ar0...rd−1
=




rd
0kd rd−1

0 kd−1 . . . r2
0k2 r0k1 0

rd
1kd rd−1

1 kd−1 . . . r2
1k2 r1k1 0

. . . . . . . . . . . . . . . . . .

rd
d−1kd rd−1

d−1kd−1 . . . r2
d−1k2 rd−1k1 0

0 0 . . . 0 0 1




(2.22)

is regular by the properties of Vandermonde’s determinant.

3 Estimators for specific intrinsic volumes

3.1 An indirect estimator

In order to estimate the vector of specific intrinsic volumes v =
(
V 0(Ξ), . . . , V d(Ξ)

)>
from a single

realization of Ξ observed in a certain window Wn of the type given in (2.4), we proceed in the following
way. First, we choose an appropriate estimator ĉn for the vector of limits c as given in (2.21). Then, in
view of (2.20), we use ĉn for (indirect) estimation of v. More precisely, we define the estimator v̂n of v by

v̂n = A−1
r0...rd−1

ĉn , (3.1)

where A−1
r0...rd−1

is the inverse of the matrix Ar0...rd−1
given in (2.22).

An estimator ĉn for c can be constructed by considering the following (natural) estimators ĉni for the
components

ci = ρri
(Ξ) , i = 0, . . . , d − 1 . (3.2)

For any n > 1 and i = 0, . . . , d − 1, let

ĉni =
ρri

(Ξ ∩ Wn)

Vd(Wn)
, (3.3)

where

ρri
(Ξ ∩ Wn) =

∫

Wn⊕Bri
(o)

( ∑

q∈∂(Ξ∩Wn)∩Bri
(x), q 6=x

J
(
Ξ ∩ Wn ∩ Bri

(x), q, x
)
)

dx . (3.4)

The integration in (3.4) is performed over Wn ⊕ Bri
(o) or, to be more precise, over ∂(Ξ ∩ Wn) ⊕ Bri

(o)
for the following reasons. Firstly, the index function J

(
Ξ ∩ Wn ∩ Bri

(x), q, x
)

is equal to zero for any
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point q 6∈ ∂(Ξ ∩Wn). Hence, the sum in (3.4) runs over (finitely many) q ∈ ∂(Ξ ∩Wn), q 6= x. Secondly,
points x with ∂(Ξ ∩ Wn) ∩ Bri

(x) 6= ∅ necessarily belong to ∂(Ξ ∩ Wn) ⊕ Bri
(o).

In addition, for i = d we put

ĉnd =
Vd(Ξ ∩ Wn)

Vd(Wn)
. (3.5)

Theorem 3.1. The estimators ĉn =
(
ĉn0, . . . , ĉnd

)>
for c and v̂n =

(
v̂n0, . . . , v̂nd

)>
for v given in (3.3)

to (3.5) and (3.1), respectively, are asymptotically unbiased as n → ∞.

Proof. The last component ĉnd of ĉn given in (3.5) is an unbiased estimator for cd by definition. Besides
this, by (3.2) to (3.4) we obtain that for each i = 0, . . . , d − 1

lim
n→∞

Eĉni = lim
n→∞

Eρri
(Ξ ∩ Wn)

Vd(Wn)
= ci .

Thus, the estimator ĉn =
(
ĉn0, . . . , ĉnd

)>
for c is asymptotically unbiased as n → ∞. Together with (2.20)

and (3.1), this implies that lim
n→∞

E v̂n = lim
n→∞

E A−1
r0...rd−1

ĉn = A−1
r0...rd−1

lim
n→∞

E ĉn = A−1
r0...rd−1

c = v . �

3.2 Modified estimators induced by stationary random fields

Besides the estimators ĉn and v̂n introduced in Section 3.1, it is useful to consider some (slightly modified)
versions c̃n and ṽn of these estimators. To be precise, for each i = 0, . . . , d − 1 and for any n > 1 such
that Vd(Wn 	 Bri

(o)) > 0, let

c̃ni =
ρ̃n,ri

(Ξ)

Vd(Wn 	 Bri
(o))

(3.6)

where

ρ̃n,ri
(Ξ) =

∫

Wn	Bri
(o)

( ∑

q∈∂Ξ∩Bri
(x), q 6=x

J
(
Ξ ∩ Bri

(x), q, x
)
)

dx . (3.7)

For i = d, we put

c̃nd = ĉnd =
Vd(Ξ ∩ Wn)

Vd(Wn)
. (3.8)

Finally, let c̃n = (c̃n0, . . . , c̃nd) and
ṽn = A−1

r0...rd−1
c̃n . (3.9)

An advantage of the random variable ρ̃n,r(Ξ) defined in (3.7) is that it can be expressed as an integral of
a certain (measurable and stationary) random field. For this, define

Zr(x) =
∑

q∈∂Ξ∩Br(x), q 6=x

J
(
Ξ ∩ Br(x), q, x

)
, x ∈ R

d . (3.10)
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Notice that Zr(x) = V0(Ξ ∩ Br(x)) for each x 6∈ Ξ. Moreover, the random field Zr =
{
Zr(x), x ∈ R

d
}

is
stationary due to the stationarity of Ξ. Hence, the defining equation (3.7) of ρ̃n,r(Ξ) can be rewritten as

ρ̃n,r(Ξ) =

∫

Wn	Br(o)

Zr(x) dx . (3.11)

From Lemma 2.1 we immediately get the following auxiliary result.

Lemma 3.1. For arbitrary x ∈ R
d and r > 0, it holds almost surely that

|Zr(x)| 6

2d∑

k=1

∑

z∈A(x,r)

∑ 6=
z1,...,zk∈A(x,r): z∈

Tk
i=1[zi,zi+e]

2N(
Tk

i=1[zi,zi+e]∩Ξ) . (3.12)

Due to the stationarity of Ξ, Lemma 3.1 yields an upper bound on E |Zr(x)| given by

E |Zr(x)| 6

2d∑

k=1

∑

z∈A(x,r)

(
2d

k

)
E 2N(Ξ∩[0,1]d) =

(
22d − 1

)
|A(x, r)|E 2N(Ξ∩[0,1]d) . (3.13)

Thus, using Minkowski’s inequality, it becomes clear that E |Zr(x)|s < ∞ holds for an arbitrary fixed

s > 1 if E 2sN(Ξ∩(0,1]d) < ∞. In particular, by (2.3) and (3.13), the expectation

zr = E Zr(x) (3.14)

is well–defined and finite. However, it does not depend on x ∈ R
d due to the stationarity of Zr.

Lemma 3.2. For i = 0, . . . , d − 1 and for each n sufficiently large, it holds

Ec̃ni = zri
. (3.15)

Proof. Using (3.11) and (3.14), we have

Ec̃ni =
E ρ̃ri

(Ξ ∩ Wn)

Vd(Wn 	 Bri
(o))

=
1

Vd(Wn 	 Bri
(o)))

∫

Wn	Bri
(o)

E Zri
(x) dx = zri

for each n such that Vd(Wn 	 Br(o)) > 0 for r = max{r0, . . . , rd−1}. �

Theorem 3.2. For each n > 1 such that Vd(Wn 	 Br(o)) > 0 for r = max{r0, . . . , rd−1}, the estima-

tors c̃n =
(
c̃n0, . . . , c̃nd

)>
and ṽn =

(
ṽn0, . . . , ṽnd

)>
defined in (3.6) to (3.9) are unbiased for c and v,

respectively, i.e.,

E c̃n = c and E ṽn = v . (3.16)

Proof. For any n > 1, the estimator c̃nd = ĉnd is obviously unbiased for the volume fraction cd = vd =
V d(Ξ) of Ξ. For i = 0, . . . , d − 1, we showed in Lemma 3.2 that the expectation E c̃ni does not depend
on n. Furthermore, for any fixed n, we have

∣∣E c̃ni − ci

∣∣ 6 E
∣∣c̃ni − ĉni

∣∣ + E
∣∣ĉni − ci

∣∣, where the second

9



summand of the latter bound converges to zero by Theorem 3.1 as n → ∞. Thus, in order to prove the
first part of the assertion, it remains to show that the first summand in this bound converges to zero as
well. By (3.4), (3.11), and (3.13), we have

E
∣∣ρ̃n,ri

(Ξ)
∣∣ 6

∫

Wn	Bri
(o)

(
22d − 1

)
|A(x, r)|E 2N(Ξ∩[0,1]d) dx 6 aVd(Wn 	 Bri

(o)) (3.17)

and

E
∣∣ρ̃n,ri

(Ξ) − ρri
(Ξ ∩ Wn)

∣∣ 6

∫

∂Wn⊕Bri
(o)

(
22d − 1

)
|A(x, r)|E 2N(Ξ∩[0,1]d) dx 6 aVd(∂Wn ⊕ Bri

(o)) (3.18)

where a = kdr
d(22d − 1)E 2N(Ξ∩[0,1]d) is a constant. Notice that the integration in (3.18) is performed

over ∂Wn ⊕ Bri
(o) since the sums in (3.4) and (3.7) are equal for all x with Bri

(x) ⊂ int(Wn). This
implies that

E
∣∣c̃ni − ĉni

∣∣ 6

(
1

Vd(Wn 	 Bri
(o))

− 1

Vd(Wn)

)
E
∣∣∣ρ̃n,ri

(Ξ)
∣∣∣+ 1

Vd(Wn)
E
∣∣∣ρ̃n,ri

(Ξ) − ρri
(Ξ ∩ Wn)

∣∣∣

6 a

(
1 − Vd(Wn 	 Bri

(o))

Vd(Wn)
+

Vd(∂Wn ⊕ Bri
(o))

Vd(Wn)

)
.

Thus, by (2.6), the first part of the assertion follows. Consequently, the second part of the assertion holds
by (2.20) and (3.9). �

3.3 Mean–square consistency

By the integral representation given in (3.11), it turns out that the random vector c̃n =
(
c̃n0, . . . , c̃nd

)

defined in (3.6) to (3.8) is similarly structured as the functionals of the stationary RACS Ξ considered
in [1] and [2]. Moreover, estimators of the form (3.11) appear in the theory of stationary random fields
as least–square estimators for the mean; see e.g. Section 3.1 in [9]. It is well known that such estimators
are mean–square consistent; see [9], p. 131. By (3.1) and (3.9), this leads to conditions for mean–square
consistency of the empirical intrinsic volumes v̂n and ṽn .

Assume that the stationary random field Zr =
{
Zr(x), x ∈ R

d
}

defined in (3.10) is of second order

for each r > 0, i.e. E Z2
r (x) < ∞ for any x ∈ R

d. Due to (3.12), a sufficient condition for this is

E 4N(Ξ∩[0,1]d) < ∞. Denote the covariance function of the random field Zr = {Zr(x)} by Covr(x), where
Covr(x) = E

(
Zr(o)Zr(x)

)
− z2

r for any x ∈ R
d. Besides this, we consider the covariance CovΞ(x) =

P (o ∈ Ξ, x ∈ Ξ) − p2
Ξ of the stationary RACS Ξ, where pΞ = P (o ∈ Ξ) = V d(Ξ) is the volume fraction

of Ξ. Assume that

E 4N(Ξ∩[0,1]d) < ∞ and

∫

Rd

|Covr(x)| dx < ∞ , r > 0 , (3.19)
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and let ∫

Rd

|CovΞ(x)| dx < ∞ . (3.20)

Theorem 3.3. Under the above assumptions, the estimators ĉn and c̃n given in (3.3) to (3.5) and in

(3.6) to (3.8), respectively, are mean–square consistent for c as n → ∞. Moreover, the estimators v̂n and

ṽn given in (3.1) and (3.9) are mean–square consistent for v as n → ∞.

Proof. The mean–square consistency of c̃n easily follows from the integral representation (3.11); see also
[9], p. 131. Thus, for each i = 0, . . . , d, we have

lim
n→∞

E
(
c̃ni − ci

)2
= 0 . (3.21)

Using the bounds (3.17) and (3.18), we get by similar arguments as in the proof of Theorem 3.2 that

E
(
c̃ni − ĉni

)2
6

( 1

Vd(Wn 	 Bri
(o))

− 1

Vd(Wn)

)2
E ρ̃2

n,ri
(Ξ) +

1

V 2
d (Wn)

E
(
ρ̃n,ri

(Ξ) − ρri
(Ξ ∩ Wn)

)2

+
( 1

Vd(Wn 	 Bri
(o))

− 1

Vd(Wn)

) 2

Vd(Wn)
E
∣∣∣ρ̃n,ri

(Ξ)
(
ρ̃n,ri

(Ξ) − ρri
(Ξ ∩ Wn)

)∣∣∣

6 b

((
1 − Vd(Wn 	 Bri

(o))

Vd(Wn)

)
+

Vd(∂Wn ⊕ Bri
(o))

Vd(Wn)

)2

for each i = 0, . . . , d − 1, where b < ∞ is some constant. Together with (3.21), this implies that

limn→∞ E
(
ĉni − ci

)2
= 0 for each i = 0, . . . , d. Furthermore, in view of (2.20), (3.1), and (3.9), it follows

that limn→∞ E
(
ṽni − vi

)2
= 0 and limn→∞ E

(
v̂ni − vi

)2
= 0 for each i = 0, . . . , d. �

3.4 Second order characteristics

If the stationary RACS Ξ is induced by an independently marked germ–grain process with compact and

convex grains, conditions can be derived such that the vector ṽn =
(
ṽn0, . . . , ṽnd

)>
of empirical intrinsic

volumes is asymptotically normal as n → ∞ (see Section 4.4 below). Regarding this, it is useful to
determine the asymptotic covariance matrix of the (scaled) random vectors

√
Vd(Wn) c̃n as n → ∞.

However, this asymptotic covariance matrix can still be investigated under the general assumptions on
the RACS Ξ, which have been made in this paper up to now.

In addition to the covariance functions Covr(x) and CovΞ(x) introduced in Section 3.3, we consider the
(centered) cross–covariance functions Covrr′(x) and Covr,Ξ(x) of the pairs of random fields (Zr, Zr′) and
(Zr,1Ξ) for any r, r′ > 0 where

Covrr′(x) = E
(
Zr(o)Zr′(x)

)
− zrzr′ , Covr,Ξ(x) = E

(
Zr(o)1(x ∈ Ξ)

)
− zr pΞ

for each x ∈ R
d. Notice that Covrr′(x) = Covr′r(−x) and Covr,Ξ(x) = CovΞ,r(−x) for arbitrary r, r′ > 0

and x ∈ R
d. Furthermore, for any K ∈ K, we consider the geometric covariogram γK(x) of K, where

γK(x) = Vd

(
K ∩ (K − x)

)
, x ∈ R

d.
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Theorem 3.4. Let E 4N(Ξ∩[0,1]d) < ∞. Then, for 0 6 i, j < d,

Cov(c̃ni, c̃nj) =

∫

Rd

Covrirj
(x)Vd

(
(Wn 	 Bri

(o)) ∩ (Wn 	 Brj
(o) − x)

)
dx

Vd(Wn 	 Bri
(o))Vd(Wn 	 Brj

(o))
(3.22)

and

Cov(c̃ni, c̃nd) =

∫

Rd

Covri,Ξ(x)Vd ((Wn 	 Bri
(o)) ∩ (Wn − x)) dx

Vd(Wn 	 Bri
(o))Vd(Wn)

. (3.23)

Moreover,

V ar(c̃ni) =

∫

Rd

Covri
(x) γWn	Bri

(o)(x) dx

V 2
d (Wn 	 Bri

(o))
, V ar(c̃nd) =

1

V 2
d (Wn)

∫

Rd

CovΞ(x) γWn(x) dx . (3.24)

Proof. By (3.6), (3.7), and (3.10), we have

Cov(c̃ni, c̃nj) =
1

Vd(Wn 	 Bri
(o))Vd(Wn 	 Brj

(o))

{
E

∫

Wn	Bri
(o)

∫

Wn	Brj
(o)

Zri
(x1)Zrj

(x2) dx2 dx1

−E
( ∫

Wn	Bri
(o)

Zri
(x1) dx1

)
· E
( ∫

Wn	Brj
(o)

Zrj
(x2) dx2

)}
.

By Fubini’s theorem, this implies

Cov(c̃ni, c̃nj) =

∫

Wn	Bri
(o)

∫

Wn	Brj
(o)

Covrirj
(x2 − x1) dx2 dx1

Vd(Wn 	 Bri
(o))Vd(Wn 	 Brj

(o))

=

∫

Rd

Covrirj
(x)Vd

(
(Wn 	 Bri

(o)) ∩ (Wn 	 Brj
(o) − x)

)
dx

Vd(Wn 	 Bri
(o))Vd(Wn 	 Brj

(o))
,

where the latter equality follows from an appropriate substitution of the variables x1, x2. Similar argu-
ments can be applied to prove formulae (3.23) and (3.24). �

Corollary 3.1. Assume that conditions (3.19) and (3.20) are fulfilled and the cross–covariances Covrr′(x)
and Covr,Ξ(x) are absolutely integrable for any r, r ′ > 0, i.e.

∫

Rd

|Covrr′(x)| dx < ∞ ,

∫

Rd

|Covr,Ξ(x)| dx < ∞ . (3.25)

Then, for 0 6 i < d and 0 6 j 6 d,

lim
n→∞

Cov(
√

Vd(Wn)c̃ni,
√

Vd(Wn)c̃nj) =





∫
Rd

Covrirj
(x) dx if j < d,

∫
Rd

Covri,Ξ(x) dx if j = d.
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Moreover,

lim
n→∞

V ar(
√

Vd(Wn)c̃nd) =

∫

Rd

CovΞ(x) dx .

Proof. Using (2.6), the statements immediately follow from Theorem 3.4 and from the dominated con-
vergence theorem. �

Notice that results similar to those of Corollary 3.1 can be found e.g. in [9]. However, instead of our
integrability conditions, rather restrictive mixing conditions are assumed in that case; see Theorem 1.7.6
of [9].

3.5 Consistent estimation of the asymptotic covariance matrix

In this section, we construct mean–square consistent estimators for the integrals of covariances considered
in Corollary 3.1. Our construction is similar to the technique used in [1] for mean–square consistent
estimation of the asymptotic covariance matrix of properly normalized volume fractions of stationarily
connected RACS. However, instead of indicator–valued random fields as investigated in [1], in the present
paper we consider a rather general class of stationary random fields, where we merely assume that they
satisfy some (mild) integrability conditions.

Let (Ω,F, P ) be an arbitrary probability space and B(Rd) the Borel σ–algebra on R
d. Assume that

the random fields Y0 = {Y0(x), x ∈ R
d}, . . . , Yd = {Yd(x), x ∈ R

d} defined on this probability space
are stationarily connected, i.e., the vector field Y = {Y (x), x ∈ R

d} with Y (x) = (Y0(x), . . . , Yd(x))> is
stationary. For each i = 0, . . . , d, suppose that Yi : R

d ×Ω → R is a measurable mapping with respect to
the product σ–algebra B(Rd) ⊗ F.

Assume that for each i = 0, . . . , d,
E Y 4

i (0) < ∞ . (3.26)

Then, in particular, the expectation mi = E Yi(x) and the covariance Covij(x) = E (Yi(o)Yj(x)) −mimj

are well defined for any i, j = 0, . . . , d and x ∈ R
d. Notice that Covij(x) = Covji(−x) holds for each

x ∈ R
d. Rewriting condition (3.25), we assume that

∫

Rd

|Covij(x)| dx < ∞ (3.27)

for any i, j = 0, . . . , d. Thus, the matrix Σ = (σij) of integrated cross–covariances is also well defined,
where σij =

∫
Rd

Covij(x) dx for 0 6 i, j 6 d. On the space of real–valued (d + 1) × (d + 1)–matrices

A = (aij), we consider the norm

‖A‖ =

√√√√
d∑

i,j=0

a2
ij . (3.28)

The aim of this section is to construct a sequence of estimators Σ̂n =
(
σ̂nij

)
for Σ = (σij) such that

limn→∞ E ‖Σ̂n−Σ‖2 = 0 holds. Suppose that for each n ∈ N, the estimator Σ̂n is based on the observation
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of the vector field Y = {Y (x), x ∈ R
d} within a certain sampling window Wn ⊂ R

d, where {Wn} is a
sequence of (monotonously increasing, compact and convex) sets of the kind given in (2.4). For each n ∈ N,
we additionally consider some compact and convex sets Wn0, . . . ,Wnd ⊂ Wn, where we assume that the
i–th component Yi of the vector field Y is observable only on Wni, for each i = 0, . . . , d. Suppose that
for each n ∈ N, these subsets of Wn are ordered with respect to inclusion, i.e. Wn0 ⊂ . . . ⊂ Wnd = Wn.

For any i, j = 0, . . . , d, let Wnij = Wni ∩ Wnj and let {Unij} be a monotonously increasing sequence
of compact and convex (averaging) sets such that Unij ⊂ Wnij and Vd(Unij) > 0 for each n ∈ N.
Furthermore, assume that lim

n→∞
Unij = R

d and that

lim
n→∞

V 2
d (Unij)

Vd(Wnij)
= 0 , (3.29)

lim
n→∞

min
x∈Unij

Vd

(
Wnij ∩ (Wnij + x)

)

Vd(Wnij)
= 1 (3.30)

for any i, j = 0, . . . , d. Notice that conditions (3.29) and (3.30) keep the averaging sets Unij small enough
in comparison with Wnij ensuring, for instance, that the volume of Unij grows slower than the square
root of the volume of Wnij.

For any n ∈ N and i, j = 0, . . . , d, we consider the following estimator

σ̂nij =
1

Vd(Wnij)

∫

Unij

Ĉovnij(x)Vd

(
Wnij ∩ (Wnij − x)

)
dx (3.31)

for σij, where

Ĉovnij(x) =

∫
Wnij∩(Wnij+x)

Yj(y)Yi(y − x) dy

Vd(Wnij ∩ (Wnij + x))
−

∫
Wnij

Yi(y) dy
∫

Wnij

Yj(y) dy

V 2
d (Wnij)

(3.32)

is the standard estimator for the cross–covariance Covij(x) of Yi and Yj ; see e.g. [9], Chapter 4. Notice

that the values Ĉovnij(x) of the integrand in (3.31) are weighted by Vd

(
Wnij ∩ (Wnij − x)

)/
Vd(Wnij).

Thus, besides restricting the area of averaging in (3.31) to the set Unij ⊂ Wnij, this edge correction leads
to smaller weights for those x ∈ Unij being further away from the origin, that is not in the central part
of Unij ⊂ Wnij ⊂ Wn, but closer to the boundary of these sets.

Theorem 3.5. Assume that

sup
x1,x2∈Rd

∫

Rd

∣∣E
(
Yi(o)Yj(x1)Yi(y)Yj(y + x2)

)
− E

(
Yi(o)Yj(x1)

)
E
(
Yi(o)Yj(x2)

)∣∣ dy < ∞ (3.33)

and ∫

R3d

∣∣∣E
(
(Yi(o) − mi)(Yj(x1) − mj)(Yi(x2) − mi)(Yj(x3) − mj)

)∣∣∣ d(x1, x2, x3) < ∞ (3.34)
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for any i, j = 0, . . . , d. Then, the estimator Σ̂n = (σ̂nij) introduced in (3.31)–(3.32) is mean–square

consistent for the matrix Σ = (σij), i.e.

lim
n→∞

E ‖Σ̂n − Σ‖2 = 0 . (3.35)

Proof. By (3.28), it suffices to show that for any i, j = 0, . . . , d

lim
n→∞

E (σ̂nij − σij)
2 = 0 . (3.36)

By Minkowski’s inequality, we have

√
E (σ̂nij − σij)

2
6


E

( ∫

Unij

(Ĉovij(x) − Covij(x))
γWnij

(x)

Vd(Wnij)
dx
)2




1/2

+

∫

Unij

|Covij(x)|
(

1 − γWnij
(x)

Vd(Wnij)

)
dx +

∫

Rd\Unij

|Covij(x)| dx , (3.37)

where γWnij
(x) = Vd(Wnij ∩ (Wnij +x)). Due to the integrability of the cross–covariances (3.27), the last

term in (3.37) tends to zero as n → ∞. By (3.30), we get

∫

Unij

|Covij(x)|
(

1 − γWnij
(x)

Vd(Wnij)

)
dx 6


1 −

min
x∈Unij

γWnij
(x)

Vd(Wnij)



∫

Rd

|Covij(x)| dx −→ 0

as n → ∞. It remains to show that the first right–hand term in (3.37) tends to zero, i.e.

lim
n→∞

E
( 1

Vd(Wnij)

∫

Unij

(
Ĉovnij(x) − Covij(x)

)
γWnij

(x) dx
)2

= 0 .

With the abbreviating notation

Ĉnij(x) =

∫
Wnij∩(Wnij+x)

Yj(y)Yi(y − x) dy

Vd(Wnij ∩ (Wnij + x))
and m̂ni =

∫
Wnij

Yi(y) dy

Vd(Wnij)
, (3.38)

the estimator Ĉovnij(x) defined in (3.32) can be rewritten as Ĉovnij(x) = Ĉnij(x) − m̂nim̂nj. By
Minkowski’s inequality, we have

(
E
( ∫

Unij

(
Ĉovnij(x) − Covij(x)

) γWnij
(x)

Vd(Wnij)
dx
)2)1/2

6

(
E
( ∫

Unij

(
Ĉnij(x) − E

(
Yi(o)Yj(x)

)) γWnij
(x)

Vd(Wnij)
dx
)2)1/2

(3.39)

+
(
E
( ∫

Unij

(mimj − m̂nim̂nj)
γWnij

(x)

Vd(Wnij)
dx
)2)1/2

.
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For the square of the first term on the right–hand side in (3.39), we get by stationarity of Y and an
appropriate change of variables that

E
( ∫

Unij

(
Ĉnij(x) − E

(
Yi(o)Yj(x)

)) γWnij
(x)

Vd(Wnij)
dx
)2

6
V 2

d (Unij)

Vd(Wnij)
sup

x1,x2∈Rd

∫

Rd

∣∣Cov
(
Yi(o)Yj(x1), Yi(y)Yj(y + x2)

)∣∣ dy .

By (3.29) and (3.33), the last expression converges to zero as n → ∞. Using the inequality of Cauchy–
Schwarz, the square of the second term on the right–hand side in (3.39) can be bounded by

E
( ∫

Unij

(
mimj − m̂nim̂nj

) γWnij
(x)

Vd(Wnij)
dx
)2

6
V 2

d

(
Unij

)

V
3/2
d

(
Wnij

)
(√

aEY 4
j (o) + 2|mi|

√
aEY 2

j (o)
)

+
V 2

d

(
Unij

)

Vd

(
Wnij

) m2
i

∫

Rd

|Covjj(x)| dx ,

where a < ∞ is the maximum value of the integrals considered in (3.34). By (3.29), the latter bound
converges to zero as n → ∞. �

The mean–square consistency (3.35) proved above obviously implies the asymptotical unbiasedness of
the estimator Σ̂n, i.e. limn→∞ ‖E Σ̂n −Σ‖ = 0. However, it should be noted that this holds under much
weaker conditions than those of Theorem 3.5. Namely, it is enough to require (3.27) and (3.30).

Letting Y0(x) = Zr0(x), . . . , Yd−1(x) = Zrd−1
(x), and Yd(x) = 1(x ∈ Ξ), the general model discussed in

the present section turns out to be the one considered in Sections 3.2 to 3.4. Recall that we assumed in
(2.4) that the sampling windows Wn are given by Wn = nK0 for some K0 ∈ K such that Vd(K0) > 0
and o ∈ K0 \ ∂K0. Furthermore, in Sections 3.2 to 3.4, we considered the reduced sampling windows
Wni = Wn 	 Bri

(o). If, for example, K0 = B1(o) and the averaging sets Unij are given by Unij =
Bεn

√
n−max{ri,rj}(o) for some sequence {εn} with 0 < εn 6 1, εn ↓ 0 and

√
nεn ↑ ∞ then Unij ⊂ Wnij holds

for any i, j = 0, . . . , d and the conditions (3.29) and (3.30) are fulfilled. Examples of stationary RACS
Ξ, for which the integrability conditions (3.26)–(3.27) and (3.33)–(3.34) are fulfilled, will be discussed in
Section 4.

4 Germ–grain processes

Let Ξ be a stationary RACS induced by a germ–grain process (X,M) = {(Xi,Mi)} in R
d, where X = {Xi}

is a stationary point process in R
d with positive finite intensity λ and M = {Mi} is a sequence independent

of X consisting of independent and identically distributed copies of a non–empty compact and convex
RACS M0 in R

d (called the typical grain) such that o ∈ M0 and

E Vd(M0 ⊕ K) < ∞ for each K ∈ K. (4.1)
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In other words, we assume that with probability 1

Ξ =

∞⋃

i=1

Ξi where Ξi = Mi + Xi. (4.2)

Notice that condition (4.1) implies that for almost every realization of the germ–grain process (X,M) =
{(Xi,Mi)}, only finitely many sets Mi + Xi hit a fixed set K ∈ K. This means in particular that the
infinite union Ξ in (4.2) is a closed set with probability 1 and, therefore, Ξ is a RACS; see e.g. Lemma 3
of Heinrich [4]. Besides this, we consider the following set Ak ⊂ ∂Ξ for any k ∈ N. Let

Ak = {q ∈ ∂Ξ : ∃ i1, . . . , ik such that q ∈
k⋂

j=1

∂Ξij ; ∀ i1, . . . , ik+1 q 6∈
k+1⋂

j=1

∂Ξij} (4.3)

and assume that
P (Ak = ∅) = 1, k > d . (4.4)

Conditions similar to (4.4) can be found e.g. in Heinrich and Molchanov [7]. In particular, condition
(4.4) is fulfilled if X = {Xi} is Poisson.

4.1 Alternative bound on |Zr(x)|

Under the above (additional) assumptions on the structure of Ξ, we can get deeper insight into the
properties of the random field Zr =

{
Zr(x), x ∈ R

d
}

defined in (3.10). In particular, the results of
Section 3 can be obtained under weaker integrability conditions than those of (2.3) and (3.19), respectively.
Indeed, instead of (2.3), a sufficient condition for the existence of specific intrinsic volumes is (4.1); see

[23], Satz 5.1.4. In order to weaken the first integrability assumption in (3.19), i.e. E 4N(Ξ∩[0,1]d) < ∞, we
consider an upper bound for |Zr(x)| which is different from that in (3.12). Denote by Nr(x) the number
of grains of Ξ that intersect the ball Br(x), i.e., Nr(x) = #{i : Ξi ∩ Br(x) 6= ∅}.
Lemma 4.1. For any dimension d > 2, there exists a constant ad < ∞ such that

|Zr(x)| 6 adN
d
r (x) (4.5)

almost surely for any x ∈ R
d and r > 0.

Proof. By definition of Nr(x), it holds Ξ ∩ Br(x) =
⋃Nr(x)

i=1 Ξi ∩ Br(x). Due to condition (4.4), we have
Ak = ∅ almost surely for all k > d, where Ak denotes the set introduced in (4.3). Thus, the definition of
Zr(x) given in (3.10) can be rewritten as

Zr(x) =
d∑

k=1

∑

q∈Ak

J(Ξ ∩ Br(x), q, x) . (4.6)

If q ∈ Ak then the absolute value of the index J(Ξ ∩ Br(x), q, x) can obviously be bounded from above
by |J(Ξ ∩ Br(x), q, x)| 6 k. Together with relation (4.6), this inequality yields

|Zr(x)| 6

d∑

k=1

k

(
Nr(x)

k

)
6 adN

d
r (x) ,
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where ad =
∑d

k=1 1/(k − 1)!. �

Using the result of Lemma 4.1, the bound (3.12) on |Zr(x)| can be replaced by (4.5). Thus, the first
integrability assumption in (3.19) can be replaced by

E N2d
r (o) < ∞ (4.7)

in order to ensure that the stationary random field Zr = {Zr(x), x ∈ R
d} is of second order; r > 0.

Notice that a similar condition for the existence of specific intrinsic volumes has been derived in [27],
p. 339. Furthermore, using Minkowski’s inequality, it is not difficult to see that (4.7) holds for any r > 0
if and only if E N 2d

1 (o) < ∞.

4.2 Finite total variation of factorial moment measures

Sufficient conditions for (4.7) can be derived as follows. Consider the j–th factorial moment measure αj

of X = {Xi} given by αj

(
A1 × . . . × Aj

)
= E

∑
i1,...,ij

6=
1
(
Xi1 ∈ A1, . . . , Xij ∈ Aj

)
for arbitrary bounded

Borel sets A1, . . . , Aj ∈ B(Rd), where the summation
∑ 6= extends over all j–tuples of distinct indices.

Since X is stationary with intensity λ, the factorial moment measure αj of X admits the decomposition

αj(A1 × . . . × Aj) = λ

∫

A1

α
(0)
j−1

(
(A2 − x) × . . . × (Aj − x)

)
dx , (4.8)

where α
(0)
j−1 denotes the (j−1)–th factorial moment measure with respect to the reduced Palm distribution

of X (see [3], Chapters 10 and 12).

Lemma 4.2. Let m ∈ N be arbitrary, but fixed. Assume that (4.1) holds and that

∫

Rdj

|αj − α
(0)
j | d(x1, . . . , xj) < ∞ (4.9)

for each j ∈ {1, . . . ,m − 1}. Then, ENm
r (0) < ∞ for each r > 0.

Proof. Notice that

Nr(o) = #{i : Ξi ∩ Br(o) 6= ∅} = #{i : −Xi ∈ (Mi ⊕ Br(o))} =
∑

(Xi,Mi)∈(X,M)

1
(
−Xi ∈ (Mi ⊕ Br(o))

)

where 1
(
−Xi ∈ (Mi ⊕ Br(o))

)
denotes the indicator of the set {ω : −Xi(ω) ∈ (Mi(ω) ⊕ Br(o))}. Thus,

the expectation E Nm
r (o) can be rewritten as

E Nm
r (o) =

m∑

j=1

j!E
∑

i1<...<ij

1
(
−Xi1 ∈ (Mi1 ⊕ Br(o))

)
· . . . · 1

(
−Xij ∈ (Mij ⊕ Br(o))

)
.
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Furthermore, by (4.8) we get for each j ∈ {1, . . . ,m} that

j!E
∑

i1<...<ij

j∏

k=1

1
(
−Xik ∈ (Mik ⊕ Br(o))

)
=

∫

Rdj

j∏

i=1

P (−xi ∈ M0 ⊕ Br(o))αj

(
d(x1, . . . , xj)

)

= λ

∫

Rd

P (−xj ∈ M0 ⊕ Br(o))

∫

R(j−1)d

j−1∏

i=1

P (−xi ∈ M0 ⊕ Br(o))α
(0)
j−1

(
d(x1 − xj , . . . , xj−1 − xj)

)
dxj

= λ

∫

Rd

P (−xj ∈ M0 ⊕ Br(o))

×
∫

R(j−1)d

j−1∏

i=1

P (−xi ∈ M0 ⊕ Br(o)) (α
(0)
j−1 − αj−1)

(
d(x1 − xj , . . . , xj−1 − xj)

)
dxj

+λ

∫

Rd

P (−xj ∈ M0 ⊕ Br(o))

∫

R(j−1)d

j−1∏

i=1

P (−xi ∈ M0 ⊕ Br(o))αj−1

(
d(x1 − xj , . . . , xj−1 − xj)

)
dxj .

Thus,

j!E
∑

i1<...<ij

j∏

k=1

1
(
−Xik ∈ (Mi1 ⊕ Br(o))

)

6 λ E Vd(M0 ⊕ Br(o))

∫

R(j−1)d

|α(0)
j−1 − αj−1|

(
d(x1, . . . , xj−1)

)
+ λ

∫

Rd

P (−xj ∈ M0 ⊕ Br(o))

×
∫

R(j−1)d

j−1∏

i=1

P (−xi ∈ M0 ⊕ Br(o))αj−1

(
d(x1 − xj, . . . , xj−1 − xj)

)
dxj .

By induction with respect to j, this leads to the inequality

j!E
∑

i1<...<ij

j∏

k=1

1
(
−Xik ∈ (Mi1 ⊕ Br(o))

)

6

(
λ E Vd(M0 ⊕ Br(o))

)j
+

j−1∑

k=1

(
λ E Vd(M0 ⊕ Br(o))

)j−k
∫

Rkd

|α(0)
k − αk|

(
d(x1, . . . , xk)

)
.

Thus, conditions (4.1) and (4.9) are sufficient for E N m
r (o) < ∞. �

4.3 The Boolean model

If X is Poisson, i.e. Ξ =
⋃∞

i=1(Mi + Xi) is the Boolean model, then condition (4.9) is obviously fulfilled,

since αj = α
(0)
j for any j > 1 in this case. Similarly, one can show that (3.20) is fulfilled for the Boolean
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model provided that
E V 2

d (M0) < ∞ . (4.10)

Indeed, for the covariance CovΞ(x) of the Boolean model Ξ we have (see e.g. [23, 24])

CovΞ(x) = (1 − pΞ)2
(
eλ E Vd(M0∩(M0−x)) − 1

)
> 0 , x ∈ R

d .

Together with condition (4.10), this implies that
∫

Rd |CovΞ(x)| dx 6 λ(1− pΞ)2 E V 2
d (M0) < ∞. Further-

more, one can provide similar sufficient conditions for (absolute) integrability of the covariance function
Covr(x) of the random field Zr. In particular, it is easy to see that

∫
Rd |Covr(x)| dx < ∞ holds for the

Boolean model with uniformly bounded generic grain M0, because in this case we have Covr(x) = 0 if
|x| > a for some constant a < ∞. Thereby,

∫

Rd

|Covr(x)| dx =

∫

{x: |x|6a}

|Covr(x)| dx 6 Vd(Ba(o)) E Z2
r (o) < ∞ .

In the same way, it can be shown that (3.25) holds, i.e., the cross–covariances Covrr′(x) and Covr,Ξ(x)
are absolutely integrable for the Boolean model with uniformly bounded generic grain M0. Furthermore,
the integrability conditions (3.33) and (3.34) are fulfilled in this case as well.

4.4 Asymptotic normality of empirical intrinsic volumes

Using the integral representation of c̃n = (c̃n0, . . . , c̃nd) derived in (3.11) and requiring some mixing
conditions on the stationary point process X = {Xi} of germs (see e.g. Heinrich and Molchanov [7],
Ivanov and Leonenko [9], Mase [11]), the following central limit theorem for the random vector c̃n can
be shown. For n → ∞, 



√
Vd(Wn)

(
c̃no − c0

)
...√

Vd(Wn)
(
c̃nd − cd

)


 =⇒ N(0,Σ) , (4.11)

where =⇒ denotes convergence in distribution, c = (c0, . . . , cd)
>, and the asymptotic covariance matrix

Σ is given by

Σ =




∫
Rd

Covr0(x) dx
∫

Rd

Covr0r1(x) dx . . .
∫

Rd

Covr0,Ξ(x) dx
∫

Rd

Covr0r1(x) dx
∫

Rd

Covr1(x) dx . . .
∫

Rd

Covr1,Ξ(x) dx

...
...

...∫
Rd

Covr0,Ξ(x) dx
∫

Rd

Covr1,Ξ(x) dx . . .
∫

Rd

CovΞ(x) dx




. (4.12)

Furthermore, by (3.1), we have




√
Vd(Wn)

(
ṽno − v0

)
...√

Vd(Wn)
(
ṽnd − vd

)


 =⇒ N

(
0, A−1

r0 ...rd−1
Σ(A−1

r0...rd−1
)>
)
. (4.13)
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The asymptotic normality (4.13) of the vector ṽn = (ṽn0, . . . , ṽnd)
> of empirical intrinsic volumes can

be used in order to construct asymptotic Gauss tests for simultaneous verification of hypotheses about
the vector v = (v0, . . . , vd)

> of specific intrinsic volumes of Ξ, provided that the transformed covariance
matrix A−1

r0...rd−1
Σ(A−1

r0...rd−1
)> is positive definite and can be estimated consistently.
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