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Abstract. The paper yields necessary conditions for the directional distributions of stationary
k–flat processes in Rd that maximize their intersection density of order 2, that is, the mean (2k− d)–
volume of their self–intersections in an observation window of unit d–volume. The conditions are
given in terms of the rose of intersections (i.e., the intensity of the intersections of the flat process
with test flats). The notion of the rose of neighborhood is introduced which is an analogue of the rose
of intersections for lower dimensional flat processes. Some properties of the rose of neighborhood are
studied and an asymptotically unbiased estimator is given.

1. Introduction

Consider a stationary k–flat process Φd
k in Rd, i.e., Φd

k is a random point process
on the phase space of all k–flats in d–dimensional space, each realization of which
is an at most countable ”locally finite” collection of k–planes. Stationarity means
the invariance of its distribution with respect to translations in Rd. The probability
distribution θ of the direction of the ”typical” flat of the process is called the rose
of directions or the directional distribution of Φd

k. The family of all possible pairwise
(2k − d)–dimensional intersections of the k-planes of Φd

k induces a new stationary
(2k−d)–flat process whose intensity, that is, the mean (2k−d)–dimensional volume of
its flats in a test window of unit volume, is called the intersection density of order 2 of
Φd

k. Several authors (Davidson [1], Janson and Kallenberg [6], Keutel [7], Mecke and
Thomas ([10], [11], [12],[13], [16], [25])) dealt with the following variational problem
concerning Φd

k: find all directional distributions θ of Φd
k that maximize its intersection

density.
In the case of hyperplanes (k = d−1), the solution is unique and corresponds to the

Haar measure on the appropriate Grassmann manifold. In other particular cases, the
whole class of extremal directional distributions θ was described. Nevertheless, there
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are still some open problems, e. g., when d is not divisible by d− k.
The first part of the paper yields necessary conditions for a maximum of the in-

tersection density of order 2 of Φd
k. The conditions are given in terms of the rose

of intersections of Φd
k for arbitrary dimensions d and k (cf. Section 3.4). Section 3

contains the mathematical setting of the problem and an overview of the literature on
this subject. The connection to classical isoperimetric problems for centrally symmet-
ric convex bodies is discussed. In Section 3.3, some basic facts of variational calculus
are introduced. The necessary conditions for a maximum proved in Theorem 3.2 are
obviously not sufficient. Hence, they do not lead to the solution of the problem of find-
ing the extremal directional distributions θ. Nevertheless, their generality unifies the
great variety of solutions given in the literature for particular dimensions k. Thus, the
common structure in the abundance of extremal measures independent of k becomes
clear.

In Section 4, we introduce a counterpart to the classical notion of the rose of in-
tersections, the so-called rose of neighborhood, for the case that k + r < d for some
r > 0. The rose of intersections, i.e., the intensity of the process Φd

k ∩ η (where η is
an arbitrary r–flat), k + r ≥ d, is relevant if the cuts, or sections, of the given experi-
mental pattern are available. This is often the case, for instance, in material science
and biology. Then, the directional distribution of the process Φd

k can be computed
from its rose of intersections by usual methods, cf. [22] and [23]. But, sometimes, it is
impossible to collect information, for example, from the planar sections of the studied
pattern for various reasons, because such a cut might destroy the material structure
or is just technically impossible (e.g., in geology). Then, some indirect measurements
should be performed, such as counting all the objects that intersect a directed laser
beam or a drilling path. In our terms, a lower dimensional test flat η (r < d − k) or
even a line (r = 1) can be used instead to estimate the directional distribution of Φd

k.
For this purpose, the rose of neighborhood is introduced and its properties are studied.
Namely, we ”blow” the test line (or the lower dimensional flat) η up to a test cylinder
whose intersection with flats of the process Φd

k is not empty anymore. Then, one can
count the flats of Φd

k that intersect the test cylinder. Collecting such information for
the test flats η with various directions, a conclusion about the directional distribution
can be made.

Notice that the idea of ”blowing” test flats up to their neighborhoods has been
already mentioned in [6] and [21].

In Section 4.2, an asymptotically unbiased estimator for the rose of neighborhood
is proposed. This enables us to estimate the density of the directional distribution of
the process Φd

k, see Section 4.3.

2. Stationary k–flat processes

In this section, we follow the framework of [16] in introducing the basic notions of
k–flat processes (cf. [15], [24] for other constructions).

Let F (k, d) be the set of all k–flats in Rd, d ≥ 2, 1 ≤ k ≤ d − 1. Let G(k, d) be
the Grassmann manifold of all k–dimensional linear subspaces of Rd. Let F , G be the
σ–algebras of Borel subsets of F (k, d), G(k, d) in their usual topologies. The subset
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ϕ ⊂ F (k, d) is called a flat field if ϕ is at most countable and any bounded set B ⊂ Rd

is intersected by a finite number of k–flats of ϕ. Let M be the set of all flat fields and
M be the Borel σ–algebra on M .

Let (Ω,A, P ) be an arbitrary probability space. A measurable mapping Φd
k : Ω →M

is called a k–flat process. Its distribution is a probability measure on M. Notice that
Φd

k is an ordinary point process for k = 0 and a hyperplane process for k = d − 1 in
Rd.

A k–flat process Φd
k is called stationary if its distribution is invariant with respect

to all translations in Rd. Denote by νk(·) the k–dimensional Lebesgue measure in
Rd. The intensity of the stationary process Φd

k is defined by λ = E νk(Φd
k∩B)

νd(B) for any
bounded subset B of Rd with νd(B) > 0. Suppose 0 < λ < ∞. The rose of directions
(or directional distribution) of Φd

k is a probability measure θ on G(k, d) given by

θ(C) =
E #{ξ ∈ Φd

k : ξ ∩ Sd−1 6= ø, r(ξ) ∈ C}
λκd−k

, C ∈ G(2.1)

where #A denotes the cardinality of the set A, r(ξ) is the direction of the k–flat ξ,

i.e., the unique ξ̄ ∈ G(k, d) that is parallel to ξ, κd = 2π
d
2

d Γ( d
2 )

is the volume of the unit

ball, and Sd−1 is the unit sphere in Rd.
Let Φd

k(D) denote the number of k–flats of Φd
k that belong to D ∈ F . Then the

measure Λ : F → [0,∞) with

Λ(D) = E Φd
k(D), D ∈ F

is called the intensity measure of Φd
k.

For stationary Φd
k, the following factorization of its intensity measure holds (cf. [15],

[24]):

Λ(D) = λ

∫

G(k,d)

∫

ξ⊥

ID(y + ξ)νξ⊥

d−k(dy)θ(dξ), D ∈ F ,(2.2)

where νξ⊥

d−k(·) is the Lebesgue measure on the orthogonal linear subspace ξ⊥ and ID

is the indicator of the set D.
Suppose the intensity λ to be known. For any η ∈ F (d− k + j, d), the j–flat process

Φd
k ∩ η is again stationary on η. Let λΦd

k∩η be the intensity of Φd
k ∩ η. Due to the

stationarity of Φd
k, it is sufficient to consider only those affine flats η that contain

the origin, i.e., η ∈ G(d − k + j, d). Then, the intensity λΦd
k∩η as a function of the

directional distribution θ and the test flat η rewrites

(Tk,d−k+jθ) (η) = λ

∫

G(k,d)

[ξ, η] θ(dξ)(2.3)

where [ξ, η] is the (d− j) –volume of the unit parallelepiped spanned by the bases in
ξ⊥ and η⊥ (cf. [3], [9]). The function (Tk,d−k+jθ) (η), η ∈ G(d− k + j, d), is called the
rose of intersections of Φd

k.
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3. Isoperimetric problems

3.1. Connection to convex geometry

Suppose the stationary k–flat process Φd
k to be Poisson (cf. [15], [24] for the defini-

tion). For integers k and d with 2k ≥ d, introduce the (2k − d)–flat process

X2(Φd
k) = {ξ1 ∩ ξ2 : ξ1, ξ2 ∈ Φd

k, dim(ξ1 ∩ ξ2) = 2k − d},
which is generated by all (2k − d)–dimensional intersections of pairs of k–flats of
the original process Φd

k. Clearly, X2(Φd
k) is stationary. This process is sometimes

called the intersection process of Φd
k of order 2. Its intensity λX2(Φd

k) is known as the
intersection density of Φd

k of order 2 (see [24], p. 253-255). One can prove by means
of the Campbell–Mecke theorem (cf. [24]) that

λX2(Φd
k) =

λ2

2

∫

G(k,d)

∫

G(k,d)

[ξ1, ξ2] θ(dξ1)θ(dξ2)(3.1)

where [ξ1, ξ2] is the 2(d − k)–volume of the unit parallelepiped spanned by the bases
in ξ⊥1 , ξ⊥2 (see the proof in [2] for the case of hyperplanes). We shall use the notation
C(λ, θ) = λX2(Φd

k) to emphasize that the intersection density of Φd
k is a functional of

λ and θ.
One of the so–called isoperimetric problems that could be stated for stationary pro-

cesses is to maximize the intersection density, i.e., for given λ find the set L0 of such
directional distributions θ that λX2(Φd

k) attains its maximum cmax:

C(λ, θ) =
λ2

2

∫

G(k,d)

∫

G(k,d)

[ξ1, ξ2] θ(dξ1)θ(dξ2) −→ max .(3.2)

The exact value of cmax is also of interest to us:

cmax = max
θ∈L

C(λ, θ)(3.3)

where L is the space of all probability measures on G(k, d).
Problem (3.2) owes its name ”isoperimetric” to the deep connection between the

above setting and classical isoperimetric problems for centrally symmetric convex bo-
dies. Indeed, for d = 2k, k ≥ 1, one has for a sufficiently smooth centrally sym-
metric convex body (zonoid) K the following relationships between its mixed volume
V (·, . . . , ·), mixed functional Φ(j)

m,d−m+j(·, ·) (we preserve here the notation of [4] which,
as we hope, will not confuse the reader by its similarity to our notation Φd

k for the
k–flat process) and integral representation (3.2), cf. [4]:
(

d
k

)
νd(K) =

(
d
k

)
V (K, . . . ,K) = Φ(0)

k,k(K, K) =
∫

G(k,d)

∫

G(k,d)

[ξ1, ξ2] ρk(K, dξ1)ρk(K, dξ2),

where ρk(K, ·) is the projection generating measure of K, cf. [5]. So if we allow mea-
sures θ in (3.2) to be chosen from the smaller class of projection generating measures
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of zonoids in Rd for d = 2k, then problem (3.2) rewrites (up to a constant factor) as
follows: find zonoids K of maximum volume νd(K) provided that the total mass of
their projection generating measure is λ, i.e., ρk (K, G(k, d)) = λ.

Denote by θK the generating measure for a zonoid K. By definition, this is the
measure on the sphere such that the support function hK of K is equal to

hK(u) =
∫

Sd−1

|< u, v > | θK(dv).

If k = 1 then ρk(K, ·) is obviously equal to θK . Recalling the fact that in two–
dimensional space the class of zonoids coincides with the class of all centrally symmet-
ric convex bodies, one gets that problem (3.2) in R2 has the following isoperimetric
meaning without any further constraints on probability measure θ: find a centrally
symmetric convex body K ⊂ R2 with maximum volume ν2(K) provided that its gen-
erating measure θK has total mass λ. It can be easily shown that the perimeter of K
p(K) is equal to 4θK(S1). Thus, the perimeter of K is fixed and equal to 4λ. The
zonoid K with generating measure proportional to the rose of directions of a station-
ary line process Φ2

1 is called the Steiner compact of Φ2
1 (cf. [9]). Hence, the setting

(3.2) is a classical isoperimetric problem for Steiner compacts of Φ2
1, see also [25] for

generalizations of these ideas to hyperplane processes Φd
d−1 in arbitrary dimensions d.

3.2. Some bibliographical remarks

The following is an outline of the results known for problems (3.2) – (3.3). The
involved mathematical tools as well as the solutions themselves depend to a large
extent on dimensions d and k:

• d ≥ 2, k = d − 1: L0 = {γ}, cmax = λ2Γ2( d
2 )

2Γ( d+1
2 )Γ( d−1

2 )
where γ is the unique

probability Haar measure on G(k, d) (invariant with respect to all rotations in
Rd around the origin). The case of a line process in the plane (d = 2, k = 1)
was considered in the pioneering paper of Davidson [1]. Janson and Kallenberg
[6] investigated the general case using spherical harmonics, while Thomas [25]
employed some methods of convex geometry.

• k < d−1: Mecke and Thomas [16] proved that the Haar measure is not extremal.
Further developments can be found in [10], [13], and [20].

– d = 2k, k > 2: Mecke [12] showed that cmax = λ2

4 and

L0 =
{

θ =
1
2
(
δξ + δξ⊥

)
: ξ ∈ G(k, d)

}

where δξ is the Dirac measure concentrated in ξ.
– d = 4, k = 2: the value cmax is the same as above but the class L0 is

essentially larger than in the previous case (cf. Mecke [11]).

– d− k | d, i.e., d− k divides d, k < d− 2: Keutel [7] proved that cmax = λ2

2
k
d

and the class L0 consists of measures

θ =
d− k

d

(
δξ1 + . . . + δξ d

d−r

)
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for ξi ∈ G(k, d), ξ⊥i ⊥ ξ⊥j , i 6= j.

– d − k | d, k = d − 2: cmax remains the same as in the previous case, the
class L0 is larger but not yet completely known (cf. [7]).

– d − k does not divide d, k < d − 1 : the problem is still open. In [7] some
bounds for cmax are given.

In Section 3.4, the functional C(λ, θ) will be extended to a nonlinear functional
on the Banach space L̃ of all signed measures with finite total variation on G(k, d).
Then, we shall use variational methods to describe the extremal class L0. Appropriate
necessary conditions of extremum will be found. Although they are not sufficient and
do not yield the solution, they unify the above variety of results whose form depends
heavily on dimension k. Thus, the common structure of extremal measures becomes
clear: for any directional distribution θ from L0 its rose of intersections with k–flats
Tkkθ is θ–almost surely constant.

3.3. Variational calculus on the space of signed measures

In what follows we make use of papers [17] – [19] to state results that will be helpful
in obtaining the necessary conditions of extremum in Section 3.4.

Let E be a locally compact Polish space and let M be the cone of all nonnegative
finite measures on E equipped with convergence in total variation. Introduce the
Banach space M̃ of all signed measures on E with finite total variation norm:

‖µ‖ = sup
|φ(ω)|≤1

∣∣∣
∫

E

φ(ω)µ(dω)
∣∣∣ < ∞, µ ∈ M̃.

Let the functionals F : M̃ → R, H : M̃ → R be continuous and Fréchet differentiable
(cf. [8]) on a closed convex subset A of M. We shall tackle the following optimization
problem with equality constraints:





F (µ) −→ inf,
µ ∈ A,
H(µ) = 0.

(3.4)

The equality constraints H(µ) = 0 will be considered with particular functionals
H whose first Fréchet derivative H ′(µ) is independent of µ and admits the integral
representation

H ′(µ)[η] =
∫

E

h dη(3.5)

for some measurable function h : E → R.
Now let us cite the necessary conditions for a minimum in the problem (3.4) with

one equality constraint H(µ) = 0 (cf. Theorem 3.5 and Remark 3.3 [17]):

Theorem 3.1. Let the functionals F and H be twice Fréchet differentiable at any
measure µ satisfying (3.4). Assume that there exists a measurable function f : E → R
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such that

F ′(µ)[η] =
∫

E

f dη, η ∈ M̃.(3.6)

Let µ0 be a local minimum in the optimization problem (3.4). If there exists a positive
number ε such that

(i) (1± ε)µ0 ∈ A,

(ii) µ0 + tδx ∈ A for all x ∈ E and 0 < t ≤ ε,

then there exists a real u such that f(x) ≥ u · h(x) for all x ∈ E and f(x) = u · h(x)
µ0–a.e.

Necessary conditions for a maximum can be deduced from Theorem 3.1 if F is
replaced by −F .

3.4. Necessary conditions of maximum

Express now the isoperimetric problem (3.2) in terms of variational calculus. In this
case E = G(k, d) (which is a compact Polish space), M̃ = L̃, and A = M = L where
L is the subset of all nonnegative measures of L̃ on G(k, d). According to (3.4), we
shall write F (θ) = C(1, θ) (the intensity λ is supposed to be fixed, we put λ = 1
without loss of generality), H(θ) = θ (G(k, d)) − 1. Thus, problem (3.2) rewrites in
the following optimization setting:





F (θ) = 1
2

∫
G(k,d)

∫
G(k,d)

[ξ1, ξ2] θ(dξ1)θ(dξ2) −→ max,

θ ∈ L,
H(θ) = θ (G(k, d))− 1 = 0.

(3.7)

The continuous functional F clearly attains its maximal value on the compact subset
L of the space L̃.

Now we are ready to prove the following result.

Theorem 3.2. Let θ be a directional distribution on G(k, d) that maximizes the
intersection density of order 2 of the stationary k–flat process Φd

k. Let cmax be the
maximum considered in (3.3). Then, the rose of intersections Tkkθ satisfies the fol-
lowing necessary conditions:

(i) (Tkkθ) (η) =
∫

G(k,d)

[ξ, η] θ(dξ) = 2cmax θ–a.e.;

(ii) (Tkkθ) (η) ≤ 2cmax for all η ∈ G(k, d).

Proof. First we check the conditions of Theorem 3.1. Due to the fact that A = L,
any finite positive measure θ ∈ A satisfies assumptions (i) and (ii) of Theorem 3.1.
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We shall prove now that the functionals F and H are twice Fréchet differentiable at
any µ ∈ L and

F ′(µ)[ν] =
∫

G(k,d)

∫

G(k,d)

[ξ, η] µ(dξ)ν(dη),(3.8)

F ′′(µ)[ν, ν] = 2F (ν),

H ′(µ)[ν] = ν (G(k, d)) ,

H ′′(µ)[ν, ν] ≡ 0.

Consider the difference

F (µ + ν)− F (µ) =(3.9) ∫

G(k,d)

∫

G(k,d)

[ξ, η] µ(dξ)ν(dη) +
1
2

∫

G(k,d)

∫

G(k,d)

[ξ, η] ν(dξ)ν(dη)

for an arbitrary ν ∈ L̃. It can be easily seen that the second term in the right–hand
side of (3.9) is o (‖ν‖) as ‖ν‖ → 0: due to the estimate [ξ, η] ≤ 1 one can prove that

∣∣∣∣∣∣∣

∫

G(k,d)

∫

G(k,d)

[ξ, η] ν(dξ)ν(dη)

∣∣∣∣∣∣∣
≤ ‖ν‖2.

The first term in the right–hand side of (3.9) is a linear functional on ν, it is also
bounded: its operator norm is not greater than |µ (G(k, d))| < ∞. Then it is continu-
ous, and the first Fréchet derivative of F exists and is equal to (3.8).

Analogously to the considerations above, we have

F ′(µ + ν)[τ ]− F ′(µ)[τ ] =
∫

G(k,d)

∫

G(k,d)

[ξ, η] ν(dξ)τ(dη) = F ′′(µ)[η, τ ]

for all τ ∈ L̃. This bilinear form does not depend on µ.
Then we find the derivative of H: it is

H(µ + ν)−H(µ) = ν (G(k, d)) = H ′(µ)[ν].

The difference does not depend on µ which yields H ′′(µ)[·, ·] = 0.
Furthermore, F ′(µ) has representation (3.6) with f(η) = (Tkkµ) (η) =

∫
G(k,d)

[ξ, η] µ(dξ)

(see (3.8)). The functional H satisfies (3.5) with h(·) ≡ 1. Take a probability measure
θ on G(k, d) to be the local maximum of (3.7). By Theorem 3.1, there exists a constant
u such that

(Tkkθ) (η) =
∫

G(k,d)

[ξ, η] θ(dξ) = u θ–a.e.,

(Tkkθ) (η) ≤ u, η ∈ G(k, d),
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and since cmax = 1
2

∫
G(k,d)

(Tkkθ) (η) θ(dη) we conclude that u = 2cmax. 2

The necessary conditions for a maximum must be satisfied by all known extremal
measures for problem (3.2). Let us illustrate the above theorem by showing that for
some interesting particular cases.

Example

1) Hyperplane case k = d−1: it can be easily shown that the integral
∫

G(k,d)

[ξ, η] γ(dξ)

is constant for all η due to the rotation invariance of γ and [ξ, η].

2) Suppose that the directional distribution θ is discrete:

θ = p1δξ1 + . . . + pnδξn ,

p1 + . . . + pn = 1, for some {ξi}n
i=1 ⊂ G(k, d). Due to condition (i) of Theorem

3.2, one gets
n∑

j=1

pj [ξi, ξj ] = 2cmax

for each i. In case d − k | d we have ξ⊥i ⊥ ξ⊥j , pi = 1/n with n = d/(d − k),
which yields cmax = k/(2d).

Now consider problem (3.2) of maximizing the intersection density of Φd
k in the class

Mγ of all directional distributions that are absolutely continuous with respect to the
uniform distribution γ. In terms of the optimization setting (3.4), the set A is equal
to Mγ . For µ ∈ Mγ denote by dµ

dγ the Radon–Nikodym density of µ with respect to
γ.

Proposition 3.3. Let θ be a directional distribution on G(k, d) that maximizes the
intersection density of order 2 of the stationary k–flat process Φd

k. Let cmax be the
corresponding maximum value. If θ is absolutely continuous with respect to the Haar
measure γ on G(k, d) and dθ

dγ = g, then the following necessary conditions hold for the
rose of intersections Tkkθ:

(i) (Tkkθ) (η) =
∫

G(k,d)

[ξ, η]g(ξ) γ(dξ) = 2cmax γ–a.e.;

(ii) inf
E: γ(E)=0

sup
G(k,d)\E

(Tkkθ) (η) ≤ 2cmax.

Proof. Here we have an optimization problem of type (3.7) with A = Mγ . The
proof is provided analogously to that of Theorem 3.2 using Theorem 4.1 of [17]. 2

Remark Although the necessary conditions for a maximum derived above are ob-
viously not sufficient and, thus, do not lead directly to the solution of problem (3.2),
they unify the different approaches described in Section 3.2. We also hope that they
might simplify the better understanding of the nature of extremal measures. Thus, we
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conjecture that in the open cases all (or at least some) extremal directional distribu-
tions are discrete with atoms in some regular directions in Rd. Once these directions
have been determined, the corresponding weights of the distribution can be found from
the linear system of equations resulting from the necessary condition 1 of Theorem
3.2.

4. Roses of neighborhood

4.1. Representation by roses of intersections of dual processes

In Section 3.4, necessary conditions for a maximum of the intersection density of
Φd

k are stated in terms of the rose of intersections Tkkθ. Therefore, the problem of
retrieving the directional distribution θ of Φd

k from Tkkθ arises naturally from this
setting. In [22], a complete answer was given and appropriate formulae were proved
for the case when Φd

k intersects with an r–flat η, k + r ≥ d, and the correspondence
f ↔ θ turned out to be one–to–one.

Now suppose that the test flat η is lower dimensional, that is, k + r < d. Then,
for all r–flats η, the intersection process Φd

k ∩ η is empty with probability 1. Hence,
the difficulties in defining the rose of intersections Tkrθ(η) are obvious. In practice,
it might be the case if the material or structure under observation can not be cut by
a plane, but indirect measurements along a test line can be performed instead, for
instance, by means of the radar emission, X–rays or laser beams.

In order to tackle this problem, we shall introduce the process of neighborhood Φd
k¯η

by considering intersections of Φd
k with the cylinder of radius a > 0 and the axis at η.

A similar approach was developed in [6] and [21]. Janson and Kallenberg [6] considered
the process of thick cylindric fibers in Rd and its intersection density of order 2. In [21],
Schneider introduced the notion of the proximity of Φd

k with k < d/2 that generalizes
the usual intersection density of order 2 for k ≥ d/2.

Let ϕ be a realization of a stationary Φd
k and η ∈ F (r, d), k + r < d. For almost all

η, there exists a unique point xξ ∈ η given by

dist(ξ, η) = inf
y∈ξ, x∈η

ρ(x, y) = inf
y∈ξ

ρ(xξ, y)

for any ξ ∈ ϕ, where ρ(x, y) is the Euclidean distance in Rd. Clearly, the collection of
all points

{xξ ∈ η : dist(ξ, η) < a, ξ ∈ Φd
k}

for some a > 0 forms a stationary point process Φd
k ¯ η in η for almost all η that will

be called the a–process of neighborhood (we suppress a in the notation). Its intensity
Nkr(a, η) will be called the a–rose of neighborhood of Φd

k. According to Corollary 4.3
below, any choice of radius a is possible. For the sake of convenience, we sometimes
choose a = 1 and then write Nkr(η) instead of Nkr(1, η) calling Nkr(·) the rose of
neighborhood of Φd

k. Due to stationarity of Φd
k, consider only those flats η ∈ F (r, d)

that contain the origin, i.e. η ∈ G(r, d).
For any stationary k–flat process Φd

k with intensity λ and directional distribution
θ, introduce the family of dual processes D(λ, θ): a stationary (d − k)–flat process
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Φd
d−k belongs to D(λ, θ) iff its intensity is equal to λ and its directional distribution

is θ⊥(dζ) = θ(dζ⊥) for ζ ∈ G(d − k, d). The following result connects the rose of
neighborhood with the rose of intersections of a dual process.

Theorem 4.1. For k + r < d, the following relationship holds for the a–rose of
neighborhood of the stationary k–flat process Φd

k:

Nkr(a, η) = κd−k−ra
d−k−r

(
Td−k,d−rθ

⊥)
(η⊥), η ∈ G(r, d)(4.1)

where Td−k,d−rθ
⊥ is the rose of intersections of the dual process Φd

d−k ∈ D(λ, θ) with
(d− r)–flats. By (2.3), Td−k,d−rθ

⊥ is the same for all processes Φd
d−k ∈ D(λ, θ).

Proof. For any nonparallel (d − k)–flat ζ and (d − r)–flat β, their intersection is
not empty since d − k + d − r > d. Therefore, the usual rose of intersections of
Φd

d−k ∈ D(λ, θ) with (d− r)–flats is well–defined. The intensity of Φd
k ¯ η is given by

Nkr(a, η) =
1
κr

E
( ∑

ζ∈Φd
k

Ia(ζ)
)

(4.2)

where Ia(ζ) = I{ζ: dist(ζ,η)<a,xζ∈B1(0)⊂η}(ζ), Bm(0) is the ball in the appropriate am-
bient subspace of Rd with radius m and the center in the origin. Determining the
expectation in (4.2) by means of the Campbell–Mecke Theorem and using (2.2) for
the intensity measure Λ(·) of Φd

k, one gets

Nkr(a, η) =
1
κr

∫

F (k,d)

Ia(ζ) Λ(dζ) =
λ

κr

∫

G(k,d)

∫

ξ⊥

Ia(y + ξ) νξ⊥

d−k(dy)θ(dξ)

=
λ

κr

∫

G(d−k,d)

∫

ξ⊥

Ia(y + ξ) νξ⊥

d−k(dy)θ⊥(dξ⊥).

Now prove that
∫

ξ⊥

Ia(y + ξ) νξ⊥

d−k(dy) = κd−k−rκra
d−k−r[ξ⊥, η⊥]

for any ξ ∈ G(k, d) that is not parallel to η. Using a reasoning similar to that of [21],
formulae (7), (8) we get

∫

ξ⊥

Ia(y + ξ) νξ⊥

d−k(dy) = [ξ⊥, η⊥]
∫

H

Ia(z + ξ) νH
d−k(dz)

where H = (ξ + η)⊥ + η in the sense of Minkowski summation. We show that the
integral

Ja(H, ξ) =
∫

H

Ia(z + ξ) νH
d−k(dz)
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is equal to κd−k−rκra
d−k−r: as H = η ⊕ (η)⊥H , a direct orthogonal sum, where (η)⊥H

stands for the orthogonal complement of η in H, we have z = xy+ξ + l for any z ∈ H,
where xy+ξ ∈ η, l ∈ (η)⊥H . Then, the indicator Ia(z + ξ) rewrites

Ia(z + ξ) =
{

1, xy+ξ ∈ B1(0) ⊂ η, l ∈ Ba(0) ⊂ (η)⊥H ,
0, otherwise.

This means that the integral Ja(H, ξ) is equal to the desired expression. Hence, we
have

Nkr(a, η) =
λ

κr
κrκd−k−ra

d−k−r

∫

G(d−k,d)

[ξ⊥, η⊥] θ⊥(dξ⊥)

= κd−k−ra
d−k−r

(
Td−k,d−rθ

⊥)
(η⊥).

2

Corollary 4.2. For a = 1, formula (4.1) for the rose of neighborhood simplifies to
Nkr(η) = κd−k−r

(
Td−k,d−rθ

⊥)
(η⊥).

The following corollary shows that test cylinders of any radius a1 can be used for
the computation of Nkr(a2, ·) since a2/a1 is just a scaling factor. Hence, there is no
loss of information if we use Nkr(·) instead of Nkr(a, ·).

Corollary 4.3. For any positive radii a1 and a2,

Nkr(a2, η) =
(

a2

a1

)d−k−r

Nkr(a1, η), η ∈ G(r, d).

In particular, Nkr(a, ·) = ad−k−rNkr(·) for any positive a.

Theorem 4.1 shows that the problem of restoring the directional distribution θ of
a stationary process Φd

k from its rose of neighborhood Nkr(η) constructed for r–flats
η, k + r < d, can be reduced to the dual problem for any Φd

d−k ∈ D(λ, θ) intersected
with (d− r)–flats. A partial solution of this problem was given in [22]. In particular,
the directional distribution θ of a line process Φd

1 can be retrieved in this way from its
rose of neighborhood with r–flats, 1 ≤ r < d−1. From the stereological and statistical
point of view, this means that in order to estimate θ, we can use lines as test objects
instead of flats.

Example [d = 3, k = r = 1] Consider a stationary line process Φ3
1 with intensity

λ and directional distribution θ. Let N11(v) be its rose of neighborhood with lines
(v ∈ S2 is the direction vector of a test line). By Theorem 4.1, we can write

N11(v) = 2
(
T22θ

⊥)
(v⊥) = 2λ

∫

S2

√
1− <u, v>2 θ(du).
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Applying Theorem 7.1 of [22], we have
∫

S2

g(v) θ(dv) =
1

16π4λ
×

×
∫

S2

W (u) (∆0 + 2)
(

d

d(µ2)

)



∫

<u,v>2>µ2

g(v) |<u, v>| ω3(dv)√
<u, v>2 −µ2




∣∣∣∣∣∣∣
µ=0

ω3(du)

for any even four times continuously differentiable function g ∈ C4(S2) where

W (u) =
(

d

d(µ2)

)



∫

<u,t>2>µ2

N11(t) |<u, t>| ω3(dt)√
<u, t>2 −µ2




∣∣∣∣∣∣∣
µ=0

,

ω3 denotes the surface area measure on the unit sphere in R3, and ∆0 stands for the
Beltrami–Laplace operator.

4.2. An estimator for the rose of neighborhood

In this section, an estimator for the a–rose of neighborhood of a line process Φ3
1

in the three–dimensional space will be given. The choice of dimension d = 3 is due
to its importance for applications (see also the remark at the end of this section). In
practice, it is impossible to count the intersections of a line process with an infinite test
cylinder. Thus, we propose an estimator for N11(a, η) by supposing the cylinder with
the axis at η to have finite length 2b. This estimator appears to be asymptotically
unbiased as the length 2b tends to infinity or the radius of the cylinder a becomes
arbitrarily small. Due to stationarity of Φ3

1, it suffices to consider only test lines going
through the origin.

Count all intersections of Φ3
1 with the cylinder Bη

b (0)×Bη⊥
a (0) where Bζ

c (0) denotes
the c–neighborhood of the origin in a linear subspace ζ. Then, the estimator N̂11(a, η)
for the a–rose of neighborhood is given by

N̂11(a, η) =
#{ξ ∈ Φ3

1 : ξ ∩ (Bη
b (0)×Bη⊥

a (0)) 6= ∅}
2b

(4.3)

(we suppress b in the notation). The following theorem yields the asymptotical unbi-
asedness of N̂11(a, η) and gives the corresponding rate of convergence.

Theorem 4.4. For a stationary line process Φ3
1 with directional distribution θ and

a–rose of neighborhood N11(a, η) with lines in R3,

0 ≤ E N̂11(a, η)−N11(a, η) =
πa2

2b
(T12θ) (η⊥) ≤ λπa2

2b
, η ∈ G(1, 3).(4.4)

Proof. By the Campbell-Mecke Theorem, we can write

E #{ζ ∈ Φ3
1 : ζ ∩ (Bη

b (0)×Bη⊥
a (0)) 6= ∅} = E

∑

ζ∈Φ3
1

I{ζ∩(Bη
b×Bη⊥

a (0)) 6=∅}(ζ)
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= λ

∫

G(1,3)

∫

ξ⊥

I{(y+ξ)∩(Bη
b×Bη⊥

a (0)) 6=∅}(y, ξ) νξ⊥
2 (dy)θ(dξ).(4.5)

With the substitution y = Prξ⊥(x), x ∈ H (cf. the proof of Theorem 4.1) where
Prϕ(·) stands for the orthogonal projection operator onto the linear subspace ϕ, the
inner integral in (4.5) rewrites

[ξ⊥, η⊥]
∫

H

I{(Pr
ξ⊥x+ξ)∩(Bη

b×Bη⊥
a (0))6=∅}(y, ξ) νH

2 (dx).(4.6)

We compute this integral for lines η such that [ξ⊥, η⊥] > 0. Since x − Prξ⊥(x) is
parallel to ξ, we can write Prξ⊥(x) + ξ = x + ξ, and the integral in (4.6) takes the
form

∫

H

I{(x+ξ)∩(Bη
b×Bη⊥

a (0)) 6=∅}(y, ξ) νH
2 (dx).(4.7)

Due to the obvious relationship

I{(x+ξ)∩(Bη
b×Bη⊥

a (0)) 6=∅} = I{x∈Bη
b×Bη⊥

a (0)} + I{x/∈Bη
b×Bη⊥

a (0), (x+ξ)∩(Bη
b×Bη⊥

a (0)) 6=∅},

the integral in (4.7) is equal to

νH
2

(
H ∩ (Bη

b (0)×Bη⊥
a (0))

)

+νH
2

(
x ∈ H : x /∈ Bη

b (0)×Bη⊥
a (0), (x + ξ) ∩ (Bη

b ×Bη⊥
a (0)) 6= ∅

)

= 4ab + νH
2

(
Prξ

H (Ba(o))
)

= 4ab + 4 cot α

a∫

0

√
a2 − t2dt

where α is the angle between the lines ξ and η, and Prξ
H(·) denotes the projection

onto H in direction ξ. Then, (4.5) rewrites

E #{ζ ∈ Φ3
1 : ζ ∩ (Bη

b (0)×Bη⊥
a (0)) 6= ∅}

= 4abλ

∫

G(1,3)

[ξ⊥, η⊥] θ(dξ) + λπa2

∫

G(1,3)

[ξ, η⊥] θ(dξ)

= 4ab
(
T22θ

⊥)
(η⊥) + πa2 (T12θ) (η⊥) = 2bN11(a, η) + πa2 (T12θ) (η⊥).

Since θ is a probability measure, the upper bound in (4.4) is obvious. 2

The following result is an immediate consequence of Theorem 4.4.

Corollary 4.5. For each a > 0, the estimator N̂11(a, η) given in (4.3) is asympto-
tically unbiased as b →∞:

N̂11(a, η)−N11(a, η) = O(1/b).
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Moreover, N̂11(a, η)/a is an asymptotically unbiased estimator for N11(η) as a → 0 or
b →∞, where

E
N̂11(a, η)

a
−N11(η) = O(a/b).

Remark It is clear how the estimator (4.3) can be generalized in order to estimate
the a–rose of neighborhood Nkr(a, η) for the process Φd

k of k–dimensional flats in the
higher dimensional space Rd with d > 3, k + r < d:

N̂kr(a, η) =
#{ξ ∈ Φd

k : ξ ∩ (Bη
b (0)×Bη⊥

a (0)) 6= ∅}
κrbr

.

However, in this section, we considered just the three–dimensional case in order to
avoid unnecessary technical difficulties in the proof of Theorem 4.4.

4.3. Estimating the directional distribution density

Identifying any line through the origin with the pair of its unit direction vectors,
each function (measure) on G(1, 3) can be thought of as an even function (measure)
on the sphere S2. Suppose the directional distribution θ has a density ψ with respect
to the uniform directional distribution γ on S2, γ(·) = ω3(·)/ω3(S2). Suppose ψ to
be twice continuously differentiable on S2: ψ ∈ C2

e (S2) (subindex e means ”even”).
By the example considered in Section 4.1, the rose of neighborhood N11(u), u ∈ S2 is
proportional to the rose of intersections

(
T22ψ

⊥)
(u⊥). By Proposition 8.1 of [22], the

density ψ can be restored from T22ψ
⊥ using its expansion in spherical harmonics (cf.

[14]). Combining both assertions with that of Corollary 4.3, one can write

ψ(u) = ψ⊥(u⊥) =
∞∑

k=0

4k+1∑

j=1

∫
S2

N11(a, v)S2k,j(v)ω3(dv)

a ck
S2k,j(u), u ∈ S2(4.8)

where

ck = −π
Γ (k + 1/2) Γ (k − 1/2)

(k + 1)! k!
, k ∈ N

and Snj is a spherical harmonic of order n. Note that in accordance with Corollary
4.3, both sides of equation (4.8) do not depend on a. For instance, we can set a = 1.

To estimate ψ, take a finite sum in (4.8) and substitute the value N11(a, v) by
N̂11(a, v):

ψ̂N,b(u) =
N∑

k=0

4k+1∑

j=1

∫
S2

N̂11(a, v)S2k,j(v) ω3(dv)

a ck
S2k,j(u), u ∈ S2.(4.9)

To evaluate the integral
∫
S2

N̂11(a, v)S2k,j(v)ω3(dv) in (4.9) numerically, values of the

estimator N̂11(a, v) in a finite number of directions v are required. These directions can
be chosen at random, in order to use Monte–Carlo methods of numerical integration.
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Theorem 4.6. Let the density ψ of the directional distribution of the stationary
line process Φ3

1 be twice continuously differentiable on S2. Then the estimator ψ̂N,b(u)
given in (4.9) is asymptotically unbiased as b →∞, N →∞ (or a → 0, N →∞): for
all u ∈ S2

lim
N→∞

lim
b→∞

E ψ̂N,b(u) = lim
N→∞

lim
a→0

E ψ̂N,b(u) = ψ(u).

Proof. By Fubini’s Theorem, the mean value of ψ̂N,b(u) is given by

E ψ̂N,b(u) =
N∑

k=0

4k+1∑

j=1

∫
S2

E N̂11(a, v)S2k,j(v)ω3(dv)

a ck
S2k,j(u).

By Theorem 4.4, one can write

E ψ̂N,b(u) =
N∑

k=0

4k+1∑

j=1

∫
S2

N11(a, v)S2k,j(v) ω3(dv)

a ck
S2k,j(u)

+
πa

2b

N∑

k=0

4k+1∑

j=1

∫
S2

(T12ψ) (v⊥)S2k,j(v)ω3(dv)

ck
S2k,j(u).(4.10)

Since the first sum does not depend on a and b, for fixed N the limit of E ψ̂N,b(u) as
b →∞ or a → 0 is equal to

N∑

k=0

4k+1∑

j=1

∫
S2

N11(v)S2k,j(v)ω3(dv)

ck
S2k,j(u).

Taking the limit as N →∞ completes the proof. 2
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