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1 Introduction

Let X = {X(t), t ∈ M} be a real–valued Gaussian random field with a.s.
smooth paths. The set M is a compact in Rd. The Euler-Poincaré heuristic
states that∣∣∣∣P (sup

t∈M
X(t) > u

)
− E V0 (Au(X;M))

∣∣∣∣ 6 c0 exp{−u2(1+α)/2}, u→∞

(1)
for some positive constants c0 and α, where V0 (Au(X;M)) is the Euler-
Poincaré characteristic of the excursion set of X over the level u which
is a topological invariant of the excursion set. The main problem is to
identify the class of Gaussian fields that satisfy this relation. It is known
that Gaussian fields with constant variance (cf. [6] and [1, Theorem 14.3.3])
on stratified manifolds M belong to that class. In [2, Theorem 8.4], a more
general bound than (1) is proven for stationary Gaussian fields and all levels
u. For non–stationary Gaussian X with a unique point of maximum variance
attained in the interior of the set M and u→∞ see [2, Theorem 8.10].

2 Preliminaries

Consider a parallelepiped

F =
d∏
j=1

[0, aj ]
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in Rd, d > 1, where a1, . . . , ad are some positive real numbers. L et X =
{X(t), t ∈ F} be a centered Gaussian random field with variance σ2(t)
defined on a probability space (Ω,F ,P ).

For X ∈ C2(F ) a.s., let X ′i, σ
′
i denote partial derivatives of X,σ with

respect to ith variable. We also use a notation X ′′ij = ∂2X/∂ti∂tj and
denote by X ′′ the Hessian matrix of X:

X ′′ =
(
X ′′ij
)
16i,j6d

.

Put ∇X = (X ′1, . . . , X
′
d)
> and Z = (X,∇X)>. Evidently, {Z(t), t ∈ F}

is a centered Gaussian (d + 1)-vector field. Let Σ(t) denote its covariation
matrix.

Denote by Φ the cumulative distribution function of the standard normal
distribution and put Φ̄ = 1−Φ. For an absolutely continuously distributed
ξ let pξ denote its distribution density.

By Au = Au(X,F ) denote the excursion set of X in F over the level u:

Au = {t ∈ F : X(t) > u}.

Let V0, Vd−1 and Vd stands for the Euler characteristic, the boundary area
and the volume of a set. In this paper we would like to find the asymptotic
of EV0(Au),EVd−1(Au) and EVd(Au) as u→ +∞.

3 Main results

Theorem 3.1. Suppose that

(a) X ∈ C1(F ) a.s.,

(b) σ has a unique global maximum at the origin and σ′i(0) < 0 for i =
1, . . . , d.

Then

P (sup
t∈F

X(t) > u) = Φ̄

(
u

σ(0)

)
· [1 + o(1)], u→ +∞.

Decompose F into the union of open sets J of dimensions from 0 to d
which are the k–faces of F of all dimensions k = 0, . . . , d. So, the vertices
of F are its 0–faces, the edges of F are its 1–faces, etc. The interior of F
is its unique d–face. Let XJ = {X(t), t ∈ J} be the restriction of X onto
the face J . Let ∇JX denote the vector of partial derivatives of X(t) with
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respect to all coordinates tj , j 6= d of t ∈ J that vary in J . Let X ′′J be the
matrix with elements X ′′ij for all coordinates ti, tj that vary in J , i, j 6= d.

The random field X is called suitably regular if the following conditions
hold a.s. for any level u > 0 and any face J of F where the coordinate td of
t is not constant:

• X ∈ C2(F̃ ) in an open neighborhood F̃ of F ,

• XJ has no critical points t ∈ J such that X(t) = u,

• P (∃ t ∈ J : X(t) = u,∇JX(t) = 0,detX ′′J (t) = 0) = 0.

By [1, Theorem 6.2.2], the excursion sets Au of a suitably regular random
field X are basic complexes, so V0(Au) is well–defined. Sufficient conditions
on the covariance function of a Gaussian random field X to be suitably
regular are given in [1, Theorem 11.3.3].

Theorem 3.2. Suppose that

(a) X is suitably regular,

(b) Z(t) has a nondegenerate distribution for all t ∈ F (i.e., det Σ(t) 6= 0),

(c) P (∃u > 0, t ∈ F : X(t) = u,∇X(t) = 0,detX ′′(t) = 0) = 0,

(d) σ has a unique global maximum at the origin and σ′i(0) < 0 for i =
1, . . . , d.

Then

EV0(Au) = Φ̄

(
u

σ(0)

)
· [1 +O(u−1)], u→ +∞. (2)

Theorem 3.3. Suppose that

(a) σ ∈ C(F ),

(b) σ ∈ C2 in some neighborhood of the origin,

(c) σ has a unique global maximum at the origin and σ′i(0) < 0 for i =
1, . . . , d.

Then

EVd(Au) =
C

u2d
Φ̄

(
u

σ(0)

)
· [1 + o(1)], u→ +∞, (3)

where

C =
(−1)dσ3d(0)∏d

j=1 σ
′
j(0)

.
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Theorem 3.4. Suppose that

(a) X ∈ C1(F ) a.s.,

(b) σ ∈ C2 in some neighborhood of the origin,

(c) σ has a unique global maximum at the origin and σ′i(0) < 0 for i =
1, . . . , d,

(d) σ(t) > 0 for all t ∈ F .

Then

EVd−1(Au) =
C

u2d−1
Φ̄

(
u

σ(0)

)
· [1 + o(1)], u→ +∞, (4)

where

C =
(−1)d

2
E
∥∥∥∥∇Xσ (0)

∥∥∥∥ σ3d−1(0)∏d
j=1 σ

′
j(0)

and ‖ · ‖ is the Euclidian norm in Rd.

4 Proofs

4.1 Proof of Theorem 3.1

To proof Theorem 3.1, we use essentially the follows result of Talagrand [5]:

Lemma 4.1 (Talagrand). For some compact metric space T let Y = {Y (t), t ∈
T} be a centered separable a.s. bounded Gaussian process with continuous
variance σ2(t). Put σ0 = supt∈T σ(t). Then

P (sup
t∈T

Y (t) > u) = Φ̄

(
u

σ0

)
· [1 + o(1)], u→ +∞,

if and only if there exists a unique t0 ∈ T such that σ(t0) = σ and

lim
h→0

1

h
E sup
t∈Th

[Y (t)− Y (t0)] = 0,

where
Th = {t ∈ T : EY (t)Y (t0) > σ20 − h2}.
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Now let us proceed to the proof of Theorem 3.1. As in Lemma 4.1,
consider the set

Fh = {t ∈ F : EX(t)X(0) > σ2(0)− h2}.

Since
2EX(t)X(0) 6 σ2(t) + σ2(0),

we get Fh ⊂ F̃h, where

F̃h = {t ∈ F : σ2(t) > σ2(0)− 2h2}.

Thus it suffices to show that

lim
h→0

1

h
E sup
t∈F̃h

[X(t)−X(0)] = 0. (5)

By Taylor’s formula,

X(t) = X(0) +
d∑
i=1

tiX
′
i(θtt) (6)

and

σ(t) = σ(0) +
d∑
i=1

tiσ
′
i(θ̃tt) (7)

for some θt, θ̃t ∈ [0, 1].
Assumption (b) of Theorem 3.1 implies that there exists ε > 0 such that

K1 = min
i=1,...,d

inf
‖t‖<ε

[−σ′i(t)] > 0

and
K2 = inf

‖t‖<ε
σ(t) > 0.

Therefore it follows from (7) that for ‖t‖ < ε

σ2(0)− σ2(t) = [σ(0) + σ(t)][σ(0)− σ(t)] > 2K2K1

d∑
i=1

ti > 2K1K2‖t‖

Thus, if h2/(K1K2) < ‖t‖ < ε, then t 6∈ F̃h. On the other hand, for
sufficiently small h > 0 it holds t 6∈ F̃h for ‖t‖ > ε as well (it follows from
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the fact that σ is continuous and has the unique maximum at the origin).
Thus, for sufficiently small h we have

sup
t∈F̃h

‖t‖ 6 h2

K1K2
. (8)

Furthermore, by (6),

|X(t)−X(0)| 6 η

d∑
i=1

ti 6
√
dη‖t‖, (9)

where
η = max

i=1,...,d
sup
t∈F
|X ′i(t)|.

Combining (8) and (9), we obtain for sufficiently small h

E sup
F̃h

|X(t)−X(0)| 6
√
dE η

K1K2
h2. (10)

By [1, Theorem 2.1.2], it holds E η <∞, therefore (10) implies (5), and the
proof is complete.

4.2 Proof of Theorem 3.2

Within this section, we assume that the conditions of Theorem 3.2 hold.
Denote by Jk the collection of faces of dimension k of the parallelepiped

F . In particular, J0 is the set of all vertices of F . To each face J ∈ Jk
there corresponds a subset δ(J) of {1, . . . , d}, of size k, and a sequence
ε(J) = {εj}j 6∈δ(J) of d− k zeros and ones so that

J = {x ∈ F |xj = εjaj , if j 6∈ δ(J), 0 < xj < aj , if j ∈ δ(J)}.

It follows from Morse’s Theorem (see [1, p. 210] for details) that

V0(Au) =
d∑

k=0

∑
J∈Jk

k∑
i=0

(−1)iµi(J),

where µi(J) is the number of points t ∈ J satisfying the following four
conditions:

X(t) > u, (11)

X ′j(t) = 0, j ∈ δ(J), (12)
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(2εj − 1)X ′j(t) > 0, j 6∈ δ(J), (13)

index[X ′′mn(t)]m,n∈δ(J) = k − i. (14)

The index of a matrix is the number of its negative eigenvalues. Therefore,

EV0(Au) = Eµ0({0}) +
∑

{t}∈J0\{0}

Eµ0({t}) +

d∑
k=1

∑
J∈Jk

k∑
i=0

(−1)iEµi(J).

Thus to obtain (2) it is sufficient to prove the following three asymptotic
relations:

Eµ0({0}) = Φ̄(u/σ(0)) · (1 +O(u−1)), u→ +∞, (15)

Eµ0({t}) = Φ̄(u/σ(0)) ·O(u−1), u→ +∞, (16)

for {t} ∈ J0 \ {0} and

k∑
i=0

(−1)iEµi(J) = Φ̄(u/σ(0)) ·O(u−1), u→ +∞, (17)

for J ∈ Jk, k = 1, . . . , d.
Before proving them we need to formulate and prove several auxiliary

results.

Lemma 4.2. It holds σ ∈ C1(F ).

Proof. Fix t ∈ F and consider some small vector 4it parallel to the i-
th coordinate axis such that t + 4it ∈ F . By Taylor’s formula, for some
θ(t) ∈ [0, 1]

E
∣∣∣∣X2(t+4it)−X2(t)

4it

∣∣∣∣ = E
(
|X(t+4it)−X(t)|

∣∣∣∣X(t+4it)−X(t)

4it

∣∣∣∣)
= E

(
|X(t+4it)−X(t)|

∣∣X ′(t+ θ(t)4it)
∣∣) 6 2E

(
sup
t∈F
|X(t)| sup

t∈F
|X ′(t)|

)
6 2

(
E sup
t∈F

2|X(t)|E sup
t∈F

2|X ′(t)|
) 1

2

. (18)

The processes X(t) and X ′i(t) are continuous on the compact F a.s., which
implies their boundedness a.s. Therefore it follows from a corollary of the
famous Tsirelson-Ibragimov-Sudakov inequality [1, Theorem 2.1.2] that the
moment generating functions of sup2

t∈F |X(t)|, sup2
t∈F |X ′(t)| (and, hence,
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their moments) together with the right-hand side of (18) are finite. There-
fore, by Lebesgue’s dominated convergence theorem,

lim
4it→0

σ2(t+4it)− σ2(t)
4it

= lim
4it→0

E
X2(t+4it)−X2(t)

4it

= E lim
4it→0

X2(t+4it)−X2(t)

4it
= E

∂X2

∂ti
(t) = 2EX(t)X ′i(t). (19)

To prove the lemma, it remains to show that EX(t)X ′i(t) is continuous.
Again, by Lebesgue’s dominated convergence theorem,

lim
4it→0

[EX(t+4it)X
′
i(t+4it)− EX(t)X ′i(t)]

= E lim
4it→0

[X(t+4it)X
′
i(t+4it)−X(t)X ′i(t)] = E 0 = 0.

Lemma 4.3. The correlation coefficient between X(0) and X ′i(0) is negative.

Proof. Relation (19)) yields

∂σ2

∂ti
(t) = 2EX(t)X ′i(t),

which implies EX(t)X ′i(t) = σ(t)σ′i(t). To conclude the proof, it remains to
note that σ(0) > 0 and σ′i(0) < 0.

Lemma 4.4. Let ξ, η be centered Gaussian random variables. If the corre-
lation coefficient ρ between ξ and η is negative, then

P {ξ > u, η > 0} = O
(
u−1Φ̄ (u/σξ)

)
, u→ +∞.

Proof. If we normalize ξ and η, the correlation coefficient does not change.
Hence we may assume that Var ξ = Var η = 1. Using the formula for the
density of bivariate normal distribution, we get

P {ξ > u, η > 0} =
1

2π
√

1− ρ2

∫ ∞
u

dx

∫ ∞
0

exp

[
−x

2 + y2 − 2ρxy

2(1− ρ2)

]
dy

=
1

2π
√

1− ρ2

∫ ∞
u

dx

∫ ∞
0

exp

[
−(−ρx+ y)2 + (1− ρ2)x2

2(1− ρ2)

]
dy

=
1

2π
√

1− ρ2

∫ ∞
u

e−x
2/2 dx

∫ ∞
−ρx

e−y
2/[2(1−ρ2)] dy.
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It is known (see, e.g., [4]) that for any t > 0 it holds(
1

t
− 1

t3

)
e−t

2/2 6
∫ ∞
t

e−s
2/2 ds 6

1

t
e−t

2/2. (20)

Therefore, making a substitute y′ = y/
√

1− ρ2, we obtain

P {ξ > u, η > 0} =
1

2π
√

1− ρ2

∫ ∞
u

e−x
2/2 dx

∫ ∞
−ρx

e−y
2/[2(1−ρ2)] dy

=
1

2π

∫ ∞
u

e−x
2/2 dx

∫ ∞
−ρx/
√

1−ρ2
e−y

2/2 dy 6
1

2π

√
1− ρ2
|ρ|

∫ ∞
u

1

x
e−x

2/2 dx

6
1

2π

√
1− ρ2
|ρ|

1

u

∫ ∞
u

e−x
2/2 dx = O(u−1Φ̄(u)), u→ +∞.

The proof of the next lemma can be found in [2, Theorem 6.2].

Lemma 4.5. Let Y = {Y (t), t ∈ U} be a vector-valued Gaussian random
field, Y (t) ∈ Rd a.s., U an open subset of Rd, and y ∈ Rd a fixed point.
Denote by Ny the number of points t ∈ U such that Y (t) = y. Suppose that

(a) Y ∈ C1(U) a.s.,

(b) For each t ∈ U , Y (t) has a nondegenerate distribution,

(c) P {∃ t ∈ U : Y (t) = y,detY ′(t) = 0} = 0,

where Y ′ stands for the Jacobian matrix of Y . Then

ENy =

∫
U
E
(
|detY ′(t)|

∣∣Y (t) = y
)
pY (t)(y) dt.

Lemma 4.6. Under the conditions of Theorem 3.2, there exist positive con-
stants A,B such that

sup
t∈F

E
(
|X ′′ij(t)|d

∣∣Z(x) = (u, 0, . . . , 0)>
)
6 (A+B|u|)d

for all i, j ∈ {1, . . . , d}.
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Proof. Under the expectation of a random vector (matrix) we understand
the vector (matrix) of the expectations of its components. For i, j ∈ {1, . . . , d}
put

ξij = X ′′ij − E (X ′′ijZ
>)Σ−1Z.

Denote by Id+1 the identity matrix of the size (d + 1) × (d + 1). Since
Σ = E (ZZ>), we have

E (ξijZ
>) = E (X ′′ijZ

>)− E (X ′′ijZ
>)Σ−1E (ZZ>)

= E (X ′′ijZ
>)− E (X ′′ijZ

>)Id+1 = (0, 0, . . . , 0)>,

which means that (ξij) and Z are independent. Therefore,

E
(
|X ′′ij |d

∣∣Z(t) = (u, 0, . . . , 0)>
)

= E
(∣∣ξij + E (X ′′ijZ

>)Σ−1Z
∣∣d ∣∣Z(t) = (u, 0, . . . , 0)>

)
= E

∣∣ξij + au
∣∣d,

where au = E (X ′′ijZ
>)Σ−1(u, 0, . . . , 0)>. Furthermore, by Minkowski in-

equality,

E |ξij + au|d 6
(

(E |ξij |d)
1
d + |au|

)d
=
(
b
1
d
d (E ξ2ij)

1
2 + |au|

)d
,

where bd denotes the d-th absolute moment of the standard Gaussian dis-
tribution. To conclude the proof, let us estimate E ξ2ij and |au|. We have

sup
t∈F

E ξ2ij(t) 6 2 sup
t∈F

EX ′′ij
2
(t) + 2 sup

t∈F
E
[
E
(
X ′′ij(t)Z

>(t)
)

Σ−1(t)Z(t)
]2

= 2 sup
t∈F

EX ′′ij
2
(t) + 2 sup

t∈F

[
EZ>(t)D(t)EZ(t) + tr (D(t)Σ(t))

]
,

where D(t) = Σ−1(t)E
(
X ′′ij(t)Z(t)

)
E
(
X ′′ij(t)Z

>(t)
)

Σ−1(t) and tr(A) is the

trace of a quadratic matrix A. Since all considered functions are continuous
with respect to t over the compact set F and det Σ(t) 6= 0 in F , all suprema
in the right-hand side are finite. Similarly,

sup
t∈F
|au(t)| =

∣∣∣E (X ′′ij(t)Z>(t)
)

Σ−1(t)(u, 0, . . . , 0)>
∣∣∣

6 sup
t∈F

∣∣∣(E (X ′′ij(t)Z>(t)
)

Σ−1(t)
)
1

∣∣∣ |u|,
where (b)1 is the first coordinate of a vector b.
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Let us turn back to the proof of Theorem 3.2 . It suffices to show that
relations (15)-(17) hold. Let us start with (15).

If {t} ∈ J0 then δ({t}) is empty. Hence in calculating µ0({t}) we take
into account only the conditions (11) and (13), i.e., X(t) > u and (2εj −
1)X ′j(t) > 0, j = 1, . . . , d. Therefore,

Eµ0({t}) = P {X(t) > u, (2εj − 1)X ′j(t) > 0, j = 1, . . . , d}.

If t = 0, then εj = 0 for all j = 1, . . . , d, and∣∣Φ̄(u/σ(0))− Eµ0({0})
∣∣

=
∣∣P {X(0) > u} − P {X(0) > u,X ′j(0) < 0, j = 1, . . . , d}

∣∣
6

d∑
j=1

P {X(0) > u,X ′j(0) > 0}.

If we combine this with Lemma 4.3 and Lemma 4.4, we get (15).
If {t} ∈ J0 \ {0}, then

Eµ0({t}) = P {X(t) > u, (2εj − 1)X ′j(t) > 0, j = 1, . . . , d}
6 P {X(t) > u} = Φ̄(u/σ(t)),

which together with σ(t) < σ(0) yields (16).
To prove (17), denote by µ̃(J) the number of points t ∈ J satisfying only

conditions (11) and (12). Clearly,∣∣∣∣ k∑
i=0

(−1)iµi(J)

∣∣∣∣ 6 µ̃(J). (21)

For simplicity, we assume that k = d, so J is the interior of the cube:
J = intF . For other faces of F , the proof is analogous.

Consider the random vector field of d+ 1 variables

Zv(t) =
(
X(t)− v,X ′1(t), . . . , X ′d(t)

)>
, (v, t) ∈ R× intF.

Denote by Z ′v the Jacobian matrix of Z:

Z ′v(t) =


−1 X ′1(t) . . . X ′d(t)
0 X ′′11(t) . . . X ′′1d(t)
...

...
. . .

...
0 X ′′d1(t) . . . X ′′dd(t)

 .
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It is not difficult to see that µ̃(J) coincides with the number of zeros of Z
in the domain (u,∞)× intF . To count them, we apply Lemma 4.5 with

U = (u,∞)× intF, Y = Zv, y = (0, 0, . . . , 0).

Evidently, the covariance matrix of Zv coincides with Σ and detZ ′v =
−detX ′′. Therefore, assumptions (a)-(c) of Theorem 3.2 imply that Z ′v
satisfies the conditions of Lemma 4.5. Thus we have

E µ̃(J) =

∫
F

∫ ∞
u

E
(
|detZ ′v(t)|

∣∣Zv(t) = 0
)
pZv(t)(0) dv dt. (22)

By Hölder’s inequality, we have

E
(
|detZ ′v(t)|

∣∣Zv(t) = 0
)

= E
(
| det

(
X ′′ij(t)

)
16i,j6d

|
∣∣Zv(t) = 0

)
6

∑
(i1,...,id)∈Sd

E
(
|X ′′1i1(t) . . . X ′′did(t)|

∣∣Zv(t) = 0
)

6
∑

(i1,...,id)∈Sd

 d∏
j=1

E
(
|X ′′jij (t)|

d
∣∣Zv(t) = 0

)1/d

,

where Sd is the set of all permutations of (1, . . . , d). By Lemma 4.6 there
exist positive constants A,B such that

E
(
|X ′′jij (t)|

d
∣∣Zv(t) = 0

)
6 (A+B|v|)d.

Combining the last two inequalities we obtain

E
(
| detZ ′v(t)|

∣∣Zv(t) = 0
)
6 d!(A+B|v|)d. (23)

Furthermore, let us estimate pZv(t)(0). Since only the first component of
Zv(t) is non-centered,

pZv(t)(0) =
1

(2π)
d+1
2

√
det Σ(t)

exp
(
− v2

2
q11(t)

)
,

where q11(t) is the element in the upper left corner of the matrix Σ−1(t). It
is known (see, e.g., [3, Th. 5, p. 86]) that q11(t) can be expressed in terms
of the conditional variance:

q11(t) =
1

Var
(
X(t)− v

∣∣X ′1(t), . . . , X ′d(t)) =
1

Var
(
X(t)

∣∣∇X(t)
) .
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We have
Var

(
X(t)

∣∣∇X(t)
)
6 VarX(t),

and
Var

(
X(t)

∣∣∇X(t)
)

= VarX(t)

if and only if X(t) and ∇X(t) were independent (see, e.g., [3, p. 72]). Since
X(0) and ∇X(0) are not independent (see Lemma 4.3), we get 1/q11(0) <
VarX(0) = σ2(0). The origin is a point of the global maximum of σ(t),
therefore 1/q11(t) < σ2(0) for all t ∈ F . Since q11(t) is continuous with
respect to t (by the formula for a matrix inversion), we get

c0 = inf
t∈F

[
σ2(t)− 1

q11(t)

]
> 0.

Thus,

pZv(t)(0) 6
1

(2π)(d+1)/2
√

det Σ(t)
exp

(
− v2

2

1

σ2(0)− c0

)
. (24)

Finally, (21), (22), (23) and (24) yield (17), and the proof is complete.

5 Proofs of Theorems 3.3 and 3.4

The both proofs use the next asymptotic relation which is obtained using
Laplace’s method.

Lemma 5.1. Let H =
∏m
j=1[0, aj ] be a parallelepiped in Rm, m > 1, where

a1, . . . , am are some positive real numbers. Consider functions f, S : H →
(0,∞]. Put S′i = ∂S/∂ti, f

′
i = ∂f/∂ti, and S′′ij = ∂2S/∂ti∂tj whenever they

exist. Suppose that

(a) S has a unique global minimum at the origin,

(b) f, S ∈ C(H),

(c) f ∈ C1, S ∈ C2 in some neighborhood of the origin and
∑m

i=1 S
′
i(0) >

0,

(d) supt∈H f(t)e−S(t) <∞.

Then∫
H
f(t)e−λS(t) dt =

f(0)∏m
i=1 S

′
i(0)

λ−me−λS(0)[1 + o(1)], λ→ +∞. (25)
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Proof. Fix some small ε > 0, large λ such that ln2 λ/λ < ε and divide H
into three sets:

H1 =
[
0,

ln2 λ

λ

]m
, H2 = [0, ε]m \H1, H3 = H \ [0, ε]m.

Put

Ak(λ) =

∫
Hk

f(t)e−λS(t) dt, k = 1, 2, 3.

By Taylor’s formula,

S(t) = S(0) +

m∑
i=1

tiS
′
i(0) +

1

2

m∑
i,j=1

titjS
′
ij(θtt) (26)

and

f(t) = f(0) +

m∑
i=1

tif
′
ti(θ̃tt) (27)

for some θt, θ̃t ∈ [0, 1]. Therefore,

Ak(λ) =

∫
Hk

(
f(0) +

m∑
i=1

tif
′
ti(θ̃tt)

)

× exp

−λS(0)− λ
m∑
i=1

tiS
′
i(0)− 1

2
λ

m∑
i,j=1

titjS
′′
ij(θtt)

 dt. (28)

First, let us estimate A1(λ). We have

A1(λ)

= f(0)
[
1 +O(λ−1 ln2 λ)

]
exp

[
−λS(0) +O(λ−1 ln4 λ)

] ∫
H1

exp

[
−λ

m∑
i=1

tiS
′
i(0)

]
dt

= f(0)e−λS(0)
[
1 +O(λ−1 ln4 λ)

] m∏
i=1

∫ λ−1 ln2 λ

0
e−λS

′
i(0)tidti

= f(0)e−λS(0)
[
1 +O(λ−1 ln4 λ)

]
λ−m

m∏
i=1

1− e−λS′i(0)λ−1 ln2 λ

S′i(0)

=
f(0)∏m
i=1 S

′
i(0)

λ−me−λS(0)[1 + o(1)], λ→∞. (29)
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Furthermore, put

K1 = sup
t∈H2

∣∣∣f(0) +

m∑
i=1

tif
′
ti(θ̃tt)

∣∣∣
and

K2 =
1

2

m∑
i,j=1

sup
t∈H2

∣∣∣S′′ij(θtt)∣∣∣.
Since assumption (a) holds, we may chose ε such that if t = (t1, . . . , tm)> ∈
H2, s = (s1, . . . , sm)> ∈ H2 and tj > sj for j = 1, . . . ,m then S(t) > S(s).
Combining this with (26) and putting s = (λ−2 lnλ, . . . , λ−2 lnλ), we get

S(t) > S(s) > S(0) +
ln2 λ

λ

m∑
i=1

S′i(0)−K2
ln4 λ

λ2

for all t ∈ H2, which implies

A2(λ) 6 Vm(H2)K1 exp

[
−λS(0)− ln2 λ

m∑
i=1

S′i(0) +K2
ln4 λ

λ

]
= o(A1(λ))

(30)
as λ→∞.

Finally, it follows from (a) and (b) that there exists δ > 0 such that
S(t) > S(0) + δ for t ∈ H3. Therefore,

A3(λ) 6 Vm(H3)K1 exp [−λS(0)− λδ] = o(A1(λ)), λ→∞. (31)

Combining (29)-(31) concludes the proof.

Now we return to the proofs of the theorems.

Proof of Theorem 3.3. By Fubini’s theorem,

EVd(Au) = E
∫
F
I(X(t) > u) dt =

∫
F
P (X(t) > u) dt

=

∫
F

Φ
( u

σ(t)

)
dt =

1

(2π)1/2

∫
F
dt

∫ ∞
1

u

σ(t)
exp

[
− u2x2

2σ2(t)

]
dx.

Making a substitute x = 1/(1− x′), we get

EVd(Au) =
u

(2π)1/2

∫
F
dt

∫ 1

0

1

(1− x)2σ(t)
exp

[
− u2

2(1− x)2σ2(t)

]
dx.
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To finish the proof, it suffices to apply Lemma 5.1 with

m = d+ 1, λ = u2, H = F × [0, 1],

f(t, x) =
1

(1− x)2σ(t)
, S(t, x) =

1

2(1− x)2σ2(t)
.

In this case we have

f(0) =
1

σ(0)
, S(0) =

1

2σ2(0)
,

∂S

∂ti
(0) = − σ

′
i(0)

σ3(0)
,

∂S

∂x
(0) =

1

σ2(0)
,

and (3) follows from (25) and (20).

To prove Theorem 3.4 we also need the following result.

Lemma 5.2 (Ibragimov, Zaporozhets). Let Y = {Y (t), t ∈ K} be a Gaus-
sian random field, and K be a compact subset of Rd with a non–empty
interior and a finite Hausdorff measure of the boundary. Put m(t) = EY (t)
and σ2(t) = VarY (t). Consider a zero set of Y

Y −1(0) = {t ∈ K : Y (t) = 0}

and a zero set of the gradient of the normalized field Y/σ

∇−1Y (0) = {t ∈ K : ∇
(
Y/σ

)
(t) = 0}.

Suppose that

(a) Y ∈ C1(K) a.s.,

(b) EVd−1(∇−1Y (0)) <∞,

(c) σ(t) > 0 for all t ∈ K.

Then

EVd−1(Y −1(0)) =
1

2
√

2π

∫
K

exp

[
−m

2(t)

2σ2(t)

]
E
∥∥∥∥∇Y (t)

σ(t)

∥∥∥∥ dt.
Proof. See [7].
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Proof of Theorem 3.4. The boundary of Au coincides with a zero set of the
translated field Y (t) = X(t)−u, t ∈ F . Therefore, using Lemma 5.2, we get

EVd−1(Au) =
1

2
√

2π

∫
F

exp

[
− u2

2σ2(t)

]
E
∥∥∥∥∇Y (t)

σ(t)

∥∥∥∥ dt.
To conclude the proof it remains to apply Lemma 5.1 with

m = d, λ = u2, H = F,

f(t) = E
∥∥∥∥∇X(t)

σ(t)

∥∥∥∥, S(t) =
1

2σ2(t)
.

In this case we have

f(0) = E
∥∥∥∥∇Xσ (0)

∥∥∥∥, S(0) =
1

2σ2(0)
,

∂S

∂ti
(0) = − σ

′
i(0)

σ3(0)
,

and (4) follows from (25) and (20).

References

[1] R.J. Adler, J.E. Taylor. Random Fields and Geometry. Springer, 2007.
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