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Abstract

The paper yields retrieval formulae of the directional distribution of a
stationary k–flat process in Rd if its rose of intersections with all r–flats is known.
Cases k = d − 1, 1 ≤ r ≤ d − 1 for arbitrary d and d = 4, k = 2, r = 2 are
considered. Some generalisations to manifold processes in Rd are made. The
proofs use the methods of harmonic analysis on higher Grassmannians (spherical
harmonics, integral transforms).
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1. Introduction

Consider a stationary k–flat process Φd
k in Rd, i.e. Φd

k is a random point process
on the phase space of all k–flats in d–dimensional space, each realisation of which is
an at most countable ”locally finite” collection of k–planes (cf. section 2 for exact
definitions). Its stationarity means stability of its distribution law with respect to
shifts in Rd. If Φd

k is Poisson (cf. [22], [32]) then it is completely determined by its
intensity measure Λ(·), i.e. by its intensity λ and directional distribution θ(·) (see
equation (2.2)). For arbitrary stationary processes Φd

k this is evidently false, but
nevertheless the knowledge of the intensity measure allows us to make some general
conclusions about the behaviour of the process. In view of that it is sometimes
necessary to find θ(·) possessing only partial information about Φd

k, for instance,
when one knows something about various intersections of Φd

k with r–flats. To be
more precise, suppose one intersects Φd

k with an r–flat η, r = d − k + j. Then
Φd

k ∩ η is a j-flat stationary process in η with intensity f(η) which is called the rose
of intersections of Φd

k. The possibility of obtaining the properties of Φd
k from f(·) is

itself an interesting mathematical problem. In this regard one can pose the following
two questions:
1) Does there exist a one–to–one correspondence between f(·) and θ(·)?
2) How can θ(·) be restored from f(·) (exact formulae)?

The complete answer to the first question was obtained by G. Matheron (1975),
P. Goodey, R. Howard and M. Reeder (1990, 1996) (cf. [17], [4] – [6], respectively).
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It appears that uniqueness of retrieval holds only for particular k and r (see section
3).

The partial answer to the second question (fiber processes in dimensions 2 and 3)
could be found in the papers by J. Mecke and W. Nagel (1979, 1980) (cf. [18], [21]
and others).

The main results of the present paper yield the retrieval formulae for the directional
distribution θ(·) of any stationary process of hyperplanes in Rd from its rose of
intersections when the intersecting plane η has dimension r, 1 ≤ r ≤ d − 1. These
results are generalized to hold for stationary manifold processes in Rd.

The proofs involve the ideas of harmonic analysis on Grassmann manifolds.
In section 2 all necessary definitions and notions concerning stationary k–flat pro-

cesses are introduced. Section 3 contains both the exact mathematical statement of
the problem of obtaining θ(·) from f(·) and the history of the question.

The main integral formulae are given in section 6 for the case when the process
Φd

d−1 is intersected with lines. In section 7 the more general situation of arbitrary
r∈{2, . . . , d− 1} is considered.

Some notions and results that we use intensively in sections 6, 7, such as Grass-
mann manifolds and various integral transforms (sine, cosine and spherical Radon
transforms) are introduced in sections 4 and 5.

Section 8 is devoted to the deduction of the formulae in the form of expansions
in spherical harmonics. It contains the appropriate expansion formulae for the cases
when Φd

d−1 is intersected with lines and hyperplanes in d dimensions and when the
2-flat process Φ4

2 intersects with 2-flats in dimension 4, respectively. In the case of
Φ4

2 there are infinitely many directional distributions θ that yield the same rose of
intersections f(·); their description in terms of Fourier coefficients of θ is given.

Finally a possible generalization of all these results to the wider class of manifold
processes is made.

2. Stationary k–flat processes

In this section we shall follow the guidelines of [23] in introducing the basic notions
of k-flat processes (cf. [32], [22] for other constructions).

Let F (d, k) be the set of all k–flats in Rd, d ≥ 2, 1 ≤ k ≤ d − 1. Let G(d, k)
be the Grassmann manifold of all non–oriented k–dimensional linear subspaces of
Rd (for more detailed information see section 4). Say B ⊂ F (d, k) is bounded if
sup
ξ∈B

ρ(0, ξ) < ∞ where ρ(·, ·) is the Euclidean distance in Rd. Let G, F be the

σ–algebras of Borel subsets of G(d, k), F (d, k) in their usual topologies. One calls
ϕ ⊂ F (d, k) a flat field if any bounded set B ⊂ Rd is intersected by a finite number
of k–flats of ϕ. Let M be the set of all flat fields and M — the usual σ–algebra on
M.

Definition 2.1 Φd
k is called a k–flat process iff Φd

k : (Ω,Γ, P ) → (M, M) is a random
element. Its distribution is a measure κ(·) = P{Φd

k ∈ ·} on M (k = 0 — ordinary
point process, k = d− 1 — hyperplane process in Rd).

A k–flat process Φd
k is called stationary if its distribution is invariant with respect
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to all shifts in Rd. Denote by νd(·) the d–dimensional Lebesgue measure in Rd. We
shall call λ the intensity of a stationary process Φd

k if λ = E νk(Φd
k∩B)

νd(B) for every B —
bounded subset of Rd with νd(B) > 0. The definition of λ does not depend on the
choice of B. Suppose λ ∈ (0;∞). The rose of directions (directional distribution) of
Φd

k is a probability measure on G(d, k):

θ(C) =
E | {ξ ∈ Φd

k : ξ ∩ Sd−1 6= ø, r(ξ) ∈ C} |
λkd−k

, ∀C ∈ G(2.1)

where | A | denotes the cardinal number of a set A, r(ξ) is the direction of a k–flat

ξ, i.e. the unique ξ̄ ∈ G(d, k) that is parallel to ξ, kd = 2π
d
2

d Γ( d
2 )

is the volume of a unit

ball, and Sd−1 is a unit sphere in Rd.
Let Φd

k(B) denote the number of k-flats of Φd
k that belong to a set B ∈ F (it can

also get infinite values if B is not bounded). The measure Λ(B) = E
(
Φd

k(B)
)
, B ∈ F

is called the intensity measure of Φd
k.

If Φd
k is stationary the following factorization of its intensity measure takes place

(cf. e.g. [32], [22]):

Λ(B) = λ

∫

G(d,k)

∫

ξ⊥

IB(y + ξ)νξ⊥

d−k(dy)θ(dξ), ∀B ∈ F(2.2)

where νξ⊥

d−k(·) is the Lebesgue measure on ξ⊥.
For almost all η ∈ F (d, d−k+j) the intersection Φd

k∩η is a stationary j–flat process
on η. Let f(η) = λΦd

k∩η be the intensity of Φd
k ∩ η. Due to the stationarity of Φd

k it is
sufficient to consider only those affine flats η that contain zero, i.e. η ∈ G(d, d−k+j).
Then (cf. [17], [4])

f(η) = λ

∫

G(d,k)

[ξ, η] θ(dξ)(2.3)

where [ξ, η] is the d− j –volume of the unit parallelepiped spanned over orthonormal
bases in ξ⊥ and η⊥: if ξ⊥ =< a1, . . . , ad−k >, η⊥ =< b1, . . . , bk−j > then

[ξ, η] = V ol(a1, . . . , ad−k, b1, . . . , bk−j).

It is independent of the choice of the orthonormal bases in ξ⊥ and η⊥. The function
f(η) is called the rose of intersections of Φd

k. Later on assume for simplicity λ = 1.

3. The rose of intersections and the directional distribution

Suppose Φd
k is a stationary k–flat process intersected with any r–flat η, r = d−k+j.

The following natural question is now to be answered: does its rose of intersections
f determine θ(·) uniquely? Introduce the set Vf (d, k, j) of all probability measures
θ0(·) on G such that

∫
G(d,k)

[ξ, η] θ0(dξ) = f(η) for all η. Then the uniqueness would

imply | Vf (d, k, j) |= 1. One can distinguish the following particular cases for any
dimension d:
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1. j = 0 (Φd
k ∩ η is an ordinary point process):

• k = d− 1 or 1: | Vf (d, k, j) |= 1 (G. Matheron, 1975, cf. [17]).
• 2 ≤ k ≤ d− 2: Vf (d, k, j) is infinite dimensional (P. Goodey,

R. Howard, 1990, cf. [4], [5]).

2. 1 ≤ j < k ≤ d− 1 (P. Goodey, R. Howard, 1990):

• k < d− 1: Vf (d, k, j) is infinite dimensional.
• k = d− 1: | Vf (d, k, j) |= 1.

As θ(A) =
∫

G(d,k)

IA(ξ) θ(dξ) for any A ∈ G and IA(·) can be approximated by

smooth functions one can easily see that any measure θ(·) is uniquely determined by
all integrals

∫

G(d,k)

g(ξ) θ(dξ)(3.1)

where g belongs to some sufficiently large class of functions, say Cp(G(d, k)), p ∈
N ∪ {∞} or C(G(d, k)). J. Mecke [18] provides an easy integral retrieval formula for
fibre processes on the plane (d = 2, k = r = 1) that expresses (3.1) through the
integrals of f(·), while J. Mecke and W. Nagel [21] obtain a sort of expansion formula
in spherical harmonics for the case d = 3, k = 1, r = 2. In both cases the uniqueness
of retrieval of θ(·) from f takes place.

In what follows we shall generalize these results (k = d−1) for arbitrary dimensions
d and r and also consider one case of non–uniqueness d = 4, k = r = 2. Here the
whole set Vf (4, 2, 0) will be described. The choice of parameters k and r could be
explained by the fact that only in these cases the appropriate Grassmannian G(d, k)
is isomorphic to a sphere (or a product of spheres) (see section 4), and by this means
the standard methods of harmonic analysis on the sphere are applicable. All other
cases of non–uniqueness remain still open.

4. Grassmannians

Assume d ≥ 3, 1 ≤ k ≤ d − 1. Let Φd
k be a stationary k-flat process in Rd with

intensity 1, directional distribution θ(·) and the rose of intersections f(·). Before
we proceed to get the retrieval formulae for θ(·) let us investigate the structure of
manifolds G(d, k) on which all our measures and functions are defined.

For any d and k ≤ d the Grassmannian G(d, k) is a compact analytic manifold of
dimension k(d − k) (cf. [16]). Moreover, it is symmetric and separable. We shall be
interested in specific cases k = 1, k = d−1 for arbitrary d ≥ 2 as well as d = 4, k = 2.
It is clear that G(d, 1) ∼= Sd−1

+
def
= {u ∈ Sd−1 : u ≡ −u} where Sd−1

+ is a sphere in Rd

with each diameter having its end points identified (Sd−1
+ is obviously topologically

equivalent to projective space RP d−1). Mapping any hyperplane ξ to its orthogonal
complement ξ⊥ ∈ G(d, 1) we get G(d, d− 1) ∼= Sd−1

+ . It can be proved that

G(4, 2) ∼= {(u, v) ∈ S2 × S2 : (u, v) ≡ (−u,−v)},(4.1)
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J. Mecke [20] shows it by means of a special type of Grassmann coordinates. However
other approaches are also possible (cf. [4] for references). Due to the above facts we
shall consider later on just even functions and measures defined on Sd−1 and S2×S2.

The structure of G(d, k) as a quotient space allows the introduction of the unique
left and right invariant normalized Haar measure µ(·) on G(d, k) (cf. [1]). In the
cases of hyperplanes and lines µ(·) ≡ ωd(·)/ωd – the normed surface area measure on
Sd−1 in Rd

(ωd = ωd(Sd−1) = d kd).

5. Integral transforms

In this section we outline some facts about sine, cosine and Radon integral trans-
forms on the sphere (cf. [3] p. 377-386 for properties, [7] and [8] for applications, [14]
for general Radon transforms on symmetric spaces).

Let <g, h>Sd−1=
∫

Sd−1

g(ξ)h(ξ)ωd(dξ) be the scalar product of any real functions

g and h from L2(Sd−1). Denote by Cp
e (Sd−1), p ∈ N ∪ {∞} the space of all p times

continuously differentiable even functions on Sd−1; let Ce(Sd−1) be the space of all
continuous even functions on Sd−1.

For all η ∈ Sd−1 and any integrable g introduce the so–called cosine transform Tg
and sine transform Kg:

Tg(η) =
∫

Sd−1

|<ξ, η>| g(ξ) ωd(dξ)(5.1)

Kg(η) =
∫

Sd−1

√
1− <ξ, η>2 g(ξ) ωd(dξ)(5.2)

Let η ∈ G(d, r), 1 ≤ r ≤ d − 1. Denote by Sr−1
η the totally geodesic submanifold

Sd−1∩η of Sd−1, dim(Sr−1
η ) = r−1. For any integrable function g on Sd−1 introduce

the spherical Radon transform of order r:

(Rrg) (η) =
1
ωr

∫

Sr−1
η

g(ξ)ωη
r (dξ)(5.3)

where ωη
r (·) is the surface area measure on the subsphere Sr−1

η . If r = d − 1 we
shall write R = Rd−1 and call it simply the spherical Radon transform: identifying
η ∈ G(d, d− 1) with the direction unit vector of the line η⊥ we have

Rg(η) =
1

ωd−1

∫

<ξ,η>=0

g(ξ)ωη⊥

d−1(dξ)(5.4)

It is known that cosine and Radon transforms Rr (and consequently sine transform,
see (5.7)) are injective on C∞e (Sd−1). Introduce the differential operator

¤ =
1

2ωd−1
(40 + d− 1)(5.5)
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where 40 is a Beltrami – Laplace operator on Sd−1. It can be shown (cf. [8]) that

¤T = R,(5.6)

K =
ωd−1

2kd−2
RT(5.7)

on Ce(Sd−1), or equivalently to (5.7),

T =
2kd−2

ωd−1
R−1K,(5.8)

as Rr is invertible for all r.
As for relation (5.7) we shall prove it in more general form (for the transforms on

signed measures, r arbitrary) in lemma 5.2.
The following inversion formulae being true for all d ≥ 3 follow from general results

of S. Helgason [13], [14] p. 54 (we applied them for k = d− 1, 1 < r ≤ d− 1): for any
g ∈ Ce(Sd−1)

g(ξ) = cR

(
d

d(x2)

)r−1




x∫

0

yr−1(x2 − y2)
r−3
2

∫

d(Sr−1
η , ξ)=arccos y

(Rrg)(η) µ(dη) dy




∣∣∣∣∣∣∣
x=1

(5.9)

where d(·, ·) is the geodesic distance on Sd−1, µ(·) is the invariant measure on
{η ∈ G(d, r) : d(Sr−1

η , ξ) = arccos y} normed so that its total mass is 1, and

cR =
2r

(r − 2)!
;(5.10)

g(ξ) = c1
R

(
d

d(x2)

)d−2




x∫

0

(x2 − y2)
d
2−2

∫

<ξ,η>2=1−y2

Rg(η)ωξ⊥,y
d−1 (dη) dy




∣∣∣∣∣∣∣
x=1

(5.11)

where ωξ⊥,y
d−1 (·) is a surface area measure on the pair of subspheres <ξ, η >2= 1− y2

of Sd−1 and

c1
R =

2d−3

(d− 3)! ωd−1
.(5.12)

We shall find now a more compact form of (5.11) and will use it in the proofs later
on; nevertheless, (5.11) can be also used instead. In our opinion, formula (5.13) below
with its integration over the part of a sphere gives a reader more geometrical clearness
and agrees with the earlier results of Pogorelov (see remark 5.1).
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Lemma 5.1 (Modified inversion formula for the Radon transform)
For any g ∈ Ce(Sd−1) and d ≥ 3 the following inversion formula holds:

g(ξ) = c2
R

(
d

d(µ2)

)d−2




∫

<ξ,η>2>µ2

Rg(η) |<ξ, η>|
(<ξ, η>2 −µ2)2−

d
2

ωd(dη)




∣∣∣∣∣∣∣
µ=0

(5.13)

where

c2
R =

(−1)d−22d−3

(d− 3)! ωd−1
.(5.14)

Proof. Applying to (5.11) subsequently the following changes of variables:

y2 = 1− t2, µ2 = 1− x2

we get

g(ξ) = c1
R(−1)d−2

(
d

d(µ2)

)d−2




1∫

µ

t(t2 − µ2)
d
2−2

√
1− t2

∫

<ξ,η>2=t2

Rg(η)ωξ⊥,t
d−1 (dη) dt




∣∣∣∣∣∣∣
µ=0

.

Then using <ξ, η>= t the result follows from Fubini’s theorem.

Remark 5.1 A. V. Pogorelov gives another proof of (5.13) for the case d = 3 (cf.
[26]) that does not depend on inversion formula (5.11). See the detailed discussion
in [31].

Regarding g(·) as a density of an absolutely continuous measure with respect to
ωd(·) one can extend transforms (5.1) and (5.2) to act on the space L of finite signed
measures on Sd−1:

[Tθ](η) =
∫

Sd−1

|<ξ, η>| θ(dξ),(5.15)

[Kθ](η) =
∫

Sd−1

√
1− <ξ, η>2 θ(dξ).(5.16)

For any θ ∈ L, 1 < r ≤ d− 1 put

f(η)
def
=

∫

Sd−1

[η, ν⊥] θ(dν), η ∈ G(d, r).

It is a rose of intersections of some stationary process Φd
d−1 only if θ(·) is a directional

distribution, i.e. an even probability measure on Sd−1.
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Lemma 5.2 For any d ≥ 3, 1 < r ≤ d − 1, η ∈ G(d, r), and finite non–negative
measure θ ∈ L the following integral relation holds:

f(η) =
ωr

2kr−1
(Rr[Tθ]) (η).(5.17)

Proof. Choose arbitrary η ∈ G(d, r). Then f(η) =
∫

Sd−1

[ν⊥, η] θ(dν),

Rr[Tθ](η) =
1
ωr

∫

Sr−1
η

∫

Sd−1

|<ξ, ν >| θ(dν) ωη
r (dξ) =

∫

Sd−1


 1

ωr

∫

Sr−1
η

|<ξ, ν >| ωη
r (dξ)


 θ(dν)

by Fubini’s theorem. Let us take arbitrary ν. Then ν = νη + νη⊥ where νζ is the
orthogonal projection of ν on ζ. It is clear that

[ν⊥, η] =| νη |=|<ν, ξ0 >|

where ξ0 = νη

|νη| . Then one should prove that

∫

Sr−1
η

|<ξ, ν >| ωη
r (dξ) = 2kr−1 |<ν, ξ0 >|(5.18)

for any η ∈ G(d, r), ν ∈ Sd−1. So for ξ ∈ Sr−1
η

|<ξ, ν >|=|<ξ, νη >|=| νη | · |<ξ, ξ0 >|=|<ν, ξ0 >| · |<ξ, ξ0 >| .

Then ∫

Sr−1
η

|<ξ, ν >| ωη
r (dξ) =|<ν, ξ0 >|

∫

Sr−1

|<ξ, ξ0 >| ωr(dξ)

(the right–hand side integral does not depend on η and ξ0). Suppose
ξ0 = e1 — a basis unit vector. Then by [25] p. 1

∫

Sr−1

|<ξ, e1 >| ωr(dξ) = ωr−1

1∫

−1

| t | (1− t2)
r−3
2 dt.(5.19)

One can calculate that the right-hand side of (5.19) is equal to

ωr−1

1∫

0

(1− u)
r−3
2 du =

2ωr−1

r − 1
= 2kr−1.

Thus we have shown that relation (5.18) holds, and therefore the proof is complete.
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Corollary 5.1 If r = d− 1 then equation (5.17) is simply

[Kθ] =
ωd−1

2kd−2
R[Tθ].(5.20)

As functions [Kθ](·) and [Tθ](·) belong to Ce(Sd−1) one can apply the inverse of Rr

to (5.17) and get the analogue of formula (5.8) for any finite measure θ:

[Tθ](ξ) =
2kr−1

ωr

(
R−1

r f
)
(ξ),(5.21)

[Tθ] =
2kd−2

ωd−1
R−1[Kθ].(5.22)

Going back to k–flat processes we note that if k = d − 1, r = 1 the rose of
intersections f(η) is nothing else but the cosine transform of measure θ(·) (cf. [4]) if
we identify functions and measures on G(d, d− 1) with even functions and measures
on Sd−1 (cf. section 4). And when k = d − 1, r = k one can easily see that
f(η) = [Kθ](η). These relations together with (5.6)–(5.13) allow us now to prove the
retrieval formulae for the rose of directions.

6. Inversion formulae for k = d− 1, r = 1

Let Φd
d−1 be a stationary hyperplane process with directional distribution θ(·) and

rose of intersections with lines f(·).
Proposition 6.1 If θ(·) is absolutely continuous with respect to ωd(·) with density

γ ∈ Ce(Sd−1) then

γ(ξ) = c2
R

(
d

d(µ2)

)d−2




∫

<ξ,η>2>µ2

¤f(η) |<ξ, η>|
(<ξ, η>2 −µ2)2−

d
2

ωd(dη)




∣∣∣∣∣∣∣
µ=0

(6.1)

where c2
R is given by (5.14).

Proof. We apply formula (5.13) for g = γ and then note that in view of (5.6) and
provided that f(η) = Tγ(η) we get the above result.

Relation (6.1) in three dimensions can be found in the book of A. V. Pogorelov [26].

Theorem 6.1 Let Φd
d−1 be a stationary hyperplane process with arbitrary directional

distribution measure θ(·) and rose of intersections with lines f(·). Then for any
g ∈ Cm

e

(
Sd−1

)
, m ≥ (d + 5)/2, and dimension d ≥ 3 the following formula holds:

∫

Sd−1

g(ξ) θ(dξ) = c2
R×

×
∫

Sd−1

f(η)¤



(

d

d(µ2)

)d−2




∫

<ξ,η>2>µ2

g(ξ) |<ξ, η>|
(<ξ, η>2 −µ2)2−

d
2

ωd(dξ)




∣∣∣∣∣∣∣
µ=0


ωd(dη)
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where c2
R is given by (5.14).

Proof. By theorem 4.1 in [7], for any g ∈ Cm
e

(
Sd−1

)
there exists an integrable function

h(·) on Sd−1 such that

g(ξ) = Th(ξ).(6.2)

Then by Fubini’s theorem

∫

Sd−1

g(ξ) θ(dξ) =
∫

Sd−1

Th(ξ) θ(dξ) =
∫

Sd−1

∫

Sd−1

| <ξ, η> |h(η) θ(dξ)ωd(dη) =

∫

Sd−1

h(η)Tθ(η)ωd(dη) =
∫

Sd−1

h(η)f(η)ωd(dη).

Then as ¤ and R−1 commute and by (5.6) we have from (6.2) that

h = T−1g = R−1¤g = ¤R−1g.

Then using lemma 5.1 one gets
∫

Sd−1

g(ξ) θ(dξ) =
∫

Sd−1

f(η)¤R−1g(η)ωd(dη) =

c2
R

∫

Sd−1

f(η) ¤



(

d

d(µ2)

)d−2




∫

<ξ,η>2>µ2

g(ξ) |<ξ, η>|
(<ξ, η>2 −µ2)2−

d
2

ωd(dξ)




∣∣∣∣∣∣∣
µ=0


ωd(dη),

and we are done.

Remark 6.1 A result similar to theorem 6.1 was obtained by W. Weil (cf. [33], [8])
in the setting of distributions. Namely, the support function of a generalized zonoid
is the cosine transform of a finite signed measure. Weil generalized this idea and
introduced the generating distribution for any centrally symmetric compact convex
body in Rd. It was shown in [33] how this distribution can be restored from its cosine
transform.

Remark 6.2 (Case k = 1, r = d− 1) All results of this section could be applied di-
rectly to the dual case of a stationary line process Φd

1 intersected with hyperplanes:
r = d− 1.

Remark 6.3 One can also use other inversion formulae for the spherical Radon
transform (cf. [11], [12] p. 186–187) in order to prove relations similar to those of
proposition 6.1 and theorem 6.1 (see [31]). These inversion formulae involve certain
polynomials of the Beltrami–Laplace operator, if d is even, and for odd dimensions
they can be written in terms of fractional integrals and wavelets (cf. [27]–[29]).
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7. Inversion formulae for k = d− 1, 1 < r ≤ d− 1

Consider a stationary hyperplane process Φd
d−1 with directional distribution θ and

rose of intersections with r–planes f . The results of the previous section allow us to
get θ (or its density γ) if we know [Tθ](η) (Tγ(η), respectively). Now let us rewrite
these expressions in terms of f . Using relation (5.21) and applying inversion formula
(5.9) for the spherical Radon transform of order r one gets

[Tθ](ξ) =
2kr−1cR

ωr

(
d

d(x2)

)r−1




x∫

0

yr−1(x2 − y2)
r−3
2

∫

d(Sr−1
η , ξ)=arccos y

f(η) µ(dη) dy




∣∣∣∣∣∣∣
x=1

.(7.1)

Now substituting [Tθ] from the above relation for f in the results of section 6 we
get the same scope of retrieval formulae for the case 1 < r ≤ d− 1:

Theorem 7.1 Let Φd
d−1 be a stationary hyperplane process with directional distri-

bution θ(·) and rose of intersections with r–planes f(·), 1 < r ≤ d− 1, d ≥ 3. Then
[Tθ] can be determined using (7.1) and we have

1. If θ(·) is absolutely continuous with respect to ωd(·) with density γ ∈ Ce(Sd−1)
then

γ(ξ) = c2
R

(
d

d(µ2)

)d−2




∫

<ξ,η>2>µ2

¤ [Tθ](η) |<ξ, η>|
(<ξ, η>2 −µ2)2−

d
2

ωd(dη)




∣∣∣∣∣∣∣
µ=0

;

2. For arbitrary measure θ and any g ∈ Cm
e

(
Sd−1

)
, m ≥ (d + 5)/2

∫

Sd−1

g(ξ) θ(dξ) = c2
R×

×
∫

Sd−1

[Tθ](η)¤
(

d

d(µ2)

)d−2




∫

<ξ,η>2>µ2

g(ξ) |<ξ, η>|
(<ξ, η>2 −µ2)2−

d
2

ωd(dξ)




∣∣∣∣∣∣∣
µ=0

ωd(dη)

where c2
R is constant (5.14).

Remark 7.1 In the case k = r = d − 1 the fact that G(d, r) ∼= Sd−1
+ and the Haar

measure is just the surface area measure on the sphere makes relation 7.1 much more
simple (cf. [31]).

8. Case G(4, 2)

The following section will be devoted to obtaining retrieval formulae for directional
distributions by means of expansions in spherical harmonics. At the beginning we
mention already known results about the eigenvalues of cosine and sine transforms
(cf. [10]), while the results in the case G(4, 2) are new.



12 E. Spodarev

Let {Sn, j : n ∈ Z+ j = 1, . . . , N(d, n)} be an orthonormal basis of spherical
harmonics on Sd−1 in the usual norm ‖ · ‖Sd−1 in L2(Sd−1) (see [25], [2], [9], [10]),

N(d, n) =

{
(2n+d−2)Γ(n+d−2)

Γ(n+1)Γ(d−1) , n ≥ 1
1, n = 0.

(8.1)

For any integrable function g:
∫

Sd−1

|g(ξ)| ωd(dξ) < ∞ there exists its expansion in

spherical harmonics:

g(ξ) ∼
∞∑

n=0

N(d,n)∑

j=1

cnj Sn, j(ξ)(8.2)

where

cnj =<g, Sn, j >Sd−1(8.3)

We know that any measure θ on Sd−1 is defined by the values of its integrals∫
Sd−1

g(ξ) θ(dξ) for all g ∈ C∞e (Sd−1). Let g have expansion (8.2). Then because of the

uniform convergence of this series to g (cf. [10]) we have

∫

Sd−1

g(ξ) θ(dξ) =
∞∑

n=0

N(d,n)∑

j=1

cnj Bnj

where

Bnj =
∫

Sd−1

Sn, j(ξ) θ(dξ).(8.4)

Therefore is it sufficient to know all Bnj to get a complete description of θ. If θ is a
directional distribution measure of a hyperplane process and f its rose of intersections
with lines or hyperplanes then Bnj can be determined from f , i.e. from its expansion
coefficients bnj =<f, Snj >Sd−1 .

The following result is a direct corollary from lemmas 3.4.5, 3.4.7 [10]:

Proposition 8.1 (Intersections with lines and hyperplanes) Let Φd
d−1 be a station-

ary hyperplane process with directional distribution θ and rose of intersections with
r–planes f (r ∈ {1, d− 1}). Then for any g ∈ C∞e (Sd−1) with expansion in spherical
harmonics (8.2)

∫

Sd−1

g(ξ) θ(dξ) =
∞∑

n=0

N(d,n)∑

j=1

cnj Bnj

where

Bnj =

{
0, n odd
<f,Snj>Sd−1

ωd−1 an
, n even

∣∣∣∣∣ , j = 1 . . . N(d, n).

The value of an is



Roses of intersections 13

1. in case of lines (r = 1):

an =





2
d−1 , n = 0

2
(d−1)(d+1) , n = 2

2(−1)
n−2

2
1·3·...·(n−3)

(d−1)(d+1)...(d+n−1) , for even n ≥ 4
,

2. in case of hyperplanes (r = d− 1):

an = − (d− 2)!
2

Γ
(

n+d
2

)
Γ

(
n−1

2

)
n!

Γ
(

n+d+1
2

)
(n + d− 2)! (n/2)!

for even n ≥ 0.

Let us proceed now to the case G(4, 2). Suppose our stationary process Φ4
2 is

intersected by a 2–plane η ∈ G(4, 2). We know that

G(4, 2) ∼= {(u, v) ∈ S2 × S2 : (u, v) ≡ (−u,−v)}.

Then for all η, ξ ∈ G(4, 2) ξ 7→ (u, v), η 7→ (ũ, ṽ), where u, v, ũ, ṽ ∈ S2. J. Mecke
[20] has shown that

[ξ, η] =
1
2
|<u, ũ> − <v, ṽ>|

(see also [4], p. 98). If θ is a directional distribution of Φ4
2 (i.e. a probability measure

on G(4, 2)) then one can prove that its image under the isomorphism (4.1) is again
a probability measure θ̃ on S2 × S2. Thus without abuse of notation we shall use in
the sequel θ instead of θ̃. Then the rose of intersections of Φ4

2 is

f(η) = f(ũ, ṽ) =
1
2

∫

S2×S2

|<u, ũ> − <v, ṽ>| θ
(
d(u, v)

)
.

Consider {Sn, j : n ∈ Z+ j = 1, . . . , N(3, n)} — an orthonormal basis of spherical
harmonics on S2, N(3, n) = 2n + 1. f(ũ, ṽ) can be expanded in this system of Sn, j

as a function of 2 independent variables:

f(ũ, ṽ) ∼
∞∑

n,k=0

2n+1∑

j=1

2k+1∑

i=1

bnjki Sn, j(ũ)Sk, i(ṽ)(8.5)

where

bnjki =
∫

S2

∫

S2

f(ũ, ṽ)Sn, j(ũ)Sk, i(ṽ)ω3(dũ)ω3(dṽ).(8.6)

One can show that {Sn, j · Sk, i}n,k,j,i constitute a basis in L2(S2 × S2). Again, we
are looking for integrals

∫

S2×S2

g(u, v) θ
(
d(u, v)

) ∀g ∈ C∞e (S2 × S2).
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If

g(u, v) ∼
∞∑

n,k=0

2n+1∑

j=1

2k+1∑

i=1

cnjki Sn, j(u)Sk, i(v)(8.7)

then ∫

S2×S2

g(u, v) θ
(
d(u, v)

)
=

∞∑

n,k=0

2n+1∑

j=1

2k+1∑

i=1

cnjki Bnjki

where

Bnjki =
∫

S2×S2

Sn, j(u)Sk, i(v) θ
(
d(u, v)

)
.(8.8)

Hence the coefficients Bnjki define θ completely. By Funk – Hecke theorem

|<u, ũ> − <v, ṽ>|∼
∞∑

n,k=0

4π2ank

2n+1∑

j=1

2k+1∑

i=1

Sn, j(u)Sn, j(ũ)Sk, i(v)Sk, i(ṽ),(8.9)

ank =

1∫

−1

1∫

−1

| t− x | Pn(x)Pk(t) dt dx(8.10)

where

Pn(t) =
1

2n n!

(
d

dt

)n

(t2 − 1)n(8.11)

are Legendre polynomials in 3 dimensions (cf. Rodrigues formula in [25]). Namely,
P0(t) = 1, P1(t) = t, P2(t) = 3

2 t2− 1
2 , etc. Function |<u, ũ> − <v, ṽ>| is continuous

on (u, v). Therefore its expansion (8.9) converges to it in the sense of Abel summation
(cf. [25]). Moreover, taking into account the explicit expressions for ank (cf. theorem
8.1) one can show that the uniform convergence in (8.9) takes place. Then integrating
(8.9) with respect to θ and interchanging integration and summation one gets

f(ũ, ṽ) ∼
∞∑

n,k=0

2n+1∑

j=1

2k+1∑

i=1

2π2ank Bnjki Sn, j(ũ)Sk, i(ṽ).

Ergo if ank 6= 0 then for all i = 1, . . . , 2k + 1, j = 1, . . . , 2n + 1

Bnjki =
bnjki

2π2ank
.(8.12)

As the unique retrieval of θ from f is here impossible (see section 3) we shall not be
able to find all Bnjki. As proved in [4], p. 102–103, all ank, |n− k| > 2 are equal to
zero that explains the situation.
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Theorem 8.1 Assume that f : G(4, 2) → R is the rose of intersections of a statio-
nary 2–flat process in R4. Let Vf (2, 4, 0) be the set of all directional distributions of
2–flat processes with rose of intersections f . Then, the probability measure θ is an
element of Vf (2, 4, 0) iff its coefficients (8.8) satisfy the following conditions:

Bnjki = Bkinj ∀n, k,(8.13)

Bnjki =





R
S2

R
S2

f(ũ,ṽ)Sn, j(ũ)Sk, i(ṽ) ω3(dũ)ω3(dṽ)

2π2ank
, |n− k| ∈ {0, 2},

0, |n− k| is odd

where coefficients ank defined in (8.10) have the following properties:

ank = akn ∀n, k,

ank =





8
3 , n = k = 0,

− 2 (2n)!
22n n! (n+1+1/2)! (n−1/2) , n = k ≥ 1,

− 1
2amm, n = m− 1, k = m + 1,

− 1
2amm, n = m + 1, k = m− 1,

0, otherwise,

(m+ 1
2 )!

def
= (1+ 1

2 )(2+ 1
2 ) · . . . ·(m+ 1

2 ). Then for any g ∈ C∞e (S2×S2) with expansion
in spherical harmonics (8.7)

∫

S2×S2

g(u, v) θ
(
d(u, v)

)
=

∞∑

n,k=0

2n+1∑

j=1

2k+1∑

i=1

cnjki Bnjki.(8.14)

Proof. The symmetry of Bnjki on k, i and n, j is evident from relations (8.8) and (4.1):
θ(A,B) = θ(B, A) for all spherical Borel sets A and B. Let n+k be odd; making the
change of variables u 7→ −u, v 7→ −v in (8.8) we get

Bnjki = (−1)n+kBnjki = −Bnjki

by the homogeneity of spherical harmonics. Consequently Bnjki = 0. Now calculate
ank for even n + k. Clearly ank = akn because of the symmetry of (8.10). One can
show that ank 6= 0 iff |n− k| ∈ {0, 2} (cf. [6], p. 267). It is also a consequence of the
lemmas below: due to (8.10), (8.15), the symmetry of ank on n and k and lemma 8.2
ank 6= 0 iff n + k is even and

{
n + k − 2 ≤ 2k
n + k − 2 ≤ 2n

which yields n − 2 ≤ k ≤ n + 2, and in view of the fact that n + k is even one gets
k = n − 2, n, n + 2. One should note in this regard that the values of Bnjki are
undetermined for those n, k (|n− k| even) that ank = 0 (cf. (8.12)), i.e. if |n− k| is
even and not in {0, 2}. These Bnjki can be chosen freely as long as their symmetry
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condition (8.13) holds and by (8.14) a probability measure is obtained. Furthermore,
calculating directly we have by (8.10) and (8.11)

a00 =

1∫

−1

1∫

−1

| t− x | dt dx =
8
3
, a11 =

1∫

−1

1∫

−1

| t− x | tx dt dx = − 8
15

;

the rest of ank will be obtained in lemmae 8.1, 8.2.

Lemma 8.1 For any n, k ≥ 2

ank =
(−1)n

2n+k−1 n! k!

1∫

−1

(x2 − 1)n

(
d

dx

)n+k−2

(x2 − 1)kdx.(8.15)

Proof. First one should prove that for n, k ≥ 2

ank =
1

2k−1 k!

1∫

−1

Pn(x)
(

d

dx

)k−2

(x2 − 1)kdx.(8.16)

Then we use lemma 11 p. 17 [25]: for all f ∈ Cn[−1, 1]

1∫

−1

f(x)Pn(x) dx =
(−1)n

2n n!

1∫

−1

(x2 − 1)n

(
d

dx

)n

f(x)dx

to get the desired result. Let us now prove (8.16):

ank =

1∫

−1




x∫

−1

(x− t)Pk(t) dt−
1∫

x

(x− t)Pk(t) dt


 Pn(x) dx =

1∫

−1

h(x)Pn(x) dx(8.17)

where h(x) can be rewritten as

h(x) = x




x∫

−1

Pk(t) dt + (−1)k+1

−x∫

−1

Pk(t) dt


−




x∫

−1

tPk(t) dt + (−1)k

−x∫

−1

tPk(t) dt


 .

One can easily see that h(x) is the solution of the following Cauchy problem on [−1, 1]
with initial conditions due to the orthogonality of Pk(t), k ≥ 2 to P0(t) = 1, P1(t) = t:





h′′(x) = 2Pk(x), x ∈ [−1, 1]

h′(1) =
1∫
−1

Pk(t) dt = 0

h(1) =
1∫
−1

(1− t)Pk(t) dt = 0

(8.18)
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Then solving (8.18) we get

h(x) =
1

2k−1 k!

(
d

dx

)k−2

(x2 − 1)k, k ≥ 2.

Substituting this representation of h into (8.17) we prove (8.16).

The following lemma enables us to get all ank other than zero ∀n, k:

Lemma 8.2 For all n ≥ 1

ann = − 2 (2n)!
22n n! (n + 1 + 1/2)! (n− 1/2)

,

an n+2 =
(2n)!

22n n! (n + 2 + 1/2)!
.

Proof. Case n = 1 could be verified by direct calculation. Suppose now n ≥ 2. Then
by lemma 8.1

ann =
(−1)n

22n−1 (n!)2

1∫

−1

(t2 − 1)n

(
d

dt

)2n−2

(t2 − 1)n dt =

2(−1)n

22n (n!)2

1∫

−1

(t2 − 1)n

(
(2n)!

2
t2 − n(2n− 2)!

)
dt =

2(−1)n

22n (n!)2


 (2n)!

2

1∫

−1

t2(t2 − 1)n dt− n(2n− 2)!

1∫

−1

(t2 − 1)n dt


 =

2
22n (n!)2

(
(2n)! n!

2(n + 1 + 1/2)!
− n(2n− 2)!

2n!
(n + 1/2)!

)
=

− 2 (2n)!
22n n! (n + 1 + 1/2)! (n− 1/2)

,

an n+2 = an+2 n =
(−1)n

1∫
−1

(t2 − 1)n+2
(

d
dt

)2n
(t2 − 1)n dt

22n+1 n! (n + 2)!
=

(−1)n (2n)!
1∫
−1

(t2 − 1)n+2 dt

22n+1 n! (n + 2)!
=

(2n)!
22n n! (n + 2 + 1/2)!

.

Using the formulae of lemma 8.2 one can easily show that

ann = −2an−1 n+1, n ≥ 2.

It could be verified by direct calculations that the above relation holds also for n =
1, 2: a02 = a20 = 4

15 , a13 = a31 = 4
105 , a11 = − 8

15 , a22 = − 8
105 .
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9. One concluding remark

Inversion formulae of sections 6 – 8 could be generalized to a wider class of point
processes on abstract spaces, namely, to fiber and hypersurface processes in Rd or,
more generally, to processes of manifolds in Rd. This kind of processes was extensively
studied in a large number of papers by J. Mecke, W. Nagel, I. Molchanov, D. Stoyan,
M. Zähle, etc. ([18], [21], [19], [24], see [32], chapter 9 for more references). In this case
the rose of intersections f(η) of a stationary process Σd

k of k–dimensional manifolds
with an r–flat η is the mean total surface area of Σd

k∩B for a unit test window B ⊂ η.
It can be shown that f(η) is well–defined and equal to (2.3) for almost all η ∈ G(d, r).
Thus the inversion formulae of this paper can be applied directly to f(·).

10. Note added in proof

After the submission of this paper the preprint [28] appeared, where the main
problem considered in sections 6–7 was solved via the inversion of a certain analytic
family of functional operators in Lp–spaces that contains both the spherical Radon
and the generalized cosine transforms.
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