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Abstract

Let n points be chosen independently and uniformly in the unit
cube [0, 1]d, and suppose that each point is supplied with a mark,
the marks being i.i.d. random variables independent from the location
of the points. To each cube R contained in [0, 1]d we associate its
score Xn(R) defined as the sum of marks of all points contained in R.
The scan statistic is defined as the maximum of Xn(R), taken over all
cubes R contained in [0, 1]d. We show that if the marks are non-lattice
random variables with finite exponential moments, having negative
mean and assuming positive values with non-zero probability, then
after appropriate normalization the distribution of the scan statistic
converges as n → ∞ to the Gumbel distribution. We prove also a
corresponding result for the scan statistic of a Lévy noise with negative
mean. The more elementary cases of zero and positive mean are also
considered.
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1 Introduction

Let {Ui, i = 1, . . . , n} be n points chosen independently and uniformly from
the d-dimensional unit cube [0, 1]d. Suppose that to each point Ui a mark
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Xi is attached, the marks being i.i.d. real-valued random variables indepen-
dent from the location of points Ui. The collection {(Ui, Xi), i = 1, . . . , n} is
called marked empirical process. A natural problem is how to detect inho-
mogeneities, e.g. clustering of unusually big marks, in the marked empirical
process. To this end, one may consider the scan statistic, whose definition we
now recall (see Glaz et al. (2001), Glaz and Balakrishnan (1999)). For a set
R ⊂ [0, 1]d define its score Xn(R) as the sum of marks of all points contained
in R, that is

Xn(R) =
∑

i∈{1,...,n}:Ui∈R

Xi. (1)

Then the scan statistic is defined as supR∈R(1)Xn(R), where R(1) is some

collection of subsets (”windows”) of [0, 1]d. Since no a priori assumptions
about the size of clusters are made, it is natural to require R(1) to contain
windows of all sizes. For example, one can take R(1) to be the collection of
all cubes contained in [0, 1]d (a cube is a translate of the set [0, x]d for some
x > 0).
The main question is then how the scan statistic is distributed as n → ∞.
To state our main result we make the following assumptions about the dis-
tribution of random marks.

(X1) The logarithmic moment generating function ψ(θ) = logEeθX1 of X1

exists as long as θ ∈ [0, θ0) for some θ0 ∈ (0,∞] which is supposed to
be maximal with this property.

(X2) The function ψ has a zero θ∗ ∈ (0, θ0).

(X3) The distribution of X1 is non-lattice.

Note that the second condition implies that EX1 = ψ′(0) < 0. A further
corollary is that P[X1 > 0] 6= 0. Conversely, if 1) EX1 < 0, 2) P[X1 > 0] 6= 0,
and 3) condition (X1) is satisfied for θ0 = ∞, then condition (X2) is fulfilled
automatically.
Recall that R(1) is the collection of all cubes contained in [0, 1]d. For a
constant H∗ to be specified later, set

un(τ) =
1

θ∗
(d log n + (d− 1) log log n + H∗ + τ), τ ∈ R. (2)

Our main result reads as follows.

Theorem 1.1. Let {(Ui, Xi), i = 1, . . . , n} be a marked empirical process
satisfying the above conditions X1-X3. Then

lim
n→∞

P[ sup
R∈R(1)

Xn(R) ≤ un(τ)] = exp{−e−τ}.
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The scan statistic of Theorem 1.1 may be interpreted as a multiscale test
statistic in the following sense. Suppose we are given a set of points {Ui, i =
1, . . . , n} in [0, 1]d, the point Ui being marked by a number Yi. Let F0 and
F1 be two distribution functions, such that the density p = dF1/dF0 exists.
Consider the following hypotheses (here, R ∈ R(1)):

H0 : Ui are i.i.d. uniform in [0, 1]d and Yi are i.i.d. with Yi ∼ F0;

HR : Ui are i.i.d. uniform in [0, 1]d,

whereas Yi are independent with Yi ∼
{

F1 if Ui ∈ R,

F0 if Ui /∈ R;

H1 : ∪R∈R(1)HR.

Of course, we always suppose that the families {Ui, i = 1, . . . , n} and {Yi, i =
1, . . . , n} are mutually independent. It is easy to see that the log-likelihood
statistic for testing H0 against HR is given by Xn(R) defined in formula (1)
with Xi = log p(Yi). Thus, the scan statistic considered in Theorem 1.1 may
be interpreted as a generalized likelihood ratio statistic for testing H0 against
H1.
In the one-dimensional case, the distribution of scan statistic applied to an
i.i.d. sequence with negative mean was studied starting with Iglehart (1972),
who showed an analogue of Theorem 1.1 in dimension 1 with marked em-
pirical process replaced by an i.i.d. sequence of random variables. This re-
sult was extended from i.i.d. to Markov-dependent sequences in Karlin and
Dembo (1992), a version for Lévy processes was obtained in Doney and Maller
(2005). The scan statistic considered in Iglehart (1972) appears in a variety
of settings. For example, it may be interpreted as the statistic used in the
CUSUM stopping procedure in change-point analysis, as a maximal waiting
time among the first n customers in a GI/G/1 queue or, in bioinformatics,
as a maximal segmental score when comparing two random sequences.
The papers cited above use fluctuation theory of random walks and Lévy pro-
cesses. Fluctuation theory, giving very elegant solutions in dimension d = 1,
does not allow an extension to the case d ≥ 2. To prove Theorem 1.1 we
use the method of double sums introduced by Pickands in Pickands (1969b),
Pickands (1969a), see also Chapter 12 in Leadbetter et al. (1983). For the de-
velopment of the method, see Piterbarg (1996). Although Pickands’ method
was developed originally to study extremes of gaussian processes, it can be
applied in the non-gaussian case as well, see for example Piterbarg and Ko-
zlov (2003).
A question closely related to that considered in Theorem 1.1 is about the
distribution of supR∈R(n)Z(R), where Z is an independently scattered ho-

mogeneous random Lévy measure on Rd with negative mean, and R(n) is
the collection of all cubes contained in [0, n]d. The analogue of Theorem 1.1
in this situation, Theorem 2.1, will be stated in Section 2. In fact, it will
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be more convenient for us to prove Theorem 2.1 first and then to deduce
Theorem 1.1 from it using a close relation between empirical process and
Poisson processes.
It will be seen in the proof of Theorem 2.1 that the main contribution to the
extremes of the scan statistic is made by cubes of some ”optimal” volume
vn ≈ c∗ log n for some constant c∗, as well as by cubes having a volume differ-
ing from the optimal one by a quantity of order

√
vn. Thus, the situation we

encounter is close to that of Hüsler and Piterbarg (2004) who considered scan
statistic applied to a fractional Brownian noise with negative mean. Using
a change of variables, Hüsler and Piterbarg (2004) reduced their problem to
studying extremes of a gaussian field with non-constant variance, the points
of maximal variance corresponding to the intervals of ”optimal” size. In our
case, random fields under consideration are non-gaussian, which makes non-
applicable many results from the extreme-value theory of gaussian processes
and causes some technical difficulties.
In Theorem 1.1 and Theorem 2.1 below, the distribution of scan statistic
applied to noises with negative mean is considered. One may ask, what
happens if the mean is zero or positive. Compared to the negative mean
case, these two cases, which will be treated in Section 3, are much simpler.
See Iglehart (1972) for the similar problem in the case of i.i.d. sequences
and Zeevi and Glynn (2000) for the case of fractional Brownian noise.
Finally, let us note that although we are considering only scan statistic with
variable window size, the same method, with considerable simplifications,
can be used to obtain Erdös-Rényi-type laws in distribution for the scan
statistic taken over all windows of fixed volume c log n (resp. c log n/nd in
the case of marked empirical process). The corresponding result in the case
of one-dimensional i.i.d. sequence was proved in J. Komlós and G. Tusnády
(1975), Piterbarg and Kozlov (2003). In the case of d-dimensional compound
Poisson process, this can be deduced from Chan (2007), where large devia-
tions estimates are proved for the scan statistic taken over a set of windows
with fixed shape and size (the windows need not be cubes). Using such a
statistic in applications requires a preknowledge about the size of clusters to
be discovered.
The organization of the paper is as follows. In Section 2 we state Theo-
rem 2.1, an analogue of Theorem 1.1 for scan statistic applied to a Lévy
noise. Limiting distribution of scan statistic in the case of zero or positive
mean is considered in Section 3. The proof of Theorem 2.1 will be carried out
in Section 4. Finally, in Section 5 we deduce Theorem 1.1 from Theorem 2.1.
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2 Scan statistic of a Lévy noise with negative

mean

Let {ξ(t), t ≥ 0} be a Lévy process. An independently scattered homoge-
neous Lévy measure on Rd (Lévy noise for short) is a stochastic process
{Z(R), R ∈ B(Rd)}, indexed by the collection B(Rd) of Borel sets in Rd,
such that the following conditions are satisfied.

(Z1) Z(R) has the same distribution as ξ(|R|), where |R| is the Lebesgue
measure of a Borel set R.

(Z2) Z(R1), . . . ,Z(Rn) are independent whenever R1, . . . , Rn are disjoint
Borel subsets of Rd.

The Lévy noise may be reconstructed from the corresponding Lévy sheet
{Ξ(x1, . . . , xd), (x1, . . . , xd) ∈ [0,∞)d} defined by

Ξ(x1, . . . , xd) = Z([0, x1]× . . .× [0, xd]).

We always suppose that the sample paths of Ξ belong to the Skorokhod space
in d dimensions as defined e.g. in Bickel and Wichura (1971).
Concerning the underlying Lévy process ξ, we suppose that the following
three conditions are satisfied.

(L1) The logarithmic moment generating function ϕ(θ) = logEeθξ(1) of ξ(1)
exists as long as θ ∈ [0, θ0) for some θ0 ∈ (0,∞] which is supposed to
be maximal with this property.

(L2) The function ϕ has a zero θ∗ ∈ (0, θ0).

(L3) The distribution of ξ(1) is non-lattice.

Let R(n) be the collection of all cubes contained in [0, n]d.

Theorem 2.1. Let {Z(R), R ∈ B(Rd)} be a Lévy noise on Rd as defined
above such that conditions L1-L3 are satisfied. Define un(τ) as in (2). Then

lim
n→∞

P[ sup
R∈R(n)

Z(R) ≤ un(τ)] = exp{−e−τ}.

For d = 1 this theorem was proved in Doney and Maller (2005) by a method
which uses fluctuation theory of Lévy processes and thus cannot be extended
to higher dimensions.
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3 Results in the case of zero and positive

mean

In the preceding sections we considered the limiting distribution of scan
statistic applied to a Lévy noise (resp. marked empirical process) assum-
ing, essentially, that the mean is negative. The case of negative mean is the
most difficult one. Here, we state the corresponding results in the case of
zero and positive mean, restricting ourselves for simplicity to Lévy noises.
First we treat the case of zero mean. Let {W(R), R ∈ B([0, 1]d)} be a
standard gaussian white noise on [0, 1]d; we suppose that the corresponding
Brownian sheet has continuous sample paths. Recall that R(n) is the collec-
tion of all cubes contained in [0, n]d. For a Borel set R let |R| be its Lebesgue
measure.

Theorem 3.1. Let {Z(R), R ∈ B(Rd)} be a Lévy noise such that

EZ(R) = 0, VarZ(R) = σ2|R|
for each Borel set R ⊂ Rd. Then the distribution of σ−1n−d/2 supR∈R(n)Z(R)
converges as n →∞ to the distribution of supR∈R(1)W(R).

Proof. The Lévy sheet ΞZ corresponding to the noise Z (resp. the Brownian
sheet ΞW corresponding to the noise W) are defined by

ΞZ(x1, . . . , xd) = Z([0, x1]× . . .× [0, xd]),

ΞW (x1, . . . , xd) = W([0, x1]× . . .× [0, xd]).

By the invariance principle for multidimensionally indexed random fields, see
e.g. Bickel and Wichura (1971), we have

σ−1n−d/2ΞZ(n·) ⇒ ΞW(·) as n →∞, (3)

where ”⇒” denotes the weak convergence in the Skorohod space D([0, 1]d).
We define a continuous functional F : D([0, 1]d) → R by

F (Ξ) = sup
R∈R(1)

Ξ(R), Ξ ∈ D([0, 1]d),

where Ξ(R) is defined in a straightforward way (so that e.g. ΞZ(R) =
Z(R) and ΞW(R) = W(R)). It follows from (3) that the random variable
F (σ−1n−d/2ΞZ(n·)) = σ−1n−d/2 supR∈R(n)Z(R) converges in distribution to
F (ΞW(·)) = supR∈R(1)W(R) as n →∞. This proves the theorem.

Theorem 3.2. Let {Z(R), R ∈ B(Rd)} be a Lévy noise such that for some
µ > 0 and σ2 > 0

EZ(R) = µ|R|, VarZ(R) = σ2|R|.
Then the distribution of σ−1n−d/2

(
supR∈R(n)Z(R)− ndµ

)
converges as n →

∞ to the standard normal distribution.
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Proof. The idea is to show that supR∈R(n)Z(R) behaves essentially like Z([0, n]d)
and then to apply the central limit theorem. We show that for every a > 0

P[ sup
R∈R(n)

Z(R)−Z([0, n]d) ≥ and/2] → 0, n →∞. (4)

Denoting the left-hand side by Pn and taking ε > 0 small we have Pn ≤
P ′

n + P ′′
n , where

P ′
n = P[ sup

R∈R′(n)

Z(R)−Z([0, n]d) ≥ 0],

P ′′
n = P[ sup

R∈R′′(n)

Z(R)−Z([0, n]d) ≥ and/2],

and R′(n) = {R ∈ R(n) : |R| < (1 − ε)nd}, R′′(n) = {R ∈ R(n) : |R| ≥
(1− ε)nd}.
Define the centered noise {Z0(R), R ∈ B(Rd)} by Z0(R) = Z(R) − µ|R|.
Then

P ′
n ≤ P[ sup

R∈R′(n)

Z0(R)−Z0([0, n]d) ≥ µεnd].

By the multidimensional invariance principle of Bickel and Wichura (1971),
applied to Z0, limn→∞ P ′

n = 0. Further,

P ′′
n ≤ P[ sup

R∈R′′(n)

Z0(R)−Z0([0, n]d) ≥ and/2].

Again using the multidimensional invariance principle, we see that this con-
verges to

c(ε) = P[ sup
R∈R(1),|R|≥1−ε

W(R)−W([0, 1]d) ≥ a].

It is easy to see that limε→0 c(ε) = 0. It follows that

lim sup
n→∞

Pn ≤ lim sup
n→∞

P ′
n + lim sup

n→∞
P ′′

n ≤ c(ε).

Letting ε → 0 we obtain limn→∞ Pn = 0, which proves (4). Now, the
statement of the theorem follows from the central limit theorem applied to
Z([0, n]d) in combination with (4).

4 Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. In the first two sub-
sections we introduce some notation and prove technical lemmas which will
be often used in the sequel. In what follows, C > 0 (resp. δ > 0) denotes a
large (resp. small) constant whose value may change from line to line.
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4.1 Notation and preliminaries

Normalizing constants. Let τ ∈ R be fixed once for all. For the constants
H∗ and α∗ to be specified later define

un =
1

θ∗
(d log n + (d− 1) log log n + H∗ + τ); (5)

vn = un/α∗, ln = v1/d
n . (6)

The space of cubes. A d-dimensional cube (denoted usually by R) is a set of
the form ×d

i=1[xi−x/2, xi +x/2], where (x1, . . . , xd) ∈ Rd are the coordinates
of the center and x > 0 is the side length. The space of all cubes, denoted
by R, will be identified with Rd× (0,∞), a cube R being identified with the
tuple (x1, . . . , xd; x). We denote by |R| = xd the volume of the cube R.
The underlying Lévy process. Let {ξ(t), t ≥ 0} be a Lévy process satisfying
conditions L1-L3 of Section 2. The function ϕ is real analytic, convex function
on [0, θ0). The zero θ∗ is necessary unique by convexity of ϕ. It follows from
condition L2 that E[ξ(1)] < 0. Further, condition L2 implies that P[ξ(1) >
0] 6= 0 and it follows that ξ(1), being infinitely divisible, can attain arbitrarily
large values. Using this, it is not difficult to show that limθ→θ0 ϕ′(θ) = ∞.
Note also that ϕ′ is monotone increasing and ϕ′(0) = E[ξ(1)] < 0. For
each α ∈ (Eξ(1),∞) let θ(α) be the unique solution of ϕ′(θ(α)) = α and
let σ(α) =

√
ϕ′′(θ(α)). Define the Cramér-Chernoff information function

I : [Eξ(1),∞) → [0,∞) by

I(α) = sup
θ≥0

(αθ − ϕ(θ)) = αθ(α)− ϕ(θ(α)). (7)

Define

α∗ = ϕ′(θ∗), σ∗ =
√

ϕ′′(θ∗). (8)

Note that α∗ > 0, θ(α∗) = θ∗ and σ(α∗) = σ∗.

Lemma 4.1. The function J : (0,∞) → (0,∞) defined by J(α) = I(α)/α
has a unique minimum at α = α∗. Furthermore

J(α∗) = θ∗; J ′(α∗) = 0; J ′′(α∗) =
1

α∗σ∗2
. (9)

Proof. Substituting α = α∗ into (7) gives I(α∗) = α∗θ∗−ϕ(θ∗) = α∗θ∗, which
proves that J(α∗) = θ∗. Differentiating (7) at α = α∗ we obtain I ′(α∗) =
θ(α∗) = θ∗ and I ′′(α∗) = θ′(α∗) = 1/ϕ′′(θ(α∗)) = 1/σ∗2. Substituting this
into

J ′(α) = α−2(αI ′(α)− I(α)), J ′′(α) = α−3(α2I ′′(α)− 2αI ′(α) + 2I(α))

we obtain (9). In order to show that α = α∗ is the unique minimum of J
note that it follows from the above equation that J ′(α) = α−2ϕ(θ(α)) and
that α = α∗ is the unique solution of ϕ(θ(α)) = 0, α > 0.
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Large deviations. We need the following precise large deviations theorem due
to Petrov (1965).

Theorem 4.1. Let {ξ(t), t ≥ 0} be a Lévy process satisfying conditions L1-
L3 of Section 2. Let α ∈ (Eξ(1),∞). We have as v →∞

P[ξ(v)/v > α] ∼ 1√
2πθ(α)σ(α)

1√
v

exp{−vI(α)}.

Moreover, the above holds uniformly in α as long as α stays bounded from
Eξ(1) and +∞.

The next lemma is a simple consequence of Markov’s inequality and will be
often used in the sequel.

Lemma 4.2. For every u, v > 0

P[ξ(v) > u] ≤ exp(−uJ(u/v)).

Proof. By Markov’s inequality we have, for each t > 0,

P[ξ(v) > u] ≤ e−utEetξ(v) = exp(−ut + vϕ(t)) = exp(−v(ut/v − ϕ(t))).

Since the above is true for every t > 0, we obtain

P[ξ(v) > u] ≤ exp(−vI(u/v)) = exp(−uJ(u/v)),

which finishes the proof.

Corollary 4.1. For every u, v > 0

P[ξ(v) > u] ≤ exp(−θ∗u).

Proof. Use the Lemma 4.2 and recall that J(u/v) ≥ θ∗ by Lemma 4.1.

4.2 Modulus of continuity estimate

Let {Z(R), R ∈ B(Rd)} be a Lévy noise such that the underlying Lévy pro-
cess ξ satisfies assumptions L1-L3 of Section 2 and let Ξ be the corresponding
Lévy sheet. The next lemma gives a large deviations estimate for the supre-
mum of Ξ over [0, c]d, c > 0.

Lemma 4.3. For every θ < θ0, c > 0 there is C = C(θ, c) such that

P[ sup
(x1,...,xd)∈[0,c]d

Ξ(x1, . . . , xd) > u] < Ce−θu ∀u > 0. (10)
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Proof. For simplicity we assume that c = 1. For d = 1 the lemma was
proved in Willekens (1987). We use induction over d combined with the
method of Willekens (1987). Suppose that the statement of the lemma was
proved in dimensions 1, . . . , d− 1. Let

τ1 = inf{x1 ≥ 0 : ∃x2, . . . , xd ∈ [0, 1]d−1 : Ξ(x1, . . . , xd) > u}.

The left-hand side of (10) is the probability of the event A = {τ1 ≤ 1}. We
have A = A1 ∪ A2 where

A1 = {τ1 ≤ 1 ∩ sup
(x2,...,xd)∈[0,1]d−1

Ξ(1, x2, . . . , xd) > u− 1},

A2 = {τ1 ≤ 1 ∩ sup
(x2,...,xd)∈[0,1]d−1

Ξ(1, x2, . . . , xd) < u− 1}.

Now, by the induction hypothesis,

P[A1] ≤ P[ sup
(x2,...,xd)∈[0,1]d−1

Ξ(1, x2, . . . , xd) > u− 1] ≤ Ce−θu.

We estimate

P[A2] ≤ P[A ∩ inf
(x2,...,xd)∈[0,1]d−1

(Ξ(1, x2, . . . , xd)− Ξ(τ1, x2, . . . , xd)) < −1]

≤ P[A ∩ inf
(x1,x2,...,xd)∈[0,1]d

(Ξ(τ1 + x1, x2, . . . , xd)− Ξ(τ1, x2, . . . , xd)) < −1]

= P[A]P[ inf
(x1,x2,...,xd)∈[0,1]d

(Ξ(τ1 + x1, x2, . . . , xd)− Ξ(τ1, x2, . . . , xd)) < −1]

= P[A]P[ inf
(x1,x2,...,xd)∈[0,1]d

Ξ(x1, x2, . . . , xd) < −1]

= pP[A]

for some p < 1. We obtain P[A] = P[A1] + P[A2] ≤ Ce−θu + pP[A] for some
p < 1, from which the statement of the lemma follows.

In the sequel, we shall often use the following technical lemma, which esti-
mates the modulus of continuity of the random field {Z(R), R ∈ R}.
Lemma 4.4. Let c > 0 be a fixed constant. Let x > cd and let q < cx1−d.
Define a set of cubes B = [−q/2, q/2]d× [x, x+q]. Let R0 = [−(x−q)/2, (x−
q)/2]d be the intersection of all cubes from B and define the random variable
M by

M = sup
R∈B

Z(R)−Z(R0).

Then, for every θ < θ0, there is a constant C = C(c, θ) such that uniformly
in x and q

P[M > t] ≤ Ce−θt ∀t > 0.
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Proof. We show that EeθM < C(c, θ), the lemma follows then from Markov’s
inequality. For h = (h1, . . . , hd), hi > 0, and ε1, . . . , εd ∈ {−1, 0, 1} define a
rectangle

R(ε1, . . . , εd; h) = I(ε1; h1)× . . .× I(εd; hd),

where

I(εi; hi) =





[−(x− q)/2, (x− q)/2], if εi = 0,

[(x− q)/2, (x− q)/2 + hi], if εi = 1,

[−(x− q)/2− h, (x− q)/2], if εi = −1.

Note that R(0, . . . , 0; h) = R0 (in particular, the left-hand side does not
depend on h). Let

M(ε1, . . . , εd) = sup
h∈[0,3q/2]d

Z(R(ε1, . . . , εd; h)).

The random variables M(ε1, . . . , εd) are independent and

M ≤
∑

(ε1,...,εd)∈{−1,0,1}d\(0,...,0)

M(ε1, . . . , εd). (11)

Furthermore, if r is the number of +1 and −1 among εi and if r 6= 0, then the
random variable M(ε1, . . . , εd) has the same distribution as the supremum
of an r-dimensionally indexed Lévy sheet on [0, 3

2
q(x − q)(d−r)/r]r. Since

3
2
q(x− q)(d−r)/r ≤ 3

2
qxd−1 < 3

2
c by the assumption of the lemma, we have, by

Lemma 4.3,
EeθM(ε1,...,εd) < C(c, θ).

To finish the proof of the lemma use (11).

4.3 Cubes of nearly optimal size

Idea of the proof. Now we are ready to start the proof of Theorem 2.1.
We are interested in the high-crossing probability P[supR∈R(n)Z(R) > un].
Intuitively, too small or too large cubes have asymptotically no chance to
contribute to the above probability (for large cubes this is due to the as-
sumption that the mean of the Lévy noise is negative). We shall see later
that, asymptotically, the probability P[Z(R) > un] achieves its maximum if
the volume of the cube R is equal to vn (equivalently, if its side length is equal
to ln). Furthermore, we shall see that cubes of volume differing from the op-
timal volume vn by a quantity of order more than

√
vn have asymptotically

no chance to contribute to the extremes of the field Z.
In this section we are dealing with cubes of nearly optimal size, that is with
cubes whose volume differs from vn by a quantity of order

√
vn. To be more

precise, we fix a very large A > 0 and define

l−n = (vn − A
√

vn)1/d, l+n = (vn + A
√

vn)1/d. (12)
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The main result of this subsection is Lemma 4.11 below, in which the limit
as n →∞ of P[maxR∈RA(n)Z(R) ≤ un] is calculated, where RA(n) is the set
of cubes from R(n) whose side length is in the interval [l−n , l+n ].
Cubes of nearly optimal size. First we evaluate the high crossing probability
P[Z(R) > un] for cubes R having the optimal volume vn.

Lemma 4.5. We have as n →∞

P[ξ(vn) > un] ∼
√

α∗√
2πθ∗σ∗

1√
un

e−θ∗un .

Proof. This follows from Petrov’s Theorem 4.1.

Now we consider cubes with volume differing from the optimal one by a
quantity of order

√
vn. Comparably to cubes of optimal volume, the high

crossing probability changes by a constant factor.

Lemma 4.6. We have as n →∞

P[ξ(vn + s
√

vn) > un + t] ∼ e−θ∗te−
(α∗s)2

2σ∗2 P[ξ(vn) > un].

The above holds uniformly in s, t as long as s = O(1) and t = o(
√

un).

Proof. Let αn = (un+t)/(vn+s
√

vn). Note that limn→∞ αn = α∗. We obtain
by Petrov’s Theorem 4.1

P[ξ(vn + s
√

vn) > (un + t)] ∼ 1√
2πθ∗σ∗

1√
vn

exp {−(un + t)J(αn)} .

Now, an easy calculation shows that αn = α∗(1− s/
√

vn + o(1/
√

vn)). Using
Lemma 4.1 we obtain

J(αn) = θ∗ +
1

2

α∗s2

σ∗2vn

+ o

(
1

vn

)
.

It follows that

P[ξ(vn + s
√

vn) > (un + t)] ∼
(

1√
2πθ∗σ∗

1√
vn

e−θ∗un

)
e−θ∗te−

(α∗s)2

2σ∗2 .

The statement of the lemma follows by noting that the first factor on the
right-hand side is asymptotically equivalent to P[ξ(vn) > un] by Lemma 4.5.

Let qn = l1−d
n = v

(1−d)/d
n . Note that if d = 1 then qn = 1, whereas otherwise

limn→∞ qn = 0. In the next lemma, we consider a high-crossing probability
over a set of size of order qn in the space of cubes.

12



Lemma 4.7. For x > 0 and a fixed m ∈ N define a set of cubes

Bm
x (n) = [−mqn/2,mqn/2]d × [x, x + mqn].

Then, for some constant Hm > 0, the following asymptotic equality holds as
n →∞ uniformly in x as long as x ∈ [l−n , l+n ]

P
[

max
R∈Bm

x (n)
Z(R) > un

]
∼ HmP[ξ(xd) > un]. (13)

Proof. Let R0 = [−(x−mqn)/2, (x−mqn)/2]d be the intersection of all cubes
from Bm

x (n). Note that |R0| = |x−mqn|d = xd + O(1) as n →∞. Applying
Lemma 4.6 twice, we obtain that

P[Z(R0) > un − t] ∼ eθ∗tP[ξ(xd) > un]. (14)

Let
Mn = max

R∈Bm
x (n)

Z(R)−Z(R0)

Then it is easy to see that Z(R0) and Mn are independent and that Mn

converges in distribution as n →∞ to the random variable

M∞ = max
(l1,...,ld;l)∈[−1/2,1/2]d×[0,1]

d∑
i=1

(ξi(li +
l + m

2
)− ξi(li − l + m

2
)),

where ξ1(·), . . . , ξd(·) are independent copies of the Lévy process {ξ(t), t ∈ R}.
Denote the probability on the left-hand side of (13) by Pn. Then

Pn =

∫ ∞

−∞
P[Z(R0) > un − t]dP[Mn = t].

Using (14), we obtain, at least formally, that as n →∞

Pn ∼
(∫ ∞

−∞
eθ∗tdP[M∞ = t]

)
P[ξ(xd) > un],

which proves the lemma with Hm = Eeθ∗M∞ . In the rest of the proof we
justify this step. Take T > 0 large. We have

Pn

P[ξ(xd) > un]
=

∫ ∞

−∞

P[Z(R0) > un − t]

P[ξ(xd) > un]
dP[Mn = t]

=

∫ +T

−T

+

∫ u
1/3
n

T

+

∫ ∞

u
1/3
n

+

∫ −T

−∞
= I + II + III + IV.

13



Since by Lemma 4.6 the convergence in (14) is uniform for t ∈ [−T, T ] and
since Mn converges in distribution to M∞, we obtain

lim
n→∞

I =

∫ T

−T

eθ∗tdP[M∞ = t].

The convergence in (14) remains uniform for t = o(
√

un). Using the fact that
by Lemma 4.4, applied to Mn, EeθMn < C(θ,m) for every θ < θ0, we obtain

II ≤
∫ u

1/3
n

T

Ceθ∗tdP[Mn = t] < Ce−δT

for some δ > 0. To estimate the third term note that P[Z(R0) > un − t] ≤
e−θ∗(un−t) by Corollary 4.1 and P[ξ(xd) > un] ≥ cu

−1/2
n e−θ∗un by Lemma 4.6.

Thus

III ≤
∫ ∞

u
1/3
n

e−θ∗(un−t)

cu
−1/2
n e−θ∗un

dP[Mn = t] ≤ Cu1/2
n

∫ ∞

u
1/3
n

eθ∗tdP[Mn = t].

The right-hand side of the above inequality converges to 0 as n → ∞ since
EeθMn < C for every θ < θ0 by Lemma 4.4. Thus, limn→∞ III = 0.
We estimate the last term:

IV ≤ P[Z(R0) > un + T ]/P[ξ(xd) > un].

It follows from Lemma 4.6 applied twice that the right-hand side of the above
inequality converges to e−θ∗T as n → ∞ and hence lim supn→∞ IV ≤ e−θ∗T .
The statement of the lemma follows from above by letting first n →∞ and
then T →∞.

Let sn be a sequence satisfying sn = O(ln), sn > 1. In the next lemma, we
evaluate the high crossing probability of the scan statistic taken over the set
of all cubes of nearly optimal volume with centers contained in [0, sn]d.

Lemma 4.8. Let LA(n) = [0, sn]d × [l−n , l+n ]. Then we have as n →∞

P
[

max
R∈LA(n)

Z(R) > un

]
∼ H

(∫ A

−A

e−
(α∗t)2

2σ∗2 dt

)
sd

nvd−(1/2)
n P[ξ(vn) > un]. (15)

Here, H ∈ (0,∞) is a constant defined by

H =
1

d
lim

m→∞
Hm

md+1
. (16)

Proof. Define
Lm

A (n) = mqnZd+1 ∩ LA(n).

14



For R = (x1, . . . , xd; x) ∈ Lm
A (n) let

Bm
R (n) = [x1− qn

2
, x1+(m− 1

2
)qn]×. . .×[xd− qn

2
, xd+(m− 1

2
)qn]×[x, x+mqn]

and define Bm
R (n) = Bm

x1,...,xd;x(n) to be the random event {maxQ∈Bm
R (n)Z(Q) >

un}. Denote the probability on the left-hand side of (15) by Pn. Then

Pn ≤ Sm
1 (n), (17)

where

Sm
1 (n) =

∑

R∈Lm
A (n)

P[Bm
R (n)] =

(
sn

mqn

)d ∑

x∈mqnZ∩[l−n ,l+n ]

P[Bm
0,...,0;x(n)].

Applying Lemma 4.7 and then Lemma 4.6

P[Bm
0,...,0;x(n)] ∼ HmP[ξ(vn) > un] exp

{
− α∗2

2σ∗2
(xd − vn)2

vn

}
.

If the values of x are in mqnZ∩ [l−n , l+n ], then the values of (xd−vn)/
√

vn form
a lattice in the interval [−A,A], whose (variable) mesh size is ≈ md/

√
vn.

Thus, approximating the Riemann sum by an integral, we obtain

∑

x∈mqnZ∩[l−n ,l+n ]

P[Bm
0,...,0;x(n)] ∼ HmP[ξ(vn) > un]

(√
vn

md

∫ A

−A

e−
(α∗t)2

2σ∗2 dt

)
.

This shows that

Sm
1 (n) ∼ 1

dmd+1
Hm

(∫ A

−A

e−
(α∗t)2

2σ∗2 dt

)
sd

nv
d−(1/2)
n P[ξ(vn) > un]. (18)

Since the above is true for every m, we obtain by letting m → ∞ that the
left-hand side of (15) is asymptotically not greater than the right-hand side
of (15). In order to prove the converse we use the Bonferroni inequality

Pn ≥ Sm
1 (n)− Sm

2 (n), (19)

where Sm
1 (n) is as above and

Sm
2 (n) =

∑

R1,R2∈Lm
A (n), R1 6=R2

P[Bm
R1

(n) ∩Bm
R2

(n)].

The sum Sm
1 (n) was already treated above. The proof will be finished in

Lemma 4.10, where it will be shown that Sm
2 (n) can be asymptotically ig-

nored as n →∞ and m →∞.
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For a cube R = (x1, . . . , xd; x) let

BR(n) = [x1 − qn/2, x1 + qn/2]× . . .× [xd − qn/2, xd + qn/2]× [x, x + qn]

and let BR(n) be the random event {supR∈BR(n)Z(R) > un}. Let R1, R2 ∈
LA(n) be two cubes. Denote ∆(R1, R2) = |R1 4 R2|, the volume of the
symmetric difference of R1 and R2.

Lemma 4.9. For arbitrary cubes R1, R2 ∈ LA(n) we have

P[BR1(n) ∩BR2(n)] ≤ Ce−δ∆(R1,R2)P[ξ(vn) > un].

Proof. For a cube R = (x1, . . . , xd; x), h = (h1, . . . , hd), hi > 0, and (ε1, . . . , εd) ∈
{−1, 0, 1}d let

R(ε1, . . . , εd; h) = I1(ε1; h1)× . . .× Id(εd; hd),

where

Ij(εj; hj) =





[xj − (x− qn)/2, xj + (x− qn)/2], if εj = 0,

[xj + (x− qn)/2, xj + (x− qn)/2 + hj], if εj = 1,

[xj − (x− qn)/2− hj, xj − (x− qn)/2], if εj = −1.

Let R1(ε1, . . . , εd; h) and R2(ε1, . . . , εd; h) be defined analogously with R re-
placed by R1 resp. R2. Let h(n) = (3

2
qn, . . . , 3

2
qn) and

R̄1 = ∪(ε1,...,εd)∈{−1,0,1}dR1(ε1, . . . , εd; h(n)).

Define

R′
2(ε1, . . . , εd; h) = R2(ε1, . . . , εd; h) ∩ R̄1,

R′′
2(ε1, . . . , εd; h) = R2(ε1, . . . , εd; h)\R̄1.

Note that R′
0 := R′

2(0, . . . , 0; h) and R′′
0 := R′′

2(0, . . . , 0; h) do not depend on
h. Let

M ′ =
∑

{ε1,...,εd}∈{−1,0,1}d\{0,...,0}
sup

h∈[0,3qn/2]d
Z(R′

2(ε1, . . . , εd; h)),

M ′′ =
∑

{ε1,...,εd}∈{−1,0,1}d\{0,...,0}
sup

h∈[0,3qn/2]d
Z(R′′

2(ε1, . . . , εd; h)).

Finally, fix some small a > 0 and let

B′ = {Z(R′
0) + M ′ > un + a∆},

B′′ = {Z(R′′
0) + M ′′ > −a∆}.
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We have trivially

P[BR1(n) ∩BR2(n)] = P[BR1(n) ∩BR2(n) ∩B′] + P[(BR1(n) ∩BR2(n))\B′]

≤ P[B′] + P[BR1(n) ∩B′′]

= P[B′] + P[BR1(n)]P[B′′].

By Lemma 4.7 with m = 1 we have P[BR1(n)] ≤ CP[ξ(vn) > un]. Thus, in
order to prove the lemma we need to show the following two inequalities

P[B′] ≤ Ce−δ∆(R1,R2)P[ξ(vn) > un], (20)

P[B′′] ≤ Ce−δ∆(R1,R2). (21)

We prove (20). Take ε > 0 sufficiently small. We write ∆ := ∆(R1, R2)

P[B′] =

∫ ∞

0

P[Z(R′
0) ≥ un + a∆− t]dP[M ′ = t] =

∫ (1−ε)un

0

+

∫ ∞

(1−ε)un

= I + II.

To estimate I suppose first that |R′
0| > ε′vn, where ε′ is much smaller than ε.

As in Lemma 4.4, we have EeθM ′
< C(θ) for every θ < θ0. Then by Petrov’s

theorem

I =

∫ (1−ε)un

0

P[Z(R′
0) ≥ un + a∆− t]dP[M ′ = t]

≤
∫ (1−ε)un

0

Cu−1/2
n e−θ∗(un+a∆−t)dP[M ′ = t]

≤ Cu−1/2
n e−θ∗une−δ∆

∫ ∞

0

eθ∗tdP[M ′ = t]

≤ Ce−δ∆P[ξ(vn) > un].

Now suppose that |R′
0| < ε′vn. Then, by Lemma 4.2, and if ε′ is small enough,

I ≤ P[Z(R′
0) > εun] < e−(1+δ)θ∗un .

To estimate II note that by Lemma 4.4 and if ε is sufficiently small

II ≤ P[M ′ > (1− ε)un] ≤ e−(1+δ)θ∗un .

This proves (20). We prove (21). By symmetry we may assume that |R1\R2| ≤
|R2\R1| and hence |R′′

0| ≥ ∆/2−O(1). By Markov inequality, for t > 0 small,

P[B′′] = P[Z(R′′
0) + M ′′ > −a∆] ≤ eta∆EetZ(R′′0 )EetM ′′ ≤ Ceta∆EetZ(R′′0 )

= Ceta∆+|R′′0 |ϕ(t) ≤ Ce∆(2ta+ϕ(t))/2.

Now, since a > 0 is small enough and ϕ′(0) < 0, we may choose t > 0 so
small that 2ta + ϕ(t) < 0. This proves (21).
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Lemma 4.10. With the notation of Lemma 4.8 and its proof

lim
m→∞

lim sup
n→∞

Sm
2 (n)/(sd

nvd−(1/2)
n P[ξ(vn) > un]) = 0.

Proof. For each R ∈ LA(n) the set Bm
R (n) may be written as a union of

md+1 sets of the form BQ(n), where Q ∈ qnZd+1 ∩ LA(n). For two cubes
Q1, Q2 ∈ qnZd+1∩LA(n) we write Q1 ∼m Q2 if there is R ∈ Lm

A (n) such that
both BQ1(n) and BQ2(n) are subsets of Bm

R (n). It is not difficult to see that

Sm
2 (n) ≤

∑

Q1,Q2∈qnZd+1∩Ln
A

Q1�mQ2

P[BQ1(n) ∩BQ2(n)].

Applying Lemma 4.9 we obtain

Sm
2 (n) ≤ CP[ξ(vn) > un]

∑

Q1,Q2∈qnZd+1∩Ln
A

Q1�mQ2

e−δ∆(Q1,Q2).

If Q1 = qnw1, Q2 = qnw2 for w1, w2 ∈ Zd+1 then ∆(Q1, Q2) > c‖w1 − w2‖
for some c > 0, where ‖ · ‖ is any norm on Rd+1. The lattice Zd+1 can be
decomposed into a disjoint union of discrete cubes of size-length m, the cubes
having the form w+Km for w ∈ mZd+1, where Km = {0, . . . , m−1}d+1. For
w1, w2 ∈ Zd+1 we write w1 ∼m w2 if w1 and w2 are contained in the same
cube of the form described above. It is clear that Q1 ∼m Q2 iff w1 ∼m w2.
It follows

Sm
2 (n) ≤ CP[ξ(vn) > un]

∑

w1,w2∈Zd+1∩q−1
n ([0,sn]d×[l+n ,l−n ])

w1�mw2

e−δ‖w1−w2‖.

The set Zd+1 ∩ q−1
n ([0, sn]d× [l+n , l−n ]) contains O(1)sd

nv
d−(1/2)
n points. If (for c

sufficiently large) ‖w1 − w2‖ > cm then w1 �m w2. Using this, we obtain

Sm
2 (n) ≤ CP[ξ(vn) > un]sd

nvd−(1/2)
n (I + II),

where

I =
∑

w∈Zd+1,‖w‖≥cm

e−δ‖w‖, II =
1

md+1

∑

w1∈Km,w2∈Zd+1

‖w1−w2‖≤cm

e−δ‖w1−w2‖.

Both I and II do not depend on n and a straightforward calculation shows
that limm→∞ I = limm→∞ II = 0. This finishes the proof of Lemma 4.10.
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Now we can finish the proof of Lemma 4.8. Equation (15), and in particular
the existence of the limit in (16), follows from the Bonferroni inequalities (17),
(19) as well as from the above asymptotic equalities for Sm

1 (n), Sm
2 (n). It

remains only to show that H > 0.
We have

Pn ≥
∑

R∈Lm
A (n)

P[BR(n)]−
∑

R1,R2∈Lm
A (n)

R1 6=R2

P[BR1(n) ∩BR2(n)] = I − II.

By the above I is asymptotically greater than cm−(d+1)sd
nv

d−(1/2)
n P[ξ(vn) >

un] for some c > 0, whereas

II ≤ CP[ξ(vn) > un]sd
nv

d−(1/2)
n m−(d+1)

∑

w∈mZd+1

e−δ‖w‖.

It follows, that if m is sufficiently large, then Pn ≥ I−II ≥ csd
nv

d−(1/2)
n P[ξ(vn) >

un] for some c > 0. It follows that the constant H in (15) is positive.

Remark 4.1. If the constant H∗ in (5) is defined by H∗ = log H + (d −
1) log d− d log(α∗θ∗), then the statement of Lemma 4.8 may be written as

P
[

max
R∈LA(n)

Z(R) > un

]
∼ DA

e−τ

(n/sn)d
,

where DA = α∗(
√

2πσ∗)−1
∫ A

−A
e−

(α∗t)2

2σ∗2 dt.

Finally, we are ready to prove the main result of this subsection.

Lemma 4.11. Let RA(n) = [0, n]d × [l−n , l+n ]. We have

lim
n→∞

P[ max
R∈RA(n)

Z(R) ≤ un] = exp
{−DAe−τ

}
.

Proof. The set RA(n) can be decomposed in (n/sn)d translates of the set
LA(n), which was considered in Lemma 4.8 and Remark 4.1. The lemma
follows then from the Poisson limit theorem, the only problem to overcome
is that the events under consideration are dependent.
Let sn = ln. For (m1, . . . ,md) ∈ Zd ∩ [0, n/sn]d let

LA(n; m1, . . . , md) = [m1sn, (m1 + 1)sn]× . . .× [mdsn, (md + 1)sn]× [l−n , l+n ].

and define the random event LA(n; m1, . . . , md) = {supR∈LA(n;m1,...,md)Z(R) >
un}. By Lemma 4.8 and Remark 4.1

P[LA(n; m1, . . . , md)] ∼ DA
e−τ

(n/sn)d
. (22)
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Now we want to apply the Poisson limit theorem to the events

{LA(n; m1, . . . , md), (m1, . . . , md) ∈ Zd ∩ [0, n/sn]d}.
Note that the events are finite-range dependent. More precisely, the events
LA(n; m′

1, . . . , m
′
d) and LA(n; m′′

1, . . . , m
′′
d) are independent if |m′

i −m′′
i | > 1

for at least one i = 1, . . . , d. In order to justify the use of the Poisson limit
theorem we have to show that

P[LA(n; m′
1, . . . ,m

′′
d) ∩ LA(n; m′′

1, . . . , m
′′
d)] = o((n/sn)−d) (23)

as n →∞, where m′′
i = m′

i+εi, εi ∈ {−1, 0, 1} are not all 0, see e.g. Theorem
1 in Arratia et al. (1989). To this end, we use Lemma 4.8 again, this time
for s′n = 3ln. We obtain

P[
⋃

(ε1,...,εd)∈{−1,0,1}d

LA(n,m′
1 + ε1, . . . , m

′
d + εd)] ∼ 3dDA

e−τ

(n/sn)d
.

On the other hand, by (22),

∑

(ε1,...,εd)∈{−1,0,1}d

P[LA(n,m′
1 + ε1, . . . , m

′
d + εd)] ∼ 3dDA

e−τ

(n/sn)d
.

Then (23) follows by Bonferroni inequality.

4.4 Cubes of non-optimal size

In this subsection we are dealing with cubes whose volume differs significantly
from the optimal volume vn. More precisely, we consider cubes with volume
outside the interval [vn − A

√
vn, vn + A

√
vn]. We show that, if A → ∞

and n → ∞, these cubes do not contribute to the extremal behavior of the
random field {Z(R), R ∈ R(n)}. Let ε > 0 be sufficiently small.

Lemma 4.12. There is δ > 0 such that the following inequality holds uni-
formly s and t as long as |s| ≤ ε

√
vn and t = o(

√
un)

P[ξ(vn + s
√

vn) > un + t] ≤ Ce−θ∗te−δs2P[ξ(vn) > un]. (24)

Proof. Let αn = (un + t)/(vn + s
√

vn). Note that αn ∈ [(1− η)α∗, (1 + η)α∗]
where η = η(ε) is small if ε is small. By Petrov’s theorem

P[ξ(vn + s
√

vn) > un + t] ≤ C
1√
vn

exp{−(un + t)J(αn)}. (25)

An easy calculation shows that for some c > 0

(αn − α∗)2 ≥ cs2/vn.

20



Applying Lemma 4.1 we obtain that for some δ > 0

J(αn) ≥ θ∗ + δ
s2

vn

.

Substituting this into (25), we obtain the statement of the lemma.

Let A > 0 be large. Recall that l−n and l+n were defined in (12).

Lemma 4.13. Define a set of cubes R1(n) = [0, n]d × [(1− ε)ln, l−n ] and let

Pn(A) = P[ max
R∈R1(n)

Z(R) > un].

Then, for c(A) = lim supn→∞ Pn(A), we have limA→∞ c(A) = 0.

Proof. Recall that qn = l1−d
n . Define the set Bx(n) = [−qn/2, qn/2]d × [x, x +

qn]. Then

Pn(A) ≤ (n/qn)d
∑

x∈qnZ∩[(1−ε)ln,l−n ]

P[ max
R∈Bx(n)

Z(R) > un]. (26)

Given x ∈ [(1− ε)ln, l−n ] define a cube

R0 = [−1/2(x− qn), 1/2(x− qn)]d.

and M = maxR∈Bx(n)Z(R) − Z(R0). Note that M and Z(R0) are indepen-
dent and |R0| = xd + O(1). We have

P[ max
R∈Bx(n)

Z(R) > un] ≤ P[Z(R0) > un] +

∫ ∞

0

P[Z(R0) > un − t]dP[M = t]

= P[Z(R0) > un] +

∫ u
1/3
n

0

+

∫ ∞

u
1/3
n

= I + II + III.

Let s = sn(x) be chosen such that xd = vn − s
√

vn. By Lemma 4.12

I ≤ Ce−δs2P[ξ(vn) > un].

We estimate the second term using first Lemma 4.12 and then Lemma 4.4:

II ≤ Ce−δs2P[ξ(vn) > un]

∫ u
1/3
n

0

eθ∗tdP[M = t]

≤ Ce−δs2P[ξ(vn) > un].
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Using Corollary 4.1 and then Lemma 4.4 the third term may be estimated
by

III ≤
∫ ∞

u
1/3
n

e−θ∗(un−t)dP[M = t] = e−θ∗un

∫ ∞

u
1/3
n

eθ∗tdP[M = t]

≤ Ce−θ∗une−δu
1/3
n .

Bringing all three estimates together and recalling Lemma 4.5 we obtain

P[ max
R∈Bx(n)

Z(R) > un] ≤ Cu−1/2
n e−θ∗une−δs2

+ Ce−θ∗une−δu
1/3
n .

It follows from (26) that Pn(A) ≤ I ′ + II ′, where

I ′ = C(n/qn)du−1/2
n e−θ∗un

∑

x∈qnZ∩[(1−ε)ln,l−n ]

e−δsn(x)2 ,

II ′ = C(n/qn)de−θ∗une−δu
1/3
n

∑

x∈qnZ∩[(1−ε)ln,l−n ]

1.

It is easy to see that limn→∞ II ′ = 0. We estimate I ′. If x ∈ qnZ ∩ [(1 −
ε)ln, l

−
n ], then the possible values of sn(x) form a lattice in [A,∞) with mesh

size O(u
−1/2
n ). Thus, estimating the Riemann sum by an integral, we obtain

I ′ ≤ C(n/qn)de−θ∗un

∫ ∞

A

e−δs2

ds < C

∫ ∞

A

e−δs2

ds.

The statement of the lemma follows.

Lemma 4.14. Let R2(n) = [0, n]d × [0, (1− ε)ln] and define

Pn = P[ max
R∈R2(n)

Z(R) > un].

Then we have limn→∞ Pn = 0.

Proof. The proof starts similar to the proof of the previous lemma. For
x ∈ [0, (1 − ε)ln] define a set of cubes Bx(n) = [−qn/2, qn/2]d × [x, x + qn].
Then

Pn ≤ (n/qn)d
∑

x∈qnZ∩[0,(1−ε)ln]

P[ max
R∈Bx(n)

Z(R) > un]. (27)

Define, as in the proof of the previous lemma,

R0 = [−1/2(x− qn), 1/2(x− qn)]d.
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and M = maxR∈Bx(n)Z(R) − Z(R0) (if x < qn, we set R0 = ∅). Note that
M and Z(R0) are independent. We have

P[ max
R∈Bx(n)

Z(R) > un] ≤ P[Z(R0) > un] +

∫ ∞

0

P[Z(R0) > un − t]dP[M = t]

= P[Z(R0) > un] +

∫ εun/2

0

+

∫ ∞

εun/2

= I + II + III.

To estimate the first term we use Lemma 4.2 and the fact that |R0| < (1 −
ε)dvn (and thus un/|R0| > (1 + δ)α∗)

I ≤ e−unJ(un/|R0|) ≤ e−(1+δ)θ∗un .

The second term is estimated analogously, using Corollary 4.1 and Lemma 4.4

II ≤
∫ εun/2

0

e−(un−t)J((un−t)/|R0|)dP[M = t]

≤
∫ εun/2

0

e−(1+δ)θ∗(un−t)dP[M = t]

= e−(1+δ)θ∗un

∫ εun/2

0

e(1+δ)θ∗tdP[M = t] ≤ Ce−(1+δ)θ∗un .

To estimate the third term we use again Corollary 4.1 and Lemma 4.4

III ≤
∫ ∞

εun/2

e−θ∗(un−t)dP[M = t] = e−θ∗un

∫ ∞

εun/2

eθ∗tdP[M = t]

≤ Ce−(1+δ)θ∗un .

Bringing the three estimates together, we obtain

P[ max
R∈Bx(n)

Z(R) > un] ≤ Ce−(1+δ)θ∗un .

It follows from (27) that

Pn ≤ C(n/qn)de−(1+δ)θ∗un
∑

x∈qnZ∩[0,(1−ε)ln]

1,

which converges to 0 as n →∞. This finishes the proof.

Lemma 4.15. Define R+
1 (n) = [0, n]d × [l+n , (1 + ε)ln] and let

Pn(A) = P[ max
R∈R+

1 (n)
Z(R) > un].

Then, for c(A) = lim supn→∞ Pn(A), we have limA→∞ c(A) = 0.
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Proof. Analogous to the proof of Lemma 4.13.

Lemma 4.16. Let R+
2 (n) = [0, n]d × [(1 + ε)ln, n] and define

Pn = P[ max
R∈R+

2 (n)
Z(R) > un].

Then we have limn→∞ Pn = 0.

Proof. Define ql = l1−d and, for x ∈ [l, l + 1], define a set of cubes Bx =
[−ql/2, ql/2]d × [x, x + ql]. Let M and R0 be defined in previous lemmas.
Then Pn ≤ P ′

n + P ′′
n , where

P ′
n =

[l2n]∑

l=[(1+ε)ln]

(nq−1
l )d

∑

x∈qlZ∩[l,l+1]

P[max
R∈Bx

Z(R) > un],

P ′′
n =

n∑

l=[l2n]

(nq−1
l )d

∑

x∈qlZ∩[l,l+1]

P[max
R∈Bx

Z(R) > un].

If l ∈ [(1 + ε)ln, l
2
n], then we use the estimate

P[max
R∈Bx

Z(R) > un] ≤ P[Z(R0) > un] +

∫ ∞

0

P[Z(R0) > un − t]dP[M = t]

= I + II.

The first term may be estimated using Lemma 4.2 and the fact that |R0| ≥
(1 + ε)vn

I ≤ e−(1+δ)θ∗un .

To estimate the second term use additionally Lemma 4.4

II ≤
∫ ∞

0

e−(1+δ)θ∗(un−t)dP[M = t] ≤ e−(1+δ)θ∗un

∫ ∞

0

e(1+δ)θ∗tdP[M = t]

< Ce−(1+δ)θ∗un .

Using this, we obtain P ′
n ≤ CndlCn e−(1+δ)θ∗un , which converges to 0 as n →∞.

Now suppose that l ∈ [l2n, n]. Then (the constant b is large)

P[max
R∈Bx

Z(R) > un] ≤ P[Z(R0) > −bun] + P[M > bun] = I + II.

Since |R0| > cl2d
n = cv2

n, c > 0, the first term may be estimated using e.g.
Petrov’s theorem

P[Z(R0) > −bun] ≤ Ce−cv2
nI(bun/v2

n) < Ce−δv2
n < Ce−δu2

n < Cn−D

for any given D. To estimate the second term we use Lemma 4.4

P[M > bun] < Ce−bθ∗un < 1/nD

for any given D if b is sufficiently large. Bringing everything together we ob-
tain P ′′

n ≤ Cnd2+1lCn n−D, which converges to 0 for D large. Thus, limn→∞ P ′′
n =

0. This finishes the proof of the lemma.
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4.5 Proof of Theorem 2.1

Now we are able to finish the proof of Theorem 2.1. For every A > 0 we have

P[ sup
R∈R(n)

Z(R) ≤ un] ≤ P[ sup
R∈RA(n)

Z(R) ≤ un].

Letting n →∞ and applying Lemma 4.11 to the right-hand side we obtain

lim sup
n→∞

P[ sup
R∈R(n)

Z(R) ≤ un] ≤ exp
{−DAe−τ

}
.

Now, letting A →∞ and using the fact that limA→∞ DA = 1, we obtain

lim sup
n→∞

P[ sup
R∈R(n)

Z(R) ≤ un] ≤ exp
{−e−τ

}
. (28)

On the other hand, we have

P[ sup
R∈R(n)

Z(R) ≤ un] ≥ P[ sup
R∈RA(n)

Z(R) ≤ un]− P[ sup
R∈R(n)\RA(n)

Z(R) > un].

Again, by Lemma 4.11 the first term on the right-hand side converges to
exp {−DAe−τ} as n →∞. By Lemmas 4.13, 4.14, 4.15, 4.16

lim
A→∞

lim sup
n→∞

P[ sup
R∈R(n)\RA(n)

Z(R) > un] = 0.

Thus, letting first n →∞ and then A →∞, we obtain

lim inf
n→∞

P[ sup
R∈R(n)

Z(R) ≤ un] ≥ exp
{−e−τ

}
. (29)

The statement of the theorem follows from (28) and (29). ¤

5 Proof of Theorem 1.1

In this section we deduce Theorem 1.1 from Theorem 2.1 using a relation
between marked empirical process and compound Poisson process stated be-
low.

Proof. First, let {(Ui, Xi), i = 1, . . . , n} be a marked empirical process as in
Section 1. On the other hand, let {Vi, i ∈ N} be a Poisson point process on
Rd with unit intensity. To each point Vi we attach a mark Yi. We suppose
that Yi are i.i.d. with the same distribution as the marks Xi used in the
construction of the marked empirical process and that Yi’s do not depend on
Vi’s. For a Borel set R let

Z(R) =
∑

i∈N:Vi∈R

Yi.
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The compound Poisson process Z is an example of Lévy noise. Now we
are going to show that Z satisfies conditions L1-L3 provided that Xi satisfy
conditions X1-X3. First note that if ϕ is the logarithmic moment generating
function of X1 then the logarithmic moment generating function of Z([0, 1]d)
is ψ(t) = eϕ(t)−1. Thus, if ϕ is finite on [0, θ0) and has a zero at θ∗, then the
same holds for ψ. Finally, it is clear that if X1 is non-lattice then Z([0, 1]d)
is also non-lattice. This shows that conditions L1-L3 are satisfied.
We denote by Nt = #{i ∈ N : Vi ∈ [0, t]d} the number of points of the
compound Poisson process, contained in the cube [0, t]d. For n ∈ N let
Tn = inf{t > 0 : Nt = n + 1}. Then we have the equality in distribution

{Xn(R), R ∈ R(1)} ∼ {Z(TnR), R ∈ R(1)}. (30)

To see this consider the right-hand side of (30) conditioned on {Tn ∈ [t, t +
dt]}, where dt is infinitesimal. The condition may be reformulated as {Nt =
n;∃i : Vi ∈ [0, t + dt]d\[0, t]d}, and, under this condition, the square [0, t]d

contains n points of the Poisson point process {Vi, i ∈ N}, which have the
same distribution as n points chosen independently and uniformly in [0, t]d.
Thus,

{Z(TnR), R ∈ R(1)} | {Tn ∈ [t, t + dt]} ∼ {Xn(R), R ∈ R(1)}.
Since this is true for every t, we obtain (30).
Define T+

n = n + n2/3, T−
n = n − n2/3. Then P[Tn > T+

n ] = P[Nn+n2/3 <
n + 1], which converges to 0 as n →∞ by the central limit theorem. Thus,
limn→∞ P[Tn > T+

n ] = 0 and analogously limn→∞ P[Tn < T−
n ] = 0. We have

P[ sup
R∈R(1)

Xn(R) ≤ un] = P[ sup
R∈R(Tn)

Z(R) ≤ un]

≤ P[ sup
R∈R(Tn)

Z(R) ≤ un ∩ Tn ≥ T−
n ] + P[Tn < T−

n ]

≤ P[ sup
R∈R(T−n )

Z(R) ≤ un] + P[Tn < T−
n ].

Now the first term converges to exp{−e−τ} by Theorem 2.1 (note that un =
uT−n + o(1)) and the second term was shown to converge to 0. This shows
that

lim sup
n→∞

P[ sup
R∈R(1)

Xn(R) ≤ un] ≤ exp{−e−τ}.

On the other hand

P[ sup
R∈R(1)

Xn(R) ≤ un] = P[ sup
R∈R(Tn)

Z(R) ≤ un]

≥ P[ sup
R∈R(T+

n )

Z(R) ≤ un ∩ Tn ≤ T+
n ]

≥ P[ sup
R∈R(T+

n )

Z(R) ≤ un]− P[Tn > T−
n ].
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As above, the first term converges to exp{−e−τ} by Theorem 2.1, whereas
the second converges to 0. This shows that

lim inf
n→∞

P[ sup
R∈R(1)

Xn(R) ≤ un] ≥ exp{−e−τ}.

The proof is finished.

Acknowledgements. The authors are grateful to M. Schlather for numer-
ous useful remarks.
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J. Komlós and G. Tusnády. On sequences of ”pure heads”. Ann. Probab., 3:
608–617, 1975.

S. Karlin and A. Dembo. Limit distributions of maximal segmental score
among Markov-dependent partial sums. Adv. Appl. Probab., 24(1):113–
140, 1992.

27



M.R. Leadbetter, G. Lindgren, and H. Rootzen. Extremes and related prop-
erties of random sequences and processes. Springer Series in Statistics.
New York - Heidelberg - Berlin: Springer - Verlag., 336 p., 1983.

V.V. Petrov. On the probabilities of large deviations for sums of independent
random variables. Theor. Probab. Appl., 10:287–298, 1965.

J. Pickands. Asymptotic properties of the maximum in a stationary Gaussian
process. Trans. Am. Math. Soc., 145:75–86, 1969a.

J. Pickands. Upcrossing probabilities for stationary Gaussian processes.
Trans. Am. Math. Soc., 145:51–73, 1969b.

V.I. Piterbarg. Asymptotic methods in the theory of Gaussian processes and
fields. . Translations of Mathematical Monographs. 148. Providence, RI:
AMS., 206 p. , 1996.

V.I. Piterbarg and A.M. Kozlov. On large jumps of a Cramer random walk.
Theory Probab. Appl., 47(4):719–729, 2003.

E. Willekens. On the supremum of an infinitely divisible process. Stochastic
Processes Appl., 26:173–175, 1987.

A. J. Zeevi and P. W. Glynn. On the maximum workload of a queue fed by
fractional Brownian motion. Ann. Appl. Probab., 10(4):1084–1099, 2000.

28


